linux/drivers/scsi/advansys.c
<<
>>
Prefs
   1#define DRV_NAME "advansys"
   2#define ASC_VERSION "3.4"       /* AdvanSys Driver Version */
   3
   4/*
   5 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
   6 *
   7 * Copyright (c) 1995-2000 Advanced System Products, Inc.
   8 * Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
   9 * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
  10 * All Rights Reserved.
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License as published by
  14 * the Free Software Foundation; either version 2 of the License, or
  15 * (at your option) any later version.
  16 */
  17
  18/*
  19 * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
  20 * changed its name to ConnectCom Solutions, Inc.
  21 * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
  22 */
  23
  24#include <linux/module.h>
  25#include <linux/string.h>
  26#include <linux/kernel.h>
  27#include <linux/types.h>
  28#include <linux/ioport.h>
  29#include <linux/interrupt.h>
  30#include <linux/delay.h>
  31#include <linux/slab.h>
  32#include <linux/mm.h>
  33#include <linux/proc_fs.h>
  34#include <linux/init.h>
  35#include <linux/blkdev.h>
  36#include <linux/isa.h>
  37#include <linux/eisa.h>
  38#include <linux/pci.h>
  39#include <linux/spinlock.h>
  40#include <linux/dma-mapping.h>
  41#include <linux/firmware.h>
  42
  43#include <asm/io.h>
  44#include <asm/system.h>
  45#include <asm/dma.h>
  46
  47#include <scsi/scsi_cmnd.h>
  48#include <scsi/scsi_device.h>
  49#include <scsi/scsi_tcq.h>
  50#include <scsi/scsi.h>
  51#include <scsi/scsi_host.h>
  52
  53/* FIXME:
  54 *
  55 *  1. Although all of the necessary command mapping places have the
  56 *     appropriate dma_map.. APIs, the driver still processes its internal
  57 *     queue using bus_to_virt() and virt_to_bus() which are illegal under
  58 *     the API.  The entire queue processing structure will need to be
  59 *     altered to fix this.
  60 *  2. Need to add memory mapping workaround. Test the memory mapping.
  61 *     If it doesn't work revert to I/O port access. Can a test be done
  62 *     safely?
  63 *  3. Handle an interrupt not working. Keep an interrupt counter in
  64 *     the interrupt handler. In the timeout function if the interrupt
  65 *     has not occurred then print a message and run in polled mode.
  66 *  4. Need to add support for target mode commands, cf. CAM XPT.
  67 *  5. check DMA mapping functions for failure
  68 *  6. Use scsi_transport_spi
  69 *  7. advansys_info is not safe against multiple simultaneous callers
  70 *  8. Add module_param to override ISA/VLB ioport array
  71 */
  72#warning this driver is still not properly converted to the DMA API
  73
  74/* Enable driver /proc statistics. */
  75#define ADVANSYS_STATS
  76
  77/* Enable driver tracing. */
  78#undef ADVANSYS_DEBUG
  79
  80/*
  81 * Portable Data Types
  82 *
  83 * Any instance where a 32-bit long or pointer type is assumed
  84 * for precision or HW defined structures, the following define
  85 * types must be used. In Linux the char, short, and int types
  86 * are all consistent at 8, 16, and 32 bits respectively. Pointers
  87 * and long types are 64 bits on Alpha and UltraSPARC.
  88 */
  89#define ASC_PADDR __u32         /* Physical/Bus address data type. */
  90#define ASC_VADDR __u32         /* Virtual address data type. */
  91#define ASC_DCNT  __u32         /* Unsigned Data count type. */
  92#define ASC_SDCNT __s32         /* Signed Data count type. */
  93
  94typedef unsigned char uchar;
  95
  96#ifndef TRUE
  97#define TRUE     (1)
  98#endif
  99#ifndef FALSE
 100#define FALSE    (0)
 101#endif
 102
 103#define ERR      (-1)
 104#define UW_ERR   (uint)(0xFFFF)
 105#define isodd_word(val)   ((((uint)val) & (uint)0x0001) != 0)
 106
 107#define PCI_VENDOR_ID_ASP               0x10cd
 108#define PCI_DEVICE_ID_ASP_1200A         0x1100
 109#define PCI_DEVICE_ID_ASP_ABP940        0x1200
 110#define PCI_DEVICE_ID_ASP_ABP940U       0x1300
 111#define PCI_DEVICE_ID_ASP_ABP940UW      0x2300
 112#define PCI_DEVICE_ID_38C0800_REV1      0x2500
 113#define PCI_DEVICE_ID_38C1600_REV1      0x2700
 114
 115/*
 116 * Enable CC_VERY_LONG_SG_LIST to support up to 64K element SG lists.
 117 * The SRB structure will have to be changed and the ASC_SRB2SCSIQ()
 118 * macro re-defined to be able to obtain a ASC_SCSI_Q pointer from the
 119 * SRB structure.
 120 */
 121#define CC_VERY_LONG_SG_LIST 0
 122#define ASC_SRB2SCSIQ(srb_ptr)  (srb_ptr)
 123
 124#define PortAddr                 unsigned int   /* port address size  */
 125#define inp(port)                inb(port)
 126#define outp(port, byte)         outb((byte), (port))
 127
 128#define inpw(port)               inw(port)
 129#define outpw(port, word)        outw((word), (port))
 130
 131#define ASC_MAX_SG_QUEUE    7
 132#define ASC_MAX_SG_LIST     255
 133
 134#define ASC_CS_TYPE  unsigned short
 135
 136#define ASC_IS_ISA          (0x0001)
 137#define ASC_IS_ISAPNP       (0x0081)
 138#define ASC_IS_EISA         (0x0002)
 139#define ASC_IS_PCI          (0x0004)
 140#define ASC_IS_PCI_ULTRA    (0x0104)
 141#define ASC_IS_PCMCIA       (0x0008)
 142#define ASC_IS_MCA          (0x0020)
 143#define ASC_IS_VL           (0x0040)
 144#define ASC_IS_WIDESCSI_16  (0x0100)
 145#define ASC_IS_WIDESCSI_32  (0x0200)
 146#define ASC_IS_BIG_ENDIAN   (0x8000)
 147
 148#define ASC_CHIP_MIN_VER_VL      (0x01)
 149#define ASC_CHIP_MAX_VER_VL      (0x07)
 150#define ASC_CHIP_MIN_VER_PCI     (0x09)
 151#define ASC_CHIP_MAX_VER_PCI     (0x0F)
 152#define ASC_CHIP_VER_PCI_BIT     (0x08)
 153#define ASC_CHIP_MIN_VER_ISA     (0x11)
 154#define ASC_CHIP_MIN_VER_ISA_PNP (0x21)
 155#define ASC_CHIP_MAX_VER_ISA     (0x27)
 156#define ASC_CHIP_VER_ISA_BIT     (0x30)
 157#define ASC_CHIP_VER_ISAPNP_BIT  (0x20)
 158#define ASC_CHIP_VER_ASYN_BUG    (0x21)
 159#define ASC_CHIP_VER_PCI             0x08
 160#define ASC_CHIP_VER_PCI_ULTRA_3150  (ASC_CHIP_VER_PCI | 0x02)
 161#define ASC_CHIP_VER_PCI_ULTRA_3050  (ASC_CHIP_VER_PCI | 0x03)
 162#define ASC_CHIP_MIN_VER_EISA (0x41)
 163#define ASC_CHIP_MAX_VER_EISA (0x47)
 164#define ASC_CHIP_VER_EISA_BIT (0x40)
 165#define ASC_CHIP_LATEST_VER_EISA   ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
 166#define ASC_MAX_VL_DMA_COUNT    (0x07FFFFFFL)
 167#define ASC_MAX_PCI_DMA_COUNT   (0xFFFFFFFFL)
 168#define ASC_MAX_ISA_DMA_COUNT   (0x00FFFFFFL)
 169
 170#define ASC_SCSI_ID_BITS  3
 171#define ASC_SCSI_TIX_TYPE     uchar
 172#define ASC_ALL_DEVICE_BIT_SET  0xFF
 173#define ASC_SCSI_BIT_ID_TYPE  uchar
 174#define ASC_MAX_TID       7
 175#define ASC_MAX_LUN       7
 176#define ASC_SCSI_WIDTH_BIT_SET  0xFF
 177#define ASC_MAX_SENSE_LEN   32
 178#define ASC_MIN_SENSE_LEN   14
 179#define ASC_SCSI_RESET_HOLD_TIME_US  60
 180
 181/*
 182 * Narrow boards only support 12-byte commands, while wide boards
 183 * extend to 16-byte commands.
 184 */
 185#define ASC_MAX_CDB_LEN     12
 186#define ADV_MAX_CDB_LEN     16
 187
 188#define MS_SDTR_LEN    0x03
 189#define MS_WDTR_LEN    0x02
 190
 191#define ASC_SG_LIST_PER_Q   7
 192#define QS_FREE        0x00
 193#define QS_READY       0x01
 194#define QS_DISC1       0x02
 195#define QS_DISC2       0x04
 196#define QS_BUSY        0x08
 197#define QS_ABORTED     0x40
 198#define QS_DONE        0x80
 199#define QC_NO_CALLBACK   0x01
 200#define QC_SG_SWAP_QUEUE 0x02
 201#define QC_SG_HEAD       0x04
 202#define QC_DATA_IN       0x08
 203#define QC_DATA_OUT      0x10
 204#define QC_URGENT        0x20
 205#define QC_MSG_OUT       0x40
 206#define QC_REQ_SENSE     0x80
 207#define QCSG_SG_XFER_LIST  0x02
 208#define QCSG_SG_XFER_MORE  0x04
 209#define QCSG_SG_XFER_END   0x08
 210#define QD_IN_PROGRESS       0x00
 211#define QD_NO_ERROR          0x01
 212#define QD_ABORTED_BY_HOST   0x02
 213#define QD_WITH_ERROR        0x04
 214#define QD_INVALID_REQUEST   0x80
 215#define QD_INVALID_HOST_NUM  0x81
 216#define QD_INVALID_DEVICE    0x82
 217#define QD_ERR_INTERNAL      0xFF
 218#define QHSTA_NO_ERROR               0x00
 219#define QHSTA_M_SEL_TIMEOUT          0x11
 220#define QHSTA_M_DATA_OVER_RUN        0x12
 221#define QHSTA_M_DATA_UNDER_RUN       0x12
 222#define QHSTA_M_UNEXPECTED_BUS_FREE  0x13
 223#define QHSTA_M_BAD_BUS_PHASE_SEQ    0x14
 224#define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
 225#define QHSTA_D_ASC_DVC_ERROR_CODE_SET  0x22
 226#define QHSTA_D_HOST_ABORT_FAILED       0x23
 227#define QHSTA_D_EXE_SCSI_Q_FAILED       0x24
 228#define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
 229#define QHSTA_D_ASPI_NO_BUF_POOL        0x26
 230#define QHSTA_M_WTM_TIMEOUT         0x41
 231#define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
 232#define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
 233#define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
 234#define QHSTA_M_TARGET_STATUS_BUSY  0x45
 235#define QHSTA_M_BAD_TAG_CODE        0x46
 236#define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY  0x47
 237#define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
 238#define QHSTA_D_LRAM_CMP_ERROR        0x81
 239#define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
 240#define ASC_FLAG_SCSIQ_REQ        0x01
 241#define ASC_FLAG_BIOS_SCSIQ_REQ   0x02
 242#define ASC_FLAG_BIOS_ASYNC_IO    0x04
 243#define ASC_FLAG_SRB_LINEAR_ADDR  0x08
 244#define ASC_FLAG_WIN16            0x10
 245#define ASC_FLAG_WIN32            0x20
 246#define ASC_FLAG_ISA_OVER_16MB    0x40
 247#define ASC_FLAG_DOS_VM_CALLBACK  0x80
 248#define ASC_TAG_FLAG_EXTRA_BYTES               0x10
 249#define ASC_TAG_FLAG_DISABLE_DISCONNECT        0x04
 250#define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX  0x08
 251#define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
 252#define ASC_SCSIQ_CPY_BEG              4
 253#define ASC_SCSIQ_SGHD_CPY_BEG         2
 254#define ASC_SCSIQ_B_FWD                0
 255#define ASC_SCSIQ_B_BWD                1
 256#define ASC_SCSIQ_B_STATUS             2
 257#define ASC_SCSIQ_B_QNO                3
 258#define ASC_SCSIQ_B_CNTL               4
 259#define ASC_SCSIQ_B_SG_QUEUE_CNT       5
 260#define ASC_SCSIQ_D_DATA_ADDR          8
 261#define ASC_SCSIQ_D_DATA_CNT          12
 262#define ASC_SCSIQ_B_SENSE_LEN         20
 263#define ASC_SCSIQ_DONE_INFO_BEG       22
 264#define ASC_SCSIQ_D_SRBPTR            22
 265#define ASC_SCSIQ_B_TARGET_IX         26
 266#define ASC_SCSIQ_B_CDB_LEN           28
 267#define ASC_SCSIQ_B_TAG_CODE          29
 268#define ASC_SCSIQ_W_VM_ID             30
 269#define ASC_SCSIQ_DONE_STATUS         32
 270#define ASC_SCSIQ_HOST_STATUS         33
 271#define ASC_SCSIQ_SCSI_STATUS         34
 272#define ASC_SCSIQ_CDB_BEG             36
 273#define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
 274#define ASC_SCSIQ_DW_REMAIN_XFER_CNT  60
 275#define ASC_SCSIQ_B_FIRST_SG_WK_QP    48
 276#define ASC_SCSIQ_B_SG_WK_QP          49
 277#define ASC_SCSIQ_B_SG_WK_IX          50
 278#define ASC_SCSIQ_W_ALT_DC1           52
 279#define ASC_SCSIQ_B_LIST_CNT          6
 280#define ASC_SCSIQ_B_CUR_LIST_CNT      7
 281#define ASC_SGQ_B_SG_CNTL             4
 282#define ASC_SGQ_B_SG_HEAD_QP          5
 283#define ASC_SGQ_B_SG_LIST_CNT         6
 284#define ASC_SGQ_B_SG_CUR_LIST_CNT     7
 285#define ASC_SGQ_LIST_BEG              8
 286#define ASC_DEF_SCSI1_QNG    4
 287#define ASC_MAX_SCSI1_QNG    4
 288#define ASC_DEF_SCSI2_QNG    16
 289#define ASC_MAX_SCSI2_QNG    32
 290#define ASC_TAG_CODE_MASK    0x23
 291#define ASC_STOP_REQ_RISC_STOP      0x01
 292#define ASC_STOP_ACK_RISC_STOP      0x03
 293#define ASC_STOP_CLEAN_UP_BUSY_Q    0x10
 294#define ASC_STOP_CLEAN_UP_DISC_Q    0x20
 295#define ASC_STOP_HOST_REQ_RISC_HALT 0x40
 296#define ASC_TIDLUN_TO_IX(tid, lun)  (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
 297#define ASC_TID_TO_TARGET_ID(tid)   (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
 298#define ASC_TIX_TO_TARGET_ID(tix)   (0x01 << ((tix) & ASC_MAX_TID))
 299#define ASC_TIX_TO_TID(tix)         ((tix) & ASC_MAX_TID)
 300#define ASC_TID_TO_TIX(tid)         ((tid) & ASC_MAX_TID)
 301#define ASC_TIX_TO_LUN(tix)         (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
 302#define ASC_QNO_TO_QADDR(q_no)      ((ASC_QADR_BEG)+((int)(q_no) << 6))
 303
 304typedef struct asc_scsiq_1 {
 305        uchar status;
 306        uchar q_no;
 307        uchar cntl;
 308        uchar sg_queue_cnt;
 309        uchar target_id;
 310        uchar target_lun;
 311        ASC_PADDR data_addr;
 312        ASC_DCNT data_cnt;
 313        ASC_PADDR sense_addr;
 314        uchar sense_len;
 315        uchar extra_bytes;
 316} ASC_SCSIQ_1;
 317
 318typedef struct asc_scsiq_2 {
 319        ASC_VADDR srb_ptr;
 320        uchar target_ix;
 321        uchar flag;
 322        uchar cdb_len;
 323        uchar tag_code;
 324        ushort vm_id;
 325} ASC_SCSIQ_2;
 326
 327typedef struct asc_scsiq_3 {
 328        uchar done_stat;
 329        uchar host_stat;
 330        uchar scsi_stat;
 331        uchar scsi_msg;
 332} ASC_SCSIQ_3;
 333
 334typedef struct asc_scsiq_4 {
 335        uchar cdb[ASC_MAX_CDB_LEN];
 336        uchar y_first_sg_list_qp;
 337        uchar y_working_sg_qp;
 338        uchar y_working_sg_ix;
 339        uchar y_res;
 340        ushort x_req_count;
 341        ushort x_reconnect_rtn;
 342        ASC_PADDR x_saved_data_addr;
 343        ASC_DCNT x_saved_data_cnt;
 344} ASC_SCSIQ_4;
 345
 346typedef struct asc_q_done_info {
 347        ASC_SCSIQ_2 d2;
 348        ASC_SCSIQ_3 d3;
 349        uchar q_status;
 350        uchar q_no;
 351        uchar cntl;
 352        uchar sense_len;
 353        uchar extra_bytes;
 354        uchar res;
 355        ASC_DCNT remain_bytes;
 356} ASC_QDONE_INFO;
 357
 358typedef struct asc_sg_list {
 359        ASC_PADDR addr;
 360        ASC_DCNT bytes;
 361} ASC_SG_LIST;
 362
 363typedef struct asc_sg_head {
 364        ushort entry_cnt;
 365        ushort queue_cnt;
 366        ushort entry_to_copy;
 367        ushort res;
 368        ASC_SG_LIST sg_list[0];
 369} ASC_SG_HEAD;
 370
 371typedef struct asc_scsi_q {
 372        ASC_SCSIQ_1 q1;
 373        ASC_SCSIQ_2 q2;
 374        uchar *cdbptr;
 375        ASC_SG_HEAD *sg_head;
 376        ushort remain_sg_entry_cnt;
 377        ushort next_sg_index;
 378} ASC_SCSI_Q;
 379
 380typedef struct asc_scsi_req_q {
 381        ASC_SCSIQ_1 r1;
 382        ASC_SCSIQ_2 r2;
 383        uchar *cdbptr;
 384        ASC_SG_HEAD *sg_head;
 385        uchar *sense_ptr;
 386        ASC_SCSIQ_3 r3;
 387        uchar cdb[ASC_MAX_CDB_LEN];
 388        uchar sense[ASC_MIN_SENSE_LEN];
 389} ASC_SCSI_REQ_Q;
 390
 391typedef struct asc_scsi_bios_req_q {
 392        ASC_SCSIQ_1 r1;
 393        ASC_SCSIQ_2 r2;
 394        uchar *cdbptr;
 395        ASC_SG_HEAD *sg_head;
 396        uchar *sense_ptr;
 397        ASC_SCSIQ_3 r3;
 398        uchar cdb[ASC_MAX_CDB_LEN];
 399        uchar sense[ASC_MIN_SENSE_LEN];
 400} ASC_SCSI_BIOS_REQ_Q;
 401
 402typedef struct asc_risc_q {
 403        uchar fwd;
 404        uchar bwd;
 405        ASC_SCSIQ_1 i1;
 406        ASC_SCSIQ_2 i2;
 407        ASC_SCSIQ_3 i3;
 408        ASC_SCSIQ_4 i4;
 409} ASC_RISC_Q;
 410
 411typedef struct asc_sg_list_q {
 412        uchar seq_no;
 413        uchar q_no;
 414        uchar cntl;
 415        uchar sg_head_qp;
 416        uchar sg_list_cnt;
 417        uchar sg_cur_list_cnt;
 418} ASC_SG_LIST_Q;
 419
 420typedef struct asc_risc_sg_list_q {
 421        uchar fwd;
 422        uchar bwd;
 423        ASC_SG_LIST_Q sg;
 424        ASC_SG_LIST sg_list[7];
 425} ASC_RISC_SG_LIST_Q;
 426
 427#define ASCQ_ERR_Q_STATUS             0x0D
 428#define ASCQ_ERR_CUR_QNG              0x17
 429#define ASCQ_ERR_SG_Q_LINKS           0x18
 430#define ASCQ_ERR_ISR_RE_ENTRY         0x1A
 431#define ASCQ_ERR_CRITICAL_RE_ENTRY    0x1B
 432#define ASCQ_ERR_ISR_ON_CRITICAL      0x1C
 433
 434/*
 435 * Warning code values are set in ASC_DVC_VAR  'warn_code'.
 436 */
 437#define ASC_WARN_NO_ERROR             0x0000
 438#define ASC_WARN_IO_PORT_ROTATE       0x0001
 439#define ASC_WARN_EEPROM_CHKSUM        0x0002
 440#define ASC_WARN_IRQ_MODIFIED         0x0004
 441#define ASC_WARN_AUTO_CONFIG          0x0008
 442#define ASC_WARN_CMD_QNG_CONFLICT     0x0010
 443#define ASC_WARN_EEPROM_RECOVER       0x0020
 444#define ASC_WARN_CFG_MSW_RECOVER      0x0040
 445
 446/*
 447 * Error code values are set in {ASC/ADV}_DVC_VAR  'err_code'.
 448 */
 449#define ASC_IERR_NO_CARRIER             0x0001  /* No more carrier memory */
 450#define ASC_IERR_MCODE_CHKSUM           0x0002  /* micro code check sum error */
 451#define ASC_IERR_SET_PC_ADDR            0x0004
 452#define ASC_IERR_START_STOP_CHIP        0x0008  /* start/stop chip failed */
 453#define ASC_IERR_ILLEGAL_CONNECTION     0x0010  /* Illegal cable connection */
 454#define ASC_IERR_SINGLE_END_DEVICE      0x0020  /* SE device on DIFF bus */
 455#define ASC_IERR_REVERSED_CABLE         0x0040  /* Narrow flat cable reversed */
 456#define ASC_IERR_SET_SCSI_ID            0x0080  /* set SCSI ID failed */
 457#define ASC_IERR_HVD_DEVICE             0x0100  /* HVD device on LVD port */
 458#define ASC_IERR_BAD_SIGNATURE          0x0200  /* signature not found */
 459#define ASC_IERR_NO_BUS_TYPE            0x0400
 460#define ASC_IERR_BIST_PRE_TEST          0x0800  /* BIST pre-test error */
 461#define ASC_IERR_BIST_RAM_TEST          0x1000  /* BIST RAM test error */
 462#define ASC_IERR_BAD_CHIPTYPE           0x2000  /* Invalid chip_type setting */
 463
 464#define ASC_DEF_MAX_TOTAL_QNG   (0xF0)
 465#define ASC_MIN_TAG_Q_PER_DVC   (0x04)
 466#define ASC_MIN_FREE_Q        (0x02)
 467#define ASC_MIN_TOTAL_QNG     ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
 468#define ASC_MAX_TOTAL_QNG 240
 469#define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
 470#define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG   8
 471#define ASC_MAX_PCI_INRAM_TOTAL_QNG  20
 472#define ASC_MAX_INRAM_TAG_QNG   16
 473#define ASC_IOADR_GAP   0x10
 474#define ASC_SYN_MAX_OFFSET         0x0F
 475#define ASC_DEF_SDTR_OFFSET        0x0F
 476#define ASC_SDTR_ULTRA_PCI_10MB_INDEX  0x02
 477#define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
 478
 479/* The narrow chip only supports a limited selection of transfer rates.
 480 * These are encoded in the range 0..7 or 0..15 depending whether the chip
 481 * is Ultra-capable or not.  These tables let us convert from one to the other.
 482 */
 483static const unsigned char asc_syn_xfer_period[8] = {
 484        25, 30, 35, 40, 50, 60, 70, 85
 485};
 486
 487static const unsigned char asc_syn_ultra_xfer_period[16] = {
 488        12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
 489};
 490
 491typedef struct ext_msg {
 492        uchar msg_type;
 493        uchar msg_len;
 494        uchar msg_req;
 495        union {
 496                struct {
 497                        uchar sdtr_xfer_period;
 498                        uchar sdtr_req_ack_offset;
 499                } sdtr;
 500                struct {
 501                        uchar wdtr_width;
 502                } wdtr;
 503                struct {
 504                        uchar mdp_b3;
 505                        uchar mdp_b2;
 506                        uchar mdp_b1;
 507                        uchar mdp_b0;
 508                } mdp;
 509        } u_ext_msg;
 510        uchar res;
 511} EXT_MSG;
 512
 513#define xfer_period     u_ext_msg.sdtr.sdtr_xfer_period
 514#define req_ack_offset  u_ext_msg.sdtr.sdtr_req_ack_offset
 515#define wdtr_width      u_ext_msg.wdtr.wdtr_width
 516#define mdp_b3          u_ext_msg.mdp_b3
 517#define mdp_b2          u_ext_msg.mdp_b2
 518#define mdp_b1          u_ext_msg.mdp_b1
 519#define mdp_b0          u_ext_msg.mdp_b0
 520
 521typedef struct asc_dvc_cfg {
 522        ASC_SCSI_BIT_ID_TYPE can_tagged_qng;
 523        ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled;
 524        ASC_SCSI_BIT_ID_TYPE disc_enable;
 525        ASC_SCSI_BIT_ID_TYPE sdtr_enable;
 526        uchar chip_scsi_id;
 527        uchar isa_dma_speed;
 528        uchar isa_dma_channel;
 529        uchar chip_version;
 530        ushort mcode_date;
 531        ushort mcode_version;
 532        uchar max_tag_qng[ASC_MAX_TID + 1];
 533        uchar sdtr_period_offset[ASC_MAX_TID + 1];
 534        uchar adapter_info[6];
 535} ASC_DVC_CFG;
 536
 537#define ASC_DEF_DVC_CNTL       0xFFFF
 538#define ASC_DEF_CHIP_SCSI_ID   7
 539#define ASC_DEF_ISA_DMA_SPEED  4
 540#define ASC_INIT_STATE_BEG_GET_CFG   0x0001
 541#define ASC_INIT_STATE_END_GET_CFG   0x0002
 542#define ASC_INIT_STATE_BEG_SET_CFG   0x0004
 543#define ASC_INIT_STATE_END_SET_CFG   0x0008
 544#define ASC_INIT_STATE_BEG_LOAD_MC   0x0010
 545#define ASC_INIT_STATE_END_LOAD_MC   0x0020
 546#define ASC_INIT_STATE_BEG_INQUIRY   0x0040
 547#define ASC_INIT_STATE_END_INQUIRY   0x0080
 548#define ASC_INIT_RESET_SCSI_DONE     0x0100
 549#define ASC_INIT_STATE_WITHOUT_EEP   0x8000
 550#define ASC_BUG_FIX_IF_NOT_DWB       0x0001
 551#define ASC_BUG_FIX_ASYN_USE_SYN     0x0002
 552#define ASC_MIN_TAGGED_CMD  7
 553#define ASC_MAX_SCSI_RESET_WAIT      30
 554#define ASC_OVERRUN_BSIZE               64
 555
 556struct asc_dvc_var;             /* Forward Declaration. */
 557
 558typedef struct asc_dvc_var {
 559        PortAddr iop_base;
 560        ushort err_code;
 561        ushort dvc_cntl;
 562        ushort bug_fix_cntl;
 563        ushort bus_type;
 564        ASC_SCSI_BIT_ID_TYPE init_sdtr;
 565        ASC_SCSI_BIT_ID_TYPE sdtr_done;
 566        ASC_SCSI_BIT_ID_TYPE use_tagged_qng;
 567        ASC_SCSI_BIT_ID_TYPE unit_not_ready;
 568        ASC_SCSI_BIT_ID_TYPE queue_full_or_busy;
 569        ASC_SCSI_BIT_ID_TYPE start_motor;
 570        uchar *overrun_buf;
 571        dma_addr_t overrun_dma;
 572        uchar scsi_reset_wait;
 573        uchar chip_no;
 574        char is_in_int;
 575        uchar max_total_qng;
 576        uchar cur_total_qng;
 577        uchar in_critical_cnt;
 578        uchar last_q_shortage;
 579        ushort init_state;
 580        uchar cur_dvc_qng[ASC_MAX_TID + 1];
 581        uchar max_dvc_qng[ASC_MAX_TID + 1];
 582        ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1];
 583        ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1];
 584        const uchar *sdtr_period_tbl;
 585        ASC_DVC_CFG *cfg;
 586        ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always;
 587        char redo_scam;
 588        ushort res2;
 589        uchar dos_int13_table[ASC_MAX_TID + 1];
 590        ASC_DCNT max_dma_count;
 591        ASC_SCSI_BIT_ID_TYPE no_scam;
 592        ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer;
 593        uchar min_sdtr_index;
 594        uchar max_sdtr_index;
 595        struct asc_board *drv_ptr;
 596        int ptr_map_count;
 597        void **ptr_map;
 598        ASC_DCNT uc_break;
 599} ASC_DVC_VAR;
 600
 601typedef struct asc_dvc_inq_info {
 602        uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
 603} ASC_DVC_INQ_INFO;
 604
 605typedef struct asc_cap_info {
 606        ASC_DCNT lba;
 607        ASC_DCNT blk_size;
 608} ASC_CAP_INFO;
 609
 610typedef struct asc_cap_info_array {
 611        ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
 612} ASC_CAP_INFO_ARRAY;
 613
 614#define ASC_MCNTL_NO_SEL_TIMEOUT  (ushort)0x0001
 615#define ASC_MCNTL_NULL_TARGET     (ushort)0x0002
 616#define ASC_CNTL_INITIATOR         (ushort)0x0001
 617#define ASC_CNTL_BIOS_GT_1GB       (ushort)0x0002
 618#define ASC_CNTL_BIOS_GT_2_DISK    (ushort)0x0004
 619#define ASC_CNTL_BIOS_REMOVABLE    (ushort)0x0008
 620#define ASC_CNTL_NO_SCAM           (ushort)0x0010
 621#define ASC_CNTL_INT_MULTI_Q       (ushort)0x0080
 622#define ASC_CNTL_NO_LUN_SUPPORT    (ushort)0x0040
 623#define ASC_CNTL_NO_VERIFY_COPY    (ushort)0x0100
 624#define ASC_CNTL_RESET_SCSI        (ushort)0x0200
 625#define ASC_CNTL_INIT_INQUIRY      (ushort)0x0400
 626#define ASC_CNTL_INIT_VERBOSE      (ushort)0x0800
 627#define ASC_CNTL_SCSI_PARITY       (ushort)0x1000
 628#define ASC_CNTL_BURST_MODE        (ushort)0x2000
 629#define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
 630#define ASC_EEP_DVC_CFG_BEG_VL    2
 631#define ASC_EEP_MAX_DVC_ADDR_VL   15
 632#define ASC_EEP_DVC_CFG_BEG      32
 633#define ASC_EEP_MAX_DVC_ADDR     45
 634#define ASC_EEP_MAX_RETRY        20
 635
 636/*
 637 * These macros keep the chip SCSI id and ISA DMA speed
 638 * bitfields in board order. C bitfields aren't portable
 639 * between big and little-endian platforms so they are
 640 * not used.
 641 */
 642
 643#define ASC_EEP_GET_CHIP_ID(cfg)    ((cfg)->id_speed & 0x0f)
 644#define ASC_EEP_GET_DMA_SPD(cfg)    (((cfg)->id_speed & 0xf0) >> 4)
 645#define ASC_EEP_SET_CHIP_ID(cfg, sid) \
 646   ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
 647#define ASC_EEP_SET_DMA_SPD(cfg, spd) \
 648   ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
 649
 650typedef struct asceep_config {
 651        ushort cfg_lsw;
 652        ushort cfg_msw;
 653        uchar init_sdtr;
 654        uchar disc_enable;
 655        uchar use_cmd_qng;
 656        uchar start_motor;
 657        uchar max_total_qng;
 658        uchar max_tag_qng;
 659        uchar bios_scan;
 660        uchar power_up_wait;
 661        uchar no_scam;
 662        uchar id_speed;         /* low order 4 bits is chip scsi id */
 663        /* high order 4 bits is isa dma speed */
 664        uchar dos_int13_table[ASC_MAX_TID + 1];
 665        uchar adapter_info[6];
 666        ushort cntl;
 667        ushort chksum;
 668} ASCEEP_CONFIG;
 669
 670#define ASC_EEP_CMD_READ          0x80
 671#define ASC_EEP_CMD_WRITE         0x40
 672#define ASC_EEP_CMD_WRITE_ABLE    0x30
 673#define ASC_EEP_CMD_WRITE_DISABLE 0x00
 674#define ASCV_MSGOUT_BEG         0x0000
 675#define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
 676#define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
 677#define ASCV_BREAK_SAVED_CODE   (ushort)0x0006
 678#define ASCV_MSGIN_BEG          (ASCV_MSGOUT_BEG+8)
 679#define ASCV_MSGIN_SDTR_PERIOD  (ASCV_MSGIN_BEG+3)
 680#define ASCV_MSGIN_SDTR_OFFSET  (ASCV_MSGIN_BEG+4)
 681#define ASCV_SDTR_DATA_BEG      (ASCV_MSGIN_BEG+8)
 682#define ASCV_SDTR_DONE_BEG      (ASCV_SDTR_DATA_BEG+8)
 683#define ASCV_MAX_DVC_QNG_BEG    (ushort)0x0020
 684#define ASCV_BREAK_ADDR           (ushort)0x0028
 685#define ASCV_BREAK_NOTIFY_COUNT   (ushort)0x002A
 686#define ASCV_BREAK_CONTROL        (ushort)0x002C
 687#define ASCV_BREAK_HIT_COUNT      (ushort)0x002E
 688
 689#define ASCV_ASCDVC_ERR_CODE_W  (ushort)0x0030
 690#define ASCV_MCODE_CHKSUM_W   (ushort)0x0032
 691#define ASCV_MCODE_SIZE_W     (ushort)0x0034
 692#define ASCV_STOP_CODE_B      (ushort)0x0036
 693#define ASCV_DVC_ERR_CODE_B   (ushort)0x0037
 694#define ASCV_OVERRUN_PADDR_D  (ushort)0x0038
 695#define ASCV_OVERRUN_BSIZE_D  (ushort)0x003C
 696#define ASCV_HALTCODE_W       (ushort)0x0040
 697#define ASCV_CHKSUM_W         (ushort)0x0042
 698#define ASCV_MC_DATE_W        (ushort)0x0044
 699#define ASCV_MC_VER_W         (ushort)0x0046
 700#define ASCV_NEXTRDY_B        (ushort)0x0048
 701#define ASCV_DONENEXT_B       (ushort)0x0049
 702#define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
 703#define ASCV_SCSIBUSY_B       (ushort)0x004B
 704#define ASCV_Q_DONE_IN_PROGRESS_B  (ushort)0x004C
 705#define ASCV_CURCDB_B         (ushort)0x004D
 706#define ASCV_RCLUN_B          (ushort)0x004E
 707#define ASCV_BUSY_QHEAD_B     (ushort)0x004F
 708#define ASCV_DISC1_QHEAD_B    (ushort)0x0050
 709#define ASCV_DISC_ENABLE_B    (ushort)0x0052
 710#define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
 711#define ASCV_HOSTSCSI_ID_B    (ushort)0x0055
 712#define ASCV_MCODE_CNTL_B     (ushort)0x0056
 713#define ASCV_NULL_TARGET_B    (ushort)0x0057
 714#define ASCV_FREE_Q_HEAD_W    (ushort)0x0058
 715#define ASCV_DONE_Q_TAIL_W    (ushort)0x005A
 716#define ASCV_FREE_Q_HEAD_B    (ushort)(ASCV_FREE_Q_HEAD_W+1)
 717#define ASCV_DONE_Q_TAIL_B    (ushort)(ASCV_DONE_Q_TAIL_W+1)
 718#define ASCV_HOST_FLAG_B      (ushort)0x005D
 719#define ASCV_TOTAL_READY_Q_B  (ushort)0x0064
 720#define ASCV_VER_SERIAL_B     (ushort)0x0065
 721#define ASCV_HALTCODE_SAVED_W (ushort)0x0066
 722#define ASCV_WTM_FLAG_B       (ushort)0x0068
 723#define ASCV_RISC_FLAG_B      (ushort)0x006A
 724#define ASCV_REQ_SG_LIST_QP   (ushort)0x006B
 725#define ASC_HOST_FLAG_IN_ISR        0x01
 726#define ASC_HOST_FLAG_ACK_INT       0x02
 727#define ASC_RISC_FLAG_GEN_INT      0x01
 728#define ASC_RISC_FLAG_REQ_SG_LIST  0x02
 729#define IOP_CTRL         (0x0F)
 730#define IOP_STATUS       (0x0E)
 731#define IOP_INT_ACK      IOP_STATUS
 732#define IOP_REG_IFC      (0x0D)
 733#define IOP_SYN_OFFSET    (0x0B)
 734#define IOP_EXTRA_CONTROL (0x0D)
 735#define IOP_REG_PC        (0x0C)
 736#define IOP_RAM_ADDR      (0x0A)
 737#define IOP_RAM_DATA      (0x08)
 738#define IOP_EEP_DATA      (0x06)
 739#define IOP_EEP_CMD       (0x07)
 740#define IOP_VERSION       (0x03)
 741#define IOP_CONFIG_HIGH   (0x04)
 742#define IOP_CONFIG_LOW    (0x02)
 743#define IOP_SIG_BYTE      (0x01)
 744#define IOP_SIG_WORD      (0x00)
 745#define IOP_REG_DC1      (0x0E)
 746#define IOP_REG_DC0      (0x0C)
 747#define IOP_REG_SB       (0x0B)
 748#define IOP_REG_DA1      (0x0A)
 749#define IOP_REG_DA0      (0x08)
 750#define IOP_REG_SC       (0x09)
 751#define IOP_DMA_SPEED    (0x07)
 752#define IOP_REG_FLAG     (0x07)
 753#define IOP_FIFO_H       (0x06)
 754#define IOP_FIFO_L       (0x04)
 755#define IOP_REG_ID       (0x05)
 756#define IOP_REG_QP       (0x03)
 757#define IOP_REG_IH       (0x02)
 758#define IOP_REG_IX       (0x01)
 759#define IOP_REG_AX       (0x00)
 760#define IFC_REG_LOCK      (0x00)
 761#define IFC_REG_UNLOCK    (0x09)
 762#define IFC_WR_EN_FILTER  (0x10)
 763#define IFC_RD_NO_EEPROM  (0x10)
 764#define IFC_SLEW_RATE     (0x20)
 765#define IFC_ACT_NEG       (0x40)
 766#define IFC_INP_FILTER    (0x80)
 767#define IFC_INIT_DEFAULT  (IFC_ACT_NEG | IFC_REG_UNLOCK)
 768#define SC_SEL   (uchar)(0x80)
 769#define SC_BSY   (uchar)(0x40)
 770#define SC_ACK   (uchar)(0x20)
 771#define SC_REQ   (uchar)(0x10)
 772#define SC_ATN   (uchar)(0x08)
 773#define SC_IO    (uchar)(0x04)
 774#define SC_CD    (uchar)(0x02)
 775#define SC_MSG   (uchar)(0x01)
 776#define SEC_SCSI_CTL         (uchar)(0x80)
 777#define SEC_ACTIVE_NEGATE    (uchar)(0x40)
 778#define SEC_SLEW_RATE        (uchar)(0x20)
 779#define SEC_ENABLE_FILTER    (uchar)(0x10)
 780#define ASC_HALT_EXTMSG_IN     (ushort)0x8000
 781#define ASC_HALT_CHK_CONDITION (ushort)0x8100
 782#define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
 783#define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX  (ushort)0x8300
 784#define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX   (ushort)0x8400
 785#define ASC_HALT_SDTR_REJECTED (ushort)0x4000
 786#define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
 787#define ASC_MAX_QNO        0xF8
 788#define ASC_DATA_SEC_BEG   (ushort)0x0080
 789#define ASC_DATA_SEC_END   (ushort)0x0080
 790#define ASC_CODE_SEC_BEG   (ushort)0x0080
 791#define ASC_CODE_SEC_END   (ushort)0x0080
 792#define ASC_QADR_BEG       (0x4000)
 793#define ASC_QADR_USED      (ushort)(ASC_MAX_QNO * 64)
 794#define ASC_QADR_END       (ushort)0x7FFF
 795#define ASC_QLAST_ADR      (ushort)0x7FC0
 796#define ASC_QBLK_SIZE      0x40
 797#define ASC_BIOS_DATA_QBEG 0xF8
 798#define ASC_MIN_ACTIVE_QNO 0x01
 799#define ASC_QLINK_END      0xFF
 800#define ASC_EEPROM_WORDS   0x10
 801#define ASC_MAX_MGS_LEN    0x10
 802#define ASC_BIOS_ADDR_DEF  0xDC00
 803#define ASC_BIOS_SIZE      0x3800
 804#define ASC_BIOS_RAM_OFF   0x3800
 805#define ASC_BIOS_RAM_SIZE  0x800
 806#define ASC_BIOS_MIN_ADDR  0xC000
 807#define ASC_BIOS_MAX_ADDR  0xEC00
 808#define ASC_BIOS_BANK_SIZE 0x0400
 809#define ASC_MCODE_START_ADDR  0x0080
 810#define ASC_CFG0_HOST_INT_ON    0x0020
 811#define ASC_CFG0_BIOS_ON        0x0040
 812#define ASC_CFG0_VERA_BURST_ON  0x0080
 813#define ASC_CFG0_SCSI_PARITY_ON 0x0800
 814#define ASC_CFG1_SCSI_TARGET_ON 0x0080
 815#define ASC_CFG1_LRAM_8BITS_ON  0x0800
 816#define ASC_CFG_MSW_CLR_MASK    0x3080
 817#define CSW_TEST1             (ASC_CS_TYPE)0x8000
 818#define CSW_AUTO_CONFIG       (ASC_CS_TYPE)0x4000
 819#define CSW_RESERVED1         (ASC_CS_TYPE)0x2000
 820#define CSW_IRQ_WRITTEN       (ASC_CS_TYPE)0x1000
 821#define CSW_33MHZ_SELECTED    (ASC_CS_TYPE)0x0800
 822#define CSW_TEST2             (ASC_CS_TYPE)0x0400
 823#define CSW_TEST3             (ASC_CS_TYPE)0x0200
 824#define CSW_RESERVED2         (ASC_CS_TYPE)0x0100
 825#define CSW_DMA_DONE          (ASC_CS_TYPE)0x0080
 826#define CSW_FIFO_RDY          (ASC_CS_TYPE)0x0040
 827#define CSW_EEP_READ_DONE     (ASC_CS_TYPE)0x0020
 828#define CSW_HALTED            (ASC_CS_TYPE)0x0010
 829#define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
 830#define CSW_PARITY_ERR        (ASC_CS_TYPE)0x0004
 831#define CSW_SCSI_RESET_LATCH  (ASC_CS_TYPE)0x0002
 832#define CSW_INT_PENDING       (ASC_CS_TYPE)0x0001
 833#define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
 834#define CIW_INT_ACK      (ASC_CS_TYPE)0x0100
 835#define CIW_TEST1        (ASC_CS_TYPE)0x0200
 836#define CIW_TEST2        (ASC_CS_TYPE)0x0400
 837#define CIW_SEL_33MHZ    (ASC_CS_TYPE)0x0800
 838#define CIW_IRQ_ACT      (ASC_CS_TYPE)0x1000
 839#define CC_CHIP_RESET   (uchar)0x80
 840#define CC_SCSI_RESET   (uchar)0x40
 841#define CC_HALT         (uchar)0x20
 842#define CC_SINGLE_STEP  (uchar)0x10
 843#define CC_DMA_ABLE     (uchar)0x08
 844#define CC_TEST         (uchar)0x04
 845#define CC_BANK_ONE     (uchar)0x02
 846#define CC_DIAG         (uchar)0x01
 847#define ASC_1000_ID0W      0x04C1
 848#define ASC_1000_ID0W_FIX  0x00C1
 849#define ASC_1000_ID1B      0x25
 850#define ASC_EISA_REV_IOP_MASK  (0x0C83)
 851#define ASC_EISA_CFG_IOP_MASK  (0x0C86)
 852#define ASC_GET_EISA_SLOT(iop)  (PortAddr)((iop) & 0xF000)
 853#define INS_HALTINT        (ushort)0x6281
 854#define INS_HALT           (ushort)0x6280
 855#define INS_SINT           (ushort)0x6200
 856#define INS_RFLAG_WTM      (ushort)0x7380
 857#define ASC_MC_SAVE_CODE_WSIZE  0x500
 858#define ASC_MC_SAVE_DATA_WSIZE  0x40
 859
 860typedef struct asc_mc_saved {
 861        ushort data[ASC_MC_SAVE_DATA_WSIZE];
 862        ushort code[ASC_MC_SAVE_CODE_WSIZE];
 863} ASC_MC_SAVED;
 864
 865#define AscGetQDoneInProgress(port)         AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
 866#define AscPutQDoneInProgress(port, val)    AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
 867#define AscGetVarFreeQHead(port)            AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
 868#define AscGetVarDoneQTail(port)            AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
 869#define AscPutVarFreeQHead(port, val)       AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
 870#define AscPutVarDoneQTail(port, val)       AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
 871#define AscGetRiscVarFreeQHead(port)        AscReadLramByte((port), ASCV_NEXTRDY_B)
 872#define AscGetRiscVarDoneQTail(port)        AscReadLramByte((port), ASCV_DONENEXT_B)
 873#define AscPutRiscVarFreeQHead(port, val)   AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
 874#define AscPutRiscVarDoneQTail(port, val)   AscWriteLramByte((port), ASCV_DONENEXT_B, val)
 875#define AscPutMCodeSDTRDoneAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
 876#define AscGetMCodeSDTRDoneAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
 877#define AscPutMCodeInitSDTRAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
 878#define AscGetMCodeInitSDTRAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
 879#define AscGetChipSignatureByte(port)     (uchar)inp((port)+IOP_SIG_BYTE)
 880#define AscGetChipSignatureWord(port)     (ushort)inpw((port)+IOP_SIG_WORD)
 881#define AscGetChipVerNo(port)             (uchar)inp((port)+IOP_VERSION)
 882#define AscGetChipCfgLsw(port)            (ushort)inpw((port)+IOP_CONFIG_LOW)
 883#define AscGetChipCfgMsw(port)            (ushort)inpw((port)+IOP_CONFIG_HIGH)
 884#define AscSetChipCfgLsw(port, data)      outpw((port)+IOP_CONFIG_LOW, data)
 885#define AscSetChipCfgMsw(port, data)      outpw((port)+IOP_CONFIG_HIGH, data)
 886#define AscGetChipEEPCmd(port)            (uchar)inp((port)+IOP_EEP_CMD)
 887#define AscSetChipEEPCmd(port, data)      outp((port)+IOP_EEP_CMD, data)
 888#define AscGetChipEEPData(port)           (ushort)inpw((port)+IOP_EEP_DATA)
 889#define AscSetChipEEPData(port, data)     outpw((port)+IOP_EEP_DATA, data)
 890#define AscGetChipLramAddr(port)          (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
 891#define AscSetChipLramAddr(port, addr)    outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
 892#define AscGetChipLramData(port)          (ushort)inpw((port)+IOP_RAM_DATA)
 893#define AscSetChipLramData(port, data)    outpw((port)+IOP_RAM_DATA, data)
 894#define AscGetChipIFC(port)               (uchar)inp((port)+IOP_REG_IFC)
 895#define AscSetChipIFC(port, data)          outp((port)+IOP_REG_IFC, data)
 896#define AscGetChipStatus(port)            (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
 897#define AscSetChipStatus(port, cs_val)    outpw((port)+IOP_STATUS, cs_val)
 898#define AscGetChipControl(port)           (uchar)inp((port)+IOP_CTRL)
 899#define AscSetChipControl(port, cc_val)   outp((port)+IOP_CTRL, cc_val)
 900#define AscGetChipSyn(port)               (uchar)inp((port)+IOP_SYN_OFFSET)
 901#define AscSetChipSyn(port, data)         outp((port)+IOP_SYN_OFFSET, data)
 902#define AscSetPCAddr(port, data)          outpw((port)+IOP_REG_PC, data)
 903#define AscGetPCAddr(port)                (ushort)inpw((port)+IOP_REG_PC)
 904#define AscIsIntPending(port)             (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
 905#define AscGetChipScsiID(port)            ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
 906#define AscGetExtraControl(port)          (uchar)inp((port)+IOP_EXTRA_CONTROL)
 907#define AscSetExtraControl(port, data)    outp((port)+IOP_EXTRA_CONTROL, data)
 908#define AscReadChipAX(port)               (ushort)inpw((port)+IOP_REG_AX)
 909#define AscWriteChipAX(port, data)        outpw((port)+IOP_REG_AX, data)
 910#define AscReadChipIX(port)               (uchar)inp((port)+IOP_REG_IX)
 911#define AscWriteChipIX(port, data)        outp((port)+IOP_REG_IX, data)
 912#define AscReadChipIH(port)               (ushort)inpw((port)+IOP_REG_IH)
 913#define AscWriteChipIH(port, data)        outpw((port)+IOP_REG_IH, data)
 914#define AscReadChipQP(port)               (uchar)inp((port)+IOP_REG_QP)
 915#define AscWriteChipQP(port, data)        outp((port)+IOP_REG_QP, data)
 916#define AscReadChipFIFO_L(port)           (ushort)inpw((port)+IOP_REG_FIFO_L)
 917#define AscWriteChipFIFO_L(port, data)    outpw((port)+IOP_REG_FIFO_L, data)
 918#define AscReadChipFIFO_H(port)           (ushort)inpw((port)+IOP_REG_FIFO_H)
 919#define AscWriteChipFIFO_H(port, data)    outpw((port)+IOP_REG_FIFO_H, data)
 920#define AscReadChipDmaSpeed(port)         (uchar)inp((port)+IOP_DMA_SPEED)
 921#define AscWriteChipDmaSpeed(port, data)  outp((port)+IOP_DMA_SPEED, data)
 922#define AscReadChipDA0(port)              (ushort)inpw((port)+IOP_REG_DA0)
 923#define AscWriteChipDA0(port)             outpw((port)+IOP_REG_DA0, data)
 924#define AscReadChipDA1(port)              (ushort)inpw((port)+IOP_REG_DA1)
 925#define AscWriteChipDA1(port)             outpw((port)+IOP_REG_DA1, data)
 926#define AscReadChipDC0(port)              (ushort)inpw((port)+IOP_REG_DC0)
 927#define AscWriteChipDC0(port)             outpw((port)+IOP_REG_DC0, data)
 928#define AscReadChipDC1(port)              (ushort)inpw((port)+IOP_REG_DC1)
 929#define AscWriteChipDC1(port)             outpw((port)+IOP_REG_DC1, data)
 930#define AscReadChipDvcID(port)            (uchar)inp((port)+IOP_REG_ID)
 931#define AscWriteChipDvcID(port, data)     outp((port)+IOP_REG_ID, data)
 932
 933/*
 934 * Portable Data Types
 935 *
 936 * Any instance where a 32-bit long or pointer type is assumed
 937 * for precision or HW defined structures, the following define
 938 * types must be used. In Linux the char, short, and int types
 939 * are all consistent at 8, 16, and 32 bits respectively. Pointers
 940 * and long types are 64 bits on Alpha and UltraSPARC.
