linux/drivers/s390/block/xpram.c
<<
>>
Prefs
   1/*
   2 * Xpram.c -- the S/390 expanded memory RAM-disk
   3 *           
   4 * significant parts of this code are based on
   5 * the sbull device driver presented in
   6 * A. Rubini: Linux Device Drivers
   7 *
   8 * Author of XPRAM specific coding: Reinhard Buendgen
   9 *                                  buendgen@de.ibm.com
  10 * Rewrite for 2.5: Martin Schwidefsky <schwidefsky@de.ibm.com>
  11 *
  12 * External interfaces:
  13 *   Interfaces to linux kernel
  14 *        xpram_setup: read kernel parameters
  15 *   Device specific file operations
  16 *        xpram_iotcl
  17 *        xpram_open
  18 *
  19 * "ad-hoc" partitioning:
  20 *    the expanded memory can be partitioned among several devices 
  21 *    (with different minors). The partitioning set up can be
  22 *    set by kernel or module parameters (int devs & int sizes[])
  23 *
  24 * Potential future improvements:
  25 *   generic hard disk support to replace ad-hoc partitioning
  26 */
  27
  28#define KMSG_COMPONENT "xpram"
  29#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  30
  31#include <linux/module.h>
  32#include <linux/moduleparam.h>
  33#include <linux/ctype.h>  /* isdigit, isxdigit */
  34#include <linux/errno.h>
  35#include <linux/init.h>
  36#include <linux/slab.h>
  37#include <linux/blkdev.h>
  38#include <linux/blkpg.h>
  39#include <linux/hdreg.h>  /* HDIO_GETGEO */
  40#include <linux/sysdev.h>
  41#include <linux/bio.h>
  42#include <linux/suspend.h>
  43#include <linux/platform_device.h>
  44#include <asm/uaccess.h>
  45
  46#define XPRAM_NAME      "xpram"
  47#define XPRAM_DEVS      1       /* one partition */
  48#define XPRAM_MAX_DEVS  32      /* maximal number of devices (partitions) */
  49
  50typedef struct {
  51        unsigned int    size;           /* size of xpram segment in pages */
  52        unsigned int    offset;         /* start page of xpram segment */
  53} xpram_device_t;
  54
  55static xpram_device_t xpram_devices[XPRAM_MAX_DEVS];
  56static unsigned int xpram_sizes[XPRAM_MAX_DEVS];
  57static struct gendisk *xpram_disks[XPRAM_MAX_DEVS];
  58static struct request_queue *xpram_queues[XPRAM_MAX_DEVS];
  59static unsigned int xpram_pages;
  60static int xpram_devs;
  61
  62/*
  63 * Parameter parsing functions.
  64 */
  65static int __initdata devs = XPRAM_DEVS;
  66static char __initdata *sizes[XPRAM_MAX_DEVS];
  67
  68module_param(devs, int, 0);
  69module_param_array(sizes, charp, NULL, 0);
  70
  71MODULE_PARM_DESC(devs, "number of devices (\"partitions\"), " \
  72                 "the default is " __MODULE_STRING(XPRAM_DEVS) "\n");
  73MODULE_PARM_DESC(sizes, "list of device (partition) sizes " \
  74                 "the defaults are 0s \n" \
  75                 "All devices with size 0 equally partition the "
  76                 "remaining space on the expanded strorage not "
  77                 "claimed by explicit sizes\n");
  78MODULE_LICENSE("GPL");
  79
  80/*
  81 * Copy expanded memory page (4kB) into main memory                  
  82 * Arguments                                                         
  83 *           page_addr:    address of target page                    
  84 *           xpage_index:  index of expandeded memory page           
  85 * Return value                                                      
  86 *           0:            if operation succeeds
  87 *           -EIO:         if pgin failed
  88 *           -ENXIO:       if xpram has vanished
  89 */
  90static int xpram_page_in (unsigned long page_addr, unsigned int xpage_index)
  91{
  92        int cc = 2;     /* return unused cc 2 if pgin traps */
  93
  94        asm volatile(
  95                "       .insn   rre,0xb22e0000,%1,%2\n"  /* pgin %1,%2 */
  96                "0:     ipm     %0\n"
  97                "       srl     %0,28\n"
  98                "1:\n"
  99                EX_TABLE(0b,1b)
 100                : "+d" (cc) : "a" (__pa(page_addr)), "d" (xpage_index) : "cc");
 101        if (cc == 3)
 102                return -ENXIO;
 103        if (cc == 2)
 104                return -ENXIO;
 105        if (cc == 1)
 106                return -EIO;
 107        return 0;
 108}
 109
 110/*
 111 * Copy a 4kB page of main memory to an expanded memory page          
 112 * Arguments                                                          
 113 *           page_addr:    address of source page                     