 941 */
 942#define ADV_PADDR __u32         /* Physical address data type. */
 943#define ADV_VADDR __u32         /* Virtual address data type. */
 944#define ADV_DCNT  __u32         /* Unsigned Data count type. */
 945#define ADV_SDCNT __s32         /* Signed Data count type. */
 946
 947/*
 948 * These macros are used to convert a virtual address to a
 949 * 32-bit value. This currently can be used on Linux Alpha
 950 * which uses 64-bit virtual address but a 32-bit bus address.
 951 * This is likely to break in the future, but doing this now
 952 * will give us time to change the HW and FW to handle 64-bit
 953 * addresses.
 954 */
 955#define ADV_VADDR_TO_U32   virt_to_bus
 956#define ADV_U32_TO_VADDR   bus_to_virt
 957
 958#define AdvPortAddr  void __iomem *     /* Virtual memory address size */
 959
 960/*
 961 * Define Adv Library required memory access macros.
 962 */
 963#define ADV_MEM_READB(addr) readb(addr)
 964#define ADV_MEM_READW(addr) readw(addr)
 965#define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
 966#define ADV_MEM_WRITEW(addr, word) writew(word, addr)
 967#define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
 968
 969#define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 15)
 970
 971/*
 972 * Define total number of simultaneous maximum element scatter-gather
 973 * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
 974 * maximum number of outstanding commands per wide host adapter. Each
 975 * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
 976 * elements. Allow each command to have at least one ADV_SG_BLOCK structure.
 977 * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
 978 * structures or 255 scatter-gather elements.
 979 */
 980#define ADV_TOT_SG_BLOCK        ASC_DEF_MAX_HOST_QNG
 981
 982/*
 983 * Define maximum number of scatter-gather elements per request.
 984 */
 985#define ADV_MAX_SG_LIST         255
 986#define NO_OF_SG_PER_BLOCK              15
 987
 988#define ADV_EEP_DVC_CFG_BEGIN           (0x00)
 989#define ADV_EEP_DVC_CFG_END             (0x15)
 990#define ADV_EEP_DVC_CTL_BEGIN           (0x16)  /* location of OEM name */
 991#define ADV_EEP_MAX_WORD_ADDR           (0x1E)
 992
 993#define ADV_EEP_DELAY_MS                100
 994
 995#define ADV_EEPROM_BIG_ENDIAN          0x8000   /* EEPROM Bit 15 */
 996#define ADV_EEPROM_BIOS_ENABLE         0x4000   /* EEPROM Bit 14 */
 997/*
 998 * For the ASC3550 Bit 13 is Termination Polarity control bit.
 999 * For later ICs Bit 13 controls whether the CIS (Card Information
1000 * Service Section) is loaded from EEPROM.
1001 */
1002#define ADV_EEPROM_TERM_POL            0x2000   /* EEPROM Bit 13 */
1003#define ADV_EEPROM_CIS_LD              0x2000   /* EEPROM Bit 13 */
1004/*
1005 * ASC38C1600 Bit 11
1006 *
1007 * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
1008 * INT A in the PCI Configuration Space Int Pin field. If it is 1, then
1009 * Function 0 will specify INT B.
1010 *
1011 * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
1012 * INT B in the PCI Configuration Space Int Pin field. If it is 1, then
1013 * Function 1 will specify INT A.
1014 */
1015#define ADV_EEPROM_INTAB               0x0800   /* EEPROM Bit 11 */
1016
1017typedef struct adveep_3550_config {
1018        /* Word Offset, Description */
1019
1020        ushort cfg_lsw;         /* 00 power up initialization */
1021        /*  bit 13 set - Term Polarity Control */
1022        /*  bit 14 set - BIOS Enable */
1023        /*  bit 15 set - Big Endian Mode */
1024        ushort cfg_msw;         /* 01 unused      */
1025        ushort disc_enable;     /* 02 disconnect enable */
1026        ushort wdtr_able;       /* 03 Wide DTR able */
1027        ushort sdtr_able;       /* 04 Synchronous DTR able */
1028        ushort start_motor;     /* 05 send start up motor */
1029        ushort tagqng_able;     /* 06 tag queuing able */
1030        ushort bios_scan;       /* 07 BIOS device control */
1031        ushort scam_tolerant;   /* 08 no scam */
1032
1033        uchar adapter_scsi_id;  /* 09 Host Adapter ID */
1034        uchar bios_boot_delay;  /*    power up wait */
1035
1036        uchar scsi_reset_delay; /* 10 reset delay */
1037        uchar bios_id_lun;      /*    first boot device scsi id & lun */
1038        /*    high nibble is lun */
1039        /*    low nibble is scsi id */
1040
1041        uchar termination;      /* 11 0 - automatic */
1042        /*    1 - low off / high off */
1043        /*    2 - low off / high on */
1044        /*    3 - low on  / high on */
1045        /*    There is no low on  / high off */
1046
1047        uchar reserved1;        /*    reserved byte (not used) */
1048
1049        ushort bios_ctrl;       /* 12 BIOS control bits */
1050        /*  bit 0  BIOS don't act as initiator. */
1051        /*  bit 1  BIOS > 1 GB support */
1052        /*  bit 2  BIOS > 2 Disk Support */
1053        /*  bit 3  BIOS don't support removables */
1054        /*  bit 4  BIOS support bootable CD */
1055        /*  bit 5  BIOS scan enabled */
1056        /*  bit 6  BIOS support multiple LUNs */
1057        /*  bit 7  BIOS display of message */
1058        /*  bit 8  SCAM disabled */
1059        /*  bit 9  Reset SCSI bus during init. */
1060        /*  bit 10 */
1061        /*  bit 11 No verbose initialization. */
1062        /*  bit 12 SCSI parity enabled */
1063        /*  bit 13 */
1064        /*  bit 14 */
1065        /*  bit 15 */
1066        ushort ultra_able;      /* 13 ULTRA speed able */
1067        ushort reserved2;       /* 14 reserved */
1068        uchar max_host_qng;     /* 15 maximum host queuing */
1069        uchar max_dvc_qng;      /*    maximum per device queuing */
1070        ushort dvc_cntl;        /* 16 control bit for driver */
1071        ushort bug_fix;         /* 17 control bit for bug fix */
1072        ushort serial_number_word1;     /* 18 Board serial number word 1 */
1073        ushort serial_number_word2;     /* 19 Board serial number word 2 */
1074        ushort serial_number_word3;     /* 20 Board serial number word 3 */
1075        ushort check_sum;       /* 21 EEP check sum */
1076        uchar oem_name[16];     /* 22 OEM name */
1077        ushort dvc_err_code;    /* 30 last device driver error code */
1078        ushort adv_err_code;    /* 31 last uc and Adv Lib error code */
1079        ushort adv_err_addr;    /* 32 last uc error address */
1080        ushort saved_dvc_err_code;      /* 33 saved last dev. driver error code   */
1081        ushort saved_adv_err_code;      /* 34 saved last uc and Adv Lib error code */
1082        ushort saved_adv_err_addr;      /* 35 saved last uc error address         */
1083        ushort num_of_err;      /* 36 number of error */
1084} ADVEEP_3550_CONFIG;
1085
1086typedef struct adveep_38C0800_config {
1087        /* Word Offset, Description */
1088
1089        ushort cfg_lsw;         /* 00 power up initialization */
1090        /*  bit 13 set - Load CIS */
1091        /*  bit 14 set - BIOS Enable */
1092        /*  bit 15 set - Big Endian Mode */
1093        ushort cfg_msw;         /* 01 unused      */
1094        ushort disc_enable;     /* 02 disconnect enable */
1095        ushort wdtr_able;       /* 03 Wide DTR able */
1096        ushort sdtr_speed1;     /* 04 SDTR Speed TID 0-3 */
1097        ushort start_motor;     /* 05 send start up motor */
1098        ushort tagqng_able;     /* 06 tag queuing able */
1099        ushort bios_scan;       /* 07 BIOS device control */
1100        ushort scam_tolerant;   /* 08 no scam */
1101
1102        uchar adapter_scsi_id;  /* 09 Host Adapter ID */
1103        uchar bios_boot_delay;  /*    power up wait */
1104
1105        uchar scsi_reset_delay; /* 10 reset delay */
1106        uchar bios_id_lun;      /*    first boot device scsi id & lun */
1107        /*    high nibble is lun */
1108        /*    low nibble is scsi id */
1109
1110        uchar termination_se;   /* 11 0 - automatic */
1111        /*    1 - low off / high off */
1112        /*    2 - low off / high on */
1113        /*    3 - low on  / high on */
1114        /*    There is no low on  / high off */
1115
1116        uchar termination_lvd;  /* 11 0 - automatic */
1117        /*    1 - low off / high off */
1118        /*    2 - low off / high on */
1119        /*    3 - low on  / high on */
1120        /*    There is no low on  / high off */
1121
1122        ushort bios_ctrl;       /* 12 BIOS control bits */
1123        /*  bit 0  BIOS don't act as initiator. */
1124        /*  bit 1  BIOS > 1 GB support */
1125        /*  bit 2  BIOS > 2 Disk Support */
1126        /*  bit 3  BIOS don't support removables */
1127        /*  bit 4  BIOS support bootable CD */
1128        /*  bit 5  BIOS scan enabled */
1129        /*  bit 6  BIOS support multiple LUNs */
1130        /*  bit 7  BIOS display of message */
1131        /*  bit 8  SCAM disabled */
1132        /*  bit 9  Reset SCSI bus during init. */
1133        /*  bit 10 */
1134        /*  bit 11 No verbose initialization. */
1135        /*  bit 12 SCSI parity enabled */
1136        /*  bit 13 */
1137        /*  bit 14 */
1138        /*  bit 15 */
1139        ushort sdtr_speed2;     /* 13 SDTR speed TID 4-7 */
1140        ushort sdtr_speed3;     /* 14 SDTR speed TID 8-11 */
1141        uchar max_host_qng;     /* 15 maximum host queueing */
1142        uchar max_dvc_qng;      /*    maximum per device queuing */
1143        ushort dvc_cntl;        /* 16 control bit for driver */
1144        ushort sdtr_speed4;     /* 17 SDTR speed 4 TID 12-15 */
1145        ushort serial_number_word1;     /* 18 Board serial number word 1 */
1146        ushort serial_number_word2;     /* 19 Board serial number word 2 */
1147        ushort serial_number_word3;     /* 20 Board serial number word 3 */
1148        ushort check_sum;       /* 21 EEP check sum */
1149        uchar oem_name[16];     /* 22 OEM name */
1150        ushort dvc_err_code;    /* 30 last device driver error code */
1151        ushort adv_err_code;    /* 31 last uc and Adv Lib error code */
1152        ushort adv_err_addr;    /* 32 last uc error address */
1153        ushort saved_dvc_err_code;      /* 33 saved last dev. driver error code   */
1154        ushort saved_adv_err_code;      /* 34 saved last uc and Adv Lib error code */
1155        ushort saved_adv_err_addr;      /* 35 saved last uc error address         */
1156        ushort reserved36;      /* 36 reserved */
1157        ushort reserved37;      /* 37 reserved */
1158        ushort reserved38;      /* 38 reserved */
1159        ushort reserved39;      /* 39 reserved */
1160        ushort reserved40;      /* 40 reserved */
1161        ushort reserved41;      /* 41 reserved */
1162        ushort reserved42;      /* 42 reserved */
1163        ushort reserved43;      /* 43 reserved */
1164        ushort reserved44;      /* 44 reserved */
1165        ushort reserved45;      /* 45 reserved */
1166        ushort reserved46;      /* 46 reserved */
1167        ushort reserved47;      /* 47 reserved */
1168        ushort reserved48;      /* 48 reserved */
1169        ushort reserved49;      /* 49 reserved */
1170        ushort reserved50;      /* 50 reserved */
1171        ushort reserved51;      /* 51 reserved */
1172        ushort reserved52;      /* 52 reserved */
1173        ushort reserved53;      /* 53 reserved */
1174        ushort reserved54;      /* 54 reserved */
1175        ushort reserved55;      /* 55 reserved */
1176        ushort cisptr_lsw;      /* 56 CIS PTR LSW */
1177        ushort cisprt_msw;      /* 57 CIS PTR MSW */
1178        ushort subsysvid;       /* 58 SubSystem Vendor ID */
1179        ushort subsysid;        /* 59 SubSystem ID */
1180        ushort reserved60;      /* 60 reserved */
1181        ushort reserved61;      /* 61 reserved */
1182        ushort reserved62;      /* 62 reserved */
1183        ushort reserved63;      /* 63 reserved */
1184} ADVEEP_38C0800_CONFIG;
1185
1186typedef struct adveep_38C1600_config {
1187        /* Word Offset, Description */
1188
1189        ushort cfg_lsw;         /* 00 power up initialization */
1190        /*  bit 11 set - Func. 0 INTB, Func. 1 INTA */
1191        /*       clear - Func. 0 INTA, Func. 1 INTB */
1192        /*  bit 13 set - Load CIS */
1193        /*  bit 14 set - BIOS Enable */
1194        /*  bit 15 set - Big Endian Mode */
1195        ushort cfg_msw;         /* 01 unused */
1196        ushort disc_enable;     /* 02 disconnect enable */
1197        ushort wdtr_able;       /* 03 Wide DTR able */
1198        ushort sdtr_speed1;     /* 04 SDTR Speed TID 0-3 */
1199        ushort start_motor;     /* 05 send start up motor */
1200        ushort tagqng_able;     /* 06 tag queuing able */
1201        ushort bios_scan;       /* 07 BIOS device control */
1202        ushort scam_tolerant;   /* 08 no scam */
1203
1204        uchar adapter_scsi_id;  /* 09 Host Adapter ID */
1205        uchar bios_boot_delay;  /*    power up wait */
1206
1207        uchar scsi_reset_delay; /* 10 reset delay */
1208        uchar bios_id_lun;      /*    first boot device scsi id & lun */
1209        /*    high nibble is lun */
1210        /*    low nibble is scsi id */
1211
1212        uchar termination_se;   /* 11 0 - automatic */
1213        /*    1 - low off / high off */
1214        /*    2 - low off / high on */
1215        /*    3 - low on  / high on */
1216        /*    There is no low on  / high off */
1217
1218        uchar termination_lvd;  /* 11 0 - automatic */
1219        /*    1 - low off / high off */
1220        /*    2 - low off / high on */
1221        /*    3 - low on  / high on */
1222        /*    There is no low on  / high off */
1223
1224        ushort bios_ctrl;       /* 12 BIOS control bits */
1225        /*  bit 0  BIOS don't act as initiator. */
1226        /*  bit 1  BIOS > 1 GB support */
1227        /*  bit 2  BIOS > 2 Disk Support */
1228        /*  bit 3  BIOS don't support removables */
1229        /*  bit 4  BIOS support bootable CD */
1230        /*  bit 5  BIOS scan enabled */
1231        /*  bit 6  BIOS support multiple LUNs */
1232        /*  bit 7  BIOS display of message */
1233        /*  bit 8  SCAM disabled */
1234        /*  bit 9  Reset SCSI bus during init. */
1235        /*  bit 10 Basic Integrity Checking disabled */
1236        /*  bit 11 No verbose initialization. */
1237        /*  bit 12 SCSI parity enabled */
1238        /*  bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
1239        /*  bit 14 */
1240        /*  bit 15 */
1241        ushort sdtr_speed2;     /* 13 SDTR speed TID 4-7 */
1242        ushort sdtr_speed3;     /* 14 SDTR speed TID 8-11 */
1243        uchar max_host_qng;     /* 15 maximum host queueing */
1244        uchar max_dvc_qng;      /*    maximum per device queuing */
1245        ushort dvc_cntl;        /* 16 control bit for driver */
1246        ushort sdtr_speed4;     /* 17 SDTR speed 4 TID 12-15 */
1247        ushort serial_number_word1;     /* 18 Board serial number word 1 */
1248        ushort serial_number_word2;     /* 19 Board serial number word 2 */
1249        ushort serial_number_word3;     /* 20 Board serial number word 3 */
1250        ushort check_sum;       /* 21 EEP check sum */
1251        uchar oem_name[16];     /* 22 OEM name */
1252        ushort dvc_err_code;    /* 30 last device driver error code */
1253        ushort adv_err_code;    /* 31 last uc and Adv Lib error code */
1254        ushort adv_err_addr;    /* 32 last uc error address */
1255        ushort saved_dvc_err_code;      /* 33 saved last dev. driver error code   */
1256        ushort saved_adv_err_code;      /* 34 saved last uc and Adv Lib error code */
1257        ushort saved_adv_err_addr;      /* 35 saved last uc error address         */
1258        ushort reserved36;      /* 36 reserved */
1259        ushort reserved37;      /* 37 reserved */
1260        ushort reserved38;      /* 38 reserved */
1261        ushort reserved39;      /* 39 reserved */
1262        ushort reserved40;      /* 40 reserved */
1263        ushort reserved41;      /* 41 reserved */
1264        ushort reserved42;      /* 42 reserved */
1265        ushort reserved43;      /* 43 reserved */
1266        ushort reserved44;      /* 44 reserved */
1267        ushort reserved45;      /* 45 reserved */
1268        ushort reserved46;      /* 46 reserved */
1269        ushort reserved47;      /* 47 reserved */
1270        ushort reserved48;      /* 48 reserved */
1271        ushort reserved49;      /* 49 reserved */
1272        ushort reserved50;      /* 50 reserved */
1273        ushort reserved51;      /* 51 reserved */
1274        ushort reserved52;      /* 52 reserved */
1275        ushort reserved53;      /* 53 reserved */
1276        ushort reserved54;      /* 54 reserved */
1277        ushort reserved55;      /* 55 reserved */
1278        ushort cisptr_lsw;      /* 56 CIS PTR LSW */
1279        ushort cisprt_msw;      /* 57 CIS PTR MSW */
1280        ushort subsysvid;       /* 58 SubSystem Vendor ID */
1281        ushort subsysid;        /* 59 SubSystem ID */
1282        ushort reserved60;      /* 60 reserved */
1283        ushort reserved61;      /* 61 reserved */
1284        ushort reserved62;      /* 62 reserved */
1285        ushort reserved63;      /* 63 reserved */
1286} ADVEEP_38C1600_CONFIG;
1287
1288/*
1289 * EEPROM Commands
1290 */
1291#define ASC_EEP_CMD_DONE             0x0200
1292
1293/* bios_ctrl */
1294#define BIOS_CTRL_BIOS               0x0001
1295#define BIOS_CTRL_EXTENDED_XLAT      0x0002
1296#define BIOS_CTRL_GT_2_DISK          0x0004
1297#define BIOS_CTRL_BIOS_REMOVABLE     0x0008
1298#define BIOS_CTRL_BOOTABLE_CD        0x0010
1299#define BIOS_CTRL_MULTIPLE_LUN       0x0040
1300#define BIOS_CTRL_DISPLAY_MSG        0x0080
1301#define BIOS_CTRL_NO_SCAM            0x0100
1302#define BIOS_CTRL_RESET_SCSI_BUS     0x0200
1303#define BIOS_CTRL_INIT_VERBOSE       0x0800
1304#define BIOS_CTRL_SCSI_PARITY        0x1000
1305#define BIOS_CTRL_AIPP_DIS           0x2000
1306
1307#define ADV_3550_MEMSIZE   0x2000       /* 8 KB Internal Memory */
1308
1309#define ADV_38C0800_MEMSIZE  0x4000     /* 16 KB Internal Memory */
1310
1311/*
1312 * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
1313 * a special 16K Adv Library and Microcode version. After the issue is
1314 * resolved, should restore 32K support.
1315 *
1316 * #define ADV_38C1600_MEMSIZE  0x8000L   * 32 KB Internal Memory *
1317 */
1318#define ADV_38C1600_MEMSIZE  0x4000     /* 16 KB Internal Memory */
1319
1320/*
1321 * Byte I/O register address from base of 'iop_base'.
1322 */
1323#define IOPB_INTR_STATUS_REG    0x00
1324#define IOPB_CHIP_ID_1          0x01
1325#define IOPB_INTR_ENABLES       0x02
1326#define IOPB_CHIP_TYPE_REV      0x03
1327#define IOPB_RES_ADDR_4         0x04
1328#define IOPB_RES_ADDR_5         0x05
1329#define IOPB_RAM_DATA           0x06
1330#define IOPB_RES_ADDR_7         0x07
1331#define IOPB_FLAG_REG           0x08
1332#define IOPB_RES_ADDR_9         0x09
1333#define IOPB_RISC_CSR           0x0A
1334#define IOPB_RES_ADDR_B         0x0B
1335#define IOPB_RES_ADDR_C         0x0C
1336#define IOPB_RES_ADDR_D         0x0D
1337#define IOPB_SOFT_OVER_WR       0x0E
1338#define IOPB_RES_ADDR_F         0x0F
1339#define IOPB_MEM_CFG            0x10
1340#define IOPB_RES_ADDR_11        0x11
1341#define IOPB_GPIO_DATA          0x12
1342#define IOPB_RES_ADDR_13        0x13
1343#define IOPB_FLASH_PAGE         0x14
1344#define IOPB_RES_ADDR_15        0x15
1345#define IOPB_GPIO_CNTL          0x16
1346#define IOPB_RES_ADDR_17        0x17
1347#define IOPB_FLASH_DATA         0x18
1348#define IOPB_RES_ADDR_19        0x19
1349#define IOPB_RES_ADDR_1A        0x1A
1350#define IOPB_RES_ADDR_1B        0x1B
1351#define IOPB_RES_ADDR_1C        0x1C
1352#define IOPB_RES_ADDR_1D        0x1D
1353#define IOPB_RES_ADDR_1E        0x1E
1354#define IOPB_RES_ADDR_1F        0x1F
1355#define IOPB_DMA_CFG0           0x20
1356#define IOPB_DMA_CFG1           0x21
1357#define IOPB_TICKLE             0x22
1358#define IOPB_DMA_REG_WR         0x23
1359#define IOPB_SDMA_STATUS        0x24
1360#define IOPB_SCSI_BYTE_CNT      0x25
1361#define IOPB_HOST_BYTE_CNT      0x26
1362#define IOPB_BYTE_LEFT_TO_XFER  0x27
1363#define IOPB_BYTE_TO_XFER_0     0x28
1364#define IOPB_BYTE_TO_XFER_1     0x29
1365#define IOPB_BYTE_TO_XFER_2     0x2A
1366#define IOPB_BYTE_TO_XFER_3     0x2B
1367#define IOPB_ACC_GRP            0x2C
1368#define IOPB_RES_ADDR_2D        0x2D
1369#define IOPB_DEV_ID             0x2E
1370#define IOPB_RES_ADDR_2F        0x2F
1371#define IOPB_SCSI_DATA          0x30
1372#define IOPB_RES_ADDR_31        0x31
1373#define IOPB_RES_ADDR_32        0x32
1374#define IOPB_SCSI_DATA_HSHK     0x33
1375#define IOPB_SCSI_CTRL          0x34
1376#define IOPB_RES_ADDR_35        0x35
1377#define IOPB_RES_ADDR_36        0x36
1378#define IOPB_RES_ADDR_37        0x37
1379#define IOPB_RAM_BIST           0x38
1380#define IOPB_PLL_TEST           0x39
1381#define IOPB_PCI_INT_CFG        0x3A
1382#define IOPB_RES_ADDR_3B        0x3B
1383#define IOPB_RFIFO_CNT          0x3C
1384#define IOPB_RES_ADDR_3D        0x3D
1385#define IOPB_RES_ADDR_3E        0x3E
1386#define IOPB_RES_ADDR_3F        0x3F
1387
1388/*
1389 * Word I/O register address from base of 'iop_base'.
1390 */
1391#define IOPW_CHIP_ID_0          0x00    /* CID0  */
1392#define IOPW_CTRL_REG           0x02    /* CC    */
1393#define IOPW_RAM_ADDR           0x04    /* LA    */
1394#define IOPW_RAM_DATA           0x06    /* LD    */
1395#define IOPW_RES_ADDR_08        0x08
1396#define IOPW_RISC_CSR           0x0A    /* CSR   */
1397#define IOPW_SCSI_CFG0          0x0C    /* CFG0  */
1398#define IOPW_SCSI_CFG1          0x0E    /* CFG1  */
1399#define IOPW_RES_ADDR_10        0x10
1400#define IOPW_SEL_MASK           0x12    /* SM    */
1401#define IOPW_RES_ADDR_14        0x14
1402#define IOPW_FLASH_ADDR         0x16    /* FA    */
1403#define IOPW_RES_ADDR_18        0x18
1404#define IOPW_EE_CMD             0x1A    /* EC    */
1405#define IOPW_EE_DATA            0x1C    /* ED    */
1406#define IOPW_SFIFO_CNT          0x1E    /* SFC   */
1407#define IOPW_RES_ADDR_20        0x20
1408#define IOPW_Q_BASE             0x22    /* QB    */
1409#define IOPW_QP                 0x24    /* QP    */
1410#define IOPW_IX                 0x26    /* IX    */
1411#define IOPW_SP                 0x28    /* SP    */
1412#define IOPW_PC                 0x2A    /* PC    */
1413#define IOPW_RES_ADDR_2C        0x2C
1414#define IOPW_RES_ADDR_2E        0x2E
1415#define IOPW_SCSI_DATA          0x30    /* SD    */
1416#define IOPW_SCSI_DATA_HSHK     0x32    /* SDH   */
1417#define IOPW_SCSI_CTRL          0x34    /* SC    */
1418#define IOPW_HSHK_CFG           0x36    /* HCFG  */
1419#define IOPW_SXFR_STATUS        0x36    /* SXS   */
1420#define IOPW_SXFR_CNTL          0x38    /* SXL   */
1421#define IOPW_SXFR_CNTH          0x3A    /* SXH   */
1422#define IOPW_RES_ADDR_3C        0x3C
1423#define IOPW_RFIFO_DATA         0x3E    /* RFD   */
1424
1425/*
1426 * Doubleword I/O register address from base of 'iop_base'.
1427 */
1428#define IOPDW_RES_ADDR_0         0x00
1429#define IOPDW_RAM_DATA           0x04
1430#define IOPDW_RES_ADDR_8         0x08
1431#define IOPDW_RES_ADDR_C         0x0C
1432#define IOPDW_RES_ADDR_10        0x10
1433#define IOPDW_COMMA              0x14
1434#define IOPDW_COMMB              0x18
1435#define IOPDW_RES_ADDR_1C        0x1C
1436#define IOPDW_SDMA_ADDR0         0x20
1437#define IOPDW_SDMA_ADDR1         0x24
1438#define IOPDW_SDMA_COUNT         0x28
1439#define IOPDW_SDMA_ERROR         0x2C
1440#define IOPDW_RDMA_ADDR0         0x30
1441#define IOPDW_RDMA_ADDR1         0x34
1442#define IOPDW_RDMA_COUNT         0x38
1443#define IOPDW_RDMA_ERROR         0x3C
1444
1445#define ADV_CHIP_ID_BYTE         0x25
1446#define ADV_CHIP_ID_WORD         0x04C1
1447
1448#define ADV_INTR_ENABLE_HOST_INTR                   0x01
1449#define ADV_INTR_ENABLE_SEL_INTR                    0x02
1450#define ADV_INTR_ENABLE_DPR_INTR                    0x04
1451#define ADV_INTR_ENABLE_RTA_INTR                    0x08
1452#define ADV_INTR_ENABLE_RMA_INTR                    0x10
1453#define ADV_INTR_ENABLE_RST_INTR                    0x20
1454#define ADV_INTR_ENABLE_DPE_INTR                    0x40
1455#define ADV_INTR_ENABLE_GLOBAL_INTR                 0x80
1456
1457#define ADV_INTR_STATUS_INTRA            0x01
1458#define ADV_INTR_STATUS_INTRB            0x02
1459#define ADV_INTR_STATUS_INTRC            0x04
1460
1461#define ADV_RISC_CSR_STOP           (0x0000)
1462#define ADV_RISC_TEST_COND          (0x2000)
1463#define ADV_RISC_CSR_RUN            (0x4000)
1464#define ADV_RISC_CSR_SINGLE_STEP    (0x8000)
1465
1466#define ADV_CTRL_REG_HOST_INTR      0x0100
1467#define ADV_CTRL_REG_SEL_INTR       0x0200
1468#define ADV_CTRL_REG_DPR_INTR       0x0400
1469#define ADV_CTRL_REG_RTA_INTR       0x0800
1470#define ADV_CTRL_REG_RMA_INTR       0x1000
1471#define ADV_CTRL_REG_RES_BIT14      0x2000
1472#define ADV_CTRL_REG_DPE_INTR       0x4000
1473#define ADV_CTRL_REG_POWER_DONE     0x8000
1474#define ADV_CTRL_REG_ANY_INTR       0xFF00
1475
1476#define ADV_CTRL_REG_CMD_RESET             0x00C6
1477#define ADV_CTRL_REG_CMD_WR_IO_REG         0x00C5
1478#define ADV_CTRL_REG_CMD_RD_IO_REG         0x00C4
1479#define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE  0x00C3
1480#define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE  0x00C2
1481
1482#define ADV_TICKLE_NOP                      0x00
1483#define ADV_TICKLE_A                        0x01
1484#define ADV_TICKLE_B                        0x02
1485#define ADV_TICKLE_C                        0x03
1486
1487#define AdvIsIntPending(port) \
1488    (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
1489
1490/*
1491 * SCSI_CFG0 Register bit definitions
1492 */
1493#define TIMER_MODEAB    0xC000  /* Watchdog, Second, and Select. Timer Ctrl. */
1494#define PARITY_EN       0x2000  /* Enable SCSI Parity Error detection */
1495#define EVEN_PARITY     0x1000  /* Select Even Parity */
1496#define WD_LONG         0x0800  /* Watchdog Interval, 1: 57 min, 0: 13 sec */
1497#define QUEUE_128       0x0400  /* Queue Size, 1: 128 byte, 0: 64 byte */
1498#define PRIM_MODE       0x0100  /* Primitive SCSI mode */
1499#define SCAM_EN         0x0080  /* Enable SCAM selection */
1500#define SEL_TMO_LONG    0x0040  /* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
1501#define CFRM_ID         0x0020  /* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
1502#define OUR_ID_EN       0x0010  /* Enable OUR_ID bits */
1503#define OUR_ID          0x000F  /* SCSI ID */
1504
1505/*
1506 * SCSI_CFG1 Register bit definitions
1507 */
1508#define BIG_ENDIAN      0x8000  /* Enable Big Endian Mode MIO:15, EEP:15 */
1509#define TERM_POL        0x2000  /* Terminator Polarity Ctrl. MIO:13, EEP:13 */
1510#define SLEW_RATE       0x1000  /* SCSI output buffer slew rate */
1511#define FILTER_SEL      0x0C00  /* Filter Period Selection */
1512#define  FLTR_DISABLE    0x0000 /* Input Filtering Disabled */
1513#define  FLTR_11_TO_20NS 0x0800 /* Input Filtering 11ns to 20ns */
1514#define  FLTR_21_TO_39NS 0x0C00 /* Input Filtering 21ns to 39ns */
1515#define ACTIVE_DBL      0x0200  /* Disable Active Negation */
1516#define DIFF_MODE       0x0100  /* SCSI differential Mode (Read-Only) */
1517#define DIFF_SENSE      0x0080  /* 1: No SE cables, 0: SE cable (Read-Only) */
1518#define TERM_CTL_SEL    0x0040  /* Enable TERM_CTL_H and TERM_CTL_L */
1519#define TERM_CTL        0x0030  /* External SCSI Termination Bits */
1520#define  TERM_CTL_H      0x0020 /* Enable External SCSI Upper Termination */
1521#define  TERM_CTL_L      0x0010 /* Enable External SCSI Lower Termination */
1522#define CABLE_DETECT    0x000F  /* External SCSI Cable Connection Status */
1523
1524/*
1525 * Addendum for ASC-38C0800 Chip
1526 *
1527 * The ASC-38C1600 Chip uses the same definitions except that the
1528 * bus mode override bits [12:10] have been moved to byte register
1529 * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
1530 * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
1531 * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
1532 * Also each ASC-38C1600 function or channel uses only cable bits [5:4]
1533 * and [1:0]. Bits [14], [7:6], [3:2] are unused.
1534 */
1535#define DIS_TERM_DRV    0x4000  /* 1: Read c_det[3:0], 0: cannot read */
1536#define HVD_LVD_SE      0x1C00  /* Device Detect Bits */
1537#define  HVD             0x1000 /* HVD Device Detect */
1538#define  LVD             0x0800 /* LVD Device Detect */
1539#define  SE              0x0400 /* SE Device Detect */
1540#define TERM_LVD        0x00C0  /* LVD Termination Bits */
1541#define  TERM_LVD_HI     0x0080 /* Enable LVD Upper Termination */
1542#define  TERM_LVD_LO     0x0040 /* Enable LVD Lower Termination */
1543#define TERM_SE         0x0030  /* SE Termination Bits */
1544#define  TERM_SE_HI      0x0020 /* Enable SE Upper Termination */
1545#define  TERM_SE_LO      0x0010 /* Enable SE Lower Termination */
1546#define C_DET_LVD       0x000C  /* LVD Cable Detect Bits */
1547#define  C_DET3          0x0008 /* Cable Detect for LVD External Wide */
1548#define  C_DET2          0x0004 /* Cable Detect for LVD Internal Wide */
1549#define C_DET_SE        0x0003  /* SE Cable Detect Bits */
1550#define  C_DET1          0x0002 /* Cable Detect for SE Internal Wide */
1551#define  C_DET0          0x0001 /* Cable Detect for SE Internal Narrow */
1552
1553#define CABLE_ILLEGAL_A 0x7
1554    /* x 0 0 0  | on  on | Illegal (all 3 connectors are used) */
1555
1556#define CABLE_ILLEGAL_B 0xB
1557    /* 0 x 0 0  | on  on | Illegal (all 3 connectors are used) */
1558
1559/*
1560 * MEM_CFG Register bit definitions
1561 */
1562#define BIOS_EN         0x40    /* BIOS Enable MIO:14,EEP:14 */
1563#define FAST_EE_CLK     0x20    /* Diagnostic Bit */
1564#define RAM_SZ          0x1C    /* Specify size of RAM to RISC */
1565#define  RAM_SZ_2KB      0x00   /* 2 KB */
1566#define  RAM_SZ_4KB      0x04   /* 4 KB */
1567#define  RAM_SZ_8KB      0x08   /* 8 KB */
1568#define  RAM_SZ_16KB     0x0C   /* 16 KB */
1569#define  RAM_SZ_32KB     0x10   /* 32 KB */
1570#define  RAM_SZ_64KB     0x14   /* 64 KB */
1571
1572/*
1573 * DMA_CFG0 Register bit definitions
1574 *
1575 * This register is only accessible to the host.
1576 */
1577#define BC_THRESH_ENB   0x80    /* PCI DMA Start Conditions */
1578#define FIFO_THRESH     0x70    /* PCI DMA FIFO Threshold */
1579#define  FIFO_THRESH_16B  0x00  /* 16 bytes */
1580#define  FIFO_THRESH_32B  0x20  /* 32 bytes */
1581#define  FIFO_THRESH_48B  0x30  /* 48 bytes */
1582#define  FIFO_THRESH_64B  0x40  /* 64 bytes */
1583#define  FIFO_THRESH_80B  0x50  /* 80 bytes (default) */
1584#define  FIFO_THRESH_96B  0x60  /* 96 bytes */
1585#define  FIFO_THRESH_112B 0x70  /* 112 bytes */
1586#define START_CTL       0x0C    /* DMA start conditions */
1587#define  START_CTL_TH    0x00   /* Wait threshold level (default) */
1588#define  START_CTL_ID    0x04   /* Wait SDMA/SBUS idle */
1589#define  START_CTL_THID  0x08   /* Wait threshold and SDMA/SBUS idle */
1590#define  START_CTL_EMFU  0x0C   /* Wait SDMA FIFO empty/full */
1591#define READ_CMD        0x03    /* Memory Read Method */
1592#define  READ_CMD_MR     0x00   /* Memory Read */
1593#define  READ_CMD_MRL    0x02   /* Memory Read Long */
1594#define  READ_CMD_MRM    0x03   /* Memory Read Multiple (default) */
1595
1596/*
1597 * ASC-38C0800 RAM BIST Register bit definitions
1598 */
1599#define RAM_TEST_MODE         0x80
1600#define PRE_TEST_MODE         0x40
1601#define NORMAL_MODE           0x00
1602#define RAM_TEST_DONE         0x10
1603#define RAM_TEST_STATUS       0x0F
1604#define  RAM_TEST_HOST_ERROR   0x08
1605#define  RAM_TEST_INTRAM_ERROR 0x04
1606#define  RAM_TEST_RISC_ERROR   0x02
1607#define  RAM_TEST_SCSI_ERROR   0x01
1608#define  RAM_TEST_SUCCESS      0x00
1609#define PRE_TEST_VALUE        0x05
1610#define NORMAL_VALUE          0x00
1611
1612/*
1613 * ASC38C1600 Definitions
1614 *
1615 * IOPB_PCI_INT_CFG Bit Field Definitions
1616 */
1617
1618#define INTAB_LD        0x80    /* Value loaded from EEPROM Bit 11. */
1619
1620/*
1621 * Bit 1 can be set to change the interrupt for the Function to operate in
1622 * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
1623 * Open Drain mode. Both functions of the ASC38C1600 must be set to the same
1624 * mode, otherwise the operating mode is undefined.
1625 */
1626#define TOTEMPOLE       0x02
1627
1628/*
1629 * Bit 0 can be used to change the Int Pin for the Function. The value is
1630 * 0 by default for both Functions with Function 0 using INT A and Function
1631 * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
1632 * INT A is used.
1633 *
1634 * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
1635 * value specified in the PCI Configuration Space.
1636 */
1637#define INTAB           0x01
1638
1639/*
1640 * Adv Library Status Definitions
1641 */
1642#define ADV_TRUE        1
1643#define ADV_FALSE       0
1644#define ADV_SUCCESS     1
1645#define ADV_BUSY        0
1646#define ADV_ERROR       (-1)
1647
1648/*
1649 * ADV_DVC_VAR 'warn_code' values
1650 */
1651#define ASC_WARN_BUSRESET_ERROR         0x0001  /* SCSI Bus Reset error */
1652#define ASC_WARN_EEPROM_CHKSUM          0x0002  /* EEP check sum error */
1653#define ASC_WARN_EEPROM_TERMINATION     0x0004  /* EEP termination bad field */
1654#define ASC_WARN_ERROR                  0xFFFF  /* ADV_ERROR return */
1655
1656#define ADV_MAX_TID                     15      /* max. target identifier */
1657#define ADV_MAX_LUN                     7       /* max. logical unit number */
1658
1659/*
1660 * Fixed locations of microcode operating variables.
1661 */
1662#define ASC_MC_CODE_BEGIN_ADDR          0x0028  /* microcode start address */
1663#define ASC_MC_CODE_END_ADDR            0x002A  /* microcode end address */
1664#define ASC_MC_CODE_CHK_SUM             0x002C  /* microcode code checksum */
1665#define ASC_MC_VERSION_DATE             0x0038  /* microcode version */
1666#define ASC_MC_VERSION_NUM              0x003A  /* microcode number */
1667#define ASC_MC_BIOSMEM                  0x0040  /* BIOS RISC Memory Start */
1668#define ASC_MC_BIOSLEN                  0x0050  /* BIOS RISC Memory Length */
1669#define ASC_MC_BIOS_SIGNATURE           0x0058  /* BIOS Signature 0x55AA */
1670#define ASC_MC_BIOS_VERSION             0x005A  /* BIOS Version (2 bytes) */
1671#define ASC_MC_SDTR_SPEED1              0x0090  /* SDTR Speed for TID 0-3 */
1672#define ASC_MC_SDTR_SPEED2              0x0092  /* SDTR Speed for TID 4-7 */
1673#define ASC_MC_SDTR_SPEED3              0x0094  /* SDTR Speed for TID 8-11 */
1674#define ASC_MC_SDTR_SPEED4              0x0096  /* SDTR Speed for TID 12-15 */
1675#define ASC_MC_CHIP_TYPE                0x009A
1676#define ASC_MC_INTRB_CODE               0x009B
1677#define ASC_MC_WDTR_ABLE                0x009C
1678#define ASC_MC_SDTR_ABLE                0x009E
1679#define ASC_MC_TAGQNG_ABLE              0x00A0
1680#define ASC_MC_DISC_ENABLE              0x00A2
1681#define ASC_MC_IDLE_CMD_STATUS          0x00A4
1682#define ASC_MC_IDLE_CMD                 0x00A6
1683#define ASC_MC_IDLE_CMD_PARAMETER       0x00A8
1684#define ASC_MC_DEFAULT_SCSI_CFG0        0x00AC
1685#define ASC_MC_DEFAULT_SCSI_CFG1        0x00AE
1686#define ASC_MC_DEFAULT_MEM_CFG          0x00B0
1687#define ASC_MC_DEFAULT_SEL_MASK         0x00B2
1688#define ASC_MC_SDTR_DONE                0x00B6
1689#define ASC_MC_NUMBER_OF_QUEUED_CMD     0x00C0
1690#define ASC_MC_NUMBER_OF_MAX_CMD        0x00D0
1691#define ASC_MC_DEVICE_HSHK_CFG_TABLE    0x0100
1692#define ASC_MC_CONTROL_FLAG             0x0122  /* Microcode control flag. */
1693#define ASC_MC_WDTR_DONE                0x0124
1694#define ASC_MC_CAM_MODE_MASK            0x015E  /* CAM mode TID bitmask. */
1695#define ASC_MC_ICQ                      0x0160
1696#define ASC_MC_IRQ                      0x0164
1697#define ASC_MC_PPR_ABLE                 0x017A
1698
1699/*
1700 * BIOS LRAM variable absolute offsets.
1701 */
1702#define BIOS_CODESEG    0x54
1703#define BIOS_CODELEN    0x56
1704#define BIOS_SIGNATURE  0x58
1705#define BIOS_VERSION    0x5A
1706
1707/*
1708 * Microcode Control Flags
1709 *
1710 * Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
1711 * and handled by the microcode.
1712 */
1713#define CONTROL_FLAG_IGNORE_PERR        0x0001  /* Ignore DMA Parity Errors */
1714#define CONTROL_FLAG_ENABLE_AIPP        0x0002  /* Enabled AIPP checking. */
1715
1716/*
1717 * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
1718 */
1719#define HSHK_CFG_WIDE_XFR       0x8000
1720#define HSHK_CFG_RATE           0x0F00
1721#define HSHK_CFG_OFFSET         0x001F
1722
1723#define ASC_DEF_MAX_HOST_QNG    0xFD    /* Max. number of host commands (253) */
1724#define ASC_DEF_MIN_HOST_QNG    0x10    /* Min. number of host commands (16) */
1725#define ASC_DEF_MAX_DVC_QNG     0x3F    /* Max. number commands per device (63) */
1726#define ASC_DEF_MIN_DVC_QNG     0x04    /* Min. number commands per device (4) */
1727
1728#define ASC_QC_DATA_CHECK  0x01 /* Require ASC_QC_DATA_OUT set or clear. */
1729#define ASC_QC_DATA_OUT    0x02 /* Data out DMA transfer. */
1730#define ASC_QC_START_MOTOR 0x04 /* Send auto-start motor before request. */
1731#define ASC_QC_NO_OVERRUN  0x08 /* Don't report overrun. */
1732#define ASC_QC_FREEZE_TIDQ 0x10 /* Freeze TID queue after request. XXX TBD */
1733
1734#define ASC_QSC_NO_DISC     0x01        /* Don't allow disconnect for request. */
1735#define ASC_QSC_NO_TAGMSG   0x02        /* Don't allow tag queuing for request. */
1736#define ASC_QSC_NO_SYNC     0x04        /* Don't use Synch. transfer on request. */
1737#define ASC_QSC_NO_WIDE     0x08        /* Don't use Wide transfer on request. */
1738#define ASC_QSC_REDO_DTR    0x10        /* Renegotiate WDTR/SDTR before request. */
1739/*
1740 * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
1741 * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
1742 */
1743#define ASC_QSC_HEAD_TAG    0x40        /* Use Head Tag Message (0x21). */
1744#define ASC_QSC_ORDERED_TAG 0x80        /* Use Ordered Tag Message (0x22). */
1745
1746/*
1747 * All fields here are accessed by the board microcode and need to be
1748 * little-endian.
1749 */
1750typedef struct adv_carr_t {
1751        ADV_VADDR carr_va;      /* Carrier Virtual Address */
1752        ADV_PADDR carr_pa;      /* Carrier Physical Address */
1753        ADV_VADDR areq_vpa;     /* ASC_SCSI_REQ_Q Virtual or Physical Address */
1754        /*
1755         * next_vpa [31:4]            Carrier Virtual or Physical Next Pointer
1756         *
1757         * next_vpa [3:1]             Reserved Bits
1758         * next_vpa [0]               Done Flag set in Response Queue.
1759         */
1760        ADV_VADDR next_vpa;
1761} ADV_CARR_T;
1762
1763/*
1764 * Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
1765 */
1766#define ASC_NEXT_VPA_MASK       0xFFFFFFF0
1767
1768#define ASC_RQ_DONE             0x00000001
1769#define ASC_RQ_GOOD             0x00000002
1770#define ASC_CQ_STOPPER          0x00000000
1771
1772#define ASC_GET_CARRP(carrp) ((carrp) & ASC_NEXT_VPA_MASK)
1773
1774#define ADV_CARRIER_NUM_PAGE_CROSSING \
1775    (((ADV_CARRIER_COUNT * sizeof(ADV_CARR_T)) + (PAGE_SIZE - 1))/PAGE_SIZE)
1776
1777#define ADV_CARRIER_BUFSIZE \
1778    ((ADV_CARRIER_COUNT + ADV_CARRIER_NUM_PAGE_CROSSING) * sizeof(ADV_CARR_T))
1779
1780/*
1781 * ASC_SCSI_REQ_Q 'a_flag' definitions
1782 *
1783 * The Adv Library should limit use to the lower nibble (4 bits) of
1784 * a_flag. Drivers are free to use the upper nibble (4 bits) of a_flag.
1785 */
1786#define ADV_POLL_REQUEST                0x01    /* poll for request completion */
1787#define ADV_SCSIQ_DONE                  0x02    /* request done */
1788#define ADV_DONT_RETRY                  0x08    /* don't do retry */
1789
1790#define ADV_CHIP_ASC3550          0x01  /* Ultra-Wide IC */
1791#define ADV_CHIP_ASC38C0800       0x02  /* Ultra2-Wide/LVD IC */
1792#define ADV_CHIP_ASC38C1600       0x03  /* Ultra3-Wide/LVD2 IC */
1793
1794/*
1795 * Adapter temporary configuration structure
1796 *
1797 * This structure can be discarded after initialization. Don't add
1798 * fields here needed after initialization.
1799 *
1800 * Field naming convention:
1801 *
1802 *  *_enable indicates the field enables or disables a feature. The
1803 *  value of the field is never reset.
1804 */
1805typedef struct adv_dvc_cfg {
1806        ushort disc_enable;     /* enable disconnection */
1807        uchar chip_version;     /* chip version */
1808        uchar termination;      /* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
1809        ushort control_flag;    /* Microcode Control Flag */
1810        ushort mcode_date;      /* Microcode date */
1811        ushort mcode_version;   /* Microcode version */
1812        ushort serial1;         /* EEPROM serial number word 1 */
1813        ushort serial2;         /* EEPROM serial number word 2 */
1814        ushort serial3;         /* EEPROM serial number word 3 */
1815} ADV_DVC_CFG;
1816
1817struct adv_dvc_var;
1818struct adv_scsi_req_q;
1819
1820typedef struct asc_sg_block {
1821        uchar reserved1;
1822        uchar reserved2;
1823        uchar reserved3;
1824        uchar sg_cnt;           /* Valid entries in block. */
1825        ADV_PADDR sg_ptr;       /* Pointer to next sg block. */
1826        struct {
1827                ADV_PADDR sg_addr;      /* SG element address. */
1828                ADV_DCNT sg_count;      /* SG element count. */
1829        } sg_list[NO_OF_SG_PER_BLOCK];
1830} ADV_SG_BLOCK;
1831
1832/*
1833 * ADV_SCSI_REQ_Q - microcode request structure
1834 *
1835 * All fields in this structure up to byte 60 are used by the microcode.
1836 * The microcode makes assumptions about the size and ordering of fields
1837 * in this structure. Do not change the structure definition here without
1838 * coordinating the change with the microcode.
1839 *
1840 * All fields accessed by microcode must be maintained in little_endian
1841 * order.
1842 */
1843typedef struct adv_scsi_req_q {
1844        uchar cntl;             /* Ucode flags and state (ASC_MC_QC_*). */
1845        uchar target_cmd;
1846        uchar target_id;        /* Device target identifier. */
1847        uchar target_lun;       /* Device target logical unit number. */
1848        ADV_PADDR data_addr;    /* Data buffer physical address. */
1849        ADV_DCNT data_cnt;      /* Data count. Ucode sets to residual. */
1850        ADV_PADDR sense_addr;
1851        ADV_PADDR carr_pa;
1852        uchar mflag;
1853        uchar sense_len;
1854        uchar cdb_len;          /* SCSI CDB length. Must <= 16 bytes. */
1855        uchar scsi_cntl;
1856        uchar done_status;      /* Completion status. */
1857        uchar scsi_status;      /* SCSI status byte. */
1858        uchar host_status;      /* Ucode host status. */
1859        uchar sg_working_ix;
1860        uchar cdb[12];          /* SCSI CDB bytes 0-11. */
1861        ADV_PADDR sg_real_addr; /* SG list physical address. */
1862        ADV_PADDR scsiq_rptr;
1863        uchar cdb16[4];         /* SCSI CDB bytes 12-15. */
1864        ADV_VADDR scsiq_ptr;
1865        ADV_VADDR carr_va;
1866        /*
1867         * End of microcode structure - 60 bytes. The rest of the structure
1868         * is used by the Adv Library and ignored by the microcode.
1869         */
1870        ADV_VADDR srb_ptr;
1871        ADV_SG_BLOCK *sg_list_ptr;      /* SG list virtual address. */
1872        char *vdata_addr;       /* Data buffer virtual address. */
1873        uchar a_flag;
1874        uchar pad[2];           /* Pad out to a word boundary. */
1875} ADV_SCSI_REQ_Q;
1876
1877/*
1878 * The following two structures are used to process Wide Board requests.
1879 *
1880 * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
1881 * and microcode with the ADV_SCSI_REQ_Q field 'srb_ptr' pointing to the
1882 * adv_req_t. The adv_req_t structure 'cmndp' field in turn points to the
1883 * Mid-Level SCSI request structure.
1884 *
1885 * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
1886 * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
1887 * up to 255 scatter-gather elements may be used per request or
1888 * ADV_SCSI_REQ_Q.
1889 *
1890 * Both structures must be 32 byte aligned.
1891 */
1892typedef struct adv_sgblk {
1893        ADV_SG_BLOCK sg_block;  /* Sgblock structure. */
1894        uchar align[32];        /* Sgblock structure padding. */
1895        struct adv_sgblk *next_sgblkp;  /* Next scatter-gather structure. */
1896} adv_sgblk_t;
1897
1898typedef struct adv_req {
1899        ADV_SCSI_REQ_Q scsi_req_q;      /* Adv Library request structure. */
1900        uchar align[32];        /* Request structure padding. */
1901        struct scsi_cmnd *cmndp;        /* Mid-Level SCSI command pointer. */
1902        adv_sgblk_t *sgblkp;    /* Adv Library scatter-gather pointer. */
1903        struct adv_req *next_reqp;      /* Next Request Structure. */
1904} adv_req_t;
1905
1906/*
1907 * Adapter operation variable structure.
1908 *
1909 * One structure is required per host adapter.
1910 *
1911 * Field naming convention:
1912 *
1913 *  *_able indicates both whether a feature should be enabled or disabled
1914 *  and whether a device isi capable of the feature. At initialization
1915 *  this field may be set, but later if a device is found to be incapable
1916 *  of the feature, the field is cleared.
1917 */
1918typedef struct adv_dvc_var {
1919        AdvPortAddr iop_base;   /* I/O port address */
1920        ushort err_code;        /* fatal error code */
1921        ushort bios_ctrl;       /* BIOS control word, EEPROM word 12 */
1922        ushort wdtr_able;       /* try WDTR for a device */
1923        ushort sdtr_able;       /* try SDTR for a device */
1924        ushort ultra_able;      /* try SDTR Ultra speed for a device */
1925        ushort sdtr_speed1;     /* EEPROM SDTR Speed for TID 0-3   */
1926        ushort sdtr_speed2;     /* EEPROM SDTR Speed for TID 4-7   */
1927        ushort sdtr_speed3;     /* EEPROM SDTR Speed for TID 8-11  */
1928        ushort sdtr_speed4;     /* EEPROM SDTR Speed for TID 12-15 */
1929        ushort tagqng_able;     /* try tagged queuing with a device */
1930        ushort ppr_able;        /* PPR message capable per TID bitmask. */
1931        uchar max_dvc_qng;      /* maximum number of tagged commands per device */
1932        ushort start_motor;     /* start motor command allowed */
1933        uchar scsi_reset_wait;  /* delay in seconds after scsi bus reset */
1934        uchar chip_no;          /* should be assigned by caller */
1935        uchar max_host_qng;     /* maximum number of Q'ed command allowed */
1936        ushort no_scam;         /* scam_tolerant of EEPROM */
1937        struct asc_board *drv_ptr;      /* driver pointer to private structure */
1938        uchar chip_scsi_id;     /* chip SCSI target ID */
1939        uchar chip_type;
1940        uchar bist_err_code;
1941        ADV_CARR_T *carrier_buf;
1942        ADV_CARR_T *carr_freelist;      /* Carrier free list. */
1943        ADV_CARR_T *icq_sp;     /* Initiator command queue stopper pointer. */
1944        ADV_CARR_T *irq_sp;     /* Initiator response queue stopper pointer. */
1945        ushort carr_pending_cnt;        /* Count of pending carriers. */
1946        struct adv_req *orig_reqp;      /* adv_req_t memory block. */
1947        /*
1948         * Note: The following fields will not be used after initialization. The
1949         * driver may discard the buffer after initialization is done.
1950         */
1951        ADV_DVC_CFG *cfg;       /* temporary configuration structure  */
1952} ADV_DVC_VAR;
1953
1954/*
1955 * Microcode idle loop commands
1956 */
1957#define IDLE_CMD_COMPLETED           0
1958#define IDLE_CMD_STOP_CHIP           0x0001
1959#define IDLE_CMD_STOP_CHIP_SEND_INT  0x0002
1960#define IDLE_CMD_SEND_INT            0x0004
1961#define IDLE_CMD_ABORT               0x0008
1962#define IDLE_CMD_DEVICE_RESET        0x0010
1963#define IDLE_CMD_SCSI_RESET_START    0x0020     /* Assert SCSI Bus Reset */
1964#define IDLE_CMD_SCSI_RESET_END      0x0040     /* Deassert SCSI Bus Reset */
1965#define IDLE_CMD_SCSIREQ             0x0080
1966
1967#define IDLE_CMD_STATUS_SUCCESS      0x0001
1968#define IDLE_CMD_STATUS_FAILURE      0x0002
1969
1970/*
1971 * AdvSendIdleCmd() flag definitions.
1972 */
1973#define ADV_NOWAIT     0x01
1974
1975/*
1976 * Wait loop time out values.
1977 */
1978#define SCSI_WAIT_100_MSEC           100UL      /* 100 milliseconds */
1979#define SCSI_US_PER_MSEC             1000       /* microseconds per millisecond */
1980#define SCSI_MAX_RETRY               10 /* retry count */
1981
1982#define ADV_ASYNC_RDMA_FAILURE          0x01    /* Fatal RDMA failure. */
1983#define ADV_ASYNC_SCSI_BUS_RESET_DET    0x02    /* Detected SCSI Bus Reset. */
1984#define ADV_ASYNC_CARRIER_READY_FAILURE 0x03    /* Carrier Ready failure. */
1985#define ADV_RDMA_IN_CARR_AND_Q_INVALID  0x04    /* RDMAed-in data invalid. */
1986
1987#define ADV_HOST_SCSI_BUS_RESET      0x80       /* Host Initiated SCSI Bus Reset. */
1988
1989/* Read byte from a register. */
1990#define AdvReadByteRegister(iop_base, reg_off) \
1991     (ADV_MEM_READB((iop_base) + (reg_off)))
1992
1993/* Write byte to a register. */
1994#define AdvWriteByteRegister(iop_base, reg_off, byte) \
1995     (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
1996
1997/* Read word (2 bytes) from a register. */
1998#define AdvReadWordRegister(iop_base, reg_off) \
1999     (ADV_MEM_READW((iop_base) + (reg_off)))
2000
2001/* Write word (2 bytes) to a register. */
2002#define AdvWriteWordRegister(iop_base, reg_off, word) \
2003     (ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
2004
2005/* Write dword (4 bytes) to a register. */
2006#define AdvWriteDWordRegister(iop_base, reg_off, dword) \
2007     (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
2008
2009/* Read byte from LRAM. */
2010#define AdvReadByteLram(iop_base, addr, byte) \
2011do { \
2012    ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2013    (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
2014} while (0)
2015
2016/* Write byte to LRAM. */
2017#define AdvWriteByteLram(iop_base, addr, byte) \
2018    (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2019     ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
2020
2021/* Read word (2 bytes) from LRAM. */
2022#define AdvReadWordLram(iop_base, addr, word) \
2023do { \
2024    ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2025    (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
2026} while (0)
2027
2028/* Write word (2 bytes) to LRAM. */
2029#define AdvWriteWordLram(iop_base, addr, word) \
2030    (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2031     ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2032
2033/* Write little-endian double word (4 bytes) to LRAM */
2034/* Because of unspecified C language ordering don't use auto-increment. */
2035#define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
2036    ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2037      ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2038                     cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
2039     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
2040      ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2041                     cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
2042
2043/* Read word (2 bytes) from LRAM assuming that the address is already set. */
2044#define AdvReadWordAutoIncLram(iop_base) \
2045     (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
2046
2047/* Write word (2 bytes) to LRAM assuming that the address is already set. */
2048#define AdvWriteWordAutoIncLram(iop_base, word) \
2049     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2050
2051/*
2052 * Define macro to check for Condor signature.
2053 *
2054 * Evaluate to ADV_TRUE if a Condor chip is found the specified port
2055 * address 'iop_base'. Otherwise evalue to ADV_FALSE.
2056 */
2057#define AdvFindSignature(iop_base) \
2058    (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
2059    ADV_CHIP_ID_BYTE) && \
2060     (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
2061    ADV_CHIP_ID_WORD)) ?  ADV_TRUE : ADV_FALSE)
2062
2063/*
2064 * Define macro to Return the version number of the chip at 'iop_base'.
2065 *
2066 * The second parameter 'bus_type' is currently unused.
2067 */
2068#define AdvGetChipVersion(iop_base, bus_type) \
2069    AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
2070
2071/*
2072 * Abort an SRB in the chip's RISC Memory. The 'srb_ptr' argument must
2073 * match the ASC_SCSI_REQ_Q 'srb_ptr' field.
2074 *
2075 * If the request has not yet been sent to the device it will simply be
2076 * aborted from RISC memory. If the request is disconnected it will be
2077 * aborted on reselection by sending an Abort Message to the target ID.
2078 *
2079 * Return value:
2080 *      ADV_TRUE(1) - Queue was successfully aborted.
2081 *      ADV_FALSE(0) - Queue was not found on the active queue list.
2082 */
2083#define AdvAbortQueue(asc_dvc, scsiq) \
2084        AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
2085                       (ADV_DCNT) (scsiq))
2086
2087/*
2088 * Send a Bus Device Reset Message to the specified target ID.
2089 *
2090 * All outstanding commands will be purged if sending the
2091 * Bus Device Reset Message is successful.
2092 *
2093 * Return Value:
2094 *      ADV_TRUE(1) - All requests on the target are purged.
2095 *      ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
2096 *                     are not purged.
2097 */
2098#define AdvResetDevice(asc_dvc, target_id) \
2099        AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \
2100                    (ADV_DCNT) (target_id))
2101
2102/*
2103 * SCSI Wide Type definition.
2104 */
2105#define ADV_SCSI_BIT_ID_TYPE   ushort
2106
2107/*
2108 * AdvInitScsiTarget() 'cntl_flag' options.
2109 */
2110#define ADV_SCAN_LUN           0x01
2111#define ADV_CAPINFO_NOLUN      0x02
2112
2113/*
2114 * Convert target id to target id bit mask.
2115 */
2116#define ADV_TID_TO_TIDMASK(tid)   (0x01 << ((tid) & ADV_MAX_TID))
2117
2118/*
2119 * ASC_SCSI_REQ_Q 'done_status' and 'host_status' return values.
2120 */
2121
2122#define QD_NO_STATUS         0x00       /* Request not completed yet. */
2123#define QD_NO_ERROR          0x01
2124#define QD_ABORTED_BY_HOST   0x02
2125#define QD_WITH_ERROR        0x04
2126
2127#define QHSTA_NO_ERROR              0x00
2128#define QHSTA_M_SEL_TIMEOUT         0x11
2129#define QHSTA_M_DATA_OVER_RUN       0x12
2130#define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
2131#define QHSTA_M_QUEUE_ABORTED       0x15
2132#define QHSTA_M_SXFR_SDMA_ERR       0x16        /* SXFR_STATUS SCSI DMA Error */
2133#define QHSTA_M_SXFR_SXFR_PERR      0x17        /* SXFR_STATUS SCSI Bus Parity Error */
2134#define QHSTA_M_RDMA_PERR           0x18        /* RISC PCI DMA parity error */
2135#define QHSTA_M_SXFR_OFF_UFLW       0x19        /* SXFR_STATUS Offset Underflow */
2136#define QHSTA_M_SXFR_OFF_OFLW       0x20        /* SXFR_STATUS Offset Overflow */
2137#define QHSTA_M_SXFR_WD_TMO         0x21        /* SXFR_STATUS Watchdog Timeout */
2138#define QHSTA_M_SXFR_DESELECTED     0x22        /* SXFR_STATUS Deselected */
2139/* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
2140#define QHSTA_M_SXFR_XFR_OFLW       0x12        /* SXFR_STATUS Transfer Overflow */
2141#define QHSTA_M_SXFR_XFR_PH_ERR     0x24        /* SXFR_STATUS Transfer Phase Error */
2142#define QHSTA_M_SXFR_UNKNOWN_ERROR  0x25        /* SXFR_STATUS Unknown Error */
2143#define QHSTA_M_SCSI_BUS_RESET      0x30        /* Request aborted from SBR */
2144#define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31       /* Request aborted from unsol. SBR */
2145#define QHSTA_M_BUS_DEVICE_RESET    0x32        /* Request aborted from BDR */
2146#define QHSTA_M_DIRECTION_ERR       0x35        /* Data Phase mismatch */
2147#define QHSTA_M_DIRECTION_ERR_HUNG  0x36        /* Data Phase mismatch and bus hang */
2148#define QHSTA_M_WTM_TIMEOUT         0x41
2149#define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
2150#define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
2151#define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
2152#define QHSTA_M_INVALID_DEVICE      0x45        /* Bad target ID */
2153#define QHSTA_M_FROZEN_TIDQ         0x46        /* TID Queue frozen. */
2154#define QHSTA_M_SGBACKUP_ERROR      0x47        /* Scatter-Gather backup error */
2155
2156/* Return the address that is aligned at the next doubleword >= to 'addr'. */
2157#define ADV_8BALIGN(addr)      (((ulong) (addr) + 0x7) & ~0x7)
2158#define ADV_16BALIGN(addr)     (((ulong) (addr) + 0xF) & ~0xF)
2159#define ADV_32BALIGN(addr)     (((ulong) (addr) + 0x1F) & ~0x1F)
2160
2161/*
2162 * Total contiguous memory needed for driver SG blocks.
2163 *
2164 * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
2165 * number of scatter-gather elements the driver supports in a
2166 * single request.
2167 */
2168
2169#define ADV_SG_LIST_MAX_BYTE_SIZE \
2170         (sizeof(ADV_SG_BLOCK) * \
2171          ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
2172
2173/* struct asc_board flags */
2174#define ASC_IS_WIDE_BOARD       0x04    /* AdvanSys Wide Board */
2175
2176#define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
2177
2178#define NO_ISA_DMA              0xff    /* No ISA DMA Channel Used */
2179
2180#define ASC_INFO_SIZE           128     /* advansys_info() line size */
2181
2182#ifdef CONFIG_PROC_FS
2183/* /proc/scsi/advansys/[0...] related definitions */
2184#define ASC_PRTBUF_SIZE         2048
2185#define ASC_PRTLINE_SIZE        160
2186
2187#define ASC_PRT_NEXT() \
2188    if (cp) { \
2189        totlen += len; \
2190        leftlen -= len; \
2191        if (leftlen == 0) { \
2192            return totlen; \
2193        } \
2194        cp += len; \
2195    }
2196#endif /* CONFIG_PROC_FS */
2197
2198/* Asc Library return codes */
2199#define ASC_TRUE        1
2200#define ASC_FALSE       0
2201#define ASC_NOERROR     1
2202#define ASC_BUSY        0
2203#define ASC_ERROR       (-1)
2204
2205/* struct scsi_cmnd function return codes */
2206#define STATUS_BYTE(byte)   (byte)
2207#define MSG_BYTE(byte)      ((byte) << 8)
2208#define HOST_BYTE(byte)     ((byte) << 16)
2209#define DRIVER_BYTE(byte)   ((byte) << 24)
2210
2211#define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
2212#ifndef ADVANSYS_STATS
2213#define ASC_STATS_ADD(shost, counter, count)
2214#else /* ADVANSYS_STATS */
2215#define ASC_STATS_ADD(shost, counter, count) \
2216        (((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
2217#endif /* ADVANSYS_STATS */
2218
2219/* If the result wraps when calculating tenths, return 0. */
2220#define ASC_TENTHS(num, den) \
2221    (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
2222    0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
2223
2224/*
2225 * Display a message to the console.
2226 */
2227#define ASC_PRINT(s) \
2228    { \
2229        printk("advansys: "); \
2230        printk(s); \
2231    }
2232
2233#define ASC_PRINT1(s, a1) \
2234    { \
2235        printk("advansys: "); \
2236        printk((s), (a1)); \
2237    }
2238
2239#define ASC_PRINT2(s, a1, a2) \
2240    { \
2241        printk("advansys: "); \
2242        printk((s), (a1), (a2)); \
2243    }
2244
2245#define ASC_PRINT3(s, a1, a2, a3) \
2246    { \
2247        printk("advansys: "); \
2248        printk((s), (a1), (a2), (a3)); \
2249    }
2250
2251#define ASC_PRINT4(s, a1, a2, a3, a4) \
2252    { \
2253        printk("advansys: "); \
2254        printk((s), (a1), (a2), (a3), (a4)); \
2255    }
2256
2257#ifndef ADVANSYS_DEBUG
2258
2259#define ASC_DBG(lvl, s...)
2260#define ASC_DBG_PRT_SCSI_HOST(lvl, s)
2261#define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
2262#define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2263#define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
2264#define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2265#define ASC_DBG_PRT_HEX(lvl, name, start, length)
2266#define ASC_DBG_PRT_CDB(lvl, cdb, len)
2267#define ASC_DBG_PRT_SENSE(lvl, sense, len)
2268#define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
2269
2270#else /* ADVANSYS_DEBUG */
2271
2272/*
2273 * Debugging Message Levels:
2274 * 0: Errors Only
2275 * 1: High-Level Tracing
2276 * 2-N: Verbose Tracing
2277 */
2278
2279#define ASC_DBG(lvl, format, arg...) {                                  \
2280        if (asc_dbglvl >= (lvl))                                        \
2281                printk(KERN_DEBUG "%s: %s: " format, DRV_NAME,          \
2282                        __func__ , ## arg);                             \
2283}
2284
2285#define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
2286    { \
2287        if (asc_dbglvl >= (lvl)) { \
2288            asc_prt_scsi_host(s); \
2289        } \
2290    }
2291
2292#define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
2293    { \
2294        if (asc_dbglvl >= (lvl)) { \
2295            asc_prt_asc_scsi_q(scsiqp); \
2296        } \
2297    }
2298
2299#define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
2300    { \
2301        if (asc_dbglvl >= (lvl)) { \
2302            asc_prt_asc_qdone_info(qdone); \
2303        } \
2304    }
2305
2306#define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
2307    { \
2308        if (asc_dbglvl >= (lvl)) { \
2309            asc_prt_adv_scsi_req_q(scsiqp); \
2310        } \
2311    }
2312
2313#define ASC_DBG_PRT_HEX(lvl, name, start, length) \
2314    { \
2315        if (asc_dbglvl >= (lvl)) { \
2316            asc_prt_hex((name), (start), (length)); \
2317        } \
2318    }
2319
2320#define ASC_DBG_PRT_CDB(lvl, cdb, len) \
2321        ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
2322
2323#define ASC_DBG_PRT_SENSE(lvl, sense, len) \
2324        ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
2325
2326#define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
2327        ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
2328#endif /* ADVANSYS_DEBUG */
2329
2330#ifdef ADVANSYS_STATS
2331
2332/* Per board statistics structure */
2333struct asc_stats {
2334        /* Driver Entrypoint Statistics */
2335        ADV_DCNT queuecommand;  /* # calls to advansys_queuecommand() */
2336        ADV_DCNT reset;         /* # calls to advansys_eh_bus_reset() */
2337        ADV_DCNT biosparam;     /* # calls to advansys_biosparam() */
2338        ADV_DCNT interrupt;     /* # advansys_interrupt() calls */
2339        ADV_DCNT callback;      /* # calls to asc/adv_isr_callback() */
2340        ADV_DCNT done;          /* # calls to request's scsi_done function */
2341        ADV_DCNT build_error;   /* # asc/adv_build_req() ASC_ERROR returns. */
2342        ADV_DCNT adv_build_noreq;       /* # adv_build_req() adv_req_t alloc. fail. */
2343        ADV_DCNT adv_build_nosg;        /* # adv_build_req() adv_sgblk_t alloc. fail. */
2344        /* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
2345        ADV_DCNT exe_noerror;   /* # ASC_NOERROR returns. */
2346        ADV_DCNT exe_busy;      /* # ASC_BUSY returns. */
2347        ADV_DCNT exe_error;     /* # ASC_ERROR returns. */
2348        ADV_DCNT exe_unknown;   /* # unknown returns. */
2349        /* Data Transfer Statistics */
2350        ADV_DCNT xfer_cnt;      /* # I/O requests received */
2351        ADV_DCNT xfer_elem;     /* # scatter-gather elements */
2352        ADV_DCNT xfer_sect;     /* # 512-byte blocks */
2353};
2354#endif /* ADVANSYS_STATS */
2355
2356/*
2357 * Structure allocated for each board.
2358 *
2359 * This structure is allocated by scsi_host_alloc() at the end
2360 * of the 'Scsi_Host' structure starting at the 'hostdata'
2361 * field. It is guaranteed to be allocated from DMA-able memory.
2362 */
2363struct asc_board {
2364        struct device *dev;
2365        uint flags;             /* Board flags */
2366        unsigned int irq;
2367        union {
2368                ASC_DVC_VAR asc_dvc_var;        /* Narrow board */
2369                ADV_DVC_VAR adv_dvc_var;        /* Wide board */
2370        } dvc_var;
2371        union {
2372                ASC_DVC_CFG asc_dvc_cfg;        /* Narrow board */
2373                ADV_DVC_CFG adv_dvc_cfg;        /* Wide board */
2374        } dvc_cfg;
2375        ushort asc_n_io_port;   /* Number I/O ports. */
2376        ADV_SCSI_BIT_ID_TYPE init_tidmask;      /* Target init./valid mask */
2377        ushort reqcnt[ADV_MAX_TID + 1]; /* Starvation request count */
2378        ADV_SCSI_BIT_ID_TYPE queue_full;        /* Queue full mask */
2379        ushort queue_full_cnt[ADV_MAX_TID + 1]; /* Queue full count */
2380        union {
2381                ASCEEP_CONFIG asc_eep;  /* Narrow EEPROM config. */
2382                ADVEEP_3550_CONFIG adv_3550_eep;        /* 3550 EEPROM config. */
2383                ADVEEP_38C0800_CONFIG adv_38C0800_eep;  /* 38C0800 EEPROM config. */
2384                ADVEEP_38C1600_CONFIG adv_38C1600_eep;  /* 38C1600 EEPROM config. */
2385        } eep_config;
2386        ulong last_reset;       /* Saved last reset time */
2387        /* /proc/scsi/advansys/[0...] */
2388        char *prtbuf;           /* /proc print buffer */
2389#ifdef ADVANSYS_STATS
2390        struct asc_stats asc_stats;     /* Board statistics */
2391#endif                          /* ADVANSYS_STATS */
2392        /*
2393         * The following fields are used only for Narrow Boards.
2394         */
2395        uchar sdtr_data[ASC_MAX_TID + 1];       /* SDTR information */
2396        /*
2397         * The following fields are used only for Wide Boards.
2398         */
2399        void __iomem *ioremap_addr;     /* I/O Memory remap address. */
2400        ushort ioport;          /* I/O Port address. */
2401        adv_req_t *adv_reqp;    /* Request structures. */
2402        adv_sgblk_t *adv_sgblkp;        /* Scatter-gather structures. */
2403        ushort bios_signature;  /* BIOS Signature. */
2404        ushort bios_version;    /* BIOS Version. */
2405        ushort bios_codeseg;    /* BIOS Code Segment. */
2406        ushort bios_codelen;    /* BIOS Code Segment Length. */
2407};
2408
2409#define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
2410                                                        dvc_var.asc_dvc_var)
2411#define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
2412                                                        dvc_var.adv_dvc_var)
2413#define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
2414
2415#ifdef ADVANSYS_DEBUG
2416static int asc_dbglvl = 3;
2417
2418/*
2419 * asc_prt_asc_dvc_var()
2420 */
2421static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h)
2422{
2423        printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h);
2424
2425        printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
2426               "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl);
2427
2428        printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type,
2429                (unsigned)h->init_sdtr);
2430
2431        printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
2432               "chip_no 0x%x,\n", (unsigned)h->sdtr_done,
2433               (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready,
2434               (unsigned)h->chip_no);
2435
2436        printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
2437               "%u,\n", (unsigned)h->queue_full_or_busy,
2438               (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2439
2440        printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
2441               "in_critical_cnt %u,\n", (unsigned)h->is_in_int,
2442               (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng,
2443               (unsigned)h->in_critical_cnt);
2444
2445        printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
2446               "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage,
2447               (unsigned)h->init_state, (unsigned)h->no_scam,
2448               (unsigned)h->pci_fix_asyn_xfer);
2449
2450        printk(" cfg 0x%lx\n", (ulong)h->cfg);
2451}
2452
2453/*
2454 * asc_prt_asc_dvc_cfg()
2455 */
2456static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h)
2457{
2458        printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h);
2459
2460        printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
2461               h->can_tagged_qng, h->cmd_qng_enabled);
2462        printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
2463               h->disc_enable, h->sdtr_enable);
2464
2465        printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, "
2466                "chip_version %d,\n", h->chip_scsi_id, h->isa_dma_speed,
2467                h->isa_dma_channel, h->chip_version);
2468
2469        printk(" mcode_date 0x%x, mcode_version %d\n",
2470                h->mcode_date, h->mcode_version);
2471}
2472
2473/*
2474 * asc_prt_adv_dvc_var()
2475 *
2476 * Display an ADV_DVC_VAR structure.
2477 */
2478static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h)
2479{
2480        printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h);
2481
2482        printk("  iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
2483               (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able);
2484
2485        printk("  sdtr_able 0x%x, wdtr_able 0x%x\n",
2486               (unsigned)h->sdtr_able, (unsigned)h->wdtr_able);
2487
2488        printk("  start_motor 0x%x, scsi_reset_wait 0x%x\n",
2489               (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2490
2491        printk("  max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%lxn\n",
2492               (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng,
2493               (ulong)h->carr_freelist);
2494
2495        printk("  icq_sp 0x%lx, irq_sp 0x%lx\n",
2496               (ulong)h->icq_sp, (ulong)h->irq_sp);
2497
2498        printk("  no_scam 0x%x, tagqng_able 0x%x\n",
2499               (unsigned)h->no_scam, (unsigned)h->tagqng_able);
2500
2501        printk("  chip_scsi_id 0x%x, cfg 0x%lx\n",
2502               (unsigned)h->chip_scsi_id, (ulong)h->cfg);
2503}
2504
2505/*
2506 * asc_prt_adv_dvc_cfg()
2507 *
2508 * Display an ADV_DVC_CFG structure.
2509 */
2510static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h)
2511{
2512        printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h);
2513
2514        printk("  disc_enable 0x%x, termination 0x%x\n",
2515               h->disc_enable, h->termination);
2516
2517        printk("  chip_version 0x%x, mcode_date 0x%x\n",
2518               h->chip_version, h->mcode_date);
2519
2520        printk("  mcode_version 0x%x, control_flag 0x%x\n",
2521               h->mcode_version, h->control_flag);
2522}
2523
2524/*
2525 * asc_prt_scsi_host()
2526 */
2527static void asc_prt_scsi_host(struct Scsi_Host *s)
2528{
2529        struct asc_board *boardp = shost_priv(s);
2530
2531        printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev));
2532        printk(" host_busy %u, host_no %d, last_reset %d,\n",
2533               s->host_busy, s->host_no, (unsigned)s->last_reset);
2534
2535        printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
2536               (ulong)s->base, (ulong)s->io_port, boardp->irq);
2537
2538        printk(" dma_channel %d, this_id %d, can_queue %d,\n",
2539               s->dma_channel, s->this_id, s->can_queue);
2540
2541        printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n",
2542               s->cmd_per_lun, s->sg_tablesize, s->unchecked_isa_dma);
2543
2544        if (ASC_NARROW_BOARD(boardp)) {
2545                asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var);
2546                asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg);
2547        } else {
2548                asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var);
2549                asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg);
2550        }
2551}
2552
2553/*
2554 * asc_prt_hex()
2555 *
2556 * Print hexadecimal output in 4 byte groupings 32 bytes
2557 * or 8 double-words per line.
2558 */
2559static void asc_prt_hex(char *f, uchar *s, int l)
2560{
2561        int i;
2562        int j;
2563        int k;
2564        int m;
2565
2566        printk("%s: (%d bytes)\n", f, l);
2567
2568        for (i = 0; i < l; i += 32) {
2569
2570                /* Display a maximum of 8 double-words per line. */
2571                if ((k = (l - i) / 4) >= 8) {
2572                        k = 8;
2573                        m = 0;
2574                } else {
2575                        m = (l - i) % 4;
2576                }
2577
2578                for (j = 0; j < k; j++) {
2579                        printk(" %2.2X%2.2X%2.2X%2.2X",
2580                               (unsigned)s[i + (j * 4)],
2581                               (unsigned)s[i + (j * 4) + 1],
2582                               (unsigned)s[i + (j * 4) + 2],
2583                               (unsigned)s[i + (j * 4) + 3]);
2584                }
2585
2586                switch (m) {
2587                case 0:
2588                default:
2589                        break;
2590                case 1:
2591                        printk(" %2.2X", (unsigned)s[i + (j * 4)]);
2592                        break;
2593                case 2:
2594                        printk(" %2.2X%2.2X",
2595                               (unsigned)s[i + (j * 4)],
2596                               (unsigned)s[i + (j * 4) + 1]);
2597                        break;
2598                case 3:
2599                        printk(" %2.2X%2.2X%2.2X",
2600                               (unsigned)s[i + (j * 4) + 1],
2601                               (unsigned)s[i + (j * 4) + 2],
2602                               (unsigned)s[i + (j * 4) + 3]);
2603                        break;
2604                }
2605
2606                printk("\n");
2607        }
2608}
2609
2610/*
2611 * asc_prt_asc_scsi_q()
2612 */
2613static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q)
2614{
2615        ASC_SG_HEAD *sgp;
2616        int i;
2617
2618        printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q);
2619
2620        printk
2621            (" target_ix 0x%x, target_lun %u, srb_ptr 0x%lx, tag_code 0x%x,\n",
2622             q->q2.target_ix, q->q1.target_lun, (ulong)q->q2.srb_ptr,
2623             q->q2.tag_code);
2624
2625        printk
2626            (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2627             (ulong)le32_to_cpu(q->q1.data_addr),
2628             (ulong)le32_to_cpu(q->q1.data_cnt),
2629             (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len);
2630
2631        printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
2632               (ulong)q->cdbptr, q->q2.cdb_len,
2633               (ulong)q->sg_head, q->q1.sg_queue_cnt);
2634
2635        if (q->sg_head) {
2636                sgp = q->sg_head;
2637                printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp);
2638                printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt,
2639                       sgp->queue_cnt);
2640                for (i = 0; i < sgp->entry_cnt; i++) {
2641                        printk(" [%u]: addr 0x%lx, bytes %lu\n",
2642                               i, (ulong)le32_to_cpu(sgp->sg_list[i].addr),
2643                               (ulong)le32_to_cpu(sgp->sg_list[i].bytes));
2644                }
2645
2646        }
2647}
2648
2649/*
2650 * asc_prt_asc_qdone_info()
2651 */
2652static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q)
2653{
2654        printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q);
2655        printk(" srb_ptr 0x%lx, target_ix %u, cdb_len %u, tag_code %u,\n",
2656               (ulong)q->d2.srb_ptr, q->d2.target_ix, q->d2.cdb_len,
2657               q->d2.tag_code);
2658        printk
2659            (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
2660             q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg);
2661}
2662
2663/*
2664 * asc_prt_adv_sgblock()
2665 *
2666 * Display an ADV_SG_BLOCK structure.
2667 */
2668static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b)
2669{
2670        int i;
2671
2672        printk(" ASC_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
2673               (ulong)b, sgblockno);
2674        printk("  sg_cnt %u, sg_ptr 0x%lx\n",
2675               b->sg_cnt, (ulong)le32_to_cpu(b->sg_ptr));
2676        BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK);
2677        if (b->sg_ptr != 0)
2678                BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK);
2679        for (i = 0; i < b->sg_cnt; i++) {
2680                printk("  [%u]: sg_addr 0x%lx, sg_count 0x%lx\n",
2681                       i, (ulong)b->sg_list[i].sg_addr,
2682                       (ulong)b->sg_list[i].sg_count);
2683        }
2684}
2685
2686/*
2687 * asc_prt_adv_scsi_req_q()
2688 *
2689 * Display an ADV_SCSI_REQ_Q structure.
2690 */
2691static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q)
2692{
2693        int sg_blk_cnt;
2694        struct asc_sg_block *sg_ptr;
2695
2696        printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q);
2697
2698        printk("  target_id %u, target_lun %u, srb_ptr 0x%lx, a_flag 0x%x\n",
2699               q->target_id, q->target_lun, (ulong)q->srb_ptr, q->a_flag);
2700
2701        printk("  cntl 0x%x, data_addr 0x%lx, vdata_addr 0x%lx\n",
2702               q->cntl, (ulong)le32_to_cpu(q->data_addr), (ulong)q->vdata_addr);
2703
2704        printk("  data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2705               (ulong)le32_to_cpu(q->data_cnt),
2706               (ulong)le32_to_cpu(q->sense_addr), q->sense_len);
2707
2708        printk
2709            ("  cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
2710             q->cdb_len, q->done_status, q->host_status, q->scsi_status);
2711
2712        printk("  sg_working_ix 0x%x, target_cmd %u\n",
2713               q->sg_working_ix, q->target_cmd);
2714
2715        printk("  scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
2716               (ulong)le32_to_cpu(q->scsiq_rptr),
2717               (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr);
2718
2719        /* Display the request's ADV_SG_BLOCK structures. */
2720        if (q->sg_list_ptr != NULL) {
2721                sg_blk_cnt = 0;
2722                while (1) {
2723                        /*
2724                         * 'sg_ptr' is a physical address. Convert it to a virtual
2725                         * address by indexing 'sg_blk_cnt' into the virtual address
2726                         * array 'sg_list_ptr'.
2727                         *
2728                         * XXX - Assumes all SG physical blocks are virtually contiguous.
2729                         */
2730                        sg_ptr =
2731                            &(((ADV_SG_BLOCK *)(q->sg_list_ptr))[sg_blk_cnt]);
2732                        asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr);
2733                        if (sg_ptr->sg_ptr == 0) {
2734                                break;
2735                        }
2736                        sg_blk_cnt++;
2737                }
2738        }
2739}
2740#endif /* ADVANSYS_DEBUG */
2741
2742/*
2743 * The advansys chip/microcode contains a 32-bit identifier for each command
2744 * known as the 'srb'.  I don't know what it stands for.  The driver used
2745 * to encode the scsi_cmnd pointer by calling virt_to_bus and retrieve it
2746 * with bus_to_virt.  Now the driver keeps a per-host map of integers to
2747 * pointers.  It auto-expands when full, unless it can't allocate memory.
2748 * Note that an srb of 0 is treated specially by the chip/firmware, hence
2749 * the return of i+1 in this routine, and the corresponding subtraction in
2750 * the inverse routine.
2751 */
2752#define BAD_SRB 0
2753static u32 advansys_ptr_to_srb(struct asc_dvc_var *asc_dvc, void *ptr)
2754{
2755        int i;
2756        void **new_ptr;
2757
2758        for (i = 0; i < asc_dvc->ptr_map_count; i++) {
2759                if (!asc_dvc->ptr_map[i])
2760                        goto out;
2761        }
2762
2763        if (asc_dvc->ptr_map_count == 0)
2764                asc_dvc->ptr_map_count = 1;
2765        else
2766                asc_dvc->ptr_map_count *= 2;
2767
2768        new_ptr = krealloc(asc_dvc->ptr_map,
2769                        asc_dvc->ptr_map_count * sizeof(void *), GFP_ATOMIC);
2770        if (!new_ptr)
2771                return BAD_SRB;
2772        asc_dvc->ptr_map = new_ptr;
2773 out:
2774        ASC_DBG(3, "Putting ptr %p into array offset %d\n", ptr, i);
2775        asc_dvc->ptr_map[i] = ptr;
2776        return i + 1;
2777}
2778
2779static void * advansys_srb_to_ptr(struct asc_dvc_var *asc_dvc, u32 srb)
2780{
2781        void *ptr;
2782
2783        srb--;
2784        if (srb >= asc_dvc->ptr_map_count) {
2785                printk("advansys: bad SRB %u, max %u\n", srb,
2786                                                        asc_dvc->ptr_map_count);
2787                return NULL;
2788        }
2789        ptr = asc_dvc->ptr_map[srb];
2790        asc_dvc->ptr_map[srb] = NULL;
2791        ASC_DBG(3, "Returning ptr %p from array offset %d\n", ptr, srb);
2792        return ptr;
2793}
2794
2795/*
2796 * advansys_info()
2797 *
2798 * Return suitable for printing on the console with the argument
2799 * adapter's configuration information.
2800 *
2801 * Note: The information line should not exceed ASC_INFO_SIZE bytes,
2802 * otherwise the static 'info' array will be overrun.
2803 */
2804static const char *advansys_info(struct Scsi_Host *shost)
2805{
2806        static char info[ASC_INFO_SIZE];
2807        struct asc_board *boardp = shost_priv(shost);
2808        ASC_DVC_VAR *asc_dvc_varp;
2809        ADV_DVC_VAR *adv_dvc_varp;
2810        char *busname;
2811        char *widename = NULL;
2812
2813        if (ASC_NARROW_BOARD(boardp)) {
2814                asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2815                ASC_DBG(1, "begin\n");
2816                if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
2817                        if ((asc_dvc_varp->bus_type & ASC_IS_ISAPNP) ==
2818                            ASC_IS_ISAPNP) {
2819                                busname = "ISA PnP";
2820                        } else {
2821                                busname = "ISA";
2822                        }
2823                        sprintf(info,
2824                                "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X",
2825                                ASC_VERSION, busname,
2826                                (ulong)shost->io_port,
2827                                (ulong)shost->io_port + ASC_IOADR_GAP - 1,
2828                                boardp->irq, shost->dma_channel);
2829                } else {
2830                        if (asc_dvc_varp->bus_type & ASC_IS_VL) {
2831                                busname = "VL";
2832                        } else if (asc_dvc_varp->bus_type & ASC_IS_EISA) {
2833                                busname = "EISA";
2834                        } else if (asc_dvc_varp->bus_type & ASC_IS_PCI) {
2835                                if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA)
2836                                    == ASC_IS_PCI_ULTRA) {
2837                                        busname = "PCI Ultra";
2838                                } else {
2839                                        busname = "PCI";
2840                                }
2841                        } else {
2842                                busname = "?";
2843                                shost_printk(KERN_ERR, shost, "unknown bus "
2844                                        "type %d\n", asc_dvc_varp->bus_type);
2845                        }
2846                        sprintf(info,
2847                                "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
2848                                ASC_VERSION, busname, (ulong)shost->io_port,
2849                                (ulong)shost->io_port + ASC_IOADR_GAP - 1,
2850                                boardp->irq);
2851                }
2852        } else {
2853                /*
2854                 * Wide Adapter Information
2855                 *
2856                 * Memory-mapped I/O is used instead of I/O space to access
2857                 * the adapter, but display the I/O Port range. The Memory
2858                 * I/O address is displayed through the driver /proc file.
2859                 */
2860                adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2861                if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2862                        widename = "Ultra-Wide";
2863                } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2864                        widename = "Ultra2-Wide";
2865                } else {
2866                        widename = "Ultra3-Wide";
2867                }
2868                sprintf(info,
2869                        "AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
2870                        ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base,
2871                        (ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq);
2872        }
2873        BUG_ON(strlen(info) >= ASC_INFO_SIZE);
2874        ASC_DBG(1, "end\n");
2875        return info;
2876}
2877
2878#ifdef CONFIG_PROC_FS
2879/*
2880 * asc_prt_line()
2881 *
2882 * If 'cp' is NULL print to the console, otherwise print to a buffer.
2883 *
2884 * Return 0 if printing to the console, otherwise return the number of
2885 * bytes written to the buffer.
2886 *
2887 * Note: If any single line is greater than ASC_PRTLINE_SIZE bytes the stack
2888 * will be corrupted. 's[]' is defined to be ASC_PRTLINE_SIZE bytes.
2889 */
2890static int asc_prt_line(char *buf, int buflen, char *fmt, ...)
2891{
2892        va_list args;
2893        int ret;
2894        char s[ASC_PRTLINE_SIZE];
2895
2896        va_start(args, fmt);
2897        ret = vsprintf(s, fmt, args);
2898        BUG_ON(ret >= ASC_PRTLINE_SIZE);
2899        if (buf == NULL) {
2900                (void)printk(s);
2901                ret = 0;
2902        } else {
2903                ret = min(buflen, ret);
2904                memcpy(buf, s, ret);
2905        }
2906        va_end(args);
2907        return ret;
2908}
2909
2910/*
2911 * asc_prt_board_devices()
2912 *
2913 * Print driver information for devices attached to the board.
2914 *
2915 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
2916 * cf. asc_prt_line().
2917 *
2918 * Return the number of characters copied into 'cp'. No more than
2919 * 'cplen' characters will be copied to 'cp'.
2920 */
2921static int asc_prt_board_devices(struct Scsi_Host *shost, char *cp, int cplen)
2922{
2923        struct asc_board *boardp = shost_priv(shost);
2924        int leftlen;
2925        int totlen;
2926        int len;
2927        int chip_scsi_id;
2928        int i;
2929
2930        leftlen = cplen;
2931        totlen = len = 0;
2932
2933        len = asc_prt_line(cp, leftlen,
2934                           "\nDevice Information for AdvanSys SCSI Host %d:\n",
2935                           shost->host_no);
2936        ASC_PRT_NEXT();
2937
2938        if (ASC_NARROW_BOARD(boardp)) {
2939                chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
2940        } else {
2941                chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
2942        }
2943
2944        len = asc_prt_line(cp, leftlen, "Target IDs Detected:");
2945        ASC_PRT_NEXT();
2946        for (i = 0; i <= ADV_MAX_TID; i++) {
2947                if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) {
2948                        len = asc_prt_line(cp, leftlen, " %X,", i);
2949                        ASC_PRT_NEXT();
2950                }
2951        }
2952        len = asc_prt_line(cp, leftlen, " (%X=Host Adapter)\n", chip_scsi_id);
2953        ASC_PRT_NEXT();
2954
2955        return totlen;
2956}
2957
2958/*
2959 * Display Wide Board BIOS Information.
2960 */
2961static int asc_prt_adv_bios(struct Scsi_Host *shost, char *cp, int cplen)
2962{
2963        struct asc_board *boardp = shost_priv(shost);
2964        int leftlen;
2965        int totlen;
2966        int len;
2967        ushort major, minor, letter;
2968
2969        leftlen = cplen;
2970        totlen = len = 0;
2971
2972        len = asc_prt_line(cp, leftlen, "\nROM BIOS Version: ");
2973        ASC_PRT_NEXT();
2974
2975        /*
2976         * If the BIOS saved a valid signature, then fill in
2977         * the BIOS code segment base address.
2978         */
2979        if (boardp->bios_signature != 0x55AA) {
2980                len = asc_prt_line(cp, leftlen, "Disabled or Pre-3.1\n");
2981                ASC_PRT_NEXT();
2982                len = asc_prt_line(cp, leftlen,
2983                                   "BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n");
2984                ASC_PRT_NEXT();
2985                len = asc_prt_line(cp, leftlen,
2986                                   "can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
2987                ASC_PRT_NEXT();
2988        } else {
2989                major = (boardp->bios_version >> 12) & 0xF;
2990                minor = (boardp->bios_version >> 8) & 0xF;
2991                letter = (boardp->bios_version & 0xFF);
2992
2993                len = asc_prt_line(cp, leftlen, "%d.%d%c\n",
2994                                   major, minor,
2995                                   letter >= 26 ? '?' : letter + 'A');
2996                ASC_PRT_NEXT();
2997
2998                /*
2999                 * Current available ROM BIOS release is 3.1I for UW
3000                 * and 3.2I for U2W. This code doesn't differentiate
3001                 * UW and U2W boards.
3002                 */
3003                if (major < 3 || (major <= 3 && minor < 1) ||
3004                    (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) {
3005                        len = asc_prt_line(cp, leftlen,
3006                                           "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n");
3007                        ASC_PRT_NEXT();
3008                        len = asc_prt_line(cp, leftlen,
3009                                           "ftp://ftp.connectcom.net/pub\n");
3010                        ASC_PRT_NEXT();
3011                }
3012        }
3013
3014        return totlen;
3015}
3016
3017/*
3018 * Add serial number to information bar if signature AAh
3019 * is found in at bit 15-9 (7 bits) of word 1.
3020 *
3021 * Serial Number consists fo 12 alpha-numeric digits.
3022 *
3023 *       1 - Product type (A,B,C,D..)  Word0: 15-13 (3 bits)
3024 *       2 - MFG Location (A,B,C,D..)  Word0: 12-10 (3 bits)
3025 *     3-4 - Product ID (0-99)         Word0: 9-0 (10 bits)
3026 *       5 - Product revision (A-J)    Word0:  "         "
3027 *
3028 *           Signature                 Word1: 15-9 (7 bits)
3029 *       6 - Year (0-9)                Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
3030 *     7-8 - Week of the year (1-52)   Word1: 5-0 (6 bits)
3031 *
3032 *    9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
3033 *
3034 * Note 1: Only production cards will have a serial number.
3035 *
3036 * Note 2: Signature is most significant 7 bits (0xFE).
3037 *
3038 * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
3039 */
3040static int asc_get_eeprom_string(ushort *serialnum, uchar *cp)
3041{
3042        ushort w, num;
3043
3044        if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) {
3045                return ASC_FALSE;
3046        } else {
3047                /*
3048                 * First word - 6 digits.
3049                 */
3050                w = serialnum[0];
3051
3052                /* Product type - 1st digit. */
3053                if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') {
3054                        /* Product type is P=Prototype */
3055                        *cp += 0x8;
3056                }
3057                cp++;
3058
3059                /* Manufacturing location - 2nd digit. */
3060                *cp++ = 'A' + ((w & 0x1C00) >> 10);
3061
3062                /* Product ID - 3rd, 4th digits. */
3063                num = w & 0x3FF;
3064                *cp++ = '0' + (num / 100);
3065                num %= 100;
3066                *cp++ = '0' + (num / 10);
3067
3068                /* Product revision - 5th digit. */
3069                *cp++ = 'A' + (num % 10);
3070
3071                /*
3072                 * Second word
3073                 */
3074                w = serialnum[1];
3075
3076                /*
3077                 * Year - 6th digit.
3078                 *
3079                 * If bit 15 of third word is set, then the
3080                 * last digit of the year is greater than 7.
3081                 */
3082                if (serialnum[2] & 0x8000) {
3083                        *cp++ = '8' + ((w & 0x1C0) >> 6);
3084                } else {
3085                        *cp++ = '0' + ((w & 0x1C0) >> 6);
3086                }
3087
3088                /* Week of year - 7th, 8th digits. */
3089                num = w & 0x003F;
3090                *cp++ = '0' + num / 10;
3091                num %= 10;
3092                *cp++ = '0' + num;
3093
3094                /*
3095                 * Third word
3096                 */
3097                w = serialnum[2] & 0x7FFF;
3098
3099                /* Serial number - 9th digit. */
3100                *cp++ = 'A' + (w / 1000);
3101
3102                /* 10th, 11th, 12th digits. */
3103                num = w % 1000;
3104                *cp++ = '0' + num / 100;
3105                num %= 100;
3106                *cp++ = '0' + num / 10;
3107                num %= 10;
3108                *cp++ = '0' + num;
3109
3110                *cp = '\0';     /* Null Terminate the string. */
3111                return ASC_TRUE;
3112        }
3113}
3114
3115/*
3116 * asc_prt_asc_board_eeprom()
3117 *
3118 * Print board EEPROM configuration.
3119 *
3120 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3121 * cf. asc_prt_line().
3122 *
3123 * Return the number of characters copied into 'cp'. No more than
3124 * 'cplen' characters will be copied to 'cp'.