 114 *           xpage_index:  index of expandeded memory page            
 115 * Return value                                                       
 116 *           0:            if operation succeeds
 117 *           -EIO:         if pgout failed
 118 *           -ENXIO:       if xpram has vanished
 119 */
 120static long xpram_page_out (unsigned long page_addr, unsigned int xpage_index)
 121{
 122        int cc = 2;     /* return unused cc 2 if pgin traps */
 123
 124        asm volatile(
 125                "       .insn   rre,0xb22f0000,%1,%2\n"  /* pgout %1,%2 */
 126                "0:     ipm     %0\n"
 127                "       srl     %0,28\n"
 128                "1:\n"
 129                EX_TABLE(0b,1b)
 130                : "+d" (cc) : "a" (__pa(page_addr)), "d" (xpage_index) : "cc");
 131        if (cc == 3)
 132                return -ENXIO;
 133        if (cc == 2)
 134                return -ENXIO;
 135        if (cc == 1)
 136                return -EIO;
 137        return 0;
 138}
 139
 140/*
 141 * Check if xpram is available.
 142 */
 143static int xpram_present(void)
 144{
 145        unsigned long mem_page;
 146        int rc;
 147
 148        mem_page = (unsigned long) __get_free_page(GFP_KERNEL);
 149        if (!mem_page)
 150                return -ENOMEM;
 151        rc = xpram_page_in(mem_page, 0);
 152        free_page(mem_page);
 153        return rc ? -ENXIO : 0;
 154}
 155
 156/*
 157 * Return index of the last available xpram page.
 158 */
 159static unsigned long xpram_highest_page_index(void)
 160{
 161        unsigned int page_index, add_bit;
 162        unsigned long mem_page;
 163
 164        mem_page = (unsigned long) __get_free_page(GFP_KERNEL);
 165        if (!mem_page)
 166                return 0;
 167
 168        page_index = 0;
 169        add_bit = 1ULL << (sizeof(unsigned int)*8 - 1);
 170        while (add_bit > 0) {
 171                if (xpram_page_in(mem_page, page_index | add_bit) == 0)
 172                        page_index |= add_bit;
 173                add_bit >>= 1;
 174        }
 175
 176        free_page (mem_page);
 177
 178        return page_index;
 179}
 180
 181/*
 182 * Block device make request function.
 183 */
 184static int xpram_make_request(struct request_queue *q, struct bio *bio)
 185{
 186        xpram_device_t *xdev = bio->bi_bdev->bd_disk->private_data;
 187        struct bio_vec *bvec;
 188        unsigned int index;
 189        unsigned long page_addr;
 190        unsigned long bytes;
 191        int i;
 192
 193        if ((bio->bi_sector & 7) != 0 || (bio->bi_size & 4095) != 0)
 194                /* Request is not page-aligned. */
 195                goto fail;
 196        if ((bio->bi_size >> 12) > xdev->size)
 197                /* Request size is no page-aligned. */
 198                goto fail;
 199        if ((bio->bi_sector >> 3) > 0xffffffffU - xdev->offset)
 200                goto fail;
 201        index = (bio->bi_sector >> 3) + xdev->offset;
 202        bio_for_each_segment(bvec, bio, i) {
 203                page_addr = (unsigned long)
 204                        kmap(bvec->bv_page) + bvec->bv_offset;
 205                bytes = bvec->bv_len;
 206                if ((page_addr & 4095) != 0 || (bytes & 4095) != 0)
 207                        /* More paranoia. */
 208                        goto fail;
 209                while (bytes > 0) {
 210                        if (bio_data_dir(bio) == READ) {
 211                                if (xpram_page_in(page_addr, index) != 0)
 212                                        goto fail;
 213                        } else {
 214                                if (xpram_page_out(page_addr, index) != 0)
 215                                        goto fail;
 216                        }
 217                        page_addr += 4096;
 218                        bytes -= 4096;
 219                        index++;
 220                }
 221        }
 222        set_bit(BIO_UPTODATE, &bio->bi_flags);
 223        bio_endio(bio, 0);
 224        return 0;
 225fail:
 226        bio_io_error(bio);
 227        return 0;
 228}
 229
 230static int xpram_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 231{
 232        unsigned long size;
 233
 234        /*
 235         * get geometry: we have to fake one...  trim the size to a
 236         * multiple of 64 (32k): tell we have 16 sectors, 4 heads,
 237         * whatever cylinders. Tell also that data starts at sector. 4.