3125 */
3126static int asc_prt_asc_board_eeprom(struct Scsi_Host *shost, char *cp, int cplen)
3127{
3128        struct asc_board *boardp = shost_priv(shost);
3129        ASC_DVC_VAR *asc_dvc_varp;
3130        int leftlen;
3131        int totlen;
3132        int len;
3133        ASCEEP_CONFIG *ep;
3134        int i;
3135#ifdef CONFIG_ISA
3136        int isa_dma_speed[] = { 10, 8, 7, 6, 5, 4, 3, 2 };
3137#endif /* CONFIG_ISA */
3138        uchar serialstr[13];
3139
3140        asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
3141        ep = &boardp->eep_config.asc_eep;
3142
3143        leftlen = cplen;
3144        totlen = len = 0;
3145
3146        len = asc_prt_line(cp, leftlen,
3147                           "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3148                           shost->host_no);
3149        ASC_PRT_NEXT();
3150
3151        if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr)
3152            == ASC_TRUE) {
3153                len =
3154                    asc_prt_line(cp, leftlen, " Serial Number: %s\n",
3155                                 serialstr);
3156                ASC_PRT_NEXT();
3157        } else {
3158                if (ep->adapter_info[5] == 0xBB) {
3159                        len = asc_prt_line(cp, leftlen,
3160                                           " Default Settings Used for EEPROM-less Adapter.\n");
3161                        ASC_PRT_NEXT();
3162                } else {
3163                        len = asc_prt_line(cp, leftlen,
3164                                           " Serial Number Signature Not Present.\n");
3165                        ASC_PRT_NEXT();
3166                }
3167        }
3168
3169        len = asc_prt_line(cp, leftlen,
3170                           " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3171                           ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng,
3172                           ep->max_tag_qng);
3173        ASC_PRT_NEXT();
3174
3175        len = asc_prt_line(cp, leftlen,
3176                           " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam);
3177        ASC_PRT_NEXT();
3178
3179        len = asc_prt_line(cp, leftlen, " Target ID:           ");
3180        ASC_PRT_NEXT();
3181        for (i = 0; i <= ASC_MAX_TID; i++) {
3182                len = asc_prt_line(cp, leftlen, " %d", i);
3183                ASC_PRT_NEXT();
3184        }
3185        len = asc_prt_line(cp, leftlen, "\n");
3186        ASC_PRT_NEXT();
3187
3188        len = asc_prt_line(cp, leftlen, " Disconnects:         ");
3189        ASC_PRT_NEXT();
3190        for (i = 0; i <= ASC_MAX_TID; i++) {
3191                len = asc_prt_line(cp, leftlen, " %c",
3192                                   (ep->
3193                                    disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3194                                   'N');
3195                ASC_PRT_NEXT();
3196        }
3197        len = asc_prt_line(cp, leftlen, "\n");
3198        ASC_PRT_NEXT();
3199
3200        len = asc_prt_line(cp, leftlen, " Command Queuing:     ");
3201        ASC_PRT_NEXT();
3202        for (i = 0; i <= ASC_MAX_TID; i++) {
3203                len = asc_prt_line(cp, leftlen, " %c",
3204                                   (ep->
3205                                    use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3206                                   'N');
3207                ASC_PRT_NEXT();
3208        }
3209        len = asc_prt_line(cp, leftlen, "\n");
3210        ASC_PRT_NEXT();
3211
3212        len = asc_prt_line(cp, leftlen, " Start Motor:         ");
3213        ASC_PRT_NEXT();
3214        for (i = 0; i <= ASC_MAX_TID; i++) {
3215                len = asc_prt_line(cp, leftlen, " %c",
3216                                   (ep->
3217                                    start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3218                                   'N');
3219                ASC_PRT_NEXT();
3220        }
3221        len = asc_prt_line(cp, leftlen, "\n");
3222        ASC_PRT_NEXT();
3223
3224        len = asc_prt_line(cp, leftlen, " Synchronous Transfer:");
3225        ASC_PRT_NEXT();
3226        for (i = 0; i <= ASC_MAX_TID; i++) {
3227                len = asc_prt_line(cp, leftlen, " %c",
3228                                   (ep->
3229                                    init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3230                                   'N');
3231                ASC_PRT_NEXT();
3232        }
3233        len = asc_prt_line(cp, leftlen, "\n");
3234        ASC_PRT_NEXT();
3235
3236#ifdef CONFIG_ISA
3237        if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
3238                len = asc_prt_line(cp, leftlen,
3239                                   " Host ISA DMA speed:   %d MB/S\n",
3240                                   isa_dma_speed[ASC_EEP_GET_DMA_SPD(ep)]);
3241                ASC_PRT_NEXT();
3242        }
3243#endif /* CONFIG_ISA */
3244
3245        return totlen;
3246}
3247
3248/*
3249 * asc_prt_adv_board_eeprom()
3250 *
3251 * Print board EEPROM configuration.
3252 *
3253 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3254 * cf. asc_prt_line().
3255 *
3256 * Return the number of characters copied into 'cp'. No more than
3257 * 'cplen' characters will be copied to 'cp'.
3258 */
3259static int asc_prt_adv_board_eeprom(struct Scsi_Host *shost, char *cp, int cplen)
3260{
3261        struct asc_board *boardp = shost_priv(shost);
3262        ADV_DVC_VAR *adv_dvc_varp;
3263        int leftlen;
3264        int totlen;
3265        int len;
3266        int i;
3267        char *termstr;
3268        uchar serialstr[13];
3269        ADVEEP_3550_CONFIG *ep_3550 = NULL;
3270        ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL;
3271        ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL;
3272        ushort word;
3273        ushort *wordp;
3274        ushort sdtr_speed = 0;
3275
3276        adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
3277        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3278                ep_3550 = &boardp->eep_config.adv_3550_eep;
3279        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3280                ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
3281        } else {
3282                ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
3283        }
3284
3285        leftlen = cplen;
3286        totlen = len = 0;
3287
3288        len = asc_prt_line(cp, leftlen,
3289                           "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3290                           shost->host_no);
3291        ASC_PRT_NEXT();
3292
3293        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3294                wordp = &ep_3550->serial_number_word1;
3295        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3296                wordp = &ep_38C0800->serial_number_word1;
3297        } else {
3298                wordp = &ep_38C1600->serial_number_word1;
3299        }
3300
3301        if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE) {
3302                len =
3303                    asc_prt_line(cp, leftlen, " Serial Number: %s\n",
3304                                 serialstr);
3305                ASC_PRT_NEXT();
3306        } else {
3307                len = asc_prt_line(cp, leftlen,
3308                                   " Serial Number Signature Not Present.\n");
3309                ASC_PRT_NEXT();
3310        }
3311
3312        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3313                len = asc_prt_line(cp, leftlen,
3314                                   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3315                                   ep_3550->adapter_scsi_id,
3316                                   ep_3550->max_host_qng, ep_3550->max_dvc_qng);
3317                ASC_PRT_NEXT();
3318        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3319                len = asc_prt_line(cp, leftlen,
3320                                   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3321                                   ep_38C0800->adapter_scsi_id,
3322                                   ep_38C0800->max_host_qng,
3323                                   ep_38C0800->max_dvc_qng);
3324                ASC_PRT_NEXT();
3325        } else {
3326                len = asc_prt_line(cp, leftlen,
3327                                   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3328                                   ep_38C1600->adapter_scsi_id,
3329                                   ep_38C1600->max_host_qng,
3330                                   ep_38C1600->max_dvc_qng);
3331                ASC_PRT_NEXT();
3332        }
3333        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3334                word = ep_3550->termination;
3335        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3336                word = ep_38C0800->termination_lvd;
3337        } else {
3338                word = ep_38C1600->termination_lvd;
3339        }
3340        switch (word) {
3341        case 1:
3342                termstr = "Low Off/High Off";
3343                break;
3344        case 2:
3345                termstr = "Low Off/High On";
3346                break;
3347        case 3:
3348                termstr = "Low On/High On";
3349                break;
3350        default:
3351        case 0:
3352                termstr = "Automatic";
3353                break;
3354        }
3355
3356        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3357                len = asc_prt_line(cp, leftlen,
3358                                   " termination: %u (%s), bios_ctrl: 0x%x\n",
3359                                   ep_3550->termination, termstr,
3360                                   ep_3550->bios_ctrl);
3361                ASC_PRT_NEXT();
3362        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3363                len = asc_prt_line(cp, leftlen,
3364                                   " termination: %u (%s), bios_ctrl: 0x%x\n",
3365                                   ep_38C0800->termination_lvd, termstr,
3366                                   ep_38C0800->bios_ctrl);
3367                ASC_PRT_NEXT();
3368        } else {
3369                len = asc_prt_line(cp, leftlen,
3370                                   " termination: %u (%s), bios_ctrl: 0x%x\n",
3371                                   ep_38C1600->termination_lvd, termstr,
3372                                   ep_38C1600->bios_ctrl);
3373                ASC_PRT_NEXT();
3374        }
3375
3376        len = asc_prt_line(cp, leftlen, " Target ID:           ");
3377        ASC_PRT_NEXT();
3378        for (i = 0; i <= ADV_MAX_TID; i++) {
3379                len = asc_prt_line(cp, leftlen, " %X", i);
3380                ASC_PRT_NEXT();
3381        }
3382        len = asc_prt_line(cp, leftlen, "\n");
3383        ASC_PRT_NEXT();
3384
3385        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3386                word = ep_3550->disc_enable;
3387        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3388                word = ep_38C0800->disc_enable;
3389        } else {
3390                word = ep_38C1600->disc_enable;
3391        }
3392        len = asc_prt_line(cp, leftlen, " Disconnects:         ");
3393        ASC_PRT_NEXT();
3394        for (i = 0; i <= ADV_MAX_TID; i++) {
3395                len = asc_prt_line(cp, leftlen, " %c",
3396                                   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3397                ASC_PRT_NEXT();
3398        }
3399        len = asc_prt_line(cp, leftlen, "\n");
3400        ASC_PRT_NEXT();
3401
3402        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3403                word = ep_3550->tagqng_able;
3404        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3405                word = ep_38C0800->tagqng_able;
3406        } else {
3407                word = ep_38C1600->tagqng_able;
3408        }
3409        len = asc_prt_line(cp, leftlen, " Command Queuing:     ");
3410        ASC_PRT_NEXT();
3411        for (i = 0; i <= ADV_MAX_TID; i++) {
3412                len = asc_prt_line(cp, leftlen, " %c",
3413                                   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3414                ASC_PRT_NEXT();
3415        }
3416        len = asc_prt_line(cp, leftlen, "\n");
3417        ASC_PRT_NEXT();
3418
3419        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3420                word = ep_3550->start_motor;
3421        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3422                word = ep_38C0800->start_motor;
3423        } else {
3424                word = ep_38C1600->start_motor;
3425        }
3426        len = asc_prt_line(cp, leftlen, " Start Motor:         ");
3427        ASC_PRT_NEXT();
3428        for (i = 0; i <= ADV_MAX_TID; i++) {
3429                len = asc_prt_line(cp, leftlen, " %c",
3430                                   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3431                ASC_PRT_NEXT();
3432        }
3433        len = asc_prt_line(cp, leftlen, "\n");
3434        ASC_PRT_NEXT();
3435
3436        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3437                len = asc_prt_line(cp, leftlen, " Synchronous Transfer:");
3438                ASC_PRT_NEXT();
3439                for (i = 0; i <= ADV_MAX_TID; i++) {
3440                        len = asc_prt_line(cp, leftlen, " %c",
3441                                           (ep_3550->
3442                                            sdtr_able & ADV_TID_TO_TIDMASK(i)) ?
3443                                           'Y' : 'N');
3444                        ASC_PRT_NEXT();
3445                }
3446                len = asc_prt_line(cp, leftlen, "\n");
3447                ASC_PRT_NEXT();
3448        }
3449
3450        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3451                len = asc_prt_line(cp, leftlen, " Ultra Transfer:      ");
3452                ASC_PRT_NEXT();
3453                for (i = 0; i <= ADV_MAX_TID; i++) {
3454                        len = asc_prt_line(cp, leftlen, " %c",
3455                                           (ep_3550->
3456                                            ultra_able & ADV_TID_TO_TIDMASK(i))
3457                                           ? 'Y' : 'N');
3458                        ASC_PRT_NEXT();
3459                }
3460                len = asc_prt_line(cp, leftlen, "\n");
3461                ASC_PRT_NEXT();
3462        }
3463
3464        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3465                word = ep_3550->wdtr_able;
3466        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3467                word = ep_38C0800->wdtr_able;
3468        } else {
3469                word = ep_38C1600->wdtr_able;
3470        }
3471        len = asc_prt_line(cp, leftlen, " Wide Transfer:       ");
3472        ASC_PRT_NEXT();
3473        for (i = 0; i <= ADV_MAX_TID; i++) {
3474                len = asc_prt_line(cp, leftlen, " %c",
3475                                   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3476                ASC_PRT_NEXT();
3477        }
3478        len = asc_prt_line(cp, leftlen, "\n");
3479        ASC_PRT_NEXT();
3480
3481        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 ||
3482            adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) {
3483                len = asc_prt_line(cp, leftlen,
3484                                   " Synchronous Transfer Speed (Mhz):\n  ");
3485                ASC_PRT_NEXT();
3486                for (i = 0; i <= ADV_MAX_TID; i++) {
3487                        char *speed_str;
3488
3489                        if (i == 0) {
3490                                sdtr_speed = adv_dvc_varp->sdtr_speed1;
3491                        } else if (i == 4) {
3492                                sdtr_speed = adv_dvc_varp->sdtr_speed2;
3493                        } else if (i == 8) {
3494                                sdtr_speed = adv_dvc_varp->sdtr_speed3;
3495                        } else if (i == 12) {
3496                                sdtr_speed = adv_dvc_varp->sdtr_speed4;
3497                        }
3498                        switch (sdtr_speed & ADV_MAX_TID) {
3499                        case 0:
3500                                speed_str = "Off";
3501                                break;
3502                        case 1:
3503                                speed_str = "  5";
3504                                break;
3505                        case 2:
3506                                speed_str = " 10";
3507                                break;
3508                        case 3:
3509                                speed_str = " 20";
3510                                break;
3511                        case 4:
3512                                speed_str = " 40";
3513                                break;
3514                        case 5:
3515                                speed_str = " 80";
3516                                break;
3517                        default:
3518                                speed_str = "Unk";
3519                                break;
3520                        }
3521                        len = asc_prt_line(cp, leftlen, "%X:%s ", i, speed_str);
3522                        ASC_PRT_NEXT();
3523                        if (i == 7) {
3524                                len = asc_prt_line(cp, leftlen, "\n  ");
3525                                ASC_PRT_NEXT();
3526                        }
3527                        sdtr_speed >>= 4;
3528                }
3529                len = asc_prt_line(cp, leftlen, "\n");
3530                ASC_PRT_NEXT();
3531        }
3532
3533        return totlen;
3534}
3535
3536/*
3537 * asc_prt_driver_conf()
3538 *
3539 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3540 * cf. asc_prt_line().
3541 *
3542 * Return the number of characters copied into 'cp'. No more than
3543 * 'cplen' characters will be copied to 'cp'.
3544 */
3545static int asc_prt_driver_conf(struct Scsi_Host *shost, char *cp, int cplen)
3546{
3547        struct asc_board *boardp = shost_priv(shost);
3548        int leftlen;
3549        int totlen;
3550        int len;
3551        int chip_scsi_id;
3552
3553        leftlen = cplen;
3554        totlen = len = 0;
3555
3556        len = asc_prt_line(cp, leftlen,
3557                           "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
3558                           shost->host_no);
3559        ASC_PRT_NEXT();
3560
3561        len = asc_prt_line(cp, leftlen,
3562                           " host_busy %u, last_reset %u, max_id %u, max_lun %u, max_channel %u\n",
3563                           shost->host_busy, shost->last_reset, shost->max_id,
3564                           shost->max_lun, shost->max_channel);
3565        ASC_PRT_NEXT();
3566
3567        len = asc_prt_line(cp, leftlen,
3568                           " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
3569                           shost->unique_id, shost->can_queue, shost->this_id,
3570                           shost->sg_tablesize, shost->cmd_per_lun);
3571        ASC_PRT_NEXT();
3572
3573        len = asc_prt_line(cp, leftlen,
3574                           " unchecked_isa_dma %d, use_clustering %d\n",
3575                           shost->unchecked_isa_dma, shost->use_clustering);
3576        ASC_PRT_NEXT();
3577
3578        len = asc_prt_line(cp, leftlen,
3579                           " flags 0x%x, last_reset 0x%x, jiffies 0x%x, asc_n_io_port 0x%x\n",
3580                           boardp->flags, boardp->last_reset, jiffies,
3581                           boardp->asc_n_io_port);
3582        ASC_PRT_NEXT();
3583
3584        len = asc_prt_line(cp, leftlen, " io_port 0x%x\n", shost->io_port);
3585        ASC_PRT_NEXT();
3586
3587        if (ASC_NARROW_BOARD(boardp)) {
3588                chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
3589        } else {
3590                chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
3591        }
3592
3593        return totlen;
3594}
3595
3596/*
3597 * asc_prt_asc_board_info()
3598 *
3599 * Print dynamic board configuration information.
3600 *
3601 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3602 * cf. asc_prt_line().
3603 *
3604 * Return the number of characters copied into 'cp'. No more than
3605 * 'cplen' characters will be copied to 'cp'.
3606 */
3607static int asc_prt_asc_board_info(struct Scsi_Host *shost, char *cp, int cplen)
3608{
3609        struct asc_board *boardp = shost_priv(shost);
3610        int chip_scsi_id;
3611        int leftlen;
3612        int totlen;
3613        int len;
3614        ASC_DVC_VAR *v;
3615        ASC_DVC_CFG *c;
3616        int i;
3617        int renegotiate = 0;
3618
3619        v = &boardp->dvc_var.asc_dvc_var;
3620        c = &boardp->dvc_cfg.asc_dvc_cfg;
3621        chip_scsi_id = c->chip_scsi_id;
3622
3623        leftlen = cplen;
3624        totlen = len = 0;
3625
3626        len = asc_prt_line(cp, leftlen,
3627                           "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3628                           shost->host_no);
3629        ASC_PRT_NEXT();
3630
3631        len = asc_prt_line(cp, leftlen, " chip_version %u, mcode_date 0x%x, "
3632                           "mcode_version 0x%x, err_code %u\n",
3633                           c->chip_version, c->mcode_date, c->mcode_version,
3634                           v->err_code);
3635        ASC_PRT_NEXT();
3636
3637        /* Current number of commands waiting for the host. */
3638        len = asc_prt_line(cp, leftlen,
3639                           " Total Command Pending: %d\n", v->cur_total_qng);
3640        ASC_PRT_NEXT();
3641
3642        len = asc_prt_line(cp, leftlen, " Command Queuing:");
3643        ASC_PRT_NEXT();
3644        for (i = 0; i <= ASC_MAX_TID; i++) {
3645                if ((chip_scsi_id == i) ||
3646                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3647                        continue;
3648                }
3649                len = asc_prt_line(cp, leftlen, " %X:%c",
3650                                   i,
3651                                   (v->
3652                                    use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ?
3653                                   'Y' : 'N');
3654                ASC_PRT_NEXT();
3655        }
3656        len = asc_prt_line(cp, leftlen, "\n");
3657        ASC_PRT_NEXT();
3658
3659        /* Current number of commands waiting for a device. */
3660        len = asc_prt_line(cp, leftlen, " Command Queue Pending:");
3661        ASC_PRT_NEXT();
3662        for (i = 0; i <= ASC_MAX_TID; i++) {
3663                if ((chip_scsi_id == i) ||
3664                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3665                        continue;
3666                }
3667                len = asc_prt_line(cp, leftlen, " %X:%u", i, v->cur_dvc_qng[i]);
3668                ASC_PRT_NEXT();
3669        }
3670        len = asc_prt_line(cp, leftlen, "\n");
3671        ASC_PRT_NEXT();
3672
3673        /* Current limit on number of commands that can be sent to a device. */
3674        len = asc_prt_line(cp, leftlen, " Command Queue Limit:");
3675        ASC_PRT_NEXT();
3676        for (i = 0; i <= ASC_MAX_TID; i++) {
3677                if ((chip_scsi_id == i) ||
3678                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3679                        continue;
3680                }
3681                len = asc_prt_line(cp, leftlen, " %X:%u", i, v->max_dvc_qng[i]);
3682                ASC_PRT_NEXT();
3683        }
3684        len = asc_prt_line(cp, leftlen, "\n");
3685        ASC_PRT_NEXT();
3686
3687        /* Indicate whether the device has returned queue full status. */
3688        len = asc_prt_line(cp, leftlen, " Command Queue Full:");
3689        ASC_PRT_NEXT();
3690        for (i = 0; i <= ASC_MAX_TID; i++) {
3691                if ((chip_scsi_id == i) ||
3692                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3693                        continue;
3694                }
3695                if (boardp->queue_full & ADV_TID_TO_TIDMASK(i)) {
3696                        len = asc_prt_line(cp, leftlen, " %X:Y-%d",
3697                                           i, boardp->queue_full_cnt[i]);
3698                } else {
3699                        len = asc_prt_line(cp, leftlen, " %X:N", i);
3700                }
3701                ASC_PRT_NEXT();
3702        }
3703        len = asc_prt_line(cp, leftlen, "\n");
3704        ASC_PRT_NEXT();
3705
3706        len = asc_prt_line(cp, leftlen, " Synchronous Transfer:");
3707        ASC_PRT_NEXT();
3708        for (i = 0; i <= ASC_MAX_TID; i++) {
3709                if ((chip_scsi_id == i) ||
3710                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3711                        continue;
3712                }
3713                len = asc_prt_line(cp, leftlen, " %X:%c",
3714                                   i,
3715                                   (v->
3716                                    sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3717                                   'N');
3718                ASC_PRT_NEXT();
3719        }
3720        len = asc_prt_line(cp, leftlen, "\n");
3721        ASC_PRT_NEXT();
3722
3723        for (i = 0; i <= ASC_MAX_TID; i++) {
3724                uchar syn_period_ix;
3725
3726                if ((chip_scsi_id == i) ||
3727                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3728                    ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) {
3729                        continue;
3730                }
3731
3732                len = asc_prt_line(cp, leftlen, "  %X:", i);
3733                ASC_PRT_NEXT();
3734
3735                if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) {
3736                        len = asc_prt_line(cp, leftlen, " Asynchronous");
3737                        ASC_PRT_NEXT();
3738                } else {
3739                        syn_period_ix =
3740                            (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index -
3741                                                           1);
3742
3743                        len = asc_prt_line(cp, leftlen,
3744                                           " Transfer Period Factor: %d (%d.%d Mhz),",
3745                                           v->sdtr_period_tbl[syn_period_ix],
3746                                           250 /
3747                                           v->sdtr_period_tbl[syn_period_ix],
3748                                           ASC_TENTHS(250,
3749                                                      v->
3750                                                      sdtr_period_tbl
3751                                                      [syn_period_ix]));
3752                        ASC_PRT_NEXT();
3753
3754                        len = asc_prt_line(cp, leftlen, " REQ/ACK Offset: %d",
3755                                           boardp->
3756                                           sdtr_data[i] & ASC_SYN_MAX_OFFSET);
3757                        ASC_PRT_NEXT();
3758                }
3759
3760                if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3761                        len = asc_prt_line(cp, leftlen, "*\n");
3762                        renegotiate = 1;
3763                } else {
3764                        len = asc_prt_line(cp, leftlen, "\n");
3765                }
3766                ASC_PRT_NEXT();
3767        }
3768
3769        if (renegotiate) {
3770                len = asc_prt_line(cp, leftlen,
3771                                   " * = Re-negotiation pending before next command.\n");
3772                ASC_PRT_NEXT();
3773        }
3774
3775        return totlen;
3776}
3777
3778/*
3779 * asc_prt_adv_board_info()
3780 *
3781 * Print dynamic board configuration information.
3782 *
3783 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3784 * cf. asc_prt_line().
3785 *
3786 * Return the number of characters copied into 'cp'. No more than
3787 * 'cplen' characters will be copied to 'cp'.
3788 */
3789static int asc_prt_adv_board_info(struct Scsi_Host *shost, char *cp, int cplen)
3790{
3791        struct asc_board *boardp = shost_priv(shost);
3792        int leftlen;
3793        int totlen;
3794        int len;
3795        int i;
3796        ADV_DVC_VAR *v;
3797        ADV_DVC_CFG *c;
3798        AdvPortAddr iop_base;
3799        ushort chip_scsi_id;
3800        ushort lramword;
3801        uchar lrambyte;
3802        ushort tagqng_able;
3803        ushort sdtr_able, wdtr_able;
3804        ushort wdtr_done, sdtr_done;
3805        ushort period = 0;
3806        int renegotiate = 0;
3807
3808        v = &boardp->dvc_var.adv_dvc_var;
3809        c = &boardp->dvc_cfg.adv_dvc_cfg;
3810        iop_base = v->iop_base;
3811        chip_scsi_id = v->chip_scsi_id;
3812
3813        leftlen = cplen;
3814        totlen = len = 0;
3815
3816        len = asc_prt_line(cp, leftlen,
3817                           "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3818                           shost->host_no);
3819        ASC_PRT_NEXT();
3820
3821        len = asc_prt_line(cp, leftlen,
3822                           " iop_base 0x%lx, cable_detect: %X, err_code %u\n",
3823                           v->iop_base,
3824                           AdvReadWordRegister(iop_base,
3825                                               IOPW_SCSI_CFG1) & CABLE_DETECT,
3826                           v->err_code);
3827        ASC_PRT_NEXT();
3828
3829        len = asc_prt_line(cp, leftlen, " chip_version %u, mcode_date 0x%x, "
3830                           "mcode_version 0x%x\n", c->chip_version,
3831                           c->mcode_date, c->mcode_version);
3832        ASC_PRT_NEXT();
3833
3834        AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
3835        len = asc_prt_line(cp, leftlen, " Queuing Enabled:");
3836        ASC_PRT_NEXT();
3837        for (i = 0; i <= ADV_MAX_TID; i++) {
3838                if ((chip_scsi_id == i) ||
3839                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3840                        continue;
3841                }
3842
3843                len = asc_prt_line(cp, leftlen, " %X:%c",
3844                                   i,
3845                                   (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3846                                   'N');
3847                ASC_PRT_NEXT();
3848        }
3849        len = asc_prt_line(cp, leftlen, "\n");
3850        ASC_PRT_NEXT();
3851
3852        len = asc_prt_line(cp, leftlen, " Queue Limit:");
3853        ASC_PRT_NEXT();
3854        for (i = 0; i <= ADV_MAX_TID; i++) {
3855                if ((chip_scsi_id == i) ||
3856                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3857                        continue;
3858                }
3859
3860                AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i,
3861                                lrambyte);
3862
3863                len = asc_prt_line(cp, leftlen, " %X:%d", i, lrambyte);
3864                ASC_PRT_NEXT();
3865        }
3866        len = asc_prt_line(cp, leftlen, "\n");
3867        ASC_PRT_NEXT();
3868
3869        len = asc_prt_line(cp, leftlen, " Command Pending:");
3870        ASC_PRT_NEXT();
3871        for (i = 0; i <= ADV_MAX_TID; i++) {
3872                if ((chip_scsi_id == i) ||
3873                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3874                        continue;
3875                }
3876
3877                AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i,
3878                                lrambyte);
3879
3880                len = asc_prt_line(cp, leftlen, " %X:%d", i, lrambyte);
3881                ASC_PRT_NEXT();
3882        }
3883        len = asc_prt_line(cp, leftlen, "\n");
3884        ASC_PRT_NEXT();
3885
3886        AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
3887        len = asc_prt_line(cp, leftlen, " Wide Enabled:");
3888        ASC_PRT_NEXT();
3889        for (i = 0; i <= ADV_MAX_TID; i++) {
3890                if ((chip_scsi_id == i) ||
3891                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3892                        continue;
3893                }
3894
3895                len = asc_prt_line(cp, leftlen, " %X:%c",
3896                                   i,
3897                                   (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3898                                   'N');
3899                ASC_PRT_NEXT();
3900        }
3901        len = asc_prt_line(cp, leftlen, "\n");
3902        ASC_PRT_NEXT();
3903
3904        AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done);
3905        len = asc_prt_line(cp, leftlen, " Transfer Bit Width:");
3906        ASC_PRT_NEXT();
3907        for (i = 0; i <= ADV_MAX_TID; i++) {
3908                if ((chip_scsi_id == i) ||
3909                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3910                        continue;
3911                }
3912
3913                AdvReadWordLram(iop_base,
3914                                ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3915                                lramword);
3916
3917                len = asc_prt_line(cp, leftlen, " %X:%d",
3918                                   i, (lramword & 0x8000) ? 16 : 8);
3919                ASC_PRT_NEXT();
3920
3921                if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) &&
3922                    (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3923                        len = asc_prt_line(cp, leftlen, "*");
3924                        ASC_PRT_NEXT();
3925                        renegotiate = 1;
3926                }
3927        }
3928        len = asc_prt_line(cp, leftlen, "\n");
3929        ASC_PRT_NEXT();
3930
3931        AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
3932        len = asc_prt_line(cp, leftlen, " Synchronous Enabled:");
3933        ASC_PRT_NEXT();
3934        for (i = 0; i <= ADV_MAX_TID; i++) {
3935                if ((chip_scsi_id == i) ||
3936                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3937                        continue;
3938                }
3939
3940                len = asc_prt_line(cp, leftlen, " %X:%c",
3941                                   i,
3942                                   (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3943                                   'N');
3944                ASC_PRT_NEXT();
3945        }
3946        len = asc_prt_line(cp, leftlen, "\n");
3947        ASC_PRT_NEXT();
3948
3949        AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done);
3950        for (i = 0; i <= ADV_MAX_TID; i++) {
3951
3952                AdvReadWordLram(iop_base,
3953                                ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3954                                lramword);
3955                lramword &= ~0x8000;
3956
3957                if ((chip_scsi_id == i) ||
3958                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3959                    ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) {
3960                        continue;
3961                }
3962
3963                len = asc_prt_line(cp, leftlen, "  %X:", i);
3964                ASC_PRT_NEXT();
3965
3966                if ((lramword & 0x1F) == 0) {   /* Check for REQ/ACK Offset 0. */
3967                        len = asc_prt_line(cp, leftlen, " Asynchronous");
3968                        ASC_PRT_NEXT();
3969                } else {
3970                        len =
3971                            asc_prt_line(cp, leftlen,
3972                                         " Transfer Period Factor: ");
3973                        ASC_PRT_NEXT();
3974
3975                        if ((lramword & 0x1F00) == 0x1100) {    /* 80 Mhz */
3976                                len =
3977                                    asc_prt_line(cp, leftlen, "9 (80.0 Mhz),");
3978                                ASC_PRT_NEXT();
3979                        } else if ((lramword & 0x1F00) == 0x1000) {     /* 40 Mhz */
3980                                len =
3981                                    asc_prt_line(cp, leftlen, "10 (40.0 Mhz),");
3982                                ASC_PRT_NEXT();
3983                        } else {        /* 20 Mhz or below. */
3984
3985                                period = (((lramword >> 8) * 25) + 50) / 4;
3986
3987                                if (period == 0) {      /* Should never happen. */
3988                                        len =
3989                                            asc_prt_line(cp, leftlen,
3990                                                         "%d (? Mhz), ");
3991                                        ASC_PRT_NEXT();
3992                                } else {
3993                                        len = asc_prt_line(cp, leftlen,
3994                                                           "%d (%d.%d Mhz),",
3995                                                           period, 250 / period,
3996                                                           ASC_TENTHS(250,
3997                                                                      period));
3998                                        ASC_PRT_NEXT();
3999                                }
4000                        }
4001
4002                        len = asc_prt_line(cp, leftlen, " REQ/ACK Offset: %d",
4003                                           lramword & 0x1F);
4004                        ASC_PRT_NEXT();
4005                }
4006
4007                if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
4008                        len = asc_prt_line(cp, leftlen, "*\n");
4009                        renegotiate = 1;
4010                } else {
4011                        len = asc_prt_line(cp, leftlen, "\n");
4012                }
4013                ASC_PRT_NEXT();
4014        }
4015
4016        if (renegotiate) {
4017                len = asc_prt_line(cp, leftlen,
4018                                   " * = Re-negotiation pending before next command.\n");
4019                ASC_PRT_NEXT();
4020        }
4021
4022        return totlen;
4023}
4024
4025/*
4026 * asc_proc_copy()
4027 *
4028 * Copy proc information to a read buffer taking into account the current
4029 * read offset in the file and the remaining space in the read buffer.
4030 */
4031static int
4032asc_proc_copy(off_t advoffset, off_t offset, char *curbuf, int leftlen,
4033              char *cp, int cplen)
4034{
4035        int cnt = 0;
4036
4037        ASC_DBG(2, "offset %d, advoffset %d, cplen %d\n",
4038                 (unsigned)offset, (unsigned)advoffset, cplen);
4039        if (offset <= advoffset) {
4040                /* Read offset below current offset, copy everything. */
4041                cnt = min(cplen, leftlen);
4042                ASC_DBG(2, "curbuf 0x%lx, cp 0x%lx, cnt %d\n",
4043                         (ulong)curbuf, (ulong)cp, cnt);
4044                memcpy(curbuf, cp, cnt);
4045        } else if (offset < advoffset + cplen) {
4046                /* Read offset within current range, partial copy. */
4047                cnt = (advoffset + cplen) - offset;
4048                cp = (cp + cplen) - cnt;
4049                cnt = min(cnt, leftlen);
4050                ASC_DBG(2, "curbuf 0x%lx, cp 0x%lx, cnt %d\n",
4051                         (ulong)curbuf, (ulong)cp, cnt);
4052                memcpy(curbuf, cp, cnt);
4053        }
4054        return cnt;
4055}
4056
4057#ifdef ADVANSYS_STATS
4058/*
4059 * asc_prt_board_stats()
4060 *
4061 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
4062 * cf. asc_prt_line().
4063 *
4064 * Return the number of characters copied into 'cp'. No more than
4065 * 'cplen' characters will be copied to 'cp'.
4066 */
4067static int asc_prt_board_stats(struct Scsi_Host *shost, char *cp, int cplen)
4068{
4069        struct asc_board *boardp = shost_priv(shost);
4070        struct asc_stats *s = &boardp->asc_stats;
4071
4072        int leftlen = cplen;
4073        int len, totlen = 0;
4074
4075        len = asc_prt_line(cp, leftlen,
4076                           "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
4077                           shost->host_no);
4078        ASC_PRT_NEXT();
4079
4080        len = asc_prt_line(cp, leftlen,
4081                           " queuecommand %lu, reset %lu, biosparam %lu, interrupt %lu\n",
4082                           s->queuecommand, s->reset, s->biosparam,
4083                           s->interrupt);
4084        ASC_PRT_NEXT();
4085
4086        len = asc_prt_line(cp, leftlen,
4087                           " callback %lu, done %lu, build_error %lu, build_noreq %lu, build_nosg %lu\n",
4088                           s->callback, s->done, s->build_error,
4089                           s->adv_build_noreq, s->adv_build_nosg);
4090        ASC_PRT_NEXT();
4091
4092        len = asc_prt_line(cp, leftlen,
4093                           " exe_noerror %lu, exe_busy %lu, exe_error %lu, exe_unknown %lu\n",
4094                           s->exe_noerror, s->exe_busy, s->exe_error,
4095                           s->exe_unknown);
4096        ASC_PRT_NEXT();
4097
4098        /*
4099         * Display data transfer statistics.
4100         */
4101        if (s->xfer_cnt > 0) {
4102                len = asc_prt_line(cp, leftlen, " xfer_cnt %lu, xfer_elem %lu, ",
4103                                   s->xfer_cnt, s->xfer_elem);
4104                ASC_PRT_NEXT();
4105
4106                len = asc_prt_line(cp, leftlen, "xfer_bytes %lu.%01lu kb\n",
4107                                   s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2));
4108                ASC_PRT_NEXT();
4109
4110                /* Scatter gather transfer statistics */
4111                len = asc_prt_line(cp, leftlen, " avg_num_elem %lu.%01lu, ",
4112                                   s->xfer_elem / s->xfer_cnt,
4113                                   ASC_TENTHS(s->xfer_elem, s->xfer_cnt));
4114                ASC_PRT_NEXT();
4115
4116                len = asc_prt_line(cp, leftlen, "avg_elem_size %lu.%01lu kb, ",
4117                                   (s->xfer_sect / 2) / s->xfer_elem,
4118                                   ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem));
4119                ASC_PRT_NEXT();
4120
4121                len = asc_prt_line(cp, leftlen, "avg_xfer_size %lu.%01lu kb\n",
4122                                   (s->xfer_sect / 2) / s->xfer_cnt,
4123                                   ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt));
4124                ASC_PRT_NEXT();
4125        }
4126
4127        return totlen;
4128}
4129#endif /* ADVANSYS_STATS */
4130
4131/*
4132 * advansys_proc_info() - /proc/scsi/advansys/{0,1,2,3,...}
4133 *
4134 * *buffer: I/O buffer
4135 * **start: if inout == FALSE pointer into buffer where user read should start
4136 * offset: current offset into a /proc/scsi/advansys/[0...] file
4137 * length: length of buffer
4138 * hostno: Scsi_Host host_no
4139 * inout: TRUE - user is writing; FALSE - user is reading
4140 *
4141 * Return the number of bytes read from or written to a
4142 * /proc/scsi/advansys/[0...] file.
4143 *
4144 * Note: This function uses the per board buffer 'prtbuf' which is
4145 * allocated when the board is initialized in advansys_detect(). The
4146 * buffer is ASC_PRTBUF_SIZE bytes. The function asc_proc_copy() is
4147 * used to write to the buffer. The way asc_proc_copy() is written
4148 * if 'prtbuf' is too small it will not be overwritten. Instead the
4149 * user just won't get all the available statistics.
4150 */
4151static int
4152advansys_proc_info(struct Scsi_Host *shost, char *buffer, char **start,
4153                   off_t offset, int length, int inout)
4154{
4155        struct asc_board *boardp = shost_priv(shost);
4156        char *cp;
4157        int cplen;
4158        int cnt;
4159        int totcnt;
4160        int leftlen;
4161        char *curbuf;
4162        off_t advoffset;
4163
4164        ASC_DBG(1, "begin\n");
4165
4166        /*
4167         * User write not supported.
4168         */
4169        if (inout == TRUE)
4170                return -ENOSYS;
4171
4172        /*
4173         * User read of /proc/scsi/advansys/[0...] file.
4174         */
4175
4176        /* Copy read data starting at the beginning of the buffer. */
4177        *start = buffer;
4178        curbuf = buffer;
4179        advoffset = 0;
4180        totcnt = 0;
4181        leftlen = length;
4182
4183        /*
4184         * Get board configuration information.
4185         *
4186         * advansys_info() returns the board string from its own static buffer.
4187         */
4188        cp = (char *)advansys_info(shost);
4189        strcat(cp, "\n");
4190        cplen = strlen(cp);
4191        /* Copy board information. */
4192        cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4193        totcnt += cnt;
4194        leftlen -= cnt;
4195        if (leftlen == 0) {
4196                ASC_DBG(1, "totcnt %d\n", totcnt);
4197                return totcnt;
4198        }
4199        advoffset += cplen;
4200        curbuf += cnt;
4201
4202        /*
4203         * Display Wide Board BIOS Information.
4204         */
4205        if (!ASC_NARROW_BOARD(boardp)) {
4206                cp = boardp->prtbuf;
4207                cplen = asc_prt_adv_bios(shost, cp, ASC_PRTBUF_SIZE);
4208                BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4209                cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp,
4210                                  cplen);
4211                totcnt += cnt;
4212                leftlen -= cnt;
4213                if (leftlen == 0) {
4214                        ASC_DBG(1, "totcnt %d\n", totcnt);
4215                        return totcnt;
4216                }
4217                advoffset += cplen;
4218                curbuf += cnt;
4219        }
4220
4221        /*
4222         * Display driver information for each device attached to the board.
4223         */
4224        cp = boardp->prtbuf;
4225        cplen = asc_prt_board_devices(shost, cp, ASC_PRTBUF_SIZE);
4226        BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4227        cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4228        totcnt += cnt;
4229        leftlen -= cnt;
4230        if (leftlen == 0) {
4231                ASC_DBG(1, "totcnt %d\n", totcnt);
4232                return totcnt;
4233        }
4234        advoffset += cplen;
4235        curbuf += cnt;
4236
4237        /*
4238         * Display EEPROM configuration for the board.
4239         */
4240        cp = boardp->prtbuf;
4241        if (ASC_NARROW_BOARD(boardp)) {
4242                cplen = asc_prt_asc_board_eeprom(shost, cp, ASC_PRTBUF_SIZE);
4243        } else {
4244                cplen = asc_prt_adv_board_eeprom(shost, cp, ASC_PRTBUF_SIZE);
4245        }
4246        BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4247        cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4248        totcnt += cnt;
4249        leftlen -= cnt;
4250        if (leftlen == 0) {
4251                ASC_DBG(1, "totcnt %d\n", totcnt);
4252                return totcnt;
4253        }
4254        advoffset += cplen;
4255        curbuf += cnt;
4256
4257        /*
4258         * Display driver configuration and information for the board.
4259         */
4260        cp = boardp->prtbuf;
4261        cplen = asc_prt_driver_conf(shost, cp, ASC_PRTBUF_SIZE);
4262        BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4263        cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4264        totcnt += cnt;
4265        leftlen -= cnt;
4266        if (leftlen == 0) {
4267                ASC_DBG(1, "totcnt %d\n", totcnt);
4268                return totcnt;
4269        }
4270        advoffset += cplen;
4271        curbuf += cnt;
4272
4273#ifdef ADVANSYS_STATS
4274        /*
4275         * Display driver statistics for the board.
4276         */
4277        cp = boardp->prtbuf;
4278        cplen = asc_prt_board_stats(shost, cp, ASC_PRTBUF_SIZE);
4279        BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4280        cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4281        totcnt += cnt;
4282        leftlen -= cnt;
4283        if (leftlen == 0) {
4284                ASC_DBG(1, "totcnt %d\n", totcnt);
4285                return totcnt;
4286        }
4287        advoffset += cplen;
4288        curbuf += cnt;
4289#endif /* ADVANSYS_STATS */
4290
4291        /*
4292         * Display Asc Library dynamic configuration information
4293         * for the board.
4294         */
4295        cp = boardp->prtbuf;
4296        if (ASC_NARROW_BOARD(boardp)) {
4297                cplen = asc_prt_asc_board_info(shost, cp, ASC_PRTBUF_SIZE);
4298        } else {
4299                cplen = asc_prt_adv_board_info(shost, cp, ASC_PRTBUF_SIZE);
4300        }
4301        BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4302        cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4303        totcnt += cnt;
4304        leftlen -= cnt;
4305        if (leftlen == 0) {
4306                ASC_DBG(1, "totcnt %d\n", totcnt);
4307                return totcnt;
4308        }
4309        advoffset += cplen;
4310        curbuf += cnt;
4311
4312        ASC_DBG(1, "totcnt %d\n", totcnt);
4313
4314        return totcnt;
4315}
4316#endif /* CONFIG_PROC_FS */
4317
4318static void asc_scsi_done(struct scsi_cmnd *scp)
4319{
4320        scsi_dma_unmap(scp);
4321        ASC_STATS(scp->device->host, done);
4322        scp->scsi_done(scp);
4323}
4324
4325static void AscSetBank(PortAddr iop_base, uchar bank)
4326{
4327        uchar val;
4328
4329        val = AscGetChipControl(iop_base) &
4330            (~
4331             (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET |
4332              CC_CHIP_RESET));
4333        if (bank == 1) {
4334                val |= CC_BANK_ONE;
4335        } else if (bank == 2) {
4336                val |= CC_DIAG | CC_BANK_ONE;
4337        } else {
4338                val &= ~CC_BANK_ONE;
4339        }
4340        AscSetChipControl(iop_base, val);
4341}
4342
4343static void AscSetChipIH(PortAddr iop_base, ushort ins_code)
4344{
4345        AscSetBank(iop_base, 1);
4346        AscWriteChipIH(iop_base, ins_code);
4347        AscSetBank(iop_base, 0);
4348}
4349
4350static int AscStartChip(PortAddr iop_base)
4351{
4352        AscSetChipControl(iop_base, 0);
4353        if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
4354                return (0);
4355        }
4356        return (1);
4357}
4358
4359static int AscStopChip(PortAddr iop_base)
4360{
4361        uchar cc_val;
4362
4363        cc_val =
4364            AscGetChipControl(iop_base) &
4365            (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG));
4366        AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT));
4367        AscSetChipIH(iop_base, INS_HALT);
4368        AscSetChipIH(iop_base, INS_RFLAG_WTM);
4369        if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) {
4370                return (0);
4371        }
4372        return (1);
4373}
4374
4375static int AscIsChipHalted(PortAddr iop_base)
4376{
4377        if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
4378                if ((AscGetChipControl(iop_base) & CC_HALT) != 0) {
4379                        return (1);
4380                }
4381        }
4382        return (0);
4383}
4384
4385static int AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc)
4386{
4387        PortAddr iop_base;
4388        int i = 10;
4389
4390        iop_base = asc_dvc->iop_base;
4391        while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE)
4392               && (i-- > 0)) {
4393                mdelay(100);
4394        }
4395        AscStopChip(iop_base);
4396        AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT);
4397        udelay(60);
4398        AscSetChipIH(iop_base, INS_RFLAG_WTM);
4399        AscSetChipIH(iop_base, INS_HALT);
4400        AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT);
4401        AscSetChipControl(iop_base, CC_HALT);
4402        mdelay(200);
4403        AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
4404        AscSetChipStatus(iop_base, 0);
4405        return (AscIsChipHalted(iop_base));
4406}
4407
4408static int AscFindSignature(PortAddr iop_base)
4409{
4410        ushort sig_word;
4411
4412        ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
4413                 iop_base, AscGetChipSignatureByte(iop_base));
4414        if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) {
4415                ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
4416                         iop_base, AscGetChipSignatureWord(iop_base));
4417                sig_word = AscGetChipSignatureWord(iop_base);
4418                if ((sig_word == (ushort)ASC_1000_ID0W) ||
4419                    (sig_word == (ushort)ASC_1000_ID0W_FIX)) {
4420                        return (1);
4421                }
4422        }
4423        return (0);
4424}
4425
4426static void AscEnableInterrupt(PortAddr iop_base)
4427{
4428        ushort cfg;
4429
4430        cfg = AscGetChipCfgLsw(iop_base);
4431        AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON);
4432}
4433
4434static void AscDisableInterrupt(PortAddr iop_base)
4435{
4436        ushort cfg;
4437
4438        cfg = AscGetChipCfgLsw(iop_base);
4439        AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON));
4440}
4441
4442static uchar AscReadLramByte(PortAddr iop_base, ushort addr)
4443{
4444        unsigned char byte_data;
4445        unsigned short word_data;
4446
4447        if (isodd_word(addr)) {
4448                AscSetChipLramAddr(iop_base, addr - 1);
4449                word_data = AscGetChipLramData(iop_base);
4450                byte_data = (word_data >> 8) & 0xFF;
4451        } else {
4452                AscSetChipLramAddr(iop_base, addr);
4453                word_data = AscGetChipLramData(iop_base);
4454                byte_data = word_data & 0xFF;
4455        }
4456        return byte_data;
4457}
4458
4459static ushort AscReadLramWord(PortAddr iop_base, ushort addr)
4460{
4461        ushort word_data;
4462
4463        AscSetChipLramAddr(iop_base, addr);
4464        word_data = AscGetChipLramData(iop_base);
4465        return (word_data);
4466}
4467
4468#if CC_VERY_LONG_SG_LIST
4469static ASC_DCNT AscReadLramDWord(PortAddr iop_base, ushort addr)
4470{
4471        ushort val_low, val_high;
4472        ASC_DCNT dword_data;
4473
4474        AscSetChipLramAddr(iop_base, addr);
4475        val_low = AscGetChipLramData(iop_base);
4476        val_high = AscGetChipLramData(iop_base);
4477        dword_data = ((ASC_DCNT) val_high << 16) | (ASC_DCNT) val_low;
4478        return (dword_data);
4479}
4480#endif /* CC_VERY_LONG_SG_LIST */
4481
4482static void
4483AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words)
4484{
4485        int i;
4486
4487        AscSetChipLramAddr(iop_base, s_addr);
4488        for (i = 0; i < words; i++) {
4489                AscSetChipLramData(iop_base, set_wval);
4490        }
4491}
4492
4493static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val)
4494{
4495        AscSetChipLramAddr(iop_base, addr);
4496        AscSetChipLramData(iop_base, word_val);
4497}
4498
4499static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val)
4500{
4501        ushort word_data;
4502
4503        if (isodd_word(addr)) {
4504                addr--;
4505                word_data = AscReadLramWord(iop_base, addr);
4506                word_data &= 0x00FF;
4507                word_data |= (((ushort)byte_val << 8) & 0xFF00);
4508        } else {
4509                word_data = AscReadLramWord(iop_base, addr);
4510                word_data &= 0xFF00;
4511                word_data |= ((ushort)byte_val & 0x00FF);
4512        }
4513        AscWriteLramWord(iop_base, addr, word_data);
4514}
4515
4516/*
4517 * Copy 2 bytes to LRAM.
4518 *
4519 * The source data is assumed to be in little-endian order in memory
4520 * and is maintained in little-endian order when written to LRAM.
4521 */
4522static void
4523AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr,
4524                        const uchar *s_buffer, int words)
4525{
4526        int i;
4527
4528        AscSetChipLramAddr(iop_base, s_addr);
4529        for (i = 0; i < 2 * words; i += 2) {
4530                /*
4531                 * On a little-endian system the second argument below
4532                 * produces a little-endian ushort which is written to
4533                 * LRAM in little-endian order. On a big-endian system
4534                 * the second argument produces a big-endian ushort which
4535                 * is "transparently" byte-swapped by outpw() and written
4536                 * in little-endian order to LRAM.
4537                 */
4538                outpw(iop_base + IOP_RAM_DATA,
4539                      ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);
4540        }
4541}
4542
4543/*
4544 * Copy 4 bytes to LRAM.
4545 *
4546 * The source data is assumed to be in little-endian order in memory
4547 * and is maintained in little-endian order when writen to LRAM.
4548 */
4549static void
4550AscMemDWordCopyPtrToLram(PortAddr iop_base,
4551                         ushort s_addr, uchar *s_buffer, int dwords)
4552{
4553        int i;
4554
4555        AscSetChipLramAddr(iop_base, s_addr);
4556        for (i = 0; i < 4 * dwords; i += 4) {
4557                outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);   /* LSW */
4558                outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]);       /* MSW */
4559        }
4560}
4561
4562/*
4563 * Copy 2 bytes from LRAM.
4564 *
4565 * The source data is assumed to be in little-endian order in LRAM
4566 * and is maintained in little-endian order when written to memory.
4567 */
4568static void
4569AscMemWordCopyPtrFromLram(PortAddr iop_base,
4570                          ushort s_addr, uchar *d_buffer, int words)
4571{
4572        int i;
4573        ushort word;
4574
4575        AscSetChipLramAddr(iop_base, s_addr);
4576        for (i = 0; i < 2 * words; i += 2) {
4577                word = inpw(iop_base + IOP_RAM_DATA);
4578                d_buffer[i] = word & 0xff;
4579                d_buffer[i + 1] = (word >> 8) & 0xff;
4580        }
4581}
4582
4583static ASC_DCNT AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words)
4584{
4585        ASC_DCNT sum;
4586        int i;
4587
4588        sum = 0L;
4589        for (i = 0; i < words; i++, s_addr += 2) {
4590                sum += AscReadLramWord(iop_base, s_addr);
4591        }
4592        return (sum);
4593}
4594
4595static ushort AscInitLram(ASC_DVC_VAR *asc_dvc)
4596{
4597        uchar i;
4598        ushort s_addr;
4599        PortAddr iop_base;
4600        ushort warn_code;
4601
4602        iop_base = asc_dvc->iop_base;
4603        warn_code = 0;
4604        AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0,
4605                          (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) *
4606                                    64) >> 1));
4607        i = ASC_MIN_ACTIVE_QNO;
4608        s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE;
4609        AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4610                         (uchar)(i + 1));
4611        AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4612                         (uchar)(asc_dvc->max_total_qng));
4613        AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4614                         (uchar)i);
4615        i++;
4616        s_addr += ASC_QBLK_SIZE;
4617        for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) {
4618                AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4619                                 (uchar)(i + 1));
4620                AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4621                                 (uchar)(i - 1));
4622                AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4623                                 (uchar)i);
4624        }
4625        AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4626                         (uchar)ASC_QLINK_END);
4627        AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4628                         (uchar)(asc_dvc->max_total_qng - 1));
4629        AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4630                         (uchar)asc_dvc->max_total_qng);
4631        i++;
4632        s_addr += ASC_QBLK_SIZE;
4633        for (; i <= (uchar)(asc_dvc->max_total_qng + 3);
4634             i++, s_addr += ASC_QBLK_SIZE) {
4635                AscWriteLramByte(iop_base,
4636                                 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i);
4637                AscWriteLramByte(iop_base,
4638                                 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i);
4639                AscWriteLramByte(iop_base,
4640                                 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i);
4641        }
4642        return warn_code;
4643}
4644
4645static ASC_DCNT
4646AscLoadMicroCode(PortAddr iop_base, ushort s_addr,
4647                 const uchar *mcode_buf, ushort mcode_size)
4648{
4649        ASC_DCNT chksum;
4650        ushort mcode_word_size;
4651        ushort mcode_chksum;
4652
4653        /* Write the microcode buffer starting at LRAM address 0. */
4654        mcode_word_size = (ushort)(mcode_size >> 1);
4655        AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size);
4656        AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size);
4657
4658        chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size);
4659        ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum);
4660        mcode_chksum = (ushort)AscMemSumLramWord(iop_base,
4661                                                 (ushort)ASC_CODE_SEC_BEG,
4662                                                 (ushort)((mcode_size -
4663                                                           s_addr - (ushort)
4664                                                           ASC_CODE_SEC_BEG) /
4665                                                          2));
4666        ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum);
4667        AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum);
4668        AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size);
4669        return chksum;
4670}
4671
4672static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc)
4673{
4674        PortAddr iop_base;
4675        int i;
4676        ushort lram_addr;
4677
4678        iop_base = asc_dvc->iop_base;
4679        AscPutRiscVarFreeQHead(iop_base, 1);
4680        AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng);
4681        AscPutVarFreeQHead(iop_base, 1);
4682        AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng);
4683        AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B,
4684                         (uchar)((int)asc_dvc->max_total_qng + 1));
4685        AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B,
4686                         (uchar)((int)asc_dvc->max_total_qng + 2));
4687        AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B,
4688                         asc_dvc->max_total_qng);
4689        AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0);
4690        AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
4691        AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0);
4692        AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0);
4693        AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0);
4694        AscPutQDoneInProgress(iop_base, 0);
4695        lram_addr = ASC_QADR_BEG;
4696        for (i = 0; i < 32; i++, lram_addr += 2) {
4697                AscWriteLramWord(iop_base, lram_addr, 0);
4698        }
4699}
4700
4701static ushort AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc)
4702{
4703        int i;
4704        ushort warn_code;
4705        PortAddr iop_base;
4706        ASC_PADDR phy_addr;
4707        ASC_DCNT phy_size;
4708        struct asc_board *board = asc_dvc_to_board(asc_dvc);
4709
4710        iop_base = asc_dvc->iop_base;
4711        warn_code = 0;
4712        for (i = 0; i <= ASC_MAX_TID; i++) {
4713                AscPutMCodeInitSDTRAtID(iop_base, i,
4714                                        asc_dvc->cfg->sdtr_period_offset[i]);
4715        }
4716
4717        AscInitQLinkVar(asc_dvc);
4718        AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B,
4719                         asc_dvc->cfg->disc_enable);
4720        AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B,
4721                         ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id));
4722
4723        /* Ensure overrun buffer is aligned on an 8 byte boundary. */
4724        BUG_ON((unsigned long)asc_dvc->overrun_buf & 7);
4725        asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf,
4726                                        ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4727        phy_addr = cpu_to_le32(asc_dvc->overrun_dma);
4728        AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D,
4729                                 (uchar *)&phy_addr, 1);
4730        phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE);
4731        AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D,
4732                                 (uchar *)&phy_size, 1);
4733
4734        asc_dvc->cfg->mcode_date =
4735            AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W);
4736        asc_dvc->cfg->mcode_version =
4737            AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W);
4738
4739        AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
4740        if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
4741                asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
4742                return warn_code;
4743        }
4744        if (AscStartChip(iop_base) != 1) {
4745                asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
4746                return warn_code;
4747        }
4748
4749        return warn_code;
4750}
4751
4752static ushort AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc)
4753{
4754        const struct firmware *fw;
4755        const char fwname[] = "advansys/mcode.bin";
4756        int err;
4757        unsigned long chksum;
4758        ushort warn_code;
4759        PortAddr iop_base;
4760
4761        iop_base = asc_dvc->iop_base;
4762        warn_code = 0;
4763        if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) &&
4764            !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) {
4765                AscResetChipAndScsiBus(asc_dvc);
4766                mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
4767        }
4768        asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC;
4769        if (asc_dvc->err_code != 0)
4770                return UW_ERR;
4771        if (!AscFindSignature(asc_dvc->iop_base)) {
4772                asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
4773                return warn_code;
4774        }
4775        AscDisableInterrupt(iop_base);
4776        warn_code |= AscInitLram(asc_dvc);
4777        if (asc_dvc->err_code != 0)
4778                return UW_ERR;
4779
4780        err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4781        if (err) {
4782                printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4783                       fwname, err);
4784                return err;
4785        }
4786        if (fw->size < 4) {
4787                printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4788                       fw->size, fwname);
4789                release_firmware(fw);
4790                return -EINVAL;
4791        }
4792        chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4793                 (fw->data[1] << 8) | fw->data[0];
4794        ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum);
4795        if (AscLoadMicroCode(iop_base, 0, &fw->data[4],
4796                             fw->size - 4) != chksum) {
4797                asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4798                release_firmware(fw);
4799                return warn_code;
4800        }
4801        release_firmware(fw);
4802        warn_code |= AscInitMicroCodeVar(asc_dvc);
4803        asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC;
4804        AscEnableInterrupt(iop_base);
4805        return warn_code;
4806}
4807
4808/*
4809 * Load the Microcode
4810 *
4811 * Write the microcode image to RISC memory starting at address 0.
4812 *
4813 * The microcode is stored compressed in the following format:
4814 *
4815 *  254 word (508 byte) table indexed by byte code followed
4816 *  by the following byte codes:
4817 *
4818 *    1-Byte Code:
4819 *      00: Emit word 0 in table.
4820 *      01: Emit word 1 in table.
4821 *      .
4822 *      FD: Emit word 253 in table.
4823 *
4824 *    Multi-Byte Code:
4825 *      FE WW WW: (3 byte code) Word to emit is the next word WW WW.
4826 *      FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
4827 *
4828 * Returns 0 or an error if the checksum doesn't match
4829 */
4830static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf,
4831                            int size, int memsize, int chksum)
4832{
4833        int i, j, end, len = 0;
4834        ADV_DCNT sum;
4835
4836        AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4837
4838        for (i = 253 * 2; i < size; i++) {
4839                if (buf[i] == 0xff) {
4840                        unsigned short word = (buf[i + 3] << 8) | buf[i + 2];
4841                        for (j = 0; j < buf[i + 1]; j++) {
4842                                AdvWriteWordAutoIncLram(iop_base, word);
4843                                len += 2;
4844                        }
4845                        i += 3;
4846                } else if (buf[i] == 0xfe) {
4847                        unsigned short word = (buf[i + 2] << 8) | buf[i + 1];
4848                        AdvWriteWordAutoIncLram(iop_base, word);
4849                        i += 2;
4850                        len += 2;
4851                } else {
4852                        unsigned int off = buf[i] * 2;
4853                        unsigned short word = (buf[off + 1] << 8) | buf[off];
4854                        AdvWriteWordAutoIncLram(iop_base, word);
4855                        len += 2;
4856                }
4857        }
4858
4859        end = len;
4860
4861        while (len < memsize) {
4862                AdvWriteWordAutoIncLram(iop_base, 0);
4863                len += 2;
4864        }
4865
4866        /* Verify the microcode checksum. */
4867        sum = 0;
4868        AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4869
4870        for (len = 0; len < end; len += 2) {
4871                sum += AdvReadWordAutoIncLram(iop_base);
4872        }
4873
4874        if (sum != chksum)
4875                return ASC_IERR_MCODE_CHKSUM;
4876
4877        return 0;
4878}
4879
4880static void AdvBuildCarrierFreelist(struct adv_dvc_var *asc_dvc)
4881{
4882        ADV_CARR_T *carrp;
4883        ADV_SDCNT buf_size;
4884        ADV_PADDR carr_paddr;
4885
4886        carrp = (ADV_CARR_T *) ADV_16BALIGN(asc_dvc->carrier_buf);
4887        asc_dvc->carr_freelist = NULL;
4888        if (carrp == asc_dvc->carrier_buf) {
4889                buf_size = ADV_CARRIER_BUFSIZE;
4890        } else {
4891                buf_size = ADV_CARRIER_BUFSIZE - sizeof(ADV_CARR_T);
4892        }
4893
4894        do {
4895                /* Get physical address of the carrier 'carrp'. */
4896                carr_paddr = cpu_to_le32(virt_to_bus(carrp));
4897
4898                buf_size -= sizeof(ADV_CARR_T);
4899
4900                carrp->carr_pa = carr_paddr;
4901                carrp->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(carrp));
4902
4903                /*
4904                 * Insert the carrier at the beginning of the freelist.
4905                 */
4906                carrp->next_vpa =
4907                        cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->carr_freelist));
4908                asc_dvc->carr_freelist = carrp;
4909
4910                carrp++;
4911        } while (buf_size > 0);
4912}
4913
4914/*
4915 * Send an idle command to the chip and wait for completion.
4916 *
4917 * Command completion is polled for once per microsecond.
4918 *
4919 * The function can be called from anywhere including an interrupt handler.
4920 * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
4921 * functions to prevent reentrancy.
4922 *
4923 * Return Values:
4924 *   ADV_TRUE - command completed successfully
4925 *   ADV_FALSE - command failed
4926 *   ADV_ERROR - command timed out
4927 */
4928static int
4929AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc,
4930               ushort idle_cmd, ADV_DCNT idle_cmd_parameter)
4931{
4932        int result;
4933        ADV_DCNT i, j;
4934        AdvPortAddr iop_base;
4935
4936        iop_base = asc_dvc->iop_base;
4937
4938        /*
4939         * Clear the idle command status which is set by the microcode
4940         * to a non-zero value to indicate when the command is completed.
4941         * The non-zero result is one of the IDLE_CMD_STATUS_* values
4942         */
4943        AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0);
4944
4945        /*
4946         * Write the idle command value after the idle command parameter
4947         * has been written to avoid a race condition. If the order is not
4948         * followed, the microcode may process the idle command before the
4949         * parameters have been written to LRAM.
4950         */
4951        AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER,
4952                                cpu_to_le32(idle_cmd_parameter));
4953        AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd);
4954
4955        /*
4956         * Tickle the RISC to tell it to process the idle command.
4957         */
4958        AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B);
4959        if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
4960                /*
4961                 * Clear the tickle value. In the ASC-3550 the RISC flag
4962                 * command 'clr_tickle_b' does not work unless the host
4963                 * value is cleared.
4964                 */
4965                AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP);
4966        }
4967
4968        /* Wait for up to 100 millisecond for the idle command to timeout. */
4969        for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
4970                /* Poll once each microsecond for command completion. */
4971                for (j = 0; j < SCSI_US_PER_MSEC; j++) {
4972                        AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS,
4973                                        result);
4974                        if (result != 0)
4975                                return result;
4976                        udelay(1);
4977                }
4978        }
4979
4980        BUG();          /* The idle command should never timeout. */
4981        return ADV_ERROR;
4982}
4983
4984/*
4985 * Reset SCSI Bus and purge all outstanding requests.
4986 *
4987 * Return Value:
4988 *      ADV_TRUE(1) -   All requests are purged and SCSI Bus is reset.
4989 *      ADV_FALSE(0) -  Microcode command failed.
4990 *      ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
4991 *                      may be hung which requires driver recovery.
4992 */
4993static int AdvResetSB(ADV_DVC_VAR *asc_dvc)
4994{
4995        int status;
4996
4997        /*
4998         * Send the SCSI Bus Reset idle start idle command which asserts
4999         * the SCSI Bus Reset signal.
5000         */
5001        status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L);
5002        if (status != ADV_TRUE) {
5003                return status;
5004        }
5005
5006        /*
5007         * Delay for the specified SCSI Bus Reset hold time.
5008         *
5009         * The hold time delay is done on the host because the RISC has no
5010         * microsecond accurate timer.
5011         */
5012        udelay(ASC_SCSI_RESET_HOLD_TIME_US);
5013
5014        /*
5015         * Send the SCSI Bus Reset end idle command which de-asserts
5016         * the SCSI Bus Reset signal and purges any pending requests.
5017         */
5018        status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L);
5019        if (status != ADV_TRUE) {
5020                return status;
5021        }
5022
5023        mdelay(asc_dvc->scsi_reset_wait * 1000);        /* XXX: msleep? */
5024
5025        return status;
5026}
5027
5028/*
5029 * Initialize the ASC-3550.
5030 *
5031 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
5032 *
5033 * For a non-fatal error return a warning code. If there are no warnings
5034 * then 0 is returned.
5035 *
5036 * Needed after initialization for error recovery.
5037 */
5038static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc)
5039{
5040        const struct firmware *fw;
5041        const char fwname[] = "advansys/3550.bin";
5042        AdvPortAddr iop_base;
5043        ushort warn_code;
5044        int begin_addr;
5045        int end_addr;
5046        ushort code_sum;
5047        int word;
5048        int i;
5049        int err;
5050        unsigned long chksum;
5051        ushort scsi_cfg1;
5052        uchar tid;
5053        ushort bios_mem[ASC_MC_BIOSLEN / 2];    /* BIOS RISC Memory 0x40-0x8F. */
5054        ushort wdtr_able = 0, sdtr_able, tagqng_able;
5055        uchar max_cmd[ADV_MAX_TID + 1];
5056
5057        /* If there is already an error, don't continue. */
5058        if (asc_dvc->err_code != 0)
5059                return ADV_ERROR;
5060
5061        /*
5062         * The caller must set 'chip_type' to ADV_CHIP_ASC3550.
5063         */
5064        if (asc_dvc->chip_type != ADV_CHIP_ASC3550) {
5065                asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5066                return ADV_ERROR;
5067        }
5068
5069        warn_code = 0;
5070        iop_base = asc_dvc->iop_base;
5071
5072        /*
5073         * Save the RISC memory BIOS region before writing the microcode.
5074         * The BIOS may already be loaded and using its RISC LRAM region
5075         * so its region must be saved and restored.
5076         *
5077         * Note: This code makes the assumption, which is currently true,
5078         * that a chip reset does not clear RISC LRAM.
5079         */
5080        for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5081                AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5082                                bios_mem[i]);
5083        }
5084
5085        /*
5086         * Save current per TID negotiated values.
5087         */
5088        if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) {
5089                ushort bios_version, major, minor;
5090
5091                bios_version =
5092                    bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2];
5093                major = (bios_version >> 12) & 0xF;
5094                minor = (bios_version >> 8) & 0xF;
5095                if (major < 3 || (major == 3 && minor == 1)) {
5096                        /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
5097                        AdvReadWordLram(iop_base, 0x120, wdtr_able);
5098                } else {
5099                        AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5100                }
5101        }
5102        AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5103        AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5104        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5105                AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5106                                max_cmd[tid]);
5107        }
5108
5109        err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5110        if (err) {
5111                printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5112                       fwname, err);
5113                return err;
5114        }
5115        if (fw->size < 4) {
5116                printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5117                       fw->size, fwname);
5118                release_firmware(fw);
5119                return -EINVAL;
5120        }
5121        chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5122                 (fw->data[1] << 8) | fw->data[0];
5123        asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5124                                             fw->size - 4, ADV_3550_MEMSIZE,
5125                                             chksum);
5126        release_firmware(fw);
5127        if (asc_dvc->err_code)
5128                return ADV_ERROR;
5129
5130        /*
5131         * Restore the RISC memory BIOS region.
5132         */
5133        for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5134                AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5135                                 bios_mem[i]);
5136        }
5137
5138        /*
5139         * Calculate and write the microcode code checksum to the microcode
5140         * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5141         */
5142        AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5143        AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5144        code_sum = 0;
5145        AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5146        for (word = begin_addr; word < end_addr; word += 2) {
5147                code_sum += AdvReadWordAutoIncLram(iop_base);
5148        }
5149        AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5150
5151        /*
5152         * Read and save microcode version and date.
5153         */
5154        AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5155                        asc_dvc->cfg->mcode_date);
5156        AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5157                        asc_dvc->cfg->mcode_version);
5158
5159        /*
5160         * Set the chip type to indicate the ASC3550.
5161         */
5162        AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550);
5163
5164        /*
5165         * If the PCI Configuration Command Register "Parity Error Response
5166         * Control" Bit was clear (0), then set the microcode variable
5167         * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5168         * to ignore DMA parity errors.
5169         */
5170        if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5171                AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5172                word |= CONTROL_FLAG_IGNORE_PERR;
5173                AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5174        }
5175
5176        /*
5177         * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
5178         * threshold of 128 bytes. This register is only accessible to the host.
5179         */
5180        AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5181                             START_CTL_EMFU | READ_CMD_MRM);
5182
5183        /*
5184         * Microcode operating variables for WDTR, SDTR, and command tag
5185         * queuing will be set in slave_configure() based on what a
5186         * device reports it is capable of in Inquiry byte 7.
5187         *
5188         * If SCSI Bus Resets have been disabled, then directly set
5189         * SDTR and WDTR from the EEPROM configuration. This will allow
5190         * the BIOS and warm boot to work without a SCSI bus hang on
5191         * the Inquiry caused by host and target mismatched DTR values.
5192         * Without the SCSI Bus Reset, before an Inquiry a device can't
5193         * be assumed to be in Asynchronous, Narrow mode.
5194         */
5195        if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5196                AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5197                                 asc_dvc->wdtr_able);
5198                AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5199                                 asc_dvc->sdtr_able);
5200        }
5201
5202        /*
5203         * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
5204         * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
5205         * bitmask. These values determine the maximum SDTR speed negotiated
5206         * with a device.
5207         *
5208         * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5209         * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5210         * without determining here whether the device supports SDTR.
5211         *
5212         * 4-bit speed  SDTR speed name
5213         * ===========  ===============
5214         * 0000b (0x0)  SDTR disabled
5215         * 0001b (0x1)  5 Mhz
5216         * 0010b (0x2)  10 Mhz
5217         * 0011b (0x3)  20 Mhz (Ultra)
5218         * 0100b (0x4)  40 Mhz (LVD/Ultra2)
5219         * 0101b (0x5)  80 Mhz (LVD2/Ultra3)
5220         * 0110b (0x6)  Undefined
5221         * .
5222         * 1111b (0xF)  Undefined
5223         */
5224        word = 0;
5225        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5226                if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) {
5227                        /* Set Ultra speed for TID 'tid'. */
5228                        word |= (0x3 << (4 * (tid % 4)));
5229                } else {
5230                        /* Set Fast speed for TID 'tid'. */
5231                        word |= (0x2 << (4 * (tid % 4)));
5232                }
5233                if (tid == 3) { /* Check if done with sdtr_speed1. */
5234                        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word);
5235                        word = 0;
5236                } else if (tid == 7) {  /* Check if done with sdtr_speed2. */
5237                        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word);
5238                        word = 0;
5239                } else if (tid == 11) { /* Check if done with sdtr_speed3. */
5240                        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word);
5241                        word = 0;
5242                } else if (tid == 15) { /* Check if done with sdtr_speed4. */
5243                        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word);
5244                        /* End of loop. */
5245                }
5246        }
5247
5248        /*
5249         * Set microcode operating variable for the disconnect per TID bitmask.
5250         */
5251        AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5252                         asc_dvc->cfg->disc_enable);
5253
5254        /*
5255         * Set SCSI_CFG0 Microcode Default Value.
5256         *
5257         * The microcode will set the SCSI_CFG0 register using this value
5258         * after it is started below.
5259         */
5260        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5261                         PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5262                         asc_dvc->chip_scsi_id);
5263
5264        /*
5265         * Determine SCSI_CFG1 Microcode Default Value.
5266         *
5267         * The microcode will set the SCSI_CFG1 register using this value
5268         * after it is started below.
5269         */
5270
5271        /* Read current SCSI_CFG1 Register value. */
5272        scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5273
5274        /*
5275         * If all three connectors are in use, return an error.
5276         */
5277        if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
5278            (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
5279                asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION;
5280                return ADV_ERROR;
5281        }
5282
5283        /*
5284         * If the internal narrow cable is reversed all of the SCSI_CTRL
5285         * register signals will be set. Check for and return an error if
5286         * this condition is found.
5287         */
5288        if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5289                asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5290                return ADV_ERROR;
5291        }
5292
5293        /*
5294         * If this is a differential board and a single-ended device
5295         * is attached to one of the connectors, return an error.
5296         */
5297        if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) {
5298                asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE;
5299                return ADV_ERROR;
5300        }
5301
5302        /*
5303         * If automatic termination control is enabled, then set the
5304         * termination value based on a table listed in a_condor.h.
5305         *
5306         * If manual termination was specified with an EEPROM setting
5307         * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
5308         * is ready to be 'ored' into SCSI_CFG1.
5309         */
5310        if (asc_dvc->cfg->termination == 0) {
5311                /*
5312                 * The software always controls termination by setting TERM_CTL_SEL.
5313                 * If TERM_CTL_SEL were set to 0, the hardware would set termination.
5314                 */
5315                asc_dvc->cfg->termination |= TERM_CTL_SEL;
5316
5317                switch (scsi_cfg1 & CABLE_DETECT) {
5318                        /* TERM_CTL_H: on, TERM_CTL_L: on */
5319                case 0x3:
5320                case 0x7:
5321                case 0xB:
5322                case 0xD:
5323                case 0xE:
5324                case 0xF:
5325                        asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L);
5326                        break;
5327
5328                        /* TERM_CTL_H: on, TERM_CTL_L: off */
5329                case 0x1:
5330                case 0x5:
5331                case 0x9:
5332                case 0xA:
5333                case 0xC:
5334                        asc_dvc->cfg->termination |= TERM_CTL_H;
5335                        break;
5336
5337                        /* TERM_CTL_H: off, TERM_CTL_L: off */
5338                case 0x2:
5339                case 0x6:
5340                        break;
5341                }
5342        }
5343
5344        /*
5345         * Clear any set TERM_CTL_H and TERM_CTL_L bits.
5346         */
5347        scsi_cfg1 &= ~TERM_CTL;
5348
5349        /*
5350         * Invert the TERM_CTL_H and TERM_CTL_L bits and then
5351         * set 'scsi_cfg1'. The TERM_POL bit does not need to be
5352         * referenced, because the hardware internally inverts
5353         * the Termination High and Low bits if TERM_POL is set.
5354         */
5355        scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL));
5356
5357        /*
5358         * Set SCSI_CFG1 Microcode Default Value
5359         *
5360         * Set filter value and possibly modified termination control
5361         * bits in the Microcode SCSI_CFG1 Register Value.
5362         *
5363         * The microcode will set the SCSI_CFG1 register using this value
5364         * after it is started below.
5365         */
5366        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1,
5367                         FLTR_DISABLE | scsi_cfg1);
5368
5369        /*
5370         * Set MEM_CFG Microcode Default Value
5371         *
5372         * The microcode will set the MEM_CFG register using this value
5373         * after it is started below.
5374         *
5375         * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5376         * are defined.
5377         *
5378         * ASC-3550 has 8KB internal memory.
5379         */
5380        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5381                         BIOS_EN | RAM_SZ_8KB);
5382
5383        /*
5384         * Set SEL_MASK Microcode Default Value
5385         *
5386         * The microcode will set the SEL_MASK register using this value
5387         * after it is started below.
5388         */
5389        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5390                         ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5391
5392        AdvBuildCarrierFreelist(asc_dvc);
5393
5394        /*
5395         * Set-up the Host->RISC Initiator Command Queue (ICQ).
5396         */
5397
5398        if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
5399                asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5400                return ADV_ERROR;
5401        }
5402        asc_dvc->carr_freelist = (ADV_CARR_T *)
5403            ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
5404
5405        /*
5406         * The first command issued will be placed in the stopper carrier.
5407         */
5408        asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5409
5410        /*
5411         * Set RISC ICQ physical address start value.
5412         */
5413        AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5414
5415        /*
5416         * Set-up the RISC->Host Initiator Response Queue (IRQ).
5417         */
5418        if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
5419                asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5420                return ADV_ERROR;
5421        }
5422        asc_dvc->carr_freelist = (ADV_CARR_T *)
5423            ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
5424
5425        /*
5426         * The first command completed by the RISC will be placed in
5427         * the stopper.
5428         *
5429         * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5430         * completed the RISC will set the ASC_RQ_STOPPER bit.
5431         */
5432        asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5433
5434        /*
5435         * Set RISC IRQ physical address start value.
5436         */
5437        AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5438        asc_dvc->carr_pending_cnt = 0;
5439
5440        AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5441                             (ADV_INTR_ENABLE_HOST_INTR |
5442                              ADV_INTR_ENABLE_GLOBAL_INTR));
5443
5444        AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5445        AdvWriteWordRegister(iop_base, IOPW_PC, word);
5446
5447        /* finally, finally, gentlemen, start your engine */
5448        AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5449
5450        /*
5451         * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5452         * Resets should be performed. The RISC has to be running
5453         * to issue a SCSI Bus Reset.
5454         */
5455        if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5456                /*
5457                 * If the BIOS Signature is present in memory, restore the
5458                 * BIOS Handshake Configuration Table and do not perform
5459                 * a SCSI Bus Reset.
5460                 */
5461                if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5462                    0x55AA) {
5463                        /*
5464                         * Restore per TID negotiated values.
5465                         */
5466                        AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5467                        AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5468                        AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5469                                         tagqng_able);
5470                        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5471                                AdvWriteByteLram(iop_base,
5472                                                 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5473                                                 max_cmd[tid]);
5474                        }
5475                } else {
5476                        if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5477                                warn_code = ASC_WARN_BUSRESET_ERROR;
5478                        }
5479                }
5480        }
5481
5482        return warn_code;
5483}
5484
5485/*
5486 * Initialize the ASC-38C0800.
5487 *
5488 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
5489 *
5490 * For a non-fatal error return a warning code. If there are no warnings
5491 * then 0 is returned.
5492 *
5493 * Needed after initialization for error recovery.
5494 */
5495static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
5496{
5497        const struct firmware *fw;
5498        const char fwname[] = "advansys/38C0800.bin";
5499        AdvPortAddr iop_base;
5500        ushort warn_code;
5501        int begin_addr;
5502        int end_addr;
5503        ushort code_sum;
5504        int word;
5505        int i;
5506        int err;
5507        unsigned long chksum;
5508        ushort scsi_cfg1;
5509        uchar byte;
5510        uchar tid;
5511        ushort bios_mem[ASC_MC_BIOSLEN / 2];    /* BIOS RISC Memory 0x40-0x8F. */
5512        ushort wdtr_able, sdtr_able, tagqng_able;
5513        uchar max_cmd[ADV_MAX_TID + 1];
5514
5515        /* If there is already an error, don't continue. */
5516        if (asc_dvc->err_code != 0)
5517                return ADV_ERROR;
5518
5519        /*
5520         * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
5521         */
5522        if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) {
5523                asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5524                return ADV_ERROR;
5525        }
5526
5527        warn_code = 0;
5528        iop_base = asc_dvc->iop_base;
5529
5530        /*
5531         * Save the RISC memory BIOS region before writing the microcode.
5532         * The BIOS may already be loaded and using its RISC LRAM region
5533         * so its region must be saved and restored.
5534         *
5535         * Note: This code makes the assumption, which is currently true,
5536         * that a chip reset does not clear RISC LRAM.
5537         */
5538        for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5539                AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5540                                bios_mem[i]);
5541        }
5542
5543        /*
5544         * Save current per TID negotiated values.
5545         */
5546        AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5547        AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5548        AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5549        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5550                AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5551                                max_cmd[tid]);
5552        }
5553
5554        /*
5555         * RAM BIST (RAM Built-In Self Test)
5556         *
5557         * Address : I/O base + offset 0x38h register (byte).
5558         * Function: Bit 7-6(RW) : RAM mode
5559         *                          Normal Mode   : 0x00
5560         *                          Pre-test Mode : 0x40
5561         *                          RAM Test Mode : 0x80
5562         *           Bit 5       : unused
5563         *           Bit 4(RO)   : Done bit
5564         *           Bit 3-0(RO) : Status
5565         *                          Host Error    : 0x08
5566         *                          Int_RAM Error : 0x04
5567         *                          RISC Error    : 0x02
5568         *                          SCSI Error    : 0x01
5569         *                          No Error      : 0x00
5570         *
5571         * Note: RAM BIST code should be put right here, before loading the
5572         * microcode and after saving the RISC memory BIOS region.
5573         */
5574
5575        /*
5576         * LRAM Pre-test
5577         *
5578         * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5579         * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5580         * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5581         * to NORMAL_MODE, return an error too.
5582         */
5583        for (i = 0; i < 2; i++) {
5584                AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
5585                mdelay(10);     /* Wait for 10ms before reading back. */
5586                byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5587                if ((byte & RAM_TEST_DONE) == 0
5588                    || (byte & 0x0F) != PRE_TEST_VALUE) {
5589                        asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5590                        return ADV_ERROR;
5591                }
5592
5593                AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5594                mdelay(10);     /* Wait for 10ms before reading back. */
5595                if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
5596                    != NORMAL_VALUE) {
5597                        asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5598                        return ADV_ERROR;
5599                }
5600        }
5601
5602        /*
5603         * LRAM Test - It takes about 1.5 ms to run through the test.
5604         *
5605         * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5606         * If Done bit not set or Status not 0, save register byte, set the
5607         * err_code, and return an error.
5608         */
5609        AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
5610        mdelay(10);     /* Wait for 10ms before checking status. */
5611
5612        byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5613        if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
5614                /* Get here if Done bit not set or Status not 0. */
5615                asc_dvc->bist_err_code = byte;  /* for BIOS display message */
5616                asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
5617                return ADV_ERROR;
5618        }
5619
5620        /* We need to reset back to normal mode after LRAM test passes. */
5621        AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5622
5623        err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5624        if (err) {
5625                printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5626                       fwname, err);
5627                return err;
5628        }
5629        if (fw->size < 4) {
5630                printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5631                       fw->size, fwname);
5632                release_firmware(fw);
5633                return -EINVAL;
5634        }
5635        chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5636                 (fw->data[1] << 8) | fw->data[0];
5637        asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5638                                             fw->size - 4, ADV_38C0800_MEMSIZE,
5639                                             chksum);
5640        release_firmware(fw);
5641        if (asc_dvc->err_code)
5642                return ADV_ERROR;
5643
5644        /*
5645         * Restore the RISC memory BIOS region.
5646         */
5647        for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5648                AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5649                                 bios_mem[i]);
5650        }
5651
5652        /*
5653         * Calculate and write the microcode code checksum to the microcode
5654         * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5655         */
5656        AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5657        AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5658        code_sum = 0;
5659        AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5660        for (word = begin_addr; word < end_addr; word += 2) {
5661                code_sum += AdvReadWordAutoIncLram(iop_base);
5662        }
5663        AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5664
5665        /*
5666         * Read microcode version and date.
5667         */
5668        AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5669                        asc_dvc->cfg->mcode_date);
5670        AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5671                        asc_dvc->cfg->mcode_version);
5672
5673        /*
5674         * Set the chip type to indicate the ASC38C0800.
5675         */
5676        AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800);
5677
5678        /*
5679         * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5680         * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5681         * cable detection and then we are able to read C_DET[3:0].
5682         *
5683         * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5684         * Microcode Default Value' section below.
5685         */
5686        scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5687        AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5688                             scsi_cfg1 | DIS_TERM_DRV);
5689
5690        /*
5691         * If the PCI Configuration Command Register "Parity Error Response
5692         * Control" Bit was clear (0), then set the microcode variable
5693         * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5694         * to ignore DMA parity errors.
5695         */
5696        if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5697                AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5698                word |= CONTROL_FLAG_IGNORE_PERR;
5699                AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5700        }
5701
5702        /*
5703         * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
5704         * bits for the default FIFO threshold.
5705         *
5706         * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
5707         *
5708         * For DMA Errata #4 set the BC_THRESH_ENB bit.
5709         */
5710        AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5711                             BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH |
5712                             READ_CMD_MRM);
5713
5714        /*
5715         * Microcode operating variables for WDTR, SDTR, and command tag
5716         * queuing will be set in slave_configure() based on what a
5717         * device reports it is capable of in Inquiry byte 7.
5718         *
5719         * If SCSI Bus Resets have been disabled, then directly set
5720         * SDTR and WDTR from the EEPROM configuration. This will allow
5721         * the BIOS and warm boot to work without a SCSI bus hang on
5722         * the Inquiry caused by host and target mismatched DTR values.
5723         * Without the SCSI Bus Reset, before an Inquiry a device can't
5724         * be assumed to be in Asynchronous, Narrow mode.
5725         */
5726        if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5727                AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5728                                 asc_dvc->wdtr_able);
5729                AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5730                                 asc_dvc->sdtr_able);
5731        }
5732
5733        /*
5734         * Set microcode operating variables for DISC and SDTR_SPEED1,
5735         * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5736         * configuration values.
5737         *
5738         * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5739         * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5740         * without determining here whether the device supports SDTR.
5741         */
5742        AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5743                         asc_dvc->cfg->disc_enable);
5744        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5745        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5746        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5747        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5748
5749        /*
5750         * Set SCSI_CFG0 Microcode Default Value.
5751         *
5752         * The microcode will set the SCSI_CFG0 register using this value
5753         * after it is started below.
5754         */
5755        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5756                         PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5757                         asc_dvc->chip_scsi_id);
5758
5759        /*
5760         * Determine SCSI_CFG1 Microcode Default Value.
5761         *
5762         * The microcode will set the SCSI_CFG1 register using this value
5763         * after it is started below.
5764         */
5765
5766        /* Read current SCSI_CFG1 Register value. */
5767        scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5768
5769        /*
5770         * If the internal narrow cable is reversed all of the SCSI_CTRL
5771         * register signals will be set. Check for and return an error if
5772         * this condition is found.
5773         */
5774        if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5775                asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5776                return ADV_ERROR;
5777        }
5778
5779        /*
5780         * All kind of combinations of devices attached to one of four
5781         * connectors are acceptable except HVD device attached. For example,
5782         * LVD device can be attached to SE connector while SE device attached
5783         * to LVD connector.  If LVD device attached to SE connector, it only
5784         * runs up to Ultra speed.
5785         *
5786         * If an HVD device is attached to one of LVD connectors, return an
5787         * error.  However, there is no way to detect HVD device attached to
5788         * SE connectors.
5789         */
5790        if (scsi_cfg1 & HVD) {
5791                asc_dvc->err_code = ASC_IERR_HVD_DEVICE;
5792                return ADV_ERROR;
5793        }
5794
5795        /*
5796         * If either SE or LVD automatic termination control is enabled, then
5797         * set the termination value based on a table listed in a_condor.h.
5798         *
5799         * If manual termination was specified with an EEPROM setting then
5800         * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
5801         * to be 'ored' into SCSI_CFG1.
5802         */
5803        if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5804                /* SE automatic termination control is enabled. */
5805                switch (scsi_cfg1 & C_DET_SE) {
5806                        /* TERM_SE_HI: on, TERM_SE_LO: on */
5807                case 0x1:
5808                case 0x2:
5809                case 0x3:
5810                        asc_dvc->cfg->termination |= TERM_SE;
5811                        break;
5812
5813                        /* TERM_SE_HI: on, TERM_SE_LO: off */
5814                case 0x0:
5815                        asc_dvc->cfg->termination |= TERM_SE_HI;
5816                        break;
5817                }
5818        }
5819
5820        if ((asc_dvc->cfg->termination & TERM_LVD) == 0) {
5821                /* LVD automatic termination control is enabled. */
5822                switch (scsi_cfg1 & C_DET_LVD) {
5823                        /* TERM_LVD_HI: on, TERM_LVD_LO: on */
5824                case 0x4:
5825                case 0x8:
5826                case 0xC:
5827                        asc_dvc->cfg->termination |= TERM_LVD;
5828                        break;
5829
5830                        /* TERM_LVD_HI: off, TERM_LVD_LO: off */
5831                case 0x0:
5832                        break;
5833                }
5834        }
5835
5836        /*
5837         * Clear any set TERM_SE and TERM_LVD bits.
5838         */
5839        scsi_cfg1 &= (~TERM_SE & ~TERM_LVD);
5840
5841        /*
5842         * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
5843         */
5844        scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0);
5845
5846        /*
5847         * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
5848         * bits and set possibly modified termination control bits in the
5849         * Microcode SCSI_CFG1 Register Value.
5850         */
5851        scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE);
5852
5853        /*
5854         * Set SCSI_CFG1 Microcode Default Value
5855         *
5856         * Set possibly modified termination control and reset DIS_TERM_DRV
5857         * bits in the Microcode SCSI_CFG1 Register Value.
5858         *
5859         * The microcode will set the SCSI_CFG1 register using this value
5860         * after it is started below.
5861         */
5862        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5863
5864        /*
5865         * Set MEM_CFG Microcode Default Value
5866         *
5867         * The microcode will set the MEM_CFG register using this value
5868         * after it is started below.
5869         *
5870         * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5871         * are defined.
5872         *
5873         * ASC-38C0800 has 16KB internal memory.
5874         */
5875        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5876                         BIOS_EN | RAM_SZ_16KB);
5877
5878        /*
5879         * Set SEL_MASK Microcode Default Value
5880         *
5881         * The microcode will set the SEL_MASK register using this value
5882         * after it is started below.
5883         */
5884        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5885                         ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5886
5887        AdvBuildCarrierFreelist(asc_dvc);
5888
5889        /*
5890         * Set-up the Host->RISC Initiator Command Queue (ICQ).
5891         */
5892
5893        if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
5894                asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5895                return ADV_ERROR;
5896        }
5897        asc_dvc->carr_freelist = (ADV_CARR_T *)
5898            ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
5899
5900        /*
5901         * The first command issued will be placed in the stopper carrier.
5902         */
5903        asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5904
5905        /*
5906         * Set RISC ICQ physical address start value.
5907         * carr_pa is LE, must be native before write
5908         */
5909        AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5910
5911        /*
5912         * Set-up the RISC->Host Initiator Response Queue (IRQ).
5913         */
5914        if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
5915                asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5916                return ADV_ERROR;
5917        }
5918        asc_dvc->carr_freelist = (ADV_CARR_T *)
5919            ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
5920
5921        /*
5922         * The first command completed by the RISC will be placed in
5923         * the stopper.
5924         *
5925         * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5926         * completed the RISC will set the ASC_RQ_STOPPER bit.
5927         */
5928        asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5929
5930        /*
5931         * Set RISC IRQ physical address start value.
5932         *
5933         * carr_pa is LE, must be native before write *
5934         */
5935        AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5936        asc_dvc->carr_pending_cnt = 0;
5937
5938        AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5939                             (ADV_INTR_ENABLE_HOST_INTR |
5940                              ADV_INTR_ENABLE_GLOBAL_INTR));
5941
5942        AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5943        AdvWriteWordRegister(iop_base, IOPW_PC, word);
5944
5945        /* finally, finally, gentlemen, start your engine */
5946        AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5947
5948        /*
5949         * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5950         * Resets should be performed. The RISC has to be running
5951         * to issue a SCSI Bus Reset.
5952         */
5953        if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5954                /*
5955                 * If the BIOS Signature is present in memory, restore the
5956                 * BIOS Handshake Configuration Table and do not perform
5957                 * a SCSI Bus Reset.
5958                 */
5959                if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5960                    0x55AA) {
5961                        /*
5962                         * Restore per TID negotiated values.
5963                         */
5964                        AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5965                        AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5966                        AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5967                                         tagqng_able);
5968                        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5969                                AdvWriteByteLram(iop_base,
5970                                                 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5971                                                 max_cmd[tid]);
5972                        }
5973                } else {
5974                        if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5975                                warn_code = ASC_WARN_BUSRESET_ERROR;
5976                        }
5977                }
5978        }
5979
5980        return warn_code;
5981}
5982
5983/*
5984 * Initialize the ASC-38C1600.
5985 *
5986 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
5987 *
5988 * For a non-fatal error return a warning code. If there are no warnings
5989 * then 0 is returned.
5990 *
5991 * Needed after initialization for error recovery.
5992 */
5993static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc)
5994{
5995        const struct firmware *fw;
5996        const char fwname[] = "advansys/38C1600.bin";
5997        AdvPortAddr iop_base;
5998        ushort warn_code;
5999        int begin_addr;
6000        int end_addr;
6001        ushort code_sum;
6002        long word;
6003        int i;
6004        int err;
6005        unsigned long chksum;
6006        ushort scsi_cfg1;
6007        uchar byte;
6008        uchar tid;
6009        ushort bios_mem[ASC_MC_BIOSLEN / 2];    /* BIOS RISC Memory 0x40-0x8F. */
6010        ushort wdtr_able, sdtr_able, ppr_able, tagqng_able;
6011        uchar max_cmd[ASC_MAX_TID + 1];
6012
6013        /* If there is already an error, don't continue. */
6014        if (asc_dvc->err_code != 0) {
6015                return ADV_ERROR;
6016        }
6017
6018        /*
6019         * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
6020         */
6021        if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
6022                asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
6023                return ADV_ERROR;
6024        }
6025
6026        warn_code = 0;
6027        iop_base = asc_dvc->iop_base;
6028
6029        /*
6030         * Save the RISC memory BIOS region before writing the microcode.
6031         * The BIOS may already be loaded and using its RISC LRAM region
6032         * so its region must be saved and restored.
6033         *
6034         * Note: This code makes the assumption, which is currently true,
6035         * that a chip reset does not clear RISC LRAM.
6036         */
6037        for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
6038                AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
6039                                bios_mem[i]);
6040        }
6041
6042        /*
6043         * Save current per TID negotiated values.
6044         */
6045        AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6046        AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6047        AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6048        AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
6049        for (tid = 0; tid <= ASC_MAX_TID; tid++) {
6050                AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
6051                                max_cmd[tid]);
6052        }
6053
6054        /*
6055         * RAM BIST (Built-In Self Test)
6056         *
6057         * Address : I/O base + offset 0x38h register (byte).
6058         * Function: Bit 7-6(RW) : RAM mode
6059         *                          Normal Mode   : 0x00
6060         *                          Pre-test Mode : 0x40
6061         *                          RAM Test Mode : 0x80
6062         *           Bit 5       : unused
6063         *           Bit 4(RO)   : Done bit
6064         *           Bit 3-0(RO) : Status
6065         *                          Host Error    : 0x08
6066         *                          Int_RAM Error : 0x04
6067         *                          RISC Error    : 0x02
6068         *                          SCSI Error    : 0x01
6069         *                          No Error      : 0x00
6070         *
6071         * Note: RAM BIST code should be put right here, before loading the
6072         * microcode and after saving the RISC memory BIOS region.
6073         */
6074
6075        /*
6076         * LRAM Pre-test
6077         *
6078         * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
6079         * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
6080         * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
6081         * to NORMAL_MODE, return an error too.
6082         */
6083        for (i = 0; i < 2; i++) {
6084                AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
6085                mdelay(10);     /* Wait for 10ms before reading back. */
6086                byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
6087                if ((byte & RAM_TEST_DONE) == 0
6088                    || (byte & 0x0F) != PRE_TEST_VALUE) {
6089                        asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
6090                        return ADV_ERROR;
6091                }
6092
6093                AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
6094                mdelay(10);     /* Wait for 10ms before reading back. */
6095                if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
6096                    != NORMAL_VALUE) {
6097                        asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
6098                        return ADV_ERROR;
6099                }
6100        }
6101
6102        /*
6103         * LRAM Test - It takes about 1.5 ms to run through the test.
6104         *
6105         * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
6106         * If Done bit not set or Status not 0, save register byte, set the
6107         * err_code, and return an error.
6108         */
6109        AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
6110        mdelay(10);     /* Wait for 10ms before checking status. */
6111
6112        byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
6113        if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
6114                /* Get here if Done bit not set or Status not 0. */
6115                asc_dvc->bist_err_code = byte;  /* for BIOS display message */
6116                asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
6117                return ADV_ERROR;
6118        }
6119
6120        /* We need to reset back to normal mode after LRAM test passes. */
6121        AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
6122
6123        err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
6124        if (err) {
6125                printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
6126                       fwname, err);
6127                return err;
6128        }
6129        if (fw->size < 4) {
6130                printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
6131                       fw->size, fwname);
6132                release_firmware(fw);
6133                return -EINVAL;
6134        }
6135        chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
6136                 (fw->data[1] << 8) | fw->data[0];
6137        asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
6138                                             fw->size - 4, ADV_38C1600_MEMSIZE,
6139                                             chksum);
6140        release_firmware(fw);
6141        if (asc_dvc->err_code)
6142                return ADV_ERROR;
6143
6144        /*
6145         * Restore the RISC memory BIOS region.
6146         */
6147        for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
6148                AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
6149                                 bios_mem[i]);
6150        }
6151
6152        /*
6153         * Calculate and write the microcode code checksum to the microcode
6154         * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
6155         */
6156        AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
6157        AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
6158        code_sum = 0;
6159        AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
6160        for (word = begin_addr; word < end_addr; word += 2) {
6161                code_sum += AdvReadWordAutoIncLram(iop_base);
6162        }
6163        AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
6164
6165        /*
6166         * Read microcode version and date.
6167         */
6168        AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
6169                        asc_dvc->cfg->mcode_date);
6170        AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
6171                        asc_dvc->cfg->mcode_version);
6172
6173        /*
6174         * Set the chip type to indicate the ASC38C1600.
6175         */
6176        AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600);
6177
6178        /*
6179         * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
6180         * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
6181         * cable detection and then we are able to read C_DET[3:0].
6182         *
6183         * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
6184         * Microcode Default Value' section below.
6185         */
6186        scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
6187        AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
6188                             scsi_cfg1 | DIS_TERM_DRV);
6189
6190        /*
6191         * If the PCI Configuration Command Register "Parity Error Response
6192         * Control" Bit was clear (0), then set the microcode variable
6193         * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
6194         * to ignore DMA parity errors.
6195         */
6196        if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
6197                AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
6198                word |= CONTROL_FLAG_IGNORE_PERR;
6199                AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
6200        }
6201
6202        /*
6203         * If the BIOS control flag AIPP (Asynchronous Information
6204         * Phase Protection) disable bit is not set, then set the firmware
6205         * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
6206         * AIPP checking and encoding.
6207         */
6208        if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
6209                AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
6210                word |= CONTROL_FLAG_ENABLE_AIPP;
6211                AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
6212        }
6213
6214        /*
6215         * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
6216         * and START_CTL_TH [3:2].
6217         */
6218        AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
6219                             FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
6220
6221        /*
6222         * Microcode operating variables for WDTR, SDTR, and command tag
6223         * queuing will be set in slave_configure() based on what a
6224         * device reports it is capable of in Inquiry byte 7.
6225         *
6226         * If SCSI Bus Resets have been disabled, then directly set
6227         * SDTR and WDTR from the EEPROM configuration. This will allow
6228         * the BIOS and warm boot to work without a SCSI bus hang on
6229         * the Inquiry caused by host and target mismatched DTR values.
6230         * Without the SCSI Bus Reset, before an Inquiry a device can't
6231         * be assumed to be in Asynchronous, Narrow mode.
6232         */
6233        if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
6234                AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
6235                                 asc_dvc->wdtr_able);
6236                AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
6237                                 asc_dvc->sdtr_able);
6238        }
6239
6240        /*
6241         * Set microcode operating variables for DISC and SDTR_SPEED1,
6242         * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
6243         * configuration values.
6244         *
6245         * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
6246         * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
6247         * without determining here whether the device supports SDTR.
6248         */
6249        AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
6250                         asc_dvc->cfg->disc_enable);
6251        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
6252        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
6253        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
6254        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
6255
6256        /*
6257         * Set SCSI_CFG0 Microcode Default Value.
6258         *
6259         * The microcode will set the SCSI_CFG0 register using this value
6260         * after it is started below.
6261         */
6262        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
6263                         PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
6264                         asc_dvc->chip_scsi_id);
6265
6266        /*
6267         * Calculate SCSI_CFG1 Microcode Default Value.
6268         *
6269         * The microcode will set the SCSI_CFG1 register using this value
6270         * after it is started below.
6271         *
6272         * Each ASC-38C1600 function has only two cable detect bits.
6273         * The bus mode override bits are in IOPB_SOFT_OVER_WR.
6274         */
6275        scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
6276
6277        /*
6278         * If the cable is reversed all of the SCSI_CTRL register signals
6279         * will be set. Check for and return an error if this condition is
6280         * found.
6281         */
6282        if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
6283                asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
6284                return ADV_ERROR;
6285        }
6286
6287        /*
6288         * Each ASC-38C1600 function has two connectors. Only an HVD device
6289         * can not be connected to either connector. An LVD device or SE device
6290         * may be connected to either connecor. If an SE device is connected,
6291         * then at most Ultra speed (20 Mhz) can be used on both connectors.
6292         *
6293         * If an HVD device is attached, return an error.
6294         */
6295        if (scsi_cfg1 & HVD) {
6296                asc_dvc->err_code |= ASC_IERR_HVD_DEVICE;
6297                return ADV_ERROR;
6298        }
6299
6300        /*
6301         * Each function in the ASC-38C1600 uses only the SE cable detect and
6302         * termination because there are two connectors for each function. Each
6303         * function may use either LVD or SE mode. Corresponding the SE automatic
6304         * termination control EEPROM bits are used for each function. Each
6305         * function has its own EEPROM. If SE automatic control is enabled for
6306         * the function, then set the termination value based on a table listed
6307         * in a_condor.h.
6308         *
6309         * If manual termination is specified in the EEPROM for the function,
6310         * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
6311         * ready to be 'ored' into SCSI_CFG1.
6312         */
6313        if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
6314                struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
6315                /* SE automatic termination control is enabled. */
6316                switch (scsi_cfg1 & C_DET_SE) {
6317                        /* TERM_SE_HI: on, TERM_SE_LO: on */
6318                case 0x1:
6319                case 0x2:
6320                case 0x3:
6321                        asc_dvc->cfg->termination |= TERM_SE;
6322                        break;
6323
6324                case 0x0:
6325                        if (PCI_FUNC(pdev->devfn) == 0) {
6326                                /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
6327                        } else {
6328                                /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
6329                                asc_dvc->cfg->termination |= TERM_SE_HI;
6330                        }
6331                        break;
6332                }
6333        }
6334
6335        /*
6336         * Clear any set TERM_SE bits.