 238         */
 239        size = (xpram_pages * 8) & ~0x3f;
 240        geo->cylinders = size >> 6;
 241        geo->heads = 4;
 242        geo->sectors = 16;
 243        geo->start = 4;
 244        return 0;
 245}
 246
 247static const struct block_device_operations xpram_devops =
 248{
 249        .owner  = THIS_MODULE,
 250        .getgeo = xpram_getgeo,
 251};
 252
 253/*
 254 * Setup xpram_sizes array.
 255 */
 256static int __init xpram_setup_sizes(unsigned long pages)
 257{
 258        unsigned long mem_needed;
 259        unsigned long mem_auto;
 260        unsigned long long size;
 261        int mem_auto_no;
 262        int i;
 263
 264        /* Check number of devices. */
 265        if (devs <= 0 || devs > XPRAM_MAX_DEVS) {
 266                pr_err("%d is not a valid number of XPRAM devices\n",devs);
 267                return -EINVAL;
 268        }
 269        xpram_devs = devs;
 270
 271        /*
 272         * Copy sizes array to xpram_sizes and align partition
 273         * sizes to page boundary.
 274         */
 275        mem_needed = 0;
 276        mem_auto_no = 0;
 277        for (i = 0; i < xpram_devs; i++) {
 278                if (sizes[i]) {
 279                        size = simple_strtoull(sizes[i], &sizes[i], 0);
 280                        switch (sizes[i][0]) {
 281                        case 'g':
 282                        case 'G':
 283                                size <<= 20;
 284                                break;
 285                        case 'm':
 286                        case 'M':
 287                                size <<= 10;
 288                        }
 289                        xpram_sizes[i] = (size + 3) & -4UL;
 290                }
 291                if (xpram_sizes[i])
 292                        mem_needed += xpram_sizes[i];
 293                else
 294                        mem_auto_no++;
 295        }
 296        
 297        pr_info("  number of devices (partitions): %d \n", xpram_devs);
 298        for (i = 0; i < xpram_devs; i++) {
 299                if (xpram_sizes[i])
 300                        pr_info("  size of partition %d: %u kB\n",
 301                                i, xpram_sizes[i]);
 302                else
 303                        pr_info("  size of partition %d to be set "
 304                                "automatically\n",i);
 305        }
 306        pr_info("  memory needed (for sized partitions): %lu kB\n",
 307                mem_needed);
 308        pr_info("  partitions to be sized automatically: %d\n",
 309                mem_auto_no);
 310
 311        if (mem_needed > pages * 4) {
 312                pr_err("Not enough expanded memory available\n");
 313                return -EINVAL;
 314        }
 315
 316        /*
 317         * partitioning:
 318         * xpram_sizes[i] != 0; partition i has size xpram_sizes[i] kB
 319         * else:             ; all partitions with zero xpram_sizes[i]
 320         *                     partition equally the remaining space
 321         */
 322        if (mem_auto_no) {
 323                mem_auto = ((pages - mem_needed / 4) / mem_auto_no) * 4;
 324                pr_info("  automatically determined "
 325                        "partition size: %lu kB\n", mem_auto);
 326                for (i = 0; i < xpram_devs; i++)
 327                        if (xpram_sizes[i] == 0)
 328                                xpram_sizes[i] = mem_auto;
 329        }
 330        return 0;
 331}
 332
 333static int __init xpram_setup_blkdev(void)
 334{
 335        unsigned long offset;
 336        int i, rc = -ENOMEM;
 337
 338        for (i = 0; i < xpram_devs; i++) {
 339                xpram_disks[i] = alloc_disk(1);
 340                if (!xpram_disks[i])
 341                        goto out;
 342                xpram_queues[i] = blk_alloc_queue(GFP_KERNEL);
 343                if (!xpram_queues[i]) {
 344                        put_disk(xpram_disks[i]);
 345                        goto out;
 346                }
 347                blk_queue_make_request(xpram_queues[i], xpram_make_request);
 348                blk_queue_logical_block_size(xpram_queues[i], 4096);
 349        }
 350
 351        /*
 352         * Register xpram major.