6337         */
6338        scsi_cfg1 &= ~TERM_SE;
6339
6340        /*
6341         * Invert the TERM_SE bits and then set 'scsi_cfg1'.
6342         */
6343        scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE);
6344
6345        /*
6346         * Clear Big Endian and Terminator Polarity bits and set possibly
6347         * modified termination control bits in the Microcode SCSI_CFG1
6348         * Register Value.
6349         *
6350         * Big Endian bit is not used even on big endian machines.
6351         */
6352        scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL);
6353
6354        /*
6355         * Set SCSI_CFG1 Microcode Default Value
6356         *
6357         * Set possibly modified termination control bits in the Microcode
6358         * SCSI_CFG1 Register Value.
6359         *
6360         * The microcode will set the SCSI_CFG1 register using this value
6361         * after it is started below.
6362         */
6363        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
6364
6365        /*
6366         * Set MEM_CFG Microcode Default Value
6367         *
6368         * The microcode will set the MEM_CFG register using this value
6369         * after it is started below.
6370         *
6371         * MEM_CFG may be accessed as a word or byte, but only bits 0-7
6372         * are defined.
6373         *
6374         * ASC-38C1600 has 32KB internal memory.
6375         *
6376         * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
6377         * out a special 16K Adv Library and Microcode version. After the issue
6378         * resolved, we should turn back to the 32K support. Both a_condor.h and
6379         * mcode.sas files also need to be updated.
6380         *
6381         * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
6382         *  BIOS_EN | RAM_SZ_32KB);
6383         */
6384        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
6385                         BIOS_EN | RAM_SZ_16KB);
6386
6387        /*
6388         * Set SEL_MASK Microcode Default Value
6389         *
6390         * The microcode will set the SEL_MASK register using this value
6391         * after it is started below.
6392         */
6393        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
6394                         ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
6395
6396        AdvBuildCarrierFreelist(asc_dvc);
6397
6398        /*
6399         * Set-up the Host->RISC Initiator Command Queue (ICQ).
6400         */
6401        if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
6402                asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
6403                return ADV_ERROR;
6404        }
6405        asc_dvc->carr_freelist = (ADV_CARR_T *)
6406            ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
6407
6408        /*
6409         * The first command issued will be placed in the stopper carrier.
6410         */
6411        asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
6412
6413        /*
6414         * Set RISC ICQ physical address start value. Initialize the
6415         * COMMA register to the same value otherwise the RISC will
6416         * prematurely detect a command is available.
6417         */
6418        AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
6419        AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
6420                              le32_to_cpu(asc_dvc->icq_sp->carr_pa));
6421
6422        /*
6423         * Set-up the RISC->Host Initiator Response Queue (IRQ).
6424         */
6425        if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
6426                asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
6427                return ADV_ERROR;
6428        }
6429        asc_dvc->carr_freelist = (ADV_CARR_T *)
6430            ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
6431
6432        /*
6433         * The first command completed by the RISC will be placed in
6434         * the stopper.
6435         *
6436         * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
6437         * completed the RISC will set the ASC_RQ_STOPPER bit.
6438         */
6439        asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
6440
6441        /*
6442         * Set RISC IRQ physical address start value.
6443         */
6444        AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
6445        asc_dvc->carr_pending_cnt = 0;
6446
6447        AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
6448                             (ADV_INTR_ENABLE_HOST_INTR |
6449                              ADV_INTR_ENABLE_GLOBAL_INTR));
6450        AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
6451        AdvWriteWordRegister(iop_base, IOPW_PC, word);
6452
6453        /* finally, finally, gentlemen, start your engine */
6454        AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
6455
6456        /*
6457         * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
6458         * Resets should be performed. The RISC has to be running
6459         * to issue a SCSI Bus Reset.
6460         */
6461        if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
6462                /*
6463                 * If the BIOS Signature is present in memory, restore the
6464                 * per TID microcode operating variables.
6465                 */
6466                if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
6467                    0x55AA) {
6468                        /*
6469                         * Restore per TID negotiated values.
6470                         */
6471                        AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6472                        AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6473                        AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6474                        AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
6475                                         tagqng_able);
6476                        for (tid = 0; tid <= ASC_MAX_TID; tid++) {
6477                                AdvWriteByteLram(iop_base,
6478                                                 ASC_MC_NUMBER_OF_MAX_CMD + tid,
6479                                                 max_cmd[tid]);
6480                        }
6481                } else {
6482                        if (AdvResetSB(asc_dvc) != ADV_TRUE) {
6483                                warn_code = ASC_WARN_BUSRESET_ERROR;
6484                        }
6485                }
6486        }
6487
6488        return warn_code;
6489}
6490
6491/*
6492 * Reset chip and SCSI Bus.
6493 *
6494 * Return Value:
6495 *      ADV_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
6496 *      ADV_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
6497 */
6498static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc)
6499{
6500        int status;
6501        ushort wdtr_able, sdtr_able, tagqng_able;
6502        ushort ppr_able = 0;
6503        uchar tid, max_cmd[ADV_MAX_TID + 1];
6504        AdvPortAddr iop_base;
6505        ushort bios_sig;
6506
6507        iop_base = asc_dvc->iop_base;
6508
6509        /*
6510         * Save current per TID negotiated values.
6511         */
6512        AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6513        AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6514        if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6515                AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6516        }
6517        AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
6518        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
6519                AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
6520                                max_cmd[tid]);
6521        }
6522
6523        /*
6524         * Force the AdvInitAsc3550/38C0800Driver() function to
6525         * perform a SCSI Bus Reset by clearing the BIOS signature word.
6526         * The initialization functions assumes a SCSI Bus Reset is not
6527         * needed if the BIOS signature word is present.
6528         */
6529        AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
6530        AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0);
6531
6532        /*
6533         * Stop chip and reset it.
6534         */
6535        AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP);
6536        AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET);
6537        mdelay(100);
6538        AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
6539                             ADV_CTRL_REG_CMD_WR_IO_REG);
6540
6541        /*
6542         * Reset Adv Library error code, if any, and try
6543         * re-initializing the chip.
6544         */
6545        asc_dvc->err_code = 0;
6546        if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6547                status = AdvInitAsc38C1600Driver(asc_dvc);
6548        } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6549                status = AdvInitAsc38C0800Driver(asc_dvc);
6550        } else {
6551                status = AdvInitAsc3550Driver(asc_dvc);
6552        }
6553
6554        /* Translate initialization return value to status value. */
6555        if (status == 0) {
6556                status = ADV_TRUE;
6557        } else {
6558                status = ADV_FALSE;
6559        }
6560
6561        /*
6562         * Restore the BIOS signature word.
6563         */
6564        AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
6565
6566        /*
6567         * Restore per TID negotiated values.
6568         */
6569        AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6570        AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6571        if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6572                AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6573        }
6574        AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
6575        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
6576                AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
6577                                 max_cmd[tid]);
6578        }
6579
6580        return status;
6581}
6582
6583/*
6584 * adv_async_callback() - Adv Library asynchronous event callback function.
6585 */
6586static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code)
6587{
6588        switch (code) {
6589        case ADV_ASYNC_SCSI_BUS_RESET_DET:
6590                /*
6591                 * The firmware detected a SCSI Bus reset.
6592                 */
6593                ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
6594                break;
6595
6596        case ADV_ASYNC_RDMA_FAILURE:
6597                /*
6598                 * Handle RDMA failure by resetting the SCSI Bus and
6599                 * possibly the chip if it is unresponsive. Log the error
6600                 * with a unique code.
6601                 */
6602                ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
6603                AdvResetChipAndSB(adv_dvc_varp);
6604                break;
6605
6606        case ADV_HOST_SCSI_BUS_RESET:
6607                /*
6608                 * Host generated SCSI bus reset occurred.
6609                 */
6610                ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
6611                break;
6612
6613        default:
6614                ASC_DBG(0, "unknown code 0x%x\n", code);
6615                break;
6616        }
6617}
6618
6619/*
6620 * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
6621 *
6622 * Callback function for the Wide SCSI Adv Library.
6623 */
6624static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp)
6625{
6626        struct asc_board *boardp;
6627        adv_req_t *reqp;
6628        adv_sgblk_t *sgblkp;
6629        struct scsi_cmnd *scp;
6630        struct Scsi_Host *shost;
6631        ADV_DCNT resid_cnt;
6632
6633        ASC_DBG(1, "adv_dvc_varp 0x%lx, scsiqp 0x%lx\n",
6634                 (ulong)adv_dvc_varp, (ulong)scsiqp);
6635        ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
6636
6637        /*
6638         * Get the adv_req_t structure for the command that has been
6639         * completed. The adv_req_t structure actually contains the
6640         * completed ADV_SCSI_REQ_Q structure.
6641         */
6642        reqp = (adv_req_t *)ADV_U32_TO_VADDR(scsiqp->srb_ptr);
6643        ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp);
6644        if (reqp == NULL) {
6645                ASC_PRINT("adv_isr_callback: reqp is NULL\n");
6646                return;
6647        }
6648
6649        /*
6650         * Get the struct scsi_cmnd structure and Scsi_Host structure for the
6651         * command that has been completed.
6652         *
6653         * Note: The adv_req_t request structure and adv_sgblk_t structure,
6654         * if any, are dropped, because a board structure pointer can not be
6655         * determined.
6656         */
6657        scp = reqp->cmndp;
6658        ASC_DBG(1, "scp 0x%p\n", scp);
6659        if (scp == NULL) {
6660                ASC_PRINT
6661                    ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
6662                return;
6663        }
6664        ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
6665
6666        shost = scp->device->host;
6667        ASC_STATS(shost, callback);
6668        ASC_DBG(1, "shost 0x%p\n", shost);
6669
6670        boardp = shost_priv(shost);
6671        BUG_ON(adv_dvc_varp != &boardp->dvc_var.adv_dvc_var);
6672
6673        /*
6674         * 'done_status' contains the command's ending status.
6675         */
6676        switch (scsiqp->done_status) {
6677        case QD_NO_ERROR:
6678                ASC_DBG(2, "QD_NO_ERROR\n");
6679                scp->result = 0;
6680
6681                /*
6682                 * Check for an underrun condition.
6683                 *
6684                 * If there was no error and an underrun condition, then
6685                 * then return the number of underrun bytes.
6686                 */
6687                resid_cnt = le32_to_cpu(scsiqp->data_cnt);
6688                if (scsi_bufflen(scp) != 0 && resid_cnt != 0 &&
6689                    resid_cnt <= scsi_bufflen(scp)) {
6690                        ASC_DBG(1, "underrun condition %lu bytes\n",
6691                                 (ulong)resid_cnt);
6692                        scsi_set_resid(scp, resid_cnt);
6693                }
6694                break;
6695
6696        case QD_WITH_ERROR:
6697                ASC_DBG(2, "QD_WITH_ERROR\n");
6698                switch (scsiqp->host_status) {
6699                case QHSTA_NO_ERROR:
6700                        if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) {
6701                                ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6702                                ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
6703                                                  SCSI_SENSE_BUFFERSIZE);
6704                                /*
6705                                 * Note: The 'status_byte()' macro used by
6706                                 * target drivers defined in scsi.h shifts the
6707                                 * status byte returned by host drivers right
6708                                 * by 1 bit.  This is why target drivers also
6709                                 * use right shifted status byte definitions.
6710                                 * For instance target drivers use
6711                                 * CHECK_CONDITION, defined to 0x1, instead of
6712                                 * the SCSI defined check condition value of
6713                                 * 0x2. Host drivers are supposed to return
6714                                 * the status byte as it is defined by SCSI.
6715                                 */
6716                                scp->result = DRIVER_BYTE(DRIVER_SENSE) |
6717                                    STATUS_BYTE(scsiqp->scsi_status);
6718                        } else {
6719                                scp->result = STATUS_BYTE(scsiqp->scsi_status);
6720                        }
6721                        break;
6722
6723                default:
6724                        /* Some other QHSTA error occurred. */
6725                        ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status);
6726                        scp->result = HOST_BYTE(DID_BAD_TARGET);
6727                        break;
6728                }
6729                break;
6730
6731        case QD_ABORTED_BY_HOST:
6732                ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6733                scp->result =
6734                    HOST_BYTE(DID_ABORT) | STATUS_BYTE(scsiqp->scsi_status);
6735                break;
6736
6737        default:
6738                ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status);
6739                scp->result =
6740                    HOST_BYTE(DID_ERROR) | STATUS_BYTE(scsiqp->scsi_status);
6741                break;
6742        }
6743
6744        /*
6745         * If the 'init_tidmask' bit isn't already set for the target and the
6746         * current request finished normally, then set the bit for the target
6747         * to indicate that a device is present.
6748         */
6749        if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6750            scsiqp->done_status == QD_NO_ERROR &&
6751            scsiqp->host_status == QHSTA_NO_ERROR) {
6752                boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6753        }
6754
6755        asc_scsi_done(scp);
6756
6757        /*
6758         * Free all 'adv_sgblk_t' structures allocated for the request.
6759         */
6760        while ((sgblkp = reqp->sgblkp) != NULL) {
6761                /* Remove 'sgblkp' from the request list. */
6762                reqp->sgblkp = sgblkp->next_sgblkp;
6763
6764                /* Add 'sgblkp' to the board free list. */
6765                sgblkp->next_sgblkp = boardp->adv_sgblkp;
6766                boardp->adv_sgblkp = sgblkp;
6767        }
6768
6769        /*
6770         * Free the adv_req_t structure used with the command by adding
6771         * it back to the board free list.
6772         */
6773        reqp->next_reqp = boardp->adv_reqp;
6774        boardp->adv_reqp = reqp;
6775
6776        ASC_DBG(1, "done\n");
6777}
6778
6779/*
6780 * Adv Library Interrupt Service Routine
6781 *
6782 *  This function is called by a driver's interrupt service routine.
6783 *  The function disables and re-enables interrupts.
6784 *
6785 *  When a microcode idle command is completed, the ADV_DVC_VAR
6786 *  'idle_cmd_done' field is set to ADV_TRUE.
6787 *
6788 *  Note: AdvISR() can be called when interrupts are disabled or even
6789 *  when there is no hardware interrupt condition present. It will
6790 *  always check for completed idle commands and microcode requests.
6791 *  This is an important feature that shouldn't be changed because it
6792 *  allows commands to be completed from polling mode loops.
6793 *
6794 * Return:
6795 *   ADV_TRUE(1) - interrupt was pending
6796 *   ADV_FALSE(0) - no interrupt was pending
6797 */
6798static int AdvISR(ADV_DVC_VAR *asc_dvc)
6799{
6800        AdvPortAddr iop_base;
6801        uchar int_stat;
6802        ushort target_bit;
6803        ADV_CARR_T *free_carrp;
6804        ADV_VADDR irq_next_vpa;
6805        ADV_SCSI_REQ_Q *scsiq;
6806
6807        iop_base = asc_dvc->iop_base;
6808
6809        /* Reading the register clears the interrupt. */
6810        int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG);
6811
6812        if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB |
6813                         ADV_INTR_STATUS_INTRC)) == 0) {
6814                return ADV_FALSE;
6815        }
6816
6817        /*
6818         * Notify the driver of an asynchronous microcode condition by
6819         * calling the adv_async_callback function. The function
6820         * is passed the microcode ASC_MC_INTRB_CODE byte value.
6821         */
6822        if (int_stat & ADV_INTR_STATUS_INTRB) {
6823                uchar intrb_code;
6824
6825                AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code);
6826
6827                if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
6828                    asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6829                        if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
6830                            asc_dvc->carr_pending_cnt != 0) {
6831                                AdvWriteByteRegister(iop_base, IOPB_TICKLE,
6832                                                     ADV_TICKLE_A);
6833                                if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
6834                                        AdvWriteByteRegister(iop_base,
6835                                                             IOPB_TICKLE,
6836                                                             ADV_TICKLE_NOP);
6837                                }
6838                        }
6839                }
6840
6841                adv_async_callback(asc_dvc, intrb_code);
6842        }
6843
6844        /*
6845         * Check if the IRQ stopper carrier contains a completed request.
6846         */
6847        while (((irq_next_vpa =
6848                 le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ASC_RQ_DONE) != 0) {
6849                /*
6850                 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
6851                 * The RISC will have set 'areq_vpa' to a virtual address.
6852                 *
6853                 * The firmware will have copied the ASC_SCSI_REQ_Q.scsiq_ptr
6854                 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
6855                 * below complements the conversion of ASC_SCSI_REQ_Q.scsiq_ptr'
6856                 * in AdvExeScsiQueue().
6857                 */
6858                scsiq = (ADV_SCSI_REQ_Q *)
6859                    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->areq_vpa));
6860
6861                /*
6862                 * Request finished with good status and the queue was not
6863                 * DMAed to host memory by the firmware. Set all status fields
6864                 * to indicate good status.
6865                 */
6866                if ((irq_next_vpa & ASC_RQ_GOOD) != 0) {
6867                        scsiq->done_status = QD_NO_ERROR;
6868                        scsiq->host_status = scsiq->scsi_status = 0;
6869                        scsiq->data_cnt = 0L;
6870                }
6871
6872                /*
6873                 * Advance the stopper pointer to the next carrier
6874                 * ignoring the lower four bits. Free the previous
6875                 * stopper carrier.
6876                 */
6877                free_carrp = asc_dvc->irq_sp;
6878                asc_dvc->irq_sp = (ADV_CARR_T *)
6879                    ADV_U32_TO_VADDR(ASC_GET_CARRP(irq_next_vpa));
6880
6881                free_carrp->next_vpa =
6882                    cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->carr_freelist));
6883                asc_dvc->carr_freelist = free_carrp;
6884                asc_dvc->carr_pending_cnt--;
6885
6886                target_bit = ADV_TID_TO_TIDMASK(scsiq->target_id);
6887
6888                /*
6889                 * Clear request microcode control flag.
6890                 */
6891                scsiq->cntl = 0;
6892
6893                /*
6894                 * Notify the driver of the completed request by passing
6895                 * the ADV_SCSI_REQ_Q pointer to its callback function.
6896                 */
6897                scsiq->a_flag |= ADV_SCSIQ_DONE;
6898                adv_isr_callback(asc_dvc, scsiq);
6899                /*
6900                 * Note: After the driver callback function is called, 'scsiq'
6901                 * can no longer be referenced.
6902                 *
6903                 * Fall through and continue processing other completed
6904                 * requests...
6905                 */
6906        }
6907        return ADV_TRUE;
6908}
6909
6910static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code)
6911{
6912        if (asc_dvc->err_code == 0) {
6913                asc_dvc->err_code = err_code;
6914                AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W,
6915                                 err_code);
6916        }
6917        return err_code;
6918}
6919
6920static void AscAckInterrupt(PortAddr iop_base)
6921{
6922        uchar host_flag;
6923        uchar risc_flag;
6924        ushort loop;
6925
6926        loop = 0;
6927        do {
6928                risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B);
6929                if (loop++ > 0x7FFF) {
6930                        break;
6931                }
6932        } while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0);
6933        host_flag =
6934            AscReadLramByte(iop_base,
6935                            ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT);
6936        AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
6937                         (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT));
6938        AscSetChipStatus(iop_base, CIW_INT_ACK);
6939        loop = 0;
6940        while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) {
6941                AscSetChipStatus(iop_base, CIW_INT_ACK);
6942                if (loop++ > 3) {
6943                        break;
6944                }
6945        }
6946        AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
6947}
6948
6949static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time)
6950{
6951        const uchar *period_table;
6952        int max_index;
6953        int min_index;
6954        int i;
6955
6956        period_table = asc_dvc->sdtr_period_tbl;
6957        max_index = (int)asc_dvc->max_sdtr_index;
6958        min_index = (int)asc_dvc->min_sdtr_index;
6959        if ((syn_time <= period_table[max_index])) {
6960                for (i = min_index; i < (max_index - 1); i++) {
6961                        if (syn_time <= period_table[i]) {
6962                                return (uchar)i;
6963                        }
6964                }
6965                return (uchar)max_index;
6966        } else {
6967                return (uchar)(max_index + 1);
6968        }
6969}
6970
6971static uchar
6972AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset)
6973{
6974        EXT_MSG sdtr_buf;
6975        uchar sdtr_period_index;
6976        PortAddr iop_base;
6977
6978        iop_base = asc_dvc->iop_base;
6979        sdtr_buf.msg_type = EXTENDED_MESSAGE;
6980        sdtr_buf.msg_len = MS_SDTR_LEN;
6981        sdtr_buf.msg_req = EXTENDED_SDTR;
6982        sdtr_buf.xfer_period = sdtr_period;
6983        sdtr_offset &= ASC_SYN_MAX_OFFSET;
6984        sdtr_buf.req_ack_offset = sdtr_offset;
6985        sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6986        if (sdtr_period_index <= asc_dvc->max_sdtr_index) {
6987                AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6988                                        (uchar *)&sdtr_buf,
6989                                        sizeof(EXT_MSG) >> 1);
6990                return ((sdtr_period_index << 4) | sdtr_offset);
6991        } else {
6992                sdtr_buf.req_ack_offset = 0;
6993                AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6994                                        (uchar *)&sdtr_buf,
6995                                        sizeof(EXT_MSG) >> 1);
6996                return 0;
6997        }
6998}
6999
7000static uchar
7001AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset)
7002{
7003        uchar byte;
7004        uchar sdtr_period_ix;
7005
7006        sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
7007        if (sdtr_period_ix > asc_dvc->max_sdtr_index)
7008                return 0xFF;
7009        byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET);
7010        return byte;
7011}
7012
7013static int AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data)
7014{
7015        ASC_SCSI_BIT_ID_TYPE org_id;
7016        int i;
7017        int sta = TRUE;
7018
7019        AscSetBank(iop_base, 1);
7020        org_id = AscReadChipDvcID(iop_base);
7021        for (i = 0; i <= ASC_MAX_TID; i++) {
7022                if (org_id == (0x01 << i))
7023                        break;
7024        }
7025        org_id = (ASC_SCSI_BIT_ID_TYPE) i;
7026        AscWriteChipDvcID(iop_base, id);
7027        if (AscReadChipDvcID(iop_base) == (0x01 << id)) {
7028                AscSetBank(iop_base, 0);
7029                AscSetChipSyn(iop_base, sdtr_data);
7030                if (AscGetChipSyn(iop_base) != sdtr_data) {
7031                        sta = FALSE;
7032                }
7033        } else {
7034                sta = FALSE;
7035        }
7036        AscSetBank(iop_base, 1);
7037        AscWriteChipDvcID(iop_base, org_id);
7038        AscSetBank(iop_base, 0);
7039        return (sta);
7040}
7041
7042static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no)
7043{
7044        AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
7045        AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data);
7046}
7047
7048static int AscIsrChipHalted(ASC_DVC_VAR *asc_dvc)
7049{
7050        EXT_MSG ext_msg;
7051        EXT_MSG out_msg;
7052        ushort halt_q_addr;
7053        int sdtr_accept;
7054        ushort int_halt_code;
7055        ASC_SCSI_BIT_ID_TYPE scsi_busy;
7056        ASC_SCSI_BIT_ID_TYPE target_id;
7057        PortAddr iop_base;
7058        uchar tag_code;
7059        uchar q_status;
7060        uchar halt_qp;
7061        uchar sdtr_data;
7062        uchar target_ix;
7063        uchar q_cntl, tid_no;
7064        uchar cur_dvc_qng;
7065        uchar asyn_sdtr;
7066        uchar scsi_status;
7067        struct asc_board *boardp;
7068
7069        BUG_ON(!asc_dvc->drv_ptr);
7070        boardp = asc_dvc->drv_ptr;
7071
7072        iop_base = asc_dvc->iop_base;
7073        int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W);
7074
7075        halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B);
7076        halt_q_addr = ASC_QNO_TO_QADDR(halt_qp);
7077        target_ix = AscReadLramByte(iop_base,
7078                                    (ushort)(halt_q_addr +
7079                                             (ushort)ASC_SCSIQ_B_TARGET_IX));
7080        q_cntl = AscReadLramByte(iop_base,
7081                            (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL));
7082        tid_no = ASC_TIX_TO_TID(target_ix);
7083        target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no);
7084        if (asc_dvc->pci_fix_asyn_xfer & target_id) {
7085                asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB;
7086        } else {
7087                asyn_sdtr = 0;
7088        }
7089        if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) {
7090                if (asc_dvc->pci_fix_asyn_xfer & target_id) {
7091                        AscSetChipSDTR(iop_base, 0, tid_no);
7092                        boardp->sdtr_data[tid_no] = 0;
7093                }
7094                AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7095                return (0);
7096        } else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) {
7097                if (asc_dvc->pci_fix_asyn_xfer & target_id) {
7098                        AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
7099                        boardp->sdtr_data[tid_no] = asyn_sdtr;
7100                }
7101                AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7102                return (0);
7103        } else if (int_halt_code == ASC_HALT_EXTMSG_IN) {
7104                AscMemWordCopyPtrFromLram(iop_base,
7105                                          ASCV_MSGIN_BEG,
7106                                          (uchar *)&ext_msg,
7107                                          sizeof(EXT_MSG) >> 1);
7108
7109                if (ext_msg.msg_type == EXTENDED_MESSAGE &&
7110                    ext_msg.msg_req == EXTENDED_SDTR &&
7111                    ext_msg.msg_len == MS_SDTR_LEN) {
7112                        sdtr_accept = TRUE;
7113                        if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) {
7114
7115                                sdtr_accept = FALSE;
7116                                ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET;
7117                        }
7118                        if ((ext_msg.xfer_period <
7119                             asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index])
7120                            || (ext_msg.xfer_period >
7121                                asc_dvc->sdtr_period_tbl[asc_dvc->
7122                                                         max_sdtr_index])) {
7123                                sdtr_accept = FALSE;
7124                                ext_msg.xfer_period =
7125                                    asc_dvc->sdtr_period_tbl[asc_dvc->
7126                                                             min_sdtr_index];
7127                        }
7128                        if (sdtr_accept) {
7129                                sdtr_data =
7130                                    AscCalSDTRData(asc_dvc, ext_msg.xfer_period,
7131                                                   ext_msg.req_ack_offset);
7132                                if ((sdtr_data == 0xFF)) {
7133
7134                                        q_cntl |= QC_MSG_OUT;
7135                                        asc_dvc->init_sdtr &= ~target_id;
7136                                        asc_dvc->sdtr_done &= ~target_id;
7137                                        AscSetChipSDTR(iop_base, asyn_sdtr,
7138                                                       tid_no);
7139                                        boardp->sdtr_data[tid_no] = asyn_sdtr;
7140                                }
7141                        }
7142                        if (ext_msg.req_ack_offset == 0) {
7143
7144                                q_cntl &= ~QC_MSG_OUT;
7145                                asc_dvc->init_sdtr &= ~target_id;
7146                                asc_dvc->sdtr_done &= ~target_id;
7147                                AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
7148                        } else {
7149                                if (sdtr_accept && (q_cntl & QC_MSG_OUT)) {
7150                                        q_cntl &= ~QC_MSG_OUT;
7151                                        asc_dvc->sdtr_done |= target_id;
7152                                        asc_dvc->init_sdtr |= target_id;
7153                                        asc_dvc->pci_fix_asyn_xfer &=
7154                                            ~target_id;
7155                                        sdtr_data =
7156                                            AscCalSDTRData(asc_dvc,
7157                                                           ext_msg.xfer_period,
7158                                                           ext_msg.
7159                                                           req_ack_offset);
7160                                        AscSetChipSDTR(iop_base, sdtr_data,
7161                                                       tid_no);
7162                                        boardp->sdtr_data[tid_no] = sdtr_data;
7163                                } else {
7164                                        q_cntl |= QC_MSG_OUT;
7165                                        AscMsgOutSDTR(asc_dvc,
7166                                                      ext_msg.xfer_period,
7167                                                      ext_msg.req_ack_offset);
7168                                        asc_dvc->pci_fix_asyn_xfer &=
7169                                            ~target_id;
7170                                        sdtr_data =
7171                                            AscCalSDTRData(asc_dvc,
7172                                                           ext_msg.xfer_period,
7173                                                           ext_msg.
7174                                                           req_ack_offset);
7175                                        AscSetChipSDTR(iop_base, sdtr_data,
7176                                                       tid_no);
7177                                        boardp->sdtr_data[tid_no] = sdtr_data;
7178                                        asc_dvc->sdtr_done |= target_id;
7179                                        asc_dvc->init_sdtr |= target_id;
7180                                }
7181                        }
7182
7183                        AscWriteLramByte(iop_base,
7184                                         (ushort)(halt_q_addr +
7185                                                  (ushort)ASC_SCSIQ_B_CNTL),
7186                                         q_cntl);
7187                        AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7188                        return (0);
7189                } else if (ext_msg.msg_type == EXTENDED_MESSAGE &&
7190                           ext_msg.msg_req == EXTENDED_WDTR &&
7191                           ext_msg.msg_len == MS_WDTR_LEN) {
7192
7193                        ext_msg.wdtr_width = 0;
7194                        AscMemWordCopyPtrToLram(iop_base,
7195                                                ASCV_MSGOUT_BEG,
7196                                                (uchar *)&ext_msg,
7197                                                sizeof(EXT_MSG) >> 1);
7198                        q_cntl |= QC_MSG_OUT;
7199                        AscWriteLramByte(iop_base,
7200                                         (ushort)(halt_q_addr +
7201                                                  (ushort)ASC_SCSIQ_B_CNTL),
7202                                         q_cntl);
7203                        AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7204                        return (0);
7205                } else {
7206
7207                        ext_msg.msg_type = MESSAGE_REJECT;
7208                        AscMemWordCopyPtrToLram(iop_base,
7209                                                ASCV_MSGOUT_BEG,
7210                                                (uchar *)&ext_msg,
7211                                                sizeof(EXT_MSG) >> 1);
7212                        q_cntl |= QC_MSG_OUT;
7213                        AscWriteLramByte(iop_base,
7214                                         (ushort)(halt_q_addr +
7215                                                  (ushort)ASC_SCSIQ_B_CNTL),
7216                                         q_cntl);
7217                        AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7218                        return (0);
7219                }
7220        } else if (int_halt_code == ASC_HALT_CHK_CONDITION) {
7221
7222                q_cntl |= QC_REQ_SENSE;
7223
7224                if ((asc_dvc->init_sdtr & target_id) != 0) {
7225
7226                        asc_dvc->sdtr_done &= ~target_id;
7227
7228                        sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
7229                        q_cntl |= QC_MSG_OUT;
7230                        AscMsgOutSDTR(asc_dvc,
7231                                      asc_dvc->
7232                                      sdtr_period_tbl[(sdtr_data >> 4) &
7233                                                      (uchar)(asc_dvc->
7234                                                              max_sdtr_index -
7235                                                              1)],
7236                                      (uchar)(sdtr_data & (uchar)
7237                                              ASC_SYN_MAX_OFFSET));
7238                }
7239
7240                AscWriteLramByte(iop_base,
7241                                 (ushort)(halt_q_addr +
7242                                          (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
7243
7244                tag_code = AscReadLramByte(iop_base,
7245                                           (ushort)(halt_q_addr + (ushort)
7246                                                    ASC_SCSIQ_B_TAG_CODE));
7247                tag_code &= 0xDC;
7248                if ((asc_dvc->pci_fix_asyn_xfer & target_id)
7249                    && !(asc_dvc->pci_fix_asyn_xfer_always & target_id)
7250                    ) {
7251
7252                        tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT
7253                                     | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX);
7254
7255                }
7256                AscWriteLramByte(iop_base,
7257                                 (ushort)(halt_q_addr +
7258                                          (ushort)ASC_SCSIQ_B_TAG_CODE),
7259                                 tag_code);
7260
7261                q_status = AscReadLramByte(iop_base,
7262                                           (ushort)(halt_q_addr + (ushort)
7263                                                    ASC_SCSIQ_B_STATUS));
7264                q_status |= (QS_READY | QS_BUSY);
7265                AscWriteLramByte(iop_base,
7266                                 (ushort)(halt_q_addr +
7267                                          (ushort)ASC_SCSIQ_B_STATUS),
7268                                 q_status);
7269
7270                scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B);
7271                scsi_busy &= ~target_id;
7272                AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy);
7273
7274                AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7275                return (0);
7276        } else if (int_halt_code == ASC_HALT_SDTR_REJECTED) {
7277
7278                AscMemWordCopyPtrFromLram(iop_base,
7279                                          ASCV_MSGOUT_BEG,
7280                                          (uchar *)&out_msg,
7281                                          sizeof(EXT_MSG) >> 1);
7282
7283                if ((out_msg.msg_type == EXTENDED_MESSAGE) &&
7284                    (out_msg.msg_len == MS_SDTR_LEN) &&
7285                    (out_msg.msg_req == EXTENDED_SDTR)) {
7286
7287                        asc_dvc->init_sdtr &= ~target_id;
7288                        asc_dvc->sdtr_done &= ~target_id;
7289                        AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
7290                        boardp->sdtr_data[tid_no] = asyn_sdtr;
7291                }
7292                q_cntl &= ~QC_MSG_OUT;
7293                AscWriteLramByte(iop_base,
7294                                 (ushort)(halt_q_addr +
7295                                          (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
7296                AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7297                return (0);
7298        } else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) {
7299
7300                scsi_status = AscReadLramByte(iop_base,
7301                                              (ushort)((ushort)halt_q_addr +
7302                                                       (ushort)
7303                                                       ASC_SCSIQ_SCSI_STATUS));
7304                cur_dvc_qng =
7305                    AscReadLramByte(iop_base,
7306                                    (ushort)((ushort)ASC_QADR_BEG +
7307                                             (ushort)target_ix));
7308                if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) {
7309
7310                        scsi_busy = AscReadLramByte(iop_base,
7311                                                    (ushort)ASCV_SCSIBUSY_B);
7312                        scsi_busy |= target_id;
7313                        AscWriteLramByte(iop_base,
7314                                         (ushort)ASCV_SCSIBUSY_B, scsi_busy);
7315                        asc_dvc->queue_full_or_busy |= target_id;
7316
7317                        if (scsi_status == SAM_STAT_TASK_SET_FULL) {
7318                                if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) {
7319                                        cur_dvc_qng -= 1;
7320                                        asc_dvc->max_dvc_qng[tid_no] =
7321                                            cur_dvc_qng;
7322
7323                                        AscWriteLramByte(iop_base,
7324                                                         (ushort)((ushort)
7325                                                                  ASCV_MAX_DVC_QNG_BEG
7326                                                                  + (ushort)
7327                                                                  tid_no),
7328                                                         cur_dvc_qng);
7329
7330                                        /*
7331                                         * Set the device queue depth to the
7332                                         * number of active requests when the
7333                                         * QUEUE FULL condition was encountered.
7334                                         */
7335                                        boardp->queue_full |= target_id;
7336                                        boardp->queue_full_cnt[tid_no] =
7337                                            cur_dvc_qng;
7338                                }
7339                        }
7340                }
7341                AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7342                return (0);
7343        }
7344#if CC_VERY_LONG_SG_LIST
7345        else if (int_halt_code == ASC_HALT_HOST_COPY_SG_LIST_TO_RISC) {
7346                uchar q_no;
7347                ushort q_addr;
7348                uchar sg_wk_q_no;
7349                uchar first_sg_wk_q_no;
7350                ASC_SCSI_Q *scsiq;      /* Ptr to driver request. */
7351                ASC_SG_HEAD *sg_head;   /* Ptr to driver SG request. */
7352                ASC_SG_LIST_Q scsi_sg_q;        /* Structure written to queue. */
7353                ushort sg_list_dwords;
7354                ushort sg_entry_cnt;
7355                uchar next_qp;
7356                int i;
7357
7358                q_no = AscReadLramByte(iop_base, (ushort)ASCV_REQ_SG_LIST_QP);
7359                if (q_no == ASC_QLINK_END)
7360                        return 0;
7361
7362                q_addr = ASC_QNO_TO_QADDR(q_no);
7363
7364                /*
7365                 * Convert the request's SRB pointer to a host ASC_SCSI_REQ
7366                 * structure pointer using a macro provided by the driver.
7367                 * The ASC_SCSI_REQ pointer provides a pointer to the
7368                 * host ASC_SG_HEAD structure.
7369                 */
7370                /* Read request's SRB pointer. */
7371                scsiq = (ASC_SCSI_Q *)
7372                    ASC_SRB2SCSIQ(ASC_U32_TO_VADDR(AscReadLramDWord(iop_base,
7373                                                                    (ushort)
7374                                                                    (q_addr +
7375                                                                     ASC_SCSIQ_D_SRBPTR))));
7376
7377                /*
7378                 * Get request's first and working SG queue.
7379                 */
7380                sg_wk_q_no = AscReadLramByte(iop_base,
7381                                             (ushort)(q_addr +
7382                                                      ASC_SCSIQ_B_SG_WK_QP));
7383
7384                first_sg_wk_q_no = AscReadLramByte(iop_base,
7385                                                   (ushort)(q_addr +
7386                                                            ASC_SCSIQ_B_FIRST_SG_WK_QP));
7387
7388                /*
7389                 * Reset request's working SG queue back to the
7390                 * first SG queue.
7391                 */
7392                AscWriteLramByte(iop_base,
7393                                 (ushort)(q_addr +
7394                                          (ushort)ASC_SCSIQ_B_SG_WK_QP),
7395                                 first_sg_wk_q_no);
7396
7397                sg_head = scsiq->sg_head;
7398
7399                /*
7400                 * Set sg_entry_cnt to the number of SG elements
7401                 * that will be completed on this interrupt.
7402                 *
7403                 * Note: The allocated SG queues contain ASC_MAX_SG_LIST - 1
7404                 * SG elements. The data_cnt and data_addr fields which
7405                 * add 1 to the SG element capacity are not used when
7406                 * restarting SG handling after a halt.
7407                 */
7408                if (scsiq->remain_sg_entry_cnt > (ASC_MAX_SG_LIST - 1)) {
7409                        sg_entry_cnt = ASC_MAX_SG_LIST - 1;
7410
7411                        /*
7412                         * Keep track of remaining number of SG elements that
7413                         * will need to be handled on the next interrupt.
7414                         */
7415                        scsiq->remain_sg_entry_cnt -= (ASC_MAX_SG_LIST - 1);
7416                } else {
7417                        sg_entry_cnt = scsiq->remain_sg_entry_cnt;
7418                        scsiq->remain_sg_entry_cnt = 0;
7419                }
7420
7421                /*
7422                 * Copy SG elements into the list of allocated SG queues.
7423                 *
7424                 * Last index completed is saved in scsiq->next_sg_index.
7425                 */
7426                next_qp = first_sg_wk_q_no;
7427                q_addr = ASC_QNO_TO_QADDR(next_qp);
7428                scsi_sg_q.sg_head_qp = q_no;
7429                scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
7430                for (i = 0; i < sg_head->queue_cnt; i++) {
7431                        scsi_sg_q.seq_no = i + 1;
7432                        if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
7433                                sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
7434                                sg_entry_cnt -= ASC_SG_LIST_PER_Q;
7435                                /*
7436                                 * After very first SG queue RISC FW uses next
7437                                 * SG queue first element then checks sg_list_cnt
7438                                 * against zero and then decrements, so set
7439                                 * sg_list_cnt 1 less than number of SG elements
7440                                 * in each SG queue.
7441                                 */
7442                                scsi_sg_q.sg_list_cnt = ASC_SG_LIST_PER_Q - 1;
7443                                scsi_sg_q.sg_cur_list_cnt =
7444                                    ASC_SG_LIST_PER_Q - 1;
7445                        } else {
7446                                /*
7447                                 * This is the last SG queue in the list of
7448                                 * allocated SG queues. If there are more
7449                                 * SG elements than will fit in the allocated
7450                                 * queues, then set the QCSG_SG_XFER_MORE flag.
7451                                 */
7452                                if (scsiq->remain_sg_entry_cnt != 0) {
7453                                        scsi_sg_q.cntl |= QCSG_SG_XFER_MORE;
7454                                } else {
7455                                        scsi_sg_q.cntl |= QCSG_SG_XFER_END;
7456                                }
7457                                /* equals sg_entry_cnt * 2 */
7458                                sg_list_dwords = sg_entry_cnt << 1;
7459                                scsi_sg_q.sg_list_cnt = sg_entry_cnt - 1;
7460                                scsi_sg_q.sg_cur_list_cnt = sg_entry_cnt - 1;
7461                                sg_entry_cnt = 0;
7462                        }
7463
7464                        scsi_sg_q.q_no = next_qp;
7465                        AscMemWordCopyPtrToLram(iop_base,
7466                                                q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
7467                                                (uchar *)&scsi_sg_q,
7468                                                sizeof(ASC_SG_LIST_Q) >> 1);
7469
7470                        AscMemDWordCopyPtrToLram(iop_base,
7471                                                 q_addr + ASC_SGQ_LIST_BEG,
7472                                                 (uchar *)&sg_head->
7473                                                 sg_list[scsiq->next_sg_index],
7474                                                 sg_list_dwords);
7475
7476                        scsiq->next_sg_index += ASC_SG_LIST_PER_Q;
7477
7478                        /*
7479                         * If the just completed SG queue contained the
7480                         * last SG element, then no more SG queues need
7481                         * to be written.
7482                         */
7483                        if (scsi_sg_q.cntl & QCSG_SG_XFER_END) {
7484                                break;
7485                        }
7486
7487                        next_qp = AscReadLramByte(iop_base,
7488                                                  (ushort)(q_addr +
7489                                                           ASC_SCSIQ_B_FWD));
7490                        q_addr = ASC_QNO_TO_QADDR(next_qp);
7491                }
7492
7493                /*
7494                 * Clear the halt condition so the RISC will be restarted
7495                 * after the return.
7496                 */
7497                AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7498                return (0);
7499        }
7500#endif /* CC_VERY_LONG_SG_LIST */
7501        return (0);
7502}
7503
7504/*
7505 * void
7506 * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
7507 *
7508 * Calling/Exit State:
7509 *    none
7510 *
7511 * Description:
7512 *     Input an ASC_QDONE_INFO structure from the chip
7513 */
7514static void
7515DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
7516{
7517        int i;
7518        ushort word;
7519
7520        AscSetChipLramAddr(iop_base, s_addr);
7521        for (i = 0; i < 2 * words; i += 2) {
7522                if (i == 10) {
7523                        continue;
7524                }
7525                word = inpw(iop_base + IOP_RAM_DATA);
7526                inbuf[i] = word & 0xff;
7527                inbuf[i + 1] = (word >> 8) & 0xff;
7528        }
7529        ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words);
7530}
7531
7532static uchar
7533_AscCopyLramScsiDoneQ(PortAddr iop_base,
7534                      ushort q_addr,
7535                      ASC_QDONE_INFO *scsiq, ASC_DCNT max_dma_count)
7536{
7537        ushort _val;
7538        uchar sg_queue_cnt;
7539
7540        DvcGetQinfo(iop_base,
7541                    q_addr + ASC_SCSIQ_DONE_INFO_BEG,
7542                    (uchar *)scsiq,
7543                    (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2);
7544
7545        _val = AscReadLramWord(iop_base,
7546                               (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS));
7547        scsiq->q_status = (uchar)_val;
7548        scsiq->q_no = (uchar)(_val >> 8);
7549        _val = AscReadLramWord(iop_base,
7550                               (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL));
7551        scsiq->cntl = (uchar)_val;
7552        sg_queue_cnt = (uchar)(_val >> 8);
7553        _val = AscReadLramWord(iop_base,
7554                               (ushort)(q_addr +
7555                                        (ushort)ASC_SCSIQ_B_SENSE_LEN));
7556        scsiq->sense_len = (uchar)_val;
7557        scsiq->extra_bytes = (uchar)(_val >> 8);
7558
7559        /*
7560         * Read high word of remain bytes from alternate location.
7561         */
7562        scsiq->remain_bytes = (((ADV_DCNT)AscReadLramWord(iop_base,
7563                                                          (ushort)(q_addr +
7564                                                                   (ushort)
7565                                                                   ASC_SCSIQ_W_ALT_DC1)))
7566                               << 16);
7567        /*
7568         * Read low word of remain bytes from original location.
7569         */
7570        scsiq->remain_bytes += AscReadLramWord(iop_base,
7571                                               (ushort)(q_addr + (ushort)
7572                                                        ASC_SCSIQ_DW_REMAIN_XFER_CNT));
7573
7574        scsiq->remain_bytes &= max_dma_count;
7575        return sg_queue_cnt;
7576}
7577
7578/*
7579 * asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
7580 *
7581 * Interrupt callback function for the Narrow SCSI Asc Library.
7582 */
7583static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep)
7584{
7585        struct asc_board *boardp;
7586        struct scsi_cmnd *scp;
7587        struct Scsi_Host *shost;
7588
7589        ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep);
7590        ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep);
7591
7592        scp = advansys_srb_to_ptr(asc_dvc_varp, qdonep->d2.srb_ptr);
7593        if (!scp)
7594                return;
7595
7596        ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
7597
7598        shost = scp->device->host;
7599        ASC_STATS(shost, callback);
7600        ASC_DBG(1, "shost 0x%p\n", shost);
7601
7602        boardp = shost_priv(shost);
7603        BUG_ON(asc_dvc_varp != &boardp->dvc_var.asc_dvc_var);
7604
7605        dma_unmap_single(boardp->dev, scp->SCp.dma_handle,
7606                         SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7607        /*
7608         * 'qdonep' contains the command's ending status.
7609         */
7610        switch (qdonep->d3.done_stat) {
7611        case QD_NO_ERROR:
7612                ASC_DBG(2, "QD_NO_ERROR\n");
7613                scp->result = 0;
7614
7615                /*
7616                 * Check for an underrun condition.
7617                 *
7618                 * If there was no error and an underrun condition, then
7619                 * return the number of underrun bytes.
7620                 */
7621                if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 &&
7622                    qdonep->remain_bytes <= scsi_bufflen(scp)) {
7623                        ASC_DBG(1, "underrun condition %u bytes\n",
7624                                 (unsigned)qdonep->remain_bytes);
7625                        scsi_set_resid(scp, qdonep->remain_bytes);
7626                }
7627                break;
7628
7629        case QD_WITH_ERROR:
7630                ASC_DBG(2, "QD_WITH_ERROR\n");
7631                switch (qdonep->d3.host_stat) {
7632                case QHSTA_NO_ERROR:
7633                        if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) {
7634                                ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
7635                                ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
7636                                                  SCSI_SENSE_BUFFERSIZE);
7637                                /*
7638                                 * Note: The 'status_byte()' macro used by
7639                                 * target drivers defined in scsi.h shifts the
7640                                 * status byte returned by host drivers right
7641                                 * by 1 bit.  This is why target drivers also
7642                                 * use right shifted status byte definitions.
7643                                 * For instance target drivers use
7644                                 * CHECK_CONDITION, defined to 0x1, instead of
7645                                 * the SCSI defined check condition value of
7646                                 * 0x2. Host drivers are supposed to return
7647                                 * the status byte as it is defined by SCSI.
7648                                 */
7649                                scp->result = DRIVER_BYTE(DRIVER_SENSE) |
7650                                    STATUS_BYTE(qdonep->d3.scsi_stat);
7651                        } else {
7652                                scp->result = STATUS_BYTE(qdonep->d3.scsi_stat);
7653                        }
7654                        break;
7655
7656                default:
7657                        /* QHSTA error occurred */
7658                        ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat);
7659                        scp->result = HOST_BYTE(DID_BAD_TARGET);
7660                        break;
7661                }
7662                break;
7663
7664        case QD_ABORTED_BY_HOST:
7665                ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
7666                scp->result =
7667                    HOST_BYTE(DID_ABORT) | MSG_BYTE(qdonep->d3.
7668                                                    scsi_msg) |
7669                    STATUS_BYTE(qdonep->d3.scsi_stat);
7670                break;
7671
7672        default:
7673                ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat);
7674                scp->result =
7675                    HOST_BYTE(DID_ERROR) | MSG_BYTE(qdonep->d3.
7676                                                    scsi_msg) |
7677                    STATUS_BYTE(qdonep->d3.scsi_stat);
7678                break;
7679        }
7680
7681        /*
7682         * If the 'init_tidmask' bit isn't already set for the target and the
7683         * current request finished normally, then set the bit for the target
7684         * to indicate that a device is present.
7685         */
7686        if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
7687            qdonep->d3.done_stat == QD_NO_ERROR &&
7688            qdonep->d3.host_stat == QHSTA_NO_ERROR) {
7689                boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
7690        }
7691
7692        asc_scsi_done(scp);
7693}
7694
7695static int AscIsrQDone(ASC_DVC_VAR *asc_dvc)
7696{
7697        uchar next_qp;
7698        uchar n_q_used;
7699        uchar sg_list_qp;
7700        uchar sg_queue_cnt;
7701        uchar q_cnt;
7702        uchar done_q_tail;
7703        uchar tid_no;
7704        ASC_SCSI_BIT_ID_TYPE scsi_busy;
7705        ASC_SCSI_BIT_ID_TYPE target_id;
7706        PortAddr iop_base;
7707        ushort q_addr;
7708        ushort sg_q_addr;
7709        uchar cur_target_qng;
7710        ASC_QDONE_INFO scsiq_buf;
7711        ASC_QDONE_INFO *scsiq;
7712        int false_overrun;
7713
7714        iop_base = asc_dvc->iop_base;
7715        n_q_used = 1;
7716        scsiq = (ASC_QDONE_INFO *)&scsiq_buf;
7717        done_q_tail = (uchar)AscGetVarDoneQTail(iop_base);
7718        q_addr = ASC_QNO_TO_QADDR(done_q_tail);
7719        next_qp = AscReadLramByte(iop_base,
7720                                  (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD));
7721        if (next_qp != ASC_QLINK_END) {
7722                AscPutVarDoneQTail(iop_base, next_qp);
7723                q_addr = ASC_QNO_TO_QADDR(next_qp);
7724                sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq,
7725                                                     asc_dvc->max_dma_count);
7726                AscWriteLramByte(iop_base,
7727                                 (ushort)(q_addr +
7728                                          (ushort)ASC_SCSIQ_B_STATUS),
7729                                 (uchar)(scsiq->
7730                                         q_status & (uchar)~(QS_READY |
7731                                                             QS_ABORTED)));
7732                tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix);
7733                target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix);
7734                if ((scsiq->cntl & QC_SG_HEAD) != 0) {
7735                        sg_q_addr = q_addr;
7736                        sg_list_qp = next_qp;
7737                        for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) {
7738                                sg_list_qp = AscReadLramByte(iop_base,
7739                                                             (ushort)(sg_q_addr
7740                                                                      + (ushort)
7741                                                                      ASC_SCSIQ_B_FWD));
7742                                sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp);
7743                                if (sg_list_qp == ASC_QLINK_END) {
7744                                        AscSetLibErrorCode(asc_dvc,
7745                                                           ASCQ_ERR_SG_Q_LINKS);
7746                                        scsiq->d3.done_stat = QD_WITH_ERROR;
7747                                        scsiq->d3.host_stat =
7748                                            QHSTA_D_QDONE_SG_LIST_CORRUPTED;
7749                                        goto FATAL_ERR_QDONE;
7750                                }
7751                                AscWriteLramByte(iop_base,
7752                                                 (ushort)(sg_q_addr + (ushort)
7753                                                          ASC_SCSIQ_B_STATUS),
7754                                                 QS_FREE);
7755                        }
7756                        n_q_used = sg_queue_cnt + 1;
7757                        AscPutVarDoneQTail(iop_base, sg_list_qp);
7758                }
7759                if (asc_dvc->queue_full_or_busy & target_id) {
7760                        cur_target_qng = AscReadLramByte(iop_base,
7761                                                         (ushort)((ushort)
7762                                                                  ASC_QADR_BEG
7763                                                                  + (ushort)
7764                                                                  scsiq->d2.
7765                                                                  target_ix));
7766                        if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) {
7767                                scsi_busy = AscReadLramByte(iop_base, (ushort)
7768                                                            ASCV_SCSIBUSY_B);
7769                                scsi_busy &= ~target_id;
7770                                AscWriteLramByte(iop_base,
7771                                                 (ushort)ASCV_SCSIBUSY_B,
7772                                                 scsi_busy);
7773                                asc_dvc->queue_full_or_busy &= ~target_id;
7774                        }
7775                }
7776                if (asc_dvc->cur_total_qng >= n_q_used) {
7777                        asc_dvc->cur_total_qng -= n_q_used;
7778                        if (asc_dvc->cur_dvc_qng[tid_no] != 0) {
7779                                asc_dvc->cur_dvc_qng[tid_no]--;
7780                        }
7781                } else {
7782                        AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG);
7783                        scsiq->d3.done_stat = QD_WITH_ERROR;
7784                        goto FATAL_ERR_QDONE;
7785                }
7786                if ((scsiq->d2.srb_ptr == 0UL) ||
7787                    ((scsiq->q_status & QS_ABORTED) != 0)) {
7788                        return (0x11);
7789                } else if (scsiq->q_status == QS_DONE) {
7790                        false_overrun = FALSE;
7791                        if (scsiq->extra_bytes != 0) {
7792                                scsiq->remain_bytes +=
7793                                    (ADV_DCNT)scsiq->extra_bytes;
7794                        }
7795                        if (scsiq->d3.done_stat == QD_WITH_ERROR) {
7796                                if (scsiq->d3.host_stat ==
7797                                    QHSTA_M_DATA_OVER_RUN) {
7798                                        if ((scsiq->
7799                                             cntl & (QC_DATA_IN | QC_DATA_OUT))
7800                                            == 0) {
7801                                                scsiq->d3.done_stat =
7802                                                    QD_NO_ERROR;
7803                                                scsiq->d3.host_stat =
7804                                                    QHSTA_NO_ERROR;
7805                                        } else if (false_overrun) {
7806                                                scsiq->d3.done_stat =
7807                                                    QD_NO_ERROR;
7808                                                scsiq->d3.host_stat =
7809                                                    QHSTA_NO_ERROR;
7810                                        }
7811                                } else if (scsiq->d3.host_stat ==
7812                                           QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) {
7813                                        AscStopChip(iop_base);
7814                                        AscSetChipControl(iop_base,
7815                                                          (uchar)(CC_SCSI_RESET
7816                                                                  | CC_HALT));
7817                                        udelay(60);
7818                                        AscSetChipControl(iop_base, CC_HALT);
7819                                        AscSetChipStatus(iop_base,
7820                                                         CIW_CLR_SCSI_RESET_INT);
7821                                        AscSetChipStatus(iop_base, 0);
7822                                        AscSetChipControl(iop_base, 0);
7823                                }
7824                        }
7825                        if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
7826                                asc_isr_callback(asc_dvc, scsiq);
7827                        } else {
7828                                if ((AscReadLramByte(iop_base,
7829                                                     (ushort)(q_addr + (ushort)
7830                                                              ASC_SCSIQ_CDB_BEG))
7831                                     == START_STOP)) {
7832                                        asc_dvc->unit_not_ready &= ~target_id;
7833                                        if (scsiq->d3.done_stat != QD_NO_ERROR) {
7834                                                asc_dvc->start_motor &=
7835                                                    ~target_id;
7836                                        }
7837                                }
7838                        }
7839                        return (1);
7840                } else {
7841                        AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS);
7842 FATAL_ERR_QDONE:
7843                        if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
7844                                asc_isr_callback(asc_dvc, scsiq);
7845                        }
7846                        return (0x80);
7847                }
7848        }
7849        return (0);
7850}
7851
7852static int AscISR(ASC_DVC_VAR *asc_dvc)
7853{
7854        ASC_CS_TYPE chipstat;
7855        PortAddr iop_base;
7856        ushort saved_ram_addr;
7857        uchar ctrl_reg;
7858        uchar saved_ctrl_reg;
7859        int int_pending;
7860        int status;
7861        uchar host_flag;
7862
7863        iop_base = asc_dvc->iop_base;
7864        int_pending = FALSE;
7865
7866        if (AscIsIntPending(iop_base) == 0)
7867                return int_pending;
7868
7869        if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) {
7870                return ERR;
7871        }
7872        if (asc_dvc->in_critical_cnt != 0) {
7873                AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL);
7874                return ERR;
7875        }
7876        if (asc_dvc->is_in_int) {
7877                AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY);
7878                return ERR;
7879        }
7880        asc_dvc->is_in_int = TRUE;
7881        ctrl_reg = AscGetChipControl(iop_base);
7882        saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET |
7883                                       CC_SINGLE_STEP | CC_DIAG | CC_TEST));
7884        chipstat = AscGetChipStatus(iop_base);
7885        if (chipstat & CSW_SCSI_RESET_LATCH) {
7886                if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) {
7887                        int i = 10;
7888                        int_pending = TRUE;
7889                        asc_dvc->sdtr_done = 0;
7890                        saved_ctrl_reg &= (uchar)(~CC_HALT);
7891                        while ((AscGetChipStatus(iop_base) &
7892                                CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) {
7893                                mdelay(100);
7894                        }
7895                        AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT));
7896                        AscSetChipControl(iop_base, CC_HALT);
7897                        AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
7898                        AscSetChipStatus(iop_base, 0);
7899                        chipstat = AscGetChipStatus(iop_base);
7900                }
7901        }
7902        saved_ram_addr = AscGetChipLramAddr(iop_base);
7903        host_flag = AscReadLramByte(iop_base,
7904                                    ASCV_HOST_FLAG_B) &
7905            (uchar)(~ASC_HOST_FLAG_IN_ISR);
7906        AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
7907                         (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR));
7908        if ((chipstat & CSW_INT_PENDING) || (int_pending)) {
7909                AscAckInterrupt(iop_base);
7910                int_pending = TRUE;
7911                if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) {
7912                        if (AscIsrChipHalted(asc_dvc) == ERR) {
7913                                goto ISR_REPORT_QDONE_FATAL_ERROR;
7914                        } else {
7915                                saved_ctrl_reg &= (uchar)(~CC_HALT);
7916                        }
7917                } else {
7918 ISR_REPORT_QDONE_FATAL_ERROR:
7919                        if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) {
7920                                while (((status =
7921                                         AscIsrQDone(asc_dvc)) & 0x01) != 0) {
7922                                }
7923                        } else {
7924                                do {
7925                                        if ((status =
7926                                             AscIsrQDone(asc_dvc)) == 1) {
7927                                                break;
7928                                        }
7929                                } while (status == 0x11);
7930                        }
7931                        if ((status & 0x80) != 0)
7932                                int_pending = ERR;
7933                }
7934        }
7935        AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
7936        AscSetChipLramAddr(iop_base, saved_ram_addr);
7937        AscSetChipControl(iop_base, saved_ctrl_reg);
7938        asc_dvc->is_in_int = FALSE;
7939        return int_pending;
7940}
7941
7942/*
7943 * advansys_reset()
7944 *
7945 * Reset the bus associated with the command 'scp'.
7946 *
7947 * This function runs its own thread. Interrupts must be blocked but
7948 * sleeping is allowed and no locking other than for host structures is
7949 * required. Returns SUCCESS or FAILED.
7950 */
7951static int advansys_reset(struct scsi_cmnd *scp)
7952{
7953        struct Scsi_Host *shost = scp->device->host;
7954        struct asc_board *boardp = shost_priv(shost);
7955        unsigned long flags;
7956        int status;
7957        int ret = SUCCESS;
7958
7959        ASC_DBG(1, "0x%p\n", scp);
7960
7961        ASC_STATS(shost, reset);
7962
7963        scmd_printk(KERN_INFO, scp, "SCSI bus reset started...\n");
7964
7965        if (ASC_NARROW_BOARD(boardp)) {
7966                ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7967
7968                /* Reset the chip and SCSI bus. */
7969                ASC_DBG(1, "before AscInitAsc1000Driver()\n");
7970                status = AscInitAsc1000Driver(asc_dvc);
7971
7972                /* Refer to ASC_IERR_* defintions for meaning of 'err_code'. */
7973                if (asc_dvc->err_code) {
7974                        scmd_printk(KERN_INFO, scp, "SCSI bus reset error: "
7975                                    "0x%x\n", asc_dvc->err_code);
7976                        ret = FAILED;
7977                } else if (status) {
7978                        scmd_printk(KERN_INFO, scp, "SCSI bus reset warning: "
7979                                    "0x%x\n", status);
7980                } else {
7981                        scmd_printk(KERN_INFO, scp, "SCSI bus reset "
7982                                    "successful\n");
7983                }
7984
7985                ASC_DBG(1, "after AscInitAsc1000Driver()\n");
7986                spin_lock_irqsave(shost->host_lock, flags);
7987        } else {
7988                /*
7989                 * If the suggest reset bus flags are set, then reset the bus.
7990                 * Otherwise only reset the device.
7991                 */
7992                ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
7993
7994                /*
7995                 * Reset the target's SCSI bus.
7996                 */
7997                ASC_DBG(1, "before AdvResetChipAndSB()\n");
7998                switch (AdvResetChipAndSB(adv_dvc)) {
7999                case ASC_TRUE:
8000                        scmd_printk(KERN_INFO, scp, "SCSI bus reset "
8001                                    "successful\n");
8002                        break;
8003                case ASC_FALSE:
8004                default:
8005                        scmd_printk(KERN_INFO, scp, "SCSI bus reset error\n");
8006                        ret = FAILED;
8007                        break;
8008                }
8009                spin_lock_irqsave(shost->host_lock, flags);
8010                AdvISR(adv_dvc);
8011        }
8012
8013        /* Save the time of the most recently completed reset. */
8014        boardp->last_reset = jiffies;
8015        spin_unlock_irqrestore(shost->host_lock, flags);
8016
8017        ASC_DBG(1, "ret %d\n", ret);
8018
8019        return ret;
8020}
8021
8022/*
8023 * advansys_biosparam()
8024 *
8025 * Translate disk drive geometry if the "BIOS greater than 1 GB"
8026 * support is enabled for a drive.
8027 *
8028 * ip (information pointer) is an int array with the following definition:
8029 * ip[0]: heads
8030 * ip[1]: sectors
8031 * ip[2]: cylinders
8032 */
8033static int
8034advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev,
8035                   sector_t capacity, int ip[])
8036{
8037        struct asc_board *boardp = shost_priv(sdev->host);
8038
8039        ASC_DBG(1, "begin\n");
8040        ASC_STATS(sdev->host, biosparam);
8041        if (ASC_NARROW_BOARD(boardp)) {
8042                if ((boardp->dvc_var.asc_dvc_var.dvc_cntl &
8043                     ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) {
8044                        ip[0] = 255;
8045                        ip[1] = 63;
8046                } else {
8047                        ip[0] = 64;
8048                        ip[1] = 32;
8049                }
8050        } else {
8051                if ((boardp->dvc_var.adv_dvc_var.bios_ctrl &
8052                     BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) {
8053                        ip[0] = 255;
8054                        ip[1] = 63;
8055                } else {
8056                        ip[0] = 64;
8057                        ip[1] = 32;
8058                }
8059        }
8060        ip[2] = (unsigned long)capacity / (ip[0] * ip[1]);
8061        ASC_DBG(1, "end\n");
8062        return 0;
8063}
8064
8065/*
8066 * First-level interrupt handler.
8067 *
8068 * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
8069 */
8070static irqreturn_t advansys_interrupt(int irq, void *dev_id)
8071{
8072        struct Scsi_Host *shost = dev_id;
8073        struct asc_board *boardp = shost_priv(shost);
8074        irqreturn_t result = IRQ_NONE;
8075
8076        ASC_DBG(2, "boardp 0x%p\n", boardp);
8077        spin_lock(shost->host_lock);
8078        if (ASC_NARROW_BOARD(boardp)) {
8079                if (AscIsIntPending(shost->io_port)) {
8080                        result = IRQ_HANDLED;
8081                        ASC_STATS(shost, interrupt);
8082                        ASC_DBG(1, "before AscISR()\n");
8083                        AscISR(&boardp->dvc_var.asc_dvc_var);
8084                }
8085        } else {
8086                ASC_DBG(1, "before AdvISR()\n");
8087                if (AdvISR(&boardp->dvc_var.adv_dvc_var)) {
8088                        result = IRQ_HANDLED;
8089                        ASC_STATS(shost, interrupt);
8090                }
8091        }
8092        spin_unlock(shost->host_lock);
8093
8094        ASC_DBG(1, "end\n");
8095        return result;
8096}
8097
8098static int AscHostReqRiscHalt(PortAddr iop_base)
8099{
8100        int count = 0;
8101        int sta = 0;
8102        uchar saved_stop_code;
8103
8104        if (AscIsChipHalted(iop_base))
8105                return (1);
8106        saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B);
8107        AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
8108                         ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP);
8109        do {
8110                if (AscIsChipHalted(iop_base)) {
8111                        sta = 1;
8112                        break;
8113                }
8114                mdelay(100);
8115        } while (count++ < 20);
8116        AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code);
8117        return (sta);
8118}
8119
8120static int
8121AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data)
8122{
8123        int sta = FALSE;
8124
8125        if (AscHostReqRiscHalt(iop_base)) {
8126                sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
8127                AscStartChip(iop_base);
8128        }
8129        return sta;
8130}
8131
8132static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev)
8133{
8134        char type = sdev->type;
8135        ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id;
8136
8137        if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN))
8138                return;
8139        if (asc_dvc->init_sdtr & tid_bits)
8140                return;
8141
8142        if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0))
8143                asc_dvc->pci_fix_asyn_xfer_always |= tid_bits;
8144
8145        asc_dvc->pci_fix_asyn_xfer |= tid_bits;
8146        if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) ||
8147            (type == TYPE_ROM) || (type == TYPE_TAPE))
8148                asc_dvc->pci_fix_asyn_xfer &= ~tid_bits;
8149
8150        if (asc_dvc->pci_fix_asyn_xfer & tid_bits)
8151                AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id,
8152                                        ASYN_SDTR_DATA_FIX_PCI_REV_AB);
8153}
8154
8155static void
8156advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc)
8157{
8158        ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id;
8159        ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng;
8160
8161        if (sdev->lun == 0) {
8162                ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr;
8163                if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) {
8164                        asc_dvc->init_sdtr |= tid_bit;
8165                } else {
8166                        asc_dvc->init_sdtr &= ~tid_bit;
8167                }
8168
8169                if (orig_init_sdtr != asc_dvc->init_sdtr)
8170                        AscAsyncFix(asc_dvc, sdev);
8171        }
8172
8173        if (sdev->tagged_supported) {
8174                if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) {
8175                        if (sdev->lun == 0) {
8176                                asc_dvc->cfg->can_tagged_qng |= tid_bit;
8177                                asc_dvc->use_tagged_qng |= tid_bit;
8178                        }
8179                        scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG,
8180                                                asc_dvc->max_dvc_qng[sdev->id]);
8181                }
8182        } else {
8183                if (sdev->lun == 0) {
8184                        asc_dvc->cfg->can_tagged_qng &= ~tid_bit;
8185                        asc_dvc->use_tagged_qng &= ~tid_bit;
8186                }
8187                scsi_adjust_queue_depth(sdev, 0, sdev->host->cmd_per_lun);
8188        }
8189
8190        if ((sdev->lun == 0) &&
8191            (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) {
8192                AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B,
8193                                 asc_dvc->cfg->disc_enable);
8194                AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B,
8195                                 asc_dvc->use_tagged_qng);
8196                AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B,
8197                                 asc_dvc->cfg->can_tagged_qng);
8198
8199                asc_dvc->max_dvc_qng[sdev->id] =
8200                                        asc_dvc->cfg->max_tag_qng[sdev->id];
8201                AscWriteLramByte(asc_dvc->iop_base,
8202                                 (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id),
8203                                 asc_dvc->max_dvc_qng[sdev->id]);
8204        }
8205}
8206
8207/*
8208 * Wide Transfers
8209 *
8210 * If the EEPROM enabled WDTR for the device and the device supports wide
8211 * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
8212 * write the new value to the microcode.
8213 */
8214static void
8215advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask)
8216{
8217        unsigned short cfg_word;
8218        AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
8219        if ((cfg_word & tidmask) != 0)
8220                return;
8221
8222        cfg_word |= tidmask;
8223        AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
8224
8225        /*
8226         * Clear the microcode SDTR and WDTR negotiation done indicators for
8227         * the target to cause it to negotiate with the new setting set above.
8228         * WDTR when accepted causes the target to enter asynchronous mode, so
8229         * SDTR must be negotiated.
8230         */
8231        AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
8232        cfg_word &= ~tidmask;
8233        AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
8234        AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
8235        cfg_word &= ~tidmask;
8236        AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
8237}
8238
8239/*
8240 * Synchronous Transfers
8241 *
8242 * If the EEPROM enabled SDTR for the device and the device
8243 * supports synchronous transfers, then turn on the device's
8244 * 'sdtr_able' bit. Write the new value to the microcode.
8245 */
8246static void
8247advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask)
8248{
8249        unsigned short cfg_word;
8250        AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
8251        if ((cfg_word & tidmask) != 0)
8252                return;
8253
8254        cfg_word |= tidmask;
8255        AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
8256
8257        /*
8258         * Clear the microcode "SDTR negotiation" done indicator for the
8259         * target to cause it to negotiate with the new setting set above.
8260         */
8261        AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
8262        cfg_word &= ~tidmask;
8263        AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
8264}
8265
8266/*
8267 * PPR (Parallel Protocol Request) Capable
8268 *
8269 * If the device supports DT mode, then it must be PPR capable.
8270 * The PPR message will be used in place of the SDTR and WDTR
8271 * messages to negotiate synchronous speed and offset, transfer
8272 * width, and protocol options.
8273 */
8274static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc,
8275                                AdvPortAddr iop_base, unsigned short tidmask)
8276{
8277        AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
8278        adv_dvc->ppr_able |= tidmask;
8279        AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
8280}
8281
8282static void
8283advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc)
8284{
8285        AdvPortAddr iop_base = adv_dvc->iop_base;
8286        unsigned short tidmask = 1 << sdev->id;
8287
8288        if (sdev->lun == 0) {
8289                /*
8290                 * Handle WDTR, SDTR, and Tag Queuing. If the feature
8291                 * is enabled in the EEPROM and the device supports the
8292                 * feature, then enable it in the microcode.
8293                 */
8294
8295                if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr)
8296                        advansys_wide_enable_wdtr(iop_base, tidmask);
8297                if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr)
8298                        advansys_wide_enable_sdtr(iop_base, tidmask);
8299                if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr)
8300                        advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask);
8301
8302                /*
8303                 * Tag Queuing is disabled for the BIOS which runs in polled
8304                 * mode and would see no benefit from Tag Queuing. Also by
8305                 * disabling Tag Queuing in the BIOS devices with Tag Queuing
8306                 * bugs will at least work with the BIOS.
8307                 */
8308                if ((adv_dvc->tagqng_able & tidmask) &&
8309                    sdev->tagged_supported) {
8310                        unsigned short cfg_word;
8311                        AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word);
8312                        cfg_word |= tidmask;
8313                        AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
8314                                         cfg_word);
8315                        AdvWriteByteLram(iop_base,
8316                                         ASC_MC_NUMBER_OF_MAX_CMD + sdev->id,
8317                                         adv_dvc->max_dvc_qng);
8318                }
8319        }
8320
8321        if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported) {
8322                scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG,
8323                                        adv_dvc->max_dvc_qng);
8324        } else {
8325                scsi_adjust_queue_depth(sdev, 0, sdev->host->cmd_per_lun);
8326        }
8327}
8328
8329/*
8330 * Set the number of commands to queue per device for the
8331 * specified host adapter.
8332 */
8333static int advansys_slave_configure(struct scsi_device *sdev)
8334{
8335        struct asc_board *boardp = shost_priv(sdev->host);
8336
8337        if (ASC_NARROW_BOARD(boardp))
8338                advansys_narrow_slave_configure(sdev,
8339                                                &boardp->dvc_var.asc_dvc_var);
8340        else
8341                advansys_wide_slave_configure(sdev,
8342                                                &boardp->dvc_var.adv_dvc_var);
8343
8344        return 0;
8345}
8346
8347static __le32 advansys_get_sense_buffer_dma(struct scsi_cmnd *scp)
8348{
8349        struct asc_board *board = shost_priv(scp->device->host);
8350        scp->SCp.dma_handle = dma_map_single(board->dev, scp->sense_buffer,
8351                                             SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
8352        dma_cache_sync(board->dev, scp->sense_buffer,
8353                       SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
8354        return cpu_to_le32(scp->SCp.dma_handle);
8355}
8356
8357static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
8358                        struct asc_scsi_q *asc_scsi_q)
8359{
8360        struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var;
8361        int use_sg;
8362
8363        memset(asc_scsi_q, 0, sizeof(*asc_scsi_q));
8364
8365        /*
8366         * Point the ASC_SCSI_Q to the 'struct scsi_cmnd'.
8367         */
8368        asc_scsi_q->q2.srb_ptr = advansys_ptr_to_srb(asc_dvc, scp);
8369        if (asc_scsi_q->q2.srb_ptr == BAD_SRB) {
8370                scp->result = HOST_BYTE(DID_SOFT_ERROR);
8371                return ASC_ERROR;
8372        }
8373
8374        /*
8375         * Build the ASC_SCSI_Q request.
8376         */
8377        asc_scsi_q->cdbptr = &scp->cmnd[0];
8378        asc_scsi_q->q2.cdb_len = scp->cmd_len;
8379        asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id);
8380        asc_scsi_q->q1.target_lun = scp->device->lun;
8381        asc_scsi_q->q2.target_ix =
8382            ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun);
8383        asc_scsi_q->q1.sense_addr = advansys_get_sense_buffer_dma(scp);
8384        asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE;
8385
8386        /*
8387         * If there are any outstanding requests for the current target,
8388         * then every 255th request send an ORDERED request. This heuristic
8389         * tries to retain the benefit of request sorting while preventing
8390         * request starvation. 255 is the max number of tags or pending commands
8391         * a device may have outstanding.
8392         *
8393         * The request count is incremented below for every successfully
8394         * started request.
8395         *
8396         */
8397        if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) &&
8398            (boardp->reqcnt[scp->device->id] % 255) == 0) {
8399                asc_scsi_q->q2.tag_code = MSG_ORDERED_TAG;
8400        } else {
8401                asc_scsi_q->q2.tag_code = MSG_SIMPLE_TAG;
8402        }
8403
8404        /* Build ASC_SCSI_Q */
8405        use_sg = scsi_dma_map(scp);
8406        if (use_sg != 0) {
8407                int sgcnt;
8408                struct scatterlist *slp;
8409                struct asc_sg_head *asc_sg_head;
8410
8411                if (use_sg > scp->device->host->sg_tablesize) {
8412                        scmd_printk(KERN_ERR, scp, "use_sg %d > "
8413                                "sg_tablesize %d\n", use_sg,
8414                                scp->device->host->sg_tablesize);
8415                        scsi_dma_unmap(scp);
8416                        scp->result = HOST_BYTE(DID_ERROR);
8417                        return ASC_ERROR;
8418                }
8419
8420                asc_sg_head = kzalloc(sizeof(asc_scsi_q->sg_head) +
8421                        use_sg * sizeof(struct asc_sg_list), GFP_ATOMIC);
8422                if (!asc_sg_head) {
8423                        scsi_dma_unmap(scp);
8424                        scp->result = HOST_BYTE(DID_SOFT_ERROR);
8425                        return ASC_ERROR;
8426                }
8427
8428                asc_scsi_q->q1.cntl |= QC_SG_HEAD;
8429                asc_scsi_q->sg_head = asc_sg_head;
8430                asc_scsi_q->q1.data_cnt = 0;
8431                asc_scsi_q->q1.data_addr = 0;
8432                /* This is a byte value, otherwise it would need to be swapped. */
8433                asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg;
8434                ASC_STATS_ADD(scp->device->host, xfer_elem,
8435                              asc_sg_head->entry_cnt);
8436
8437                /*
8438                 * Convert scatter-gather list into ASC_SG_HEAD list.
8439                 */
8440                scsi_for_each_sg(scp, slp, use_sg, sgcnt) {
8441                        asc_sg_head->sg_list[sgcnt].addr =
8442                            cpu_to_le32(sg_dma_address(slp));
8443                        asc_sg_head->sg_list[sgcnt].bytes =
8444                            cpu_to_le32(sg_dma_len(slp));
8445                        ASC_STATS_ADD(scp->device->host, xfer_sect,
8446                                      DIV_ROUND_UP(sg_dma_len(slp), 512));
8447                }
8448        }
8449
8450        ASC_STATS(scp->device->host, xfer_cnt);
8451
8452        ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q);
8453        ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
8454
8455        return ASC_NOERROR;
8456}
8457
8458/*
8459 * Build scatter-gather list for Adv Library (Wide Board).
8460 *
8461 * Additional ADV_SG_BLOCK structures will need to be allocated
8462 * if the total number of scatter-gather elements exceeds
8463 * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
8464 * assumed to be physically contiguous.
8465 *
8466 * Return:
8467 *      ADV_SUCCESS(1) - SG List successfully created
8468 *      ADV_ERROR(-1) - SG List creation failed
8469 */
8470static int
8471adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp, struct scsi_cmnd *scp,
8472               int use_sg)
8473{
8474        adv_sgblk_t *sgblkp;
8475        ADV_SCSI_REQ_Q *scsiqp;
8476        struct scatterlist *slp;
8477        int sg_elem_cnt;
8478        ADV_SG_BLOCK *sg_block, *prev_sg_block;
8479        ADV_PADDR sg_block_paddr;
8480        int i;
8481
8482        scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q);
8483        slp = scsi_sglist(scp);
8484        sg_elem_cnt = use_sg;
8485        prev_sg_block = NULL;
8486        reqp->sgblkp = NULL;
8487
8488        for (;;) {
8489                /*
8490                 * Allocate a 'adv_sgblk_t' structure from the board free
8491                 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
8492                 * (15) scatter-gather elements.
8493                 */
8494                if ((sgblkp = boardp->adv_sgblkp) == NULL) {
8495                        ASC_DBG(1, "no free adv_sgblk_t\n");
8496                        ASC_STATS(scp->device->host, adv_build_nosg);
8497
8498                        /*
8499                         * Allocation failed. Free 'adv_sgblk_t' structures
8500                         * already allocated for the request.
8501                         */
8502                        while ((sgblkp = reqp->sgblkp) != NULL) {
8503                                /* Remove 'sgblkp' from the request list. */
8504                                reqp->sgblkp = sgblkp->next_sgblkp;
8505
8506                                /* Add 'sgblkp' to the board free list. */
8507                                sgblkp->next_sgblkp = boardp->adv_sgblkp;
8508                                boardp->adv_sgblkp = sgblkp;
8509                        }
8510                        return ASC_BUSY;
8511                }
8512
8513                /* Complete 'adv_sgblk_t' board allocation. */
8514                boardp->adv_sgblkp = sgblkp->next_sgblkp;
8515                sgblkp->next_sgblkp = NULL;
8516
8517                /*
8518                 * Get 8 byte aligned virtual and physical addresses
8519                 * for the allocated ADV_SG_BLOCK structure.
8520                 */
8521                sg_block = (ADV_SG_BLOCK *)ADV_8BALIGN(&sgblkp->sg_block);
8522                sg_block_paddr = virt_to_bus(sg_block);
8523
8524                /*
8525                 * Check if this is the first 'adv_sgblk_t' for the
8526                 * request.
8527                 */
8528                if (reqp->sgblkp == NULL) {
8529                        /* Request's first scatter-gather block. */
8530                        reqp->sgblkp = sgblkp;
8531
8532                        /*
8533                         * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
8534                         * address pointers.
8535                         */
8536                        scsiqp->sg_list_ptr = sg_block;
8537                        scsiqp->sg_real_addr = cpu_to_le32(sg_block_paddr);
8538                } else {
8539                        /* Request's second or later scatter-gather block. */
8540                        sgblkp->next_sgblkp = reqp->sgblkp;
8541                        reqp->sgblkp = sgblkp;
8542
8543                        /*
8544                         * Point the previous ADV_SG_BLOCK structure to
8545                         * the newly allocated ADV_SG_BLOCK structure.
8546                         */
8547                        prev_sg_block->sg_ptr = cpu_to_le32(sg_block_paddr);
8548                }
8549
8550                for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) {
8551                        sg_block->sg_list[i].sg_addr =
8552                                        cpu_to_le32(sg_dma_address(slp));
8553                        sg_block->sg_list[i].sg_count =
8554                                        cpu_to_le32(sg_dma_len(slp));
8555                        ASC_STATS_ADD(scp->device->host, xfer_sect,
8556                                      DIV_ROUND_UP(sg_dma_len(slp), 512));
8557
8558                        if (--sg_elem_cnt == 0) {       /* Last ADV_SG_BLOCK and scatter-gather entry. */
8559                                sg_block->sg_cnt = i + 1;
8560                                sg_block->sg_ptr = 0L;  /* Last ADV_SG_BLOCK in list. */
8561                                return ADV_SUCCESS;
8562                        }
8563                        slp++;
8564                }
8565                sg_block->sg_cnt = NO_OF_SG_PER_BLOCK;
8566                prev_sg_block = sg_block;
8567        }
8568}
8569
8570/*
8571 * Build a request structure for the Adv Library (Wide Board).
8572 *
8573 * If an adv_req_t can not be allocated to issue the request,
8574 * then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
8575 *
8576 * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the
8577 * microcode for DMA addresses or math operations are byte swapped
8578 * to little-endian order.
8579 */
8580static int
8581adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
8582              ADV_SCSI_REQ_Q **adv_scsiqpp)
8583{
8584        adv_req_t *reqp;
8585        ADV_SCSI_REQ_Q *scsiqp;
8586        int i;
8587        int ret;
8588        int use_sg;
8589
8590        /*
8591         * Allocate an adv_req_t structure from the board to execute
8592         * the command.
8593         */
8594        if (boardp->adv_reqp == NULL) {
8595                ASC_DBG(1, "no free adv_req_t\n");
8596                ASC_STATS(scp->device->host, adv_build_noreq);
8597                return ASC_BUSY;
8598        } else {
8599                reqp = boardp->adv_reqp;
8600                boardp->adv_reqp = reqp->next_reqp;
8601                reqp->next_reqp = NULL;
8602        }
8603
8604        /*
8605         * Get 32-byte aligned ADV_SCSI_REQ_Q and ADV_SG_BLOCK pointers.
8606         */
8607        scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q);
8608
8609        /*
8610         * Initialize the structure.
8611         */
8612        scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0;
8613
8614        /*
8615         * Set the ADV_SCSI_REQ_Q 'srb_ptr' to point to the adv_req_t structure.
8616         */
8617        scsiqp->srb_ptr = ADV_VADDR_TO_U32(reqp);
8618
8619        /*
8620         * Set the adv_req_t 'cmndp' to point to the struct scsi_cmnd structure.
8621         */
8622        reqp->cmndp = scp;
8623
8624        /*
8625         * Build the ADV_SCSI_REQ_Q request.
8626         */
8627
8628        /* Set CDB length and copy it to the request structure.  */
8629        scsiqp->cdb_len = scp->cmd_len;
8630        /* Copy first 12 CDB bytes to cdb[]. */
8631        for (i = 0; i < scp->cmd_len && i < 12; i++) {
8632                scsiqp->cdb[i] = scp->cmnd[i];
8633        }
8634        /* Copy last 4 CDB bytes, if present, to cdb16[]. */
8635        for (; i < scp->cmd_len; i++) {
8636                scsiqp->cdb16[i - 12] = scp->cmnd[i];
8637        }
8638
8639        scsiqp->target_id = scp->device->id;
8640        scsiqp->target_lun = scp->device->lun;
8641
8642        scsiqp->sense_addr = cpu_to_le32(virt_to_bus(&scp->sense_buffer[0]));
8643        scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE;
8644
8645        /* Build ADV_SCSI_REQ_Q */
8646
8647        use_sg = scsi_dma_map(scp);
8648        if (use_sg == 0) {
8649                /* Zero-length transfer */
8650                reqp->sgblkp = NULL;
8651                scsiqp->data_cnt = 0;
8652                scsiqp->vdata_addr = NULL;
8653
8654                scsiqp->data_addr = 0;
8655                scsiqp->sg_list_ptr = NULL;
8656                scsiqp->sg_real_addr = 0;
8657        } else {
8658                if (use_sg > ADV_MAX_SG_LIST) {
8659                        scmd_printk(KERN_ERR, scp, "use_sg %d > "
8660                                   "ADV_MAX_SG_LIST %d\n", use_sg,
8661                                   scp->device->host->sg_tablesize);
8662                        scsi_dma_unmap(scp);
8663                        scp->result = HOST_BYTE(DID_ERROR);
8664
8665                        /*
8666                         * Free the 'adv_req_t' structure by adding it back
8667                         * to the board free list.
8668                         */
8669                        reqp->next_reqp = boardp->adv_reqp;
8670                        boardp->adv_reqp = reqp;
8671
8672                        return ASC_ERROR;
8673                }
8674
8675                scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp));
8676
8677                ret = adv_get_sglist(boardp, reqp, scp, use_sg);
8678                if (ret != ADV_SUCCESS) {
8679                        /*
8680                         * Free the adv_req_t structure by adding it back to
8681                         * the board free list.
8682                         */
8683                        reqp->next_reqp = boardp->adv_reqp;
8684                        boardp->adv_reqp = reqp;
8685
8686                        return ret;
8687                }
8688
8689                ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg);
8690        }
8691
8692        ASC_STATS(scp->device->host, xfer_cnt);
8693
8694        ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
8695        ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
8696
8697        *adv_scsiqpp = scsiqp;
8698
8699        return ASC_NOERROR;
8700}
8701
8702static int AscSgListToQueue(int sg_list)
8703{
8704        int n_sg_list_qs;
8705
8706        n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q);
8707        if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0)
8708                n_sg_list_qs++;
8709        return n_sg_list_qs + 1;
8710}
8711
8712static uint
8713AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs)
8714{
8715        uint cur_used_qs;
8716        uint cur_free_qs;
8717        ASC_SCSI_BIT_ID_TYPE target_id;
8718        uchar tid_no;
8719
8720        target_id = ASC_TIX_TO_TARGET_ID(target_ix);
8721        tid_no = ASC_TIX_TO_TID(target_ix);
8722        if ((asc_dvc->unit_not_ready & target_id) ||
8723            (asc_dvc->queue_full_or_busy & target_id)) {
8724                return 0;
8725        }
8726        if (n_qs == 1) {
8727                cur_used_qs = (uint) asc_dvc->cur_total_qng +
8728                    (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q;
8729        } else {
8730                cur_used_qs = (uint) asc_dvc->cur_total_qng +
8731                    (uint) ASC_MIN_FREE_Q;
8732        }
8733        if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) {
8734                cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs;
8735                if (asc_dvc->cur_dvc_qng[tid_no] >=
8736                    asc_dvc->max_dvc_qng[tid_no]) {
8737                        return 0;
8738                }
8739                return cur_free_qs;
8740        }
8741        if (n_qs > 1) {
8742                if ((n_qs > asc_dvc->last_q_shortage)
8743                    && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) {
8744                        asc_dvc->last_q_shortage = n_qs;
8745                }
8746        }
8747        return 0;
8748}
8749
8750static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head)
8751{
8752        ushort q_addr;
8753        uchar next_qp;
8754        uchar q_status;
8755
8756        q_addr = ASC_QNO_TO_QADDR(free_q_head);
8757        q_status = (uchar)AscReadLramByte(iop_base,
8758                                          (ushort)(q_addr +
8759                                                   ASC_SCSIQ_B_STATUS));
8760        next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD));
8761        if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END))
8762                return next_qp;
8763        return ASC_QLINK_END;
8764}
8765
8766static uchar
8767AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q)
8768{
8769        uchar i;
8770
8771        for (i = 0; i < n_free_q; i++) {
8772                free_q_head = AscAllocFreeQueue(iop_base, free_q_head);
8773                if (free_q_head == ASC_QLINK_END)
8774                        break;
8775        }
8776        return free_q_head;
8777}
8778
8779/*
8780 * void
8781 * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
8782 *
8783 * Calling/Exit State:
8784 *    none
8785 *
8786 * Description:
8787 *     Output an ASC_SCSI_Q structure to the chip
8788 */
8789static void
8790DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
8791{
8792        int i;
8793
8794        ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words);
8795        AscSetChipLramAddr(iop_base, s_addr);
8796        for (i = 0; i < 2 * words; i += 2) {
8797                if (i == 4 || i == 20) {
8798                        continue;
8799                }
8800                outpw(iop_base + IOP_RAM_DATA,
8801                      ((ushort)outbuf[i + 1] << 8) | outbuf[i]);
8802        }
8803}
8804
8805static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
8806{
8807        ushort q_addr;
8808        uchar tid_no;
8809        uchar sdtr_data;
8810        uchar syn_period_ix;
8811        uchar syn_offset;
8812        PortAddr iop_base;
8813
8814        iop_base = asc_dvc->iop_base;
8815        if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) &&
8816            ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) {
8817                tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix);
8818                sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
8819                syn_period_ix =
8820                    (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1);
8821                syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET;
8822                AscMsgOutSDTR(asc_dvc,
8823                              asc_dvc->sdtr_period_tbl[syn_period_ix],
8824                              syn_offset);
8825                scsiq->q1.cntl |= QC_MSG_OUT;
8826        }
8827        q_addr = ASC_QNO_TO_QADDR(q_no);
8828        if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) {
8829                scsiq->q2.tag_code &= ~MSG_SIMPLE_TAG;
8830        }
8831        scsiq->q1.status = QS_FREE;
8832        AscMemWordCopyPtrToLram(iop_base,
8833                                q_addr + ASC_SCSIQ_CDB_BEG,
8834                                (uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1);
8835
8836        DvcPutScsiQ(iop_base,
8837                    q_addr + ASC_SCSIQ_CPY_BEG,
8838                    (uchar *)&scsiq->q1.cntl,
8839                    ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1);
8840        AscWriteLramWord(iop_base,
8841                         (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS),
8842                         (ushort)(((ushort)scsiq->q1.
8843                                   q_no << 8) | (ushort)QS_READY));
8844        return 1;
8845}
8846
8847static int
8848AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
8849{
8850        int sta;
8851        int i;
8852        ASC_SG_HEAD *sg_head;
8853        ASC_SG_LIST_Q scsi_sg_q;
8854        ASC_DCNT saved_data_addr;
8855        ASC_DCNT saved_data_cnt;
8856        PortAddr iop_base;
8857        ushort sg_list_dwords;
8858        ushort sg_index;
8859        ushort sg_entry_cnt;
8860        ushort q_addr;
8861        uchar next_qp;
8862
8863        iop_base = asc_dvc->iop_base;
8864        sg_head = scsiq->sg_head;
8865        saved_data_addr = scsiq->q1.data_addr;
8866        saved_data_cnt = scsiq->q1.data_cnt;
8867        scsiq->q1.data_addr = (ASC_PADDR) sg_head->sg_list[0].addr;
8868        scsiq->q1.data_cnt = (ASC_DCNT) sg_head->sg_list[0].bytes;
8869#if CC_VERY_LONG_SG_LIST
8870        /*
8871         * If sg_head->entry_cnt is greater than ASC_MAX_SG_LIST
8872         * then not all SG elements will fit in the allocated queues.
8873         * The rest of the SG elements will be copied when the RISC
8874         * completes the SG elements that fit and halts.
8875         */
8876        if (sg_head->entry_cnt > ASC_MAX_SG_LIST) {
8877                /*
8878                 * Set sg_entry_cnt to be the number of SG elements that
8879                 * will fit in the allocated SG queues. It is minus 1, because
8880                 * the first SG element is handled above. ASC_MAX_SG_LIST is
8881                 * already inflated by 1 to account for this. For example it
8882                 * may be 50 which is 1 + 7 queues * 7 SG elements.
8883                 */
8884                sg_entry_cnt = ASC_MAX_SG_LIST - 1;
8885
8886                /*
8887                 * Keep track of remaining number of SG elements that will
8888                 * need to be handled from a_isr.c.
8889                 */
8890                scsiq->remain_sg_entry_cnt =
8891                    sg_head->entry_cnt - ASC_MAX_SG_LIST;
8892        } else {
8893#endif /* CC_VERY_LONG_SG_LIST */
8894                /*
8895                 * Set sg_entry_cnt to be the number of SG elements that
8896                 * will fit in the allocated SG queues. It is minus 1, because
8897                 * the first SG element is handled above.
8898                 */
8899                sg_entry_cnt = sg_head->entry_cnt - 1;
8900#if CC_VERY_LONG_SG_LIST
8901        }
8902#endif /* CC_VERY_LONG_SG_LIST */
8903        if (sg_entry_cnt != 0) {
8904                scsiq->q1.cntl |= QC_SG_HEAD;
8905                q_addr = ASC_QNO_TO_QADDR(q_no);
8906                sg_index = 1;
8907                scsiq->q1.sg_queue_cnt = sg_head->queue_cnt;
8908                scsi_sg_q.sg_head_qp = q_no;
8909                scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
8910                for (i = 0; i < sg_head->queue_cnt; i++) {
8911                        scsi_sg_q.seq_no = i + 1;
8912                        if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
8913                                sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
8914                                sg_entry_cnt -= ASC_SG_LIST_PER_Q;
8915                                if (i == 0) {
8916                                        scsi_sg_q.sg_list_cnt =
8917                                            ASC_SG_LIST_PER_Q;
8918                                        scsi_sg_q.sg_cur_list_cnt =
8919                                            ASC_SG_LIST_PER_Q;
8920                                } else {
8921                                        scsi_sg_q.sg_list_cnt =
8922                                            ASC_SG_LIST_PER_Q - 1;
8923                                        scsi_sg_q.sg_cur_list_cnt =
8924                                            ASC_SG_LIST_PER_Q - 1;
8925                                }
8926                        } else {
8927#if CC_VERY_LONG_SG_LIST
8928                                /*
8929                                 * This is the last SG queue in the list of
8930                                 * allocated SG queues. If there are more
8931                                 * SG elements than will fit in the allocated
8932                                 * queues, then set the QCSG_SG_XFER_MORE flag.
8933                                 */
8934                                if (sg_head->entry_cnt > ASC_MAX_SG_LIST) {
8935                                        scsi_sg_q.cntl |= QCSG_SG_XFER_MORE;
8936                                } else {
8937#endif /* CC_VERY_LONG_SG_LIST */
8938                                        scsi_sg_q.cntl |= QCSG_SG_XFER_END;
8939#if CC_VERY_LONG_SG_LIST
8940                                }
8941#endif /* CC_VERY_LONG_SG_LIST */
8942                                sg_list_dwords = sg_entry_cnt << 1;
8943                                if (i == 0) {
8944                                        scsi_sg_q.sg_list_cnt = sg_entry_cnt;
8945                                        scsi_sg_q.sg_cur_list_cnt =
8946                                            sg_entry_cnt;
8947                                } else {
8948                                        scsi_sg_q.sg_list_cnt =
8949                                            sg_entry_cnt - 1;
8950                                        scsi_sg_q.sg_cur_list_cnt =
8951                                            sg_entry_cnt - 1;
8952                                }
8953                                sg_entry_cnt = 0;
8954                        }
8955                        next_qp = AscReadLramByte(iop_base,
8956                                                  (ushort)(q_addr +
8957                                                           ASC_SCSIQ_B_FWD));
8958                        scsi_sg_q.q_no = next_qp;
8959                        q_addr = ASC_QNO_TO_QADDR(next_qp);
8960                        AscMemWordCopyPtrToLram(iop_base,
8961                                                q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
8962                                                (uchar *)&scsi_sg_q,
8963                                                sizeof(ASC_SG_LIST_Q) >> 1);
8964                        AscMemDWordCopyPtrToLram(iop_base,
8965                                                 q_addr + ASC_SGQ_LIST_BEG,
8966                                                 (uchar *)&sg_head->
8967                                                 sg_list[sg_index],
8968                                                 sg_list_dwords);
8969                        sg_index += ASC_SG_LIST_PER_Q;
8970                        scsiq->next_sg_index = sg_index;
8971                }
8972        } else {
8973                scsiq->q1.cntl &= ~QC_SG_HEAD;
8974        }
8975        sta = AscPutReadyQueue(asc_dvc, scsiq, q_no);
8976        scsiq->q1.data_addr = saved_data_addr;
8977        scsiq->q1.data_cnt = saved_data_cnt;
8978        return (sta);
8979}
8980
8981static int
8982AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required)
8983{
8984        PortAddr iop_base;
8985        uchar free_q_head;
8986        uchar next_qp;
8987        uchar tid_no;
8988        uchar target_ix;
8989        int sta;
8990
8991        iop_base = asc_dvc->iop_base;
8992        target_ix = scsiq->q2.target_ix;
8993        tid_no = ASC_TIX_TO_TID(target_ix);
8994        sta = 0;
8995        free_q_head = (uchar)AscGetVarFreeQHead(iop_base);
8996        if (n_q_required > 1) {
8997                next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head,
8998                                                    (uchar)n_q_required);
8999                if (next_qp != ASC_QLINK_END) {
9000                        asc_dvc->last_q_shortage = 0;
9001                        scsiq->sg_head->queue_cnt = n_q_required - 1;
9002                        scsiq->q1.q_no = free_q_head;
9003                        sta = AscPutReadySgListQueue(asc_dvc, scsiq,
9004                                                     free_q_head);
9005                }
9006        } else if (n_q_required == 1) {
9007                next_qp = AscAllocFreeQueue(iop_base, free_q_head);
9008                if (next_qp != ASC_QLINK_END) {
9009                        scsiq->q1.q_no = free_q_head;
9010                        sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head);
9011                }
9012        }
9013        if (sta == 1) {
9014                AscPutVarFreeQHead(iop_base, next_qp);
9015                asc_dvc->cur_total_qng += n_q_required;
9016                asc_dvc->cur_dvc_qng[tid_no]++;
9017        }
9018        return sta;
9019}
9020
9021#define ASC_SYN_OFFSET_ONE_DISABLE_LIST  16
9022static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = {
9023        INQUIRY,
9024        REQUEST_SENSE,
9025        READ_CAPACITY,
9026        READ_TOC,
9027        MODE_SELECT,
9028        MODE_SENSE,
9029        MODE_SELECT_10,
9030        MODE_SENSE_10,
9031        0xFF,
9032        0xFF,
9033        0xFF,
9034        0xFF,
9035        0xFF,
9036        0xFF,
9037        0xFF,
9038        0xFF
9039};
9040
9041static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq)
9042{
9043        PortAddr iop_base;
9044        int sta;
9045        int n_q_required;
9046        int disable_syn_offset_one_fix;
9047        int i;
9048        ASC_PADDR addr;
9049        ushort sg_entry_cnt = 0;
9050        ushort sg_entry_cnt_minus_one = 0;
9051        uchar target_ix;
9052        uchar tid_no;
9053        uchar sdtr_data;
9054        uchar extra_bytes;
9055        uchar scsi_cmd;
9056        uchar disable_cmd;
9057        ASC_SG_HEAD *sg_head;
9058        ASC_DCNT data_cnt;
9059
9060        iop_base = asc_dvc->iop_base;
9061        sg_head = scsiq->sg_head;
9062        if (asc_dvc->err_code != 0)
9063                return (ERR);
9064        scsiq->q1.q_no = 0;
9065        if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) {
9066                scsiq->q1.extra_bytes = 0;
9067        }
9068        sta = 0;
9069        target_ix = scsiq->q2.target_ix;
9070        tid_no = ASC_TIX_TO_TID(target_ix);
9071        n_q_required = 1;
9072        if (scsiq->cdbptr[0] == REQUEST_SENSE) {
9073                if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) {
9074                        asc_dvc->sdtr_done &= ~scsiq->q1.target_id;
9075                        sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
9076                        AscMsgOutSDTR(asc_dvc,
9077                                      asc_dvc->
9078                                      sdtr_period_tbl[(sdtr_data >> 4) &
9079                                                      (uchar)(asc_dvc->
9080                                                              max_sdtr_index -
9081                                                              1)],
9082                                      (uchar)(sdtr_data & (uchar)
9083                                              ASC_SYN_MAX_OFFSET));
9084                        scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT);
9085                }
9086        }
9087        if (asc_dvc->in_critical_cnt != 0) {
9088                AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY);
9089                return (ERR);
9090        }
9091        asc_dvc->in_critical_cnt++;
9092        if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
9093                if ((sg_entry_cnt = sg_head->entry_cnt) == 0) {
9094                        asc_dvc->in_critical_cnt--;
9095                        return (ERR);
9096                }
9097#if !CC_VERY_LONG_SG_LIST
9098                if (sg_entry_cnt > ASC_MAX_SG_LIST) {
9099                        asc_dvc->in_critical_cnt--;
9100                        return (ERR);
9101                }
9102#endif /* !CC_VERY_LONG_SG_LIST */
9103                if (sg_entry_cnt == 1) {
9104                        scsiq->q1.data_addr =
9105                            (ADV_PADDR)sg_head->sg_list[0].addr;
9106                        scsiq->q1.data_cnt =
9107                            (ADV_DCNT)sg_head->sg_list[0].bytes;
9108                        scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE);
9109                }
9110                sg_entry_cnt_minus_one = sg_entry_cnt - 1;
9111        }
9112        scsi_cmd = scsiq->cdbptr[0];
9113        disable_syn_offset_one_fix = FALSE;
9114        if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) &&
9115            !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) {
9116                if (scsiq->q1.cntl & QC_SG_HEAD) {
9117                        data_cnt = 0;
9118                        for (i = 0; i < sg_entry_cnt; i++) {
9119                                data_cnt +=
9120                                    (ADV_DCNT)le32_to_cpu(sg_head->sg_list[i].