 353         */
 354        rc = register_blkdev(XPRAM_MAJOR, XPRAM_NAME);
 355        if (rc < 0)
 356                goto out;
 357
 358        /*
 359         * Setup device structures.
 360         */
 361        offset = 0;
 362        for (i = 0; i < xpram_devs; i++) {
 363                struct gendisk *disk = xpram_disks[i];
 364
 365                xpram_devices[i].size = xpram_sizes[i] / 4;
 366                xpram_devices[i].offset = offset;
 367                offset += xpram_devices[i].size;
 368                disk->major = XPRAM_MAJOR;
 369                disk->first_minor = i;
 370                disk->fops = &xpram_devops;
 371                disk->private_data = &xpram_devices[i];
 372                disk->queue = xpram_queues[i];
 373                sprintf(disk->disk_name, "slram%d", i);
 374                set_capacity(disk, xpram_sizes[i] << 1);
 375                add_disk(disk);
 376        }
 377
 378        return 0;
 379out:
 380        while (i--) {
 381                blk_cleanup_queue(xpram_queues[i]);
 382                put_disk(xpram_disks[i]);
 383        }
 384        return rc;
 385}
 386
 387/*
 388 * Resume failed: Print error message and call panic.
 389 */
 390static void xpram_resume_error(const char *message)
 391{
 392        pr_err("Resuming the system failed: %s\n", message);
 393        panic("xpram resume error\n");
 394}
 395
 396/*
 397 * Check if xpram setup changed between suspend and resume.
 398 */
 399static int xpram_restore(struct device *dev)
 400{
 401        if (!xpram_pages)
 402                return 0;
 403        if (xpram_present() != 0)
 404                xpram_resume_error("xpram disappeared");
 405        if (xpram_pages != xpram_highest_page_index() + 1)
 406                xpram_resume_error("Size of xpram changed");
 407        return 0;
 408}
 409
 410static struct dev_pm_ops xpram_pm_ops = {
 411        .restore        = xpram_restore,
 412};
 413
 414static struct platform_driver xpram_pdrv = {
 415        .driver = {
 416                .name   = XPRAM_NAME,
 417                .owner  = THIS_MODULE,
 418                .pm     = &xpram_pm_ops,
 419        },
 420};
 421
 422static struct platform_device *xpram_pdev;
 423
 424/*
 425 * Finally, the init/exit functions.
 426 */
 427static void __exit xpram_exit(void)
 428{
 429        int i;
 430        for (i = 0; i < xpram_devs; i++) {
 431                del_gendisk(xpram_disks[i]);
 432                blk_cleanup_queue(xpram_queues[i]);
 433                put_disk(xpram_disks[i]);
 434        }
 435        unregister_blkdev(XPRAM_MAJOR, XPRAM_NAME);
 436        platform_device_unregister(xpram_pdev);
 437        platform_driver_unregister(&xpram_pdrv);
 438}
 439
 440static int __init xpram_init(void)
 441{
 442        int rc;
 443
 444        /* Find out size of expanded memory. */
 445        if (xpram_present() != 0) {
 446                pr_err("No expanded memory available\n");
 447                return -ENODEV;
 448        }
 449        xpram_pages = xpram_highest_page_index() + 1;
 450        pr_info("  %u pages expanded memory found (%lu KB).\n",
 451                xpram_pages, (unsigned long) xpram_pages*4);
 452        rc = xpram_setup_sizes(xpram_pages);
 453        if (rc)
 454                return rc;
 455        rc = platform_driver_register(&xpram_pdrv);
 456        if (rc)
 457                return rc;
 458        xpram_pdev = platform_device_register_simple(XPRAM_NAME, -1, NULL, 0);
 459        if (IS_ERR(xpram_pdev)) {
 460                rc = PTR_ERR(xpram_pdev);
 461                goto fail_platform_driver_unregister;
 462        }
 463        rc = xpram_setup_blkdev();
 464        if (rc)
 465                goto fail_platform_device_unregister;
 466        return 0;
 467
 468fail_platform_device_unregister:
 469        platform_device_unregister(xpram_pdev);
 470fail_platform_driver_unregister:
 471        platform_driver_unregister(&xpram_pdrv);
 472        return rc;
 473}
 474
 475module_init(xpram_init);
 476module_exit(xpram_exit);
 477