9121                                                          bytes);
9122                        }
9123                } else {
9124                        data_cnt = le32_to_cpu(scsiq->q1.data_cnt);
9125                }
9126                if (data_cnt != 0UL) {
9127                        if (data_cnt < 512UL) {
9128                                disable_syn_offset_one_fix = TRUE;
9129                        } else {
9130                                for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST;
9131                                     i++) {
9132                                        disable_cmd =
9133                                            _syn_offset_one_disable_cmd[i];
9134                                        if (disable_cmd == 0xFF) {
9135                                                break;
9136                                        }
9137                                        if (scsi_cmd == disable_cmd) {
9138                                                disable_syn_offset_one_fix =
9139                                                    TRUE;
9140                                                break;
9141                                        }
9142                                }
9143                        }
9144                }
9145        }
9146        if (disable_syn_offset_one_fix) {
9147                scsiq->q2.tag_code &= ~MSG_SIMPLE_TAG;
9148                scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX |
9149                                       ASC_TAG_FLAG_DISABLE_DISCONNECT);
9150        } else {
9151                scsiq->q2.tag_code &= 0x27;
9152        }
9153        if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
9154                if (asc_dvc->bug_fix_cntl) {
9155                        if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
9156                                if ((scsi_cmd == READ_6) ||
9157                                    (scsi_cmd == READ_10)) {
9158                                        addr =
9159                                            (ADV_PADDR)le32_to_cpu(sg_head->
9160                                                                   sg_list
9161                                                                   [sg_entry_cnt_minus_one].
9162                                                                   addr) +
9163                                            (ADV_DCNT)le32_to_cpu(sg_head->
9164                                                                  sg_list
9165                                                                  [sg_entry_cnt_minus_one].
9166                                                                  bytes);
9167                                        extra_bytes =
9168                                            (uchar)((ushort)addr & 0x0003);
9169                                        if ((extra_bytes != 0)
9170                                            &&
9171                                            ((scsiq->q2.
9172                                              tag_code &
9173                                              ASC_TAG_FLAG_EXTRA_BYTES)
9174                                             == 0)) {
9175                                                scsiq->q2.tag_code |=
9176                                                    ASC_TAG_FLAG_EXTRA_BYTES;
9177                                                scsiq->q1.extra_bytes =
9178                                                    extra_bytes;
9179                                                data_cnt =
9180                                                    le32_to_cpu(sg_head->
9181                                                                sg_list
9182                                                                [sg_entry_cnt_minus_one].
9183                                                                bytes);
9184                                                data_cnt -=
9185                                                    (ASC_DCNT) extra_bytes;
9186                                                sg_head->
9187                                                    sg_list
9188                                                    [sg_entry_cnt_minus_one].
9189                                                    bytes =
9190                                                    cpu_to_le32(data_cnt);
9191                                        }
9192                                }
9193                        }
9194                }
9195                sg_head->entry_to_copy = sg_head->entry_cnt;
9196#if CC_VERY_LONG_SG_LIST
9197                /*
9198                 * Set the sg_entry_cnt to the maximum possible. The rest of
9199                 * the SG elements will be copied when the RISC completes the
9200                 * SG elements that fit and halts.
9201                 */
9202                if (sg_entry_cnt > ASC_MAX_SG_LIST) {
9203                        sg_entry_cnt = ASC_MAX_SG_LIST;
9204                }
9205#endif /* CC_VERY_LONG_SG_LIST */
9206                n_q_required = AscSgListToQueue(sg_entry_cnt);
9207                if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >=
9208                     (uint) n_q_required)
9209                    || ((scsiq->q1.cntl & QC_URGENT) != 0)) {
9210                        if ((sta =
9211                             AscSendScsiQueue(asc_dvc, scsiq,
9212                                              n_q_required)) == 1) {
9213                                asc_dvc->in_critical_cnt--;
9214                                return (sta);
9215                        }
9216                }
9217        } else {
9218                if (asc_dvc->bug_fix_cntl) {
9219                        if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
9220                                if ((scsi_cmd == READ_6) ||
9221                                    (scsi_cmd == READ_10)) {
9222                                        addr =
9223                                            le32_to_cpu(scsiq->q1.data_addr) +
9224                                            le32_to_cpu(scsiq->q1.data_cnt);
9225                                        extra_bytes =
9226                                            (uchar)((ushort)addr & 0x0003);
9227                                        if ((extra_bytes != 0)
9228                                            &&
9229                                            ((scsiq->q2.
9230                                              tag_code &
9231                                              ASC_TAG_FLAG_EXTRA_BYTES)
9232                                             == 0)) {
9233                                                data_cnt =
9234                                                    le32_to_cpu(scsiq->q1.
9235                                                                data_cnt);
9236                                                if (((ushort)data_cnt & 0x01FF)
9237                                                    == 0) {
9238                                                        scsiq->q2.tag_code |=
9239                                                            ASC_TAG_FLAG_EXTRA_BYTES;
9240                                                        data_cnt -= (ASC_DCNT)
9241                                                            extra_bytes;
9242                                                        scsiq->q1.data_cnt =
9243                                                            cpu_to_le32
9244                                                            (data_cnt);
9245                                                        scsiq->q1.extra_bytes =
9246                                                            extra_bytes;
9247                                                }
9248                                        }
9249                                }
9250                        }
9251                }
9252                n_q_required = 1;
9253                if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) ||
9254                    ((scsiq->q1.cntl & QC_URGENT) != 0)) {
9255                        if ((sta = AscSendScsiQueue(asc_dvc, scsiq,
9256                                                    n_q_required)) == 1) {
9257                                asc_dvc->in_critical_cnt--;
9258                                return (sta);
9259                        }
9260                }
9261        }
9262        asc_dvc->in_critical_cnt--;
9263        return (sta);
9264}
9265
9266/*
9267 * AdvExeScsiQueue() - Send a request to the RISC microcode program.
9268 *
9269 *   Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
9270 *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
9271 *   RISC to notify it a new command is ready to be executed.
9272 *
9273 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
9274 * set to SCSI_MAX_RETRY.
9275 *
9276 * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the microcode
9277 * for DMA addresses or math operations are byte swapped to little-endian
9278 * order.
9279 *
9280 * Return:
9281 *      ADV_SUCCESS(1) - The request was successfully queued.
9282 *      ADV_BUSY(0) -    Resource unavailable; Retry again after pending
9283 *                       request completes.
9284 *      ADV_ERROR(-1) -  Invalid ADV_SCSI_REQ_Q request structure
9285 *                       host IC error.
9286 */
9287static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, ADV_SCSI_REQ_Q *scsiq)
9288{
9289        AdvPortAddr iop_base;
9290        ADV_PADDR req_paddr;
9291        ADV_CARR_T *new_carrp;
9292
9293        /*
9294         * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
9295         */
9296        if (scsiq->target_id > ADV_MAX_TID) {
9297                scsiq->host_status = QHSTA_M_INVALID_DEVICE;
9298                scsiq->done_status = QD_WITH_ERROR;
9299                return ADV_ERROR;
9300        }
9301
9302        iop_base = asc_dvc->iop_base;
9303
9304        /*
9305         * Allocate a carrier ensuring at least one carrier always
9306         * remains on the freelist and initialize fields.
9307         */
9308        if ((new_carrp = asc_dvc->carr_freelist) == NULL) {
9309                return ADV_BUSY;
9310        }
9311        asc_dvc->carr_freelist = (ADV_CARR_T *)
9312            ADV_U32_TO_VADDR(le32_to_cpu(new_carrp->next_vpa));
9313        asc_dvc->carr_pending_cnt++;
9314
9315        /*
9316         * Set the carrier to be a stopper by setting 'next_vpa'
9317         * to the stopper value. The current stopper will be changed
9318         * below to point to the new stopper.
9319         */
9320        new_carrp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
9321
9322        /*
9323         * Clear the ADV_SCSI_REQ_Q done flag.
9324         */
9325        scsiq->a_flag &= ~ADV_SCSIQ_DONE;
9326
9327        req_paddr = virt_to_bus(scsiq);
9328        BUG_ON(req_paddr & 31);
9329        /* Wait for assertion before making little-endian */
9330        req_paddr = cpu_to_le32(req_paddr);
9331
9332        /* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
9333        scsiq->scsiq_ptr = cpu_to_le32(ADV_VADDR_TO_U32(scsiq));
9334        scsiq->scsiq_rptr = req_paddr;
9335
9336        scsiq->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->icq_sp));
9337        /*
9338         * Every ADV_CARR_T.carr_pa is byte swapped to little-endian
9339         * order during initialization.
9340         */
9341        scsiq->carr_pa = asc_dvc->icq_sp->carr_pa;
9342
9343        /*
9344         * Use the current stopper to send the ADV_SCSI_REQ_Q command to
9345         * the microcode. The newly allocated stopper will become the new
9346         * stopper.
9347         */
9348        asc_dvc->icq_sp->areq_vpa = req_paddr;
9349
9350        /*
9351         * Set the 'next_vpa' pointer for the old stopper to be the
9352         * physical address of the new stopper. The RISC can only
9353         * follow physical addresses.
9354         */
9355        asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa;
9356
9357        /*
9358         * Set the host adapter stopper pointer to point to the new carrier.
9359         */
9360        asc_dvc->icq_sp = new_carrp;
9361
9362        if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
9363            asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
9364                /*
9365                 * Tickle the RISC to tell it to read its Command Queue Head pointer.
9366                 */
9367                AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A);
9368                if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
9369                        /*
9370                         * Clear the tickle value. In the ASC-3550 the RISC flag
9371                         * command 'clr_tickle_a' does not work unless the host
9372                         * value is cleared.
9373                         */
9374                        AdvWriteByteRegister(iop_base, IOPB_TICKLE,
9375                                             ADV_TICKLE_NOP);
9376                }
9377        } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
9378                /*
9379                 * Notify the RISC a carrier is ready by writing the physical
9380                 * address of the new carrier stopper to the COMMA register.
9381                 */
9382                AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
9383                                      le32_to_cpu(new_carrp->carr_pa));
9384        }
9385
9386        return ADV_SUCCESS;
9387}
9388
9389/*
9390 * Execute a single 'Scsi_Cmnd'.
9391 */
9392static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp)
9393{
9394        int ret, err_code;
9395        struct asc_board *boardp = shost_priv(scp->device->host);
9396
9397        ASC_DBG(1, "scp 0x%p\n", scp);
9398
9399        if (ASC_NARROW_BOARD(boardp)) {
9400                ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
9401                struct asc_scsi_q asc_scsi_q;
9402
9403                /* asc_build_req() can not return ASC_BUSY. */
9404                ret = asc_build_req(boardp, scp, &asc_scsi_q);
9405                if (ret == ASC_ERROR) {
9406                        ASC_STATS(scp->device->host, build_error);
9407                        return ASC_ERROR;
9408                }
9409
9410                ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q);
9411                kfree(asc_scsi_q.sg_head);
9412                err_code = asc_dvc->err_code;
9413        } else {
9414                ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
9415                ADV_SCSI_REQ_Q *adv_scsiqp;
9416
9417                switch (adv_build_req(boardp, scp, &adv_scsiqp)) {
9418                case ASC_NOERROR:
9419                        ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
9420                        break;
9421                case ASC_BUSY:
9422                        ASC_DBG(1, "adv_build_req ASC_BUSY\n");
9423                        /*
9424                         * The asc_stats fields 'adv_build_noreq' and
9425                         * 'adv_build_nosg' count wide board busy conditions.
9426                         * They are updated in adv_build_req and
9427                         * adv_get_sglist, respectively.
9428                         */
9429                        return ASC_BUSY;
9430                case ASC_ERROR:
9431                default:
9432                        ASC_DBG(1, "adv_build_req ASC_ERROR\n");
9433                        ASC_STATS(scp->device->host, build_error);
9434                        return ASC_ERROR;
9435                }
9436
9437                ret = AdvExeScsiQueue(adv_dvc, adv_scsiqp);
9438                err_code = adv_dvc->err_code;
9439        }
9440
9441        switch (ret) {
9442        case ASC_NOERROR:
9443                ASC_STATS(scp->device->host, exe_noerror);
9444                /*
9445                 * Increment monotonically increasing per device
9446                 * successful request counter. Wrapping doesn't matter.
9447                 */
9448                boardp->reqcnt[scp->device->id]++;
9449                ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
9450                break;
9451        case ASC_BUSY:
9452                ASC_STATS(scp->device->host, exe_busy);
9453                break;
9454        case ASC_ERROR:
9455                scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, "
9456                        "err_code 0x%x\n", err_code);
9457                ASC_STATS(scp->device->host, exe_error);
9458                scp->result = HOST_BYTE(DID_ERROR);
9459                break;
9460        default:
9461                scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, "
9462                        "err_code 0x%x\n", err_code);
9463                ASC_STATS(scp->device->host, exe_unknown);
9464                scp->result = HOST_BYTE(DID_ERROR);
9465                break;
9466        }
9467
9468        ASC_DBG(1, "end\n");
9469        return ret;
9470}
9471
9472/*
9473 * advansys_queuecommand() - interrupt-driven I/O entrypoint.
9474 *
9475 * This function always returns 0. Command return status is saved
9476 * in the 'scp' result field.
9477 */
9478static int
9479advansys_queuecommand(struct scsi_cmnd *scp, void (*done)(struct scsi_cmnd *))
9480{
9481        struct Scsi_Host *shost = scp->device->host;
9482        int asc_res, result = 0;
9483
9484        ASC_STATS(shost, queuecommand);
9485        scp->scsi_done = done;
9486
9487        asc_res = asc_execute_scsi_cmnd(scp);
9488
9489        switch (asc_res) {
9490        case ASC_NOERROR:
9491                break;
9492        case ASC_BUSY:
9493                result = SCSI_MLQUEUE_HOST_BUSY;
9494                break;
9495        case ASC_ERROR:
9496        default:
9497                asc_scsi_done(scp);
9498                break;
9499        }
9500
9501        return result;
9502}
9503
9504static ushort __devinit AscGetEisaChipCfg(PortAddr iop_base)
9505{
9506        PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
9507            (PortAddr) (ASC_EISA_CFG_IOP_MASK);
9508        return inpw(eisa_cfg_iop);
9509}
9510
9511/*
9512 * Return the BIOS address of the adapter at the specified
9513 * I/O port and with the specified bus type.
9514 */
9515static unsigned short __devinit
9516AscGetChipBiosAddress(PortAddr iop_base, unsigned short bus_type)
9517{
9518        unsigned short cfg_lsw;
9519        unsigned short bios_addr;
9520
9521        /*
9522         * The PCI BIOS is re-located by the motherboard BIOS. Because
9523         * of this the driver can not determine where a PCI BIOS is
9524         * loaded and executes.
9525         */
9526        if (bus_type & ASC_IS_PCI)
9527                return 0;
9528
9529        if ((bus_type & ASC_IS_EISA) != 0) {
9530                cfg_lsw = AscGetEisaChipCfg(iop_base);
9531                cfg_lsw &= 0x000F;
9532                bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE;
9533                return bios_addr;
9534        }
9535
9536        cfg_lsw = AscGetChipCfgLsw(iop_base);
9537
9538        /*
9539         *  ISA PnP uses the top bit as the 32K BIOS flag
9540         */
9541        if (bus_type == ASC_IS_ISAPNP)
9542                cfg_lsw &= 0x7FFF;
9543        bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE;
9544        return bios_addr;
9545}
9546
9547static uchar __devinit AscSetChipScsiID(PortAddr iop_base, uchar new_host_id)
9548{
9549        ushort cfg_lsw;
9550
9551        if (AscGetChipScsiID(iop_base) == new_host_id) {
9552                return (new_host_id);
9553        }
9554        cfg_lsw = AscGetChipCfgLsw(iop_base);
9555        cfg_lsw &= 0xF8FF;
9556        cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8);
9557        AscSetChipCfgLsw(iop_base, cfg_lsw);
9558        return (AscGetChipScsiID(iop_base));
9559}
9560
9561static unsigned char __devinit AscGetChipScsiCtrl(PortAddr iop_base)
9562{
9563        unsigned char sc;
9564
9565        AscSetBank(iop_base, 1);
9566        sc = inp(iop_base + IOP_REG_SC);
9567        AscSetBank(iop_base, 0);
9568        return sc;
9569}
9570
9571static unsigned char __devinit
9572AscGetChipVersion(PortAddr iop_base, unsigned short bus_type)
9573{
9574        if (bus_type & ASC_IS_EISA) {
9575                PortAddr eisa_iop;
9576                unsigned char revision;
9577                eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
9578                    (PortAddr) ASC_EISA_REV_IOP_MASK;
9579                revision = inp(eisa_iop);
9580                return ASC_CHIP_MIN_VER_EISA - 1 + revision;
9581        }
9582        return AscGetChipVerNo(iop_base);
9583}
9584
9585#ifdef CONFIG_ISA
9586static void __devinit AscEnableIsaDma(uchar dma_channel)
9587{
9588        if (dma_channel < 4) {
9589                outp(0x000B, (ushort)(0xC0 | dma_channel));
9590                outp(0x000A, dma_channel);
9591        } else if (dma_channel < 8) {
9592                outp(0x00D6, (ushort)(0xC0 | (dma_channel - 4)));
9593                outp(0x00D4, (ushort)(dma_channel - 4));
9594        }
9595}
9596#endif /* CONFIG_ISA */
9597
9598static int AscStopQueueExe(PortAddr iop_base)
9599{
9600        int count = 0;
9601
9602        if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) {
9603                AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
9604                                 ASC_STOP_REQ_RISC_STOP);
9605                do {
9606                        if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) &
9607                            ASC_STOP_ACK_RISC_STOP) {
9608                                return (1);
9609                        }
9610                        mdelay(100);
9611                } while (count++ < 20);
9612        }
9613        return (0);
9614}
9615
9616static ASC_DCNT __devinit AscGetMaxDmaCount(ushort bus_type)
9617{
9618        if (bus_type & ASC_IS_ISA)
9619                return ASC_MAX_ISA_DMA_COUNT;
9620        else if (bus_type & (ASC_IS_EISA | ASC_IS_VL))
9621                return ASC_MAX_VL_DMA_COUNT;
9622        return ASC_MAX_PCI_DMA_COUNT;
9623}
9624
9625#ifdef CONFIG_ISA
9626static ushort __devinit AscGetIsaDmaChannel(PortAddr iop_base)
9627{
9628        ushort channel;
9629
9630        channel = AscGetChipCfgLsw(iop_base) & 0x0003;
9631        if (channel == 0x03)
9632                return (0);
9633        else if (channel == 0x00)
9634                return (7);
9635        return (channel + 4);
9636}
9637
9638static ushort __devinit AscSetIsaDmaChannel(PortAddr iop_base, ushort dma_channel)
9639{
9640        ushort cfg_lsw;
9641        uchar value;
9642
9643        if ((dma_channel >= 5) && (dma_channel <= 7)) {
9644                if (dma_channel == 7)
9645                        value = 0x00;
9646                else
9647                        value = dma_channel - 4;
9648                cfg_lsw = AscGetChipCfgLsw(iop_base) & 0xFFFC;
9649                cfg_lsw |= value;
9650                AscSetChipCfgLsw(iop_base, cfg_lsw);
9651                return (AscGetIsaDmaChannel(iop_base));
9652        }
9653        return 0;
9654}
9655
9656static uchar __devinit AscGetIsaDmaSpeed(PortAddr iop_base)
9657{
9658        uchar speed_value;
9659
9660        AscSetBank(iop_base, 1);
9661        speed_value = AscReadChipDmaSpeed(iop_base);
9662        speed_value &= 0x07;
9663        AscSetBank(iop_base, 0);
9664        return speed_value;
9665}
9666
9667static uchar __devinit AscSetIsaDmaSpeed(PortAddr iop_base, uchar speed_value)
9668{
9669        speed_value &= 0x07;
9670        AscSetBank(iop_base, 1);
9671        AscWriteChipDmaSpeed(iop_base, speed_value);
9672        AscSetBank(iop_base, 0);
9673        return AscGetIsaDmaSpeed(iop_base);
9674}
9675#endif /* CONFIG_ISA */
9676
9677static ushort __devinit AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc)
9678{
9679        int i;
9680        PortAddr iop_base;
9681        ushort warn_code;
9682        uchar chip_version;
9683
9684        iop_base = asc_dvc->iop_base;
9685        warn_code = 0;
9686        asc_dvc->err_code = 0;
9687        if ((asc_dvc->bus_type &
9688             (ASC_IS_ISA | ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) {
9689                asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE;
9690        }
9691        AscSetChipControl(iop_base, CC_HALT);
9692        AscSetChipStatus(iop_base, 0);
9693        asc_dvc->bug_fix_cntl = 0;
9694        asc_dvc->pci_fix_asyn_xfer = 0;
9695        asc_dvc->pci_fix_asyn_xfer_always = 0;
9696        /* asc_dvc->init_state initalized in AscInitGetConfig(). */
9697        asc_dvc->sdtr_done = 0;
9698        asc_dvc->cur_total_qng = 0;
9699        asc_dvc->is_in_int = 0;
9700        asc_dvc->in_critical_cnt = 0;
9701        asc_dvc->last_q_shortage = 0;
9702        asc_dvc->use_tagged_qng = 0;
9703        asc_dvc->no_scam = 0;
9704        asc_dvc->unit_not_ready = 0;
9705        asc_dvc->queue_full_or_busy = 0;
9706        asc_dvc->redo_scam = 0;
9707        asc_dvc->res2 = 0;
9708        asc_dvc->min_sdtr_index = 0;
9709        asc_dvc->cfg->can_tagged_qng = 0;
9710        asc_dvc->cfg->cmd_qng_enabled = 0;
9711        asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL;
9712        asc_dvc->init_sdtr = 0;
9713        asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG;
9714        asc_dvc->scsi_reset_wait = 3;
9715        asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET;
9716        asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type);
9717        asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET;
9718        asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET;
9719        asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID;
9720        chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type);
9721        asc_dvc->cfg->chip_version = chip_version;
9722        asc_dvc->sdtr_period_tbl = asc_syn_xfer_period;
9723        asc_dvc->max_sdtr_index = 7;
9724        if ((asc_dvc->bus_type & ASC_IS_PCI) &&
9725            (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) {
9726                asc_dvc->bus_type = ASC_IS_PCI_ULTRA;
9727                asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period;
9728                asc_dvc->max_sdtr_index = 15;
9729                if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) {
9730                        AscSetExtraControl(iop_base,
9731                                           (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
9732                } else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) {
9733                        AscSetExtraControl(iop_base,
9734                                           (SEC_ACTIVE_NEGATE |
9735                                            SEC_ENABLE_FILTER));
9736                }
9737        }
9738        if (asc_dvc->bus_type == ASC_IS_PCI) {
9739                AscSetExtraControl(iop_base,
9740                                   (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
9741        }
9742
9743        asc_dvc->cfg->isa_dma_speed = ASC_DEF_ISA_DMA_SPEED;
9744#ifdef CONFIG_ISA
9745        if ((asc_dvc->bus_type & ASC_IS_ISA) != 0) {
9746                if (chip_version >= ASC_CHIP_MIN_VER_ISA_PNP) {
9747                        AscSetChipIFC(iop_base, IFC_INIT_DEFAULT);
9748                        asc_dvc->bus_type = ASC_IS_ISAPNP;
9749                }
9750                asc_dvc->cfg->isa_dma_channel =
9751                    (uchar)AscGetIsaDmaChannel(iop_base);
9752        }
9753#endif /* CONFIG_ISA */
9754        for (i = 0; i <= ASC_MAX_TID; i++) {
9755                asc_dvc->cur_dvc_qng[i] = 0;
9756                asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG;
9757                asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L;
9758                asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L;
9759                asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG;
9760        }
9761        return warn_code;
9762}
9763
9764static int __devinit AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg)
9765{
9766        int retry;
9767
9768        for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) {
9769                unsigned char read_back;
9770                AscSetChipEEPCmd(iop_base, cmd_reg);
9771                mdelay(1);
9772                read_back = AscGetChipEEPCmd(iop_base);
9773                if (read_back == cmd_reg)
9774                        return 1;
9775        }
9776        return 0;
9777}
9778
9779static void __devinit AscWaitEEPRead(void)
9780{
9781        mdelay(1);
9782}
9783
9784static ushort __devinit AscReadEEPWord(PortAddr iop_base, uchar addr)
9785{
9786        ushort read_wval;
9787        uchar cmd_reg;
9788
9789        AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
9790        AscWaitEEPRead();
9791        cmd_reg = addr | ASC_EEP_CMD_READ;
9792        AscWriteEEPCmdReg(iop_base, cmd_reg);
9793        AscWaitEEPRead();
9794        read_wval = AscGetChipEEPData(iop_base);
9795        AscWaitEEPRead();
9796        return read_wval;
9797}
9798
9799static ushort __devinit
9800AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, ushort bus_type)
9801{
9802        ushort wval;
9803        ushort sum;
9804        ushort *wbuf;
9805        int cfg_beg;
9806        int cfg_end;
9807        int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
9808        int s_addr;
9809
9810        wbuf = (ushort *)cfg_buf;
9811        sum = 0;
9812        /* Read two config words; Byte-swapping done by AscReadEEPWord(). */
9813        for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9814                *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
9815                sum += *wbuf;
9816        }
9817        if (bus_type & ASC_IS_VL) {
9818                cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9819                cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9820        } else {
9821                cfg_beg = ASC_EEP_DVC_CFG_BEG;
9822                cfg_end = ASC_EEP_MAX_DVC_ADDR;
9823        }
9824        for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9825                wval = AscReadEEPWord(iop_base, (uchar)s_addr);
9826                if (s_addr <= uchar_end_in_config) {
9827                        /*
9828                         * Swap all char fields - must unswap bytes already swapped
9829                         * by AscReadEEPWord().
9830                         */
9831                        *wbuf = le16_to_cpu(wval);
9832                } else {
9833                        /* Don't swap word field at the end - cntl field. */
9834                        *wbuf = wval;
9835                }
9836                sum += wval;    /* Checksum treats all EEPROM data as words. */
9837        }
9838        /*
9839         * Read the checksum word which will be compared against 'sum'
9840         * by the caller. Word field already swapped.
9841         */
9842        *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
9843        return sum;
9844}
9845
9846static int __devinit AscTestExternalLram(ASC_DVC_VAR *asc_dvc)
9847{
9848        PortAddr iop_base;
9849        ushort q_addr;
9850        ushort saved_word;
9851        int sta;
9852
9853        iop_base = asc_dvc->iop_base;
9854        sta = 0;
9855        q_addr = ASC_QNO_TO_QADDR(241);
9856        saved_word = AscReadLramWord(iop_base, q_addr);
9857        AscSetChipLramAddr(iop_base, q_addr);
9858        AscSetChipLramData(iop_base, 0x55AA);
9859        mdelay(10);
9860        AscSetChipLramAddr(iop_base, q_addr);
9861        if (AscGetChipLramData(iop_base) == 0x55AA) {
9862                sta = 1;
9863                AscWriteLramWord(iop_base, q_addr, saved_word);
9864        }
9865        return (sta);
9866}
9867
9868static void __devinit AscWaitEEPWrite(void)
9869{
9870        mdelay(20);
9871}
9872
9873static int __devinit AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg)
9874{
9875        ushort read_back;
9876        int retry;
9877
9878        retry = 0;
9879        while (TRUE) {
9880                AscSetChipEEPData(iop_base, data_reg);
9881                mdelay(1);
9882                read_back = AscGetChipEEPData(iop_base);
9883                if (read_back == data_reg) {
9884                        return (1);
9885                }
9886                if (retry++ > ASC_EEP_MAX_RETRY) {
9887                        return (0);
9888                }
9889        }
9890}
9891
9892static ushort __devinit
9893AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val)
9894{
9895        ushort read_wval;
9896
9897        read_wval = AscReadEEPWord(iop_base, addr);
9898        if (read_wval != word_val) {
9899                AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE);
9900                AscWaitEEPRead();
9901                AscWriteEEPDataReg(iop_base, word_val);
9902                AscWaitEEPRead();
9903                AscWriteEEPCmdReg(iop_base,
9904                                  (uchar)((uchar)ASC_EEP_CMD_WRITE | addr));
9905                AscWaitEEPWrite();
9906                AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
9907                AscWaitEEPRead();
9908                return (AscReadEEPWord(iop_base, addr));
9909        }
9910        return (read_wval);
9911}
9912
9913static int __devinit
9914AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, ushort bus_type)
9915{
9916        int n_error;
9917        ushort *wbuf;
9918        ushort word;
9919        ushort sum;
9920        int s_addr;
9921        int cfg_beg;
9922        int cfg_end;
9923        int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
9924
9925        wbuf = (ushort *)cfg_buf;
9926        n_error = 0;
9927        sum = 0;
9928        /* Write two config words; AscWriteEEPWord() will swap bytes. */
9929        for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9930                sum += *wbuf;
9931                if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9932                        n_error++;
9933                }
9934        }
9935        if (bus_type & ASC_IS_VL) {
9936                cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9937                cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9938        } else {
9939                cfg_beg = ASC_EEP_DVC_CFG_BEG;
9940                cfg_end = ASC_EEP_MAX_DVC_ADDR;
9941        }
9942        for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9943                if (s_addr <= uchar_end_in_config) {
9944                        /*
9945                         * This is a char field. Swap char fields before they are
9946                         * swapped again by AscWriteEEPWord().
9947                         */
9948                        word = cpu_to_le16(*wbuf);
9949                        if (word !=
9950                            AscWriteEEPWord(iop_base, (uchar)s_addr, word)) {
9951                                n_error++;
9952                        }
9953                } else {
9954                        /* Don't swap word field at the end - cntl field. */
9955                        if (*wbuf !=
9956                            AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9957                                n_error++;
9958                        }
9959                }
9960                sum += *wbuf;   /* Checksum calculated from word values. */
9961        }
9962        /* Write checksum word. It will be swapped by AscWriteEEPWord(). */
9963        *wbuf = sum;
9964        if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) {
9965                n_error++;
9966        }
9967
9968        /* Read EEPROM back again. */
9969        wbuf = (ushort *)cfg_buf;
9970        /*
9971         * Read two config words; Byte-swapping done by AscReadEEPWord().
9972         */
9973        for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9974                if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) {
9975                        n_error++;
9976                }
9977        }
9978        if (bus_type & ASC_IS_VL) {
9979                cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9980                cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9981        } else {
9982                cfg_beg = ASC_EEP_DVC_CFG_BEG;
9983                cfg_end = ASC_EEP_MAX_DVC_ADDR;
9984        }
9985        for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9986                if (s_addr <= uchar_end_in_config) {
9987                        /*
9988                         * Swap all char fields. Must unswap bytes already swapped
9989                         * by AscReadEEPWord().
9990                         */
9991                        word =
9992                            le16_to_cpu(AscReadEEPWord
9993                                        (iop_base, (uchar)s_addr));
9994                } else {
9995                        /* Don't swap word field at the end - cntl field. */
9996                        word = AscReadEEPWord(iop_base, (uchar)s_addr);
9997                }
9998                if (*wbuf != word) {
9999                        n_error++;
10000                }
10001        }
10002        /* Read checksum; Byte swapping not needed. */
10003        if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) {
10004                n_error++;
10005        }
10006        return n_error;
10007}
10008
10009static int __devinit
10010AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, ushort bus_type)
10011{
10012        int retry;
10013        int n_error;
10014
10015        retry = 0;
10016        while (TRUE) {
10017                if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf,
10018                                                   bus_type)) == 0) {
10019                        break;
10020                }
10021                if (++retry > ASC_EEP_MAX_RETRY) {
10022                        break;
10023                }
10024        }
10025        return n_error;
10026}
10027
10028static ushort __devinit AscInitFromEEP(ASC_DVC_VAR *asc_dvc)
10029{
10030        ASCEEP_CONFIG eep_config_buf;
10031        ASCEEP_CONFIG *eep_config;
10032        PortAddr iop_base;
10033        ushort chksum;
10034        ushort warn_code;
10035        ushort cfg_msw, cfg_lsw;
10036        int i;
10037        int write_eep = 0;
10038
10039        iop_base = asc_dvc->iop_base;
10040        warn_code = 0;
10041        AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE);
10042        AscStopQueueExe(iop_base);
10043        if ((AscStopChip(iop_base) == FALSE) ||
10044            (AscGetChipScsiCtrl(iop_base) != 0)) {
10045                asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE;
10046                AscResetChipAndScsiBus(asc_dvc);
10047                mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
10048        }
10049        if (AscIsChipHalted(iop_base) == FALSE) {
10050                asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
10051                return (warn_code);
10052        }
10053        AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
10054        if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
10055                asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
10056                return (warn_code);
10057        }
10058        eep_config = (ASCEEP_CONFIG *)&eep_config_buf;
10059        cfg_msw = AscGetChipCfgMsw(iop_base);
10060        cfg_lsw = AscGetChipCfgLsw(iop_base);
10061        if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
10062                cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
10063                warn_code |= ASC_WARN_CFG_MSW_RECOVER;
10064                AscSetChipCfgMsw(iop_base, cfg_msw);
10065        }
10066        chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type);
10067        ASC_DBG(1, "chksum 0x%x\n", chksum);
10068        if (chksum == 0) {
10069                chksum = 0xaa55;
10070        }
10071        if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
10072                warn_code |= ASC_WARN_AUTO_CONFIG;
10073                if (asc_dvc->cfg->chip_version == 3) {
10074                        if (eep_config->cfg_lsw != cfg_lsw) {
10075                                warn_code |= ASC_WARN_EEPROM_RECOVER;
10076                                eep_config->cfg_lsw =
10077                                    AscGetChipCfgLsw(iop_base);
10078                        }
10079                        if (eep_config->cfg_msw != cfg_msw) {
10080                                warn_code |= ASC_WARN_EEPROM_RECOVER;
10081                                eep_config->cfg_msw =
10082                                    AscGetChipCfgMsw(iop_base);
10083                        }
10084                }
10085        }
10086        eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
10087        eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON;
10088        ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum);
10089        if (chksum != eep_config->chksum) {
10090                if (AscGetChipVersion(iop_base, asc_dvc->bus_type) ==
10091                    ASC_CHIP_VER_PCI_ULTRA_3050) {
10092                        ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
10093                        eep_config->init_sdtr = 0xFF;
10094                        eep_config->disc_enable = 0xFF;
10095                        eep_config->start_motor = 0xFF;
10096                        eep_config->use_cmd_qng = 0;
10097                        eep_config->max_total_qng = 0xF0;
10098                        eep_config->max_tag_qng = 0x20;
10099                        eep_config->cntl = 0xBFFF;
10100                        ASC_EEP_SET_CHIP_ID(eep_config, 7);
10101                        eep_config->no_scam = 0;
10102                        eep_config->adapter_info[0] = 0;
10103                        eep_config->adapter_info[1] = 0;
10104                        eep_config->adapter_info[2] = 0;
10105                        eep_config->adapter_info[3] = 0;
10106                        eep_config->adapter_info[4] = 0;
10107                        /* Indicate EEPROM-less board. */
10108                        eep_config->adapter_info[5] = 0xBB;
10109                } else {
10110                        ASC_PRINT
10111                            ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
10112                        write_eep = 1;
10113                        warn_code |= ASC_WARN_EEPROM_CHKSUM;
10114                }
10115        }
10116        asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr;
10117        asc_dvc->cfg->disc_enable = eep_config->disc_enable;
10118        asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng;
10119        asc_dvc->cfg->isa_dma_speed = ASC_EEP_GET_DMA_SPD(eep_config);
10120        asc_dvc->start_motor = eep_config->start_motor;
10121        asc_dvc->dvc_cntl = eep_config->cntl;
10122        asc_dvc->no_scam = eep_config->no_scam;
10123        asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0];
10124        asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1];
10125        asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2];
10126        asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3];
10127        asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4];
10128        asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5];
10129        if (!AscTestExternalLram(asc_dvc)) {
10130                if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) ==
10131                     ASC_IS_PCI_ULTRA)) {
10132                        eep_config->max_total_qng =
10133                            ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG;
10134                        eep_config->max_tag_qng =
10135                            ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG;
10136                } else {
10137                        eep_config->cfg_msw |= 0x0800;
10138                        cfg_msw |= 0x0800;
10139                        AscSetChipCfgMsw(iop_base, cfg_msw);
10140                        eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG;
10141                        eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG;
10142                }
10143        } else {
10144        }
10145        if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) {
10146                eep_config->max_total_qng = ASC_MIN_TOTAL_QNG;
10147        }
10148        if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) {
10149                eep_config->max_total_qng = ASC_MAX_TOTAL_QNG;
10150        }
10151        if (eep_config->max_tag_qng > eep_config->max_total_qng) {
10152                eep_config->max_tag_qng = eep_config->max_total_qng;
10153        }
10154        if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) {
10155                eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC;
10156        }
10157        asc_dvc->max_total_qng = eep_config->max_total_qng;
10158        if ((eep_config->use_cmd_qng & eep_config->disc_enable) !=
10159            eep_config->use_cmd_qng) {
10160                eep_config->disc_enable = eep_config->use_cmd_qng;
10161                warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
10162        }
10163        ASC_EEP_SET_CHIP_ID(eep_config,
10164                            ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID);
10165        asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config);
10166        if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) &&
10167            !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) {
10168                asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX;
10169        }
10170
10171        for (i = 0; i <= ASC_MAX_TID; i++) {
10172                asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i];
10173                asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng;
10174                asc_dvc->cfg->sdtr_period_offset[i] =
10175                    (uchar)(ASC_DEF_SDTR_OFFSET |
10176                            (asc_dvc->min_sdtr_index << 4));
10177        }
10178        eep_config->cfg_msw = AscGetChipCfgMsw(iop_base);
10179        if (write_eep) {
10180                if ((i = AscSetEEPConfig(iop_base, eep_config,
10181                                     asc_dvc->bus_type)) != 0) {
10182                        ASC_PRINT1
10183                            ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
10184                             i);
10185                } else {
10186                        ASC_PRINT
10187                            ("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
10188                }
10189        }
10190        return (warn_code);
10191}
10192
10193static int __devinit AscInitGetConfig(struct Scsi_Host *shost)
10194{
10195        struct asc_board *board = shost_priv(shost);
10196        ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
10197        unsigned short warn_code = 0;
10198
10199        asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG;
10200        if (asc_dvc->err_code != 0)
10201                return asc_dvc->err_code;
10202
10203        if (AscFindSignature(asc_dvc->iop_base)) {
10204                warn_code |= AscInitAscDvcVar(asc_dvc);
10205                warn_code |= AscInitFromEEP(asc_dvc);
10206                asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG;
10207                if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT)
10208                        asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT;
10209        } else {
10210                asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
10211        }
10212
10213        switch (warn_code) {
10214        case 0: /* No error */
10215                break;
10216        case ASC_WARN_IO_PORT_ROTATE:
10217                shost_printk(KERN_WARNING, shost, "I/O port address "
10218                                "modified\n");
10219                break;
10220        case ASC_WARN_AUTO_CONFIG:
10221                shost_printk(KERN_WARNING, shost, "I/O port increment switch "
10222                                "enabled\n");
10223                break;
10224        case ASC_WARN_EEPROM_CHKSUM:
10225                shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
10226                break;
10227        case ASC_WARN_IRQ_MODIFIED:
10228                shost_printk(KERN_WARNING, shost, "IRQ modified\n");
10229                break;
10230        case ASC_WARN_CMD_QNG_CONFLICT:
10231                shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o "
10232                                "disconnects\n");
10233                break;
10234        default:
10235                shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
10236                                warn_code);
10237                break;
10238        }
10239
10240        if (asc_dvc->err_code != 0)
10241                shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
10242                        "0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
10243
10244        return asc_dvc->err_code;
10245}
10246
10247static int __devinit AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
10248{
10249        struct asc_board *board = shost_priv(shost);
10250        ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
10251        PortAddr iop_base = asc_dvc->iop_base;
10252        unsigned short cfg_msw;
10253        unsigned short warn_code = 0;
10254
10255        asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG;
10256        if (asc_dvc->err_code != 0)
10257                return asc_dvc->err_code;
10258        if (!AscFindSignature(asc_dvc->iop_base)) {
10259                asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
10260                return asc_dvc->err_code;
10261        }
10262
10263        cfg_msw = AscGetChipCfgMsw(iop_base);
10264        if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
10265                cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
10266                warn_code |= ASC_WARN_CFG_MSW_RECOVER;
10267                AscSetChipCfgMsw(iop_base, cfg_msw);
10268        }
10269        if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) !=
10270            asc_dvc->cfg->cmd_qng_enabled) {
10271                asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled;
10272                warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
10273        }
10274        if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
10275                warn_code |= ASC_WARN_AUTO_CONFIG;
10276        }
10277#ifdef CONFIG_PCI
10278        if (asc_dvc->bus_type & ASC_IS_PCI) {
10279                cfg_msw &= 0xFFC0;
10280                AscSetChipCfgMsw(iop_base, cfg_msw);
10281                if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) {
10282                } else {
10283                        if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
10284                            (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
10285                                asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB;
10286                                asc_dvc->bug_fix_cntl |=
10287                                    ASC_BUG_FIX_ASYN_USE_SYN;
10288                        }
10289                }
10290        } else
10291#endif /* CONFIG_PCI */
10292        if (asc_dvc->bus_type == ASC_IS_ISAPNP) {
10293                if (AscGetChipVersion(iop_base, asc_dvc->bus_type)
10294                    == ASC_CHIP_VER_ASYN_BUG) {
10295                        asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN;
10296                }
10297        }
10298        if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) !=
10299            asc_dvc->cfg->chip_scsi_id) {
10300                asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID;
10301        }
10302#ifdef CONFIG_ISA
10303        if (asc_dvc->bus_type & ASC_IS_ISA) {
10304                AscSetIsaDmaChannel(iop_base, asc_dvc->cfg->isa_dma_channel);
10305                AscSetIsaDmaSpeed(iop_base, asc_dvc->cfg->isa_dma_speed);
10306        }
10307#endif /* CONFIG_ISA */
10308
10309        asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG;
10310
10311        switch (warn_code) {
10312        case 0: /* No error. */
10313                break;
10314        case ASC_WARN_IO_PORT_ROTATE:
10315                shost_printk(KERN_WARNING, shost, "I/O port address "
10316                                "modified\n");
10317                break;
10318        case ASC_WARN_AUTO_CONFIG:
10319                shost_printk(KERN_WARNING, shost, "I/O port increment switch "
10320                                "enabled\n");
10321                break;
10322        case ASC_WARN_EEPROM_CHKSUM:
10323                shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
10324                break;
10325        case ASC_WARN_IRQ_MODIFIED:
10326                shost_printk(KERN_WARNING, shost, "IRQ modified\n");
10327                break;
10328        case ASC_WARN_CMD_QNG_CONFLICT:
10329                shost_printk(KERN_WARNING, shost, "tag queuing w/o "
10330                                "disconnects\n");
10331                break;
10332        default:
10333                shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
10334                                warn_code);
10335                break;
10336        }
10337
10338        if (asc_dvc->err_code != 0)
10339                shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
10340                        "0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
10341
10342        return asc_dvc->err_code;
10343}
10344
10345/*
10346 * EEPROM Configuration.
10347 *
10348 * All drivers should use this structure to set the default EEPROM
10349 * configuration. The BIOS now uses this structure when it is built.
10350 * Additional structure information can be found in a_condor.h where
10351 * the structure is defined.
10352 *
10353 * The *_Field_IsChar structs are needed to correct for endianness.
10354 * These values are read from the board 16 bits at a time directly
10355 * into the structs. Because some fields are char, the values will be
10356 * in the wrong order. The *_Field_IsChar tells when to flip the
10357 * bytes. Data read and written to PCI memory is automatically swapped
10358 * on big-endian platforms so char fields read as words are actually being
10359 * unswapped on big-endian platforms.
10360 */
10361static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config __devinitdata = {
10362        ADV_EEPROM_BIOS_ENABLE, /* cfg_lsw */
10363        0x0000,                 /* cfg_msw */
10364        0xFFFF,                 /* disc_enable */
10365        0xFFFF,                 /* wdtr_able */
10366        0xFFFF,                 /* sdtr_able */
10367        0xFFFF,                 /* start_motor */
10368        0xFFFF,                 /* tagqng_able */
10369        0xFFFF,                 /* bios_scan */
10370        0,                      /* scam_tolerant */
10371        7,                      /* adapter_scsi_id */
10372        0,                      /* bios_boot_delay */
10373        3,                      /* scsi_reset_delay */
10374        0,                      /* bios_id_lun */
10375        0,                      /* termination */
10376        0,                      /* reserved1 */
10377        0xFFE7,                 /* bios_ctrl */
10378        0xFFFF,                 /* ultra_able */
10379        0,                      /* reserved2 */
10380        ASC_DEF_MAX_HOST_QNG,   /* max_host_qng */
10381        ASC_DEF_MAX_DVC_QNG,    /* max_dvc_qng */
10382        0,                      /* dvc_cntl */
10383        0,                      /* bug_fix */
10384        0,                      /* serial_number_word1 */
10385        0,                      /* serial_number_word2 */
10386        0,                      /* serial_number_word3 */
10387        0,                      /* check_sum */
10388        {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10389        ,                       /* oem_name[16] */
10390        0,                      /* dvc_err_code */
10391        0,                      /* adv_err_code */
10392        0,                      /* adv_err_addr */
10393        0,                      /* saved_dvc_err_code */
10394        0,                      /* saved_adv_err_code */
10395        0,                      /* saved_adv_err_addr */
10396        0                       /* num_of_err */
10397};
10398
10399static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar __devinitdata = {
10400        0,                      /* cfg_lsw */
10401        0,                      /* cfg_msw */
10402        0,                      /* -disc_enable */
10403        0,                      /* wdtr_able */
10404        0,                      /* sdtr_able */
10405        0,                      /* start_motor */
10406        0,                      /* tagqng_able */
10407        0,                      /* bios_scan */
10408        0,                      /* scam_tolerant */
10409        1,                      /* adapter_scsi_id */
10410        1,                      /* bios_boot_delay */
10411        1,                      /* scsi_reset_delay */
10412        1,                      /* bios_id_lun */
10413        1,                      /* termination */
10414        1,                      /* reserved1 */
10415        0,                      /* bios_ctrl */
10416        0,                      /* ultra_able */
10417        0,                      /* reserved2 */
10418        1,                      /* max_host_qng */
10419        1,                      /* max_dvc_qng */
10420        0,                      /* dvc_cntl */
10421        0,                      /* bug_fix */
10422        0,                      /* serial_number_word1 */
10423        0,                      /* serial_number_word2 */
10424        0,                      /* serial_number_word3 */
10425        0,                      /* check_sum */
10426        {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10427        ,                       /* oem_name[16] */
10428        0,                      /* dvc_err_code */
10429        0,                      /* adv_err_code */
10430        0,                      /* adv_err_addr */
10431        0,                      /* saved_dvc_err_code */
10432        0,                      /* saved_adv_err_code */
10433        0,                      /* saved_adv_err_addr */
10434        0                       /* num_of_err */
10435};
10436
10437static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config __devinitdata = {
10438        ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
10439        0x0000,                 /* 01 cfg_msw */
10440        0xFFFF,                 /* 02 disc_enable */
10441        0xFFFF,                 /* 03 wdtr_able */
10442        0x4444,                 /* 04 sdtr_speed1 */
10443        0xFFFF,                 /* 05 start_motor */
10444        0xFFFF,                 /* 06 tagqng_able */
10445        0xFFFF,                 /* 07 bios_scan */
10446        0,                      /* 08 scam_tolerant */
10447        7,                      /* 09 adapter_scsi_id */
10448        0,                      /*    bios_boot_delay */
10449        3,                      /* 10 scsi_reset_delay */
10450        0,                      /*    bios_id_lun */
10451        0,                      /* 11 termination_se */
10452        0,                      /*    termination_lvd */
10453        0xFFE7,                 /* 12 bios_ctrl */
10454        0x4444,                 /* 13 sdtr_speed2 */
10455        0x4444,                 /* 14 sdtr_speed3 */
10456        ASC_DEF_MAX_HOST_QNG,   /* 15 max_host_qng */
10457        ASC_DEF_MAX_DVC_QNG,    /*    max_dvc_qng */
10458        0,                      /* 16 dvc_cntl */
10459        0x4444,                 /* 17 sdtr_speed4 */
10460        0,                      /* 18 serial_number_word1 */
10461        0,                      /* 19 serial_number_word2 */
10462        0,                      /* 20 serial_number_word3 */
10463        0,                      /* 21 check_sum */
10464        {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10465        ,                       /* 22-29 oem_name[16] */
10466        0,                      /* 30 dvc_err_code */
10467        0,                      /* 31 adv_err_code */
10468        0,                      /* 32 adv_err_addr */
10469        0,                      /* 33 saved_dvc_err_code */
10470        0,                      /* 34 saved_adv_err_code */
10471        0,                      /* 35 saved_adv_err_addr */
10472        0,                      /* 36 reserved */
10473        0,                      /* 37 reserved */
10474        0,                      /* 38 reserved */
10475        0,                      /* 39 reserved */
10476        0,                      /* 40 reserved */
10477        0,                      /* 41 reserved */
10478        0,                      /* 42 reserved */
10479        0,                      /* 43 reserved */
10480        0,                      /* 44 reserved */
10481        0,                      /* 45 reserved */
10482        0,                      /* 46 reserved */
10483        0,                      /* 47 reserved */
10484        0,                      /* 48 reserved */
10485        0,                      /* 49 reserved */
10486        0,                      /* 50 reserved */
10487        0,                      /* 51 reserved */
10488        0,                      /* 52 reserved */
10489        0,                      /* 53 reserved */
10490        0,                      /* 54 reserved */
10491        0,                      /* 55 reserved */
10492        0,                      /* 56 cisptr_lsw */
10493        0,                      /* 57 cisprt_msw */
10494        PCI_VENDOR_ID_ASP,      /* 58 subsysvid */
10495        PCI_DEVICE_ID_38C0800_REV1,     /* 59 subsysid */
10496        0,                      /* 60 reserved */
10497        0,                      /* 61 reserved */
10498        0,                      /* 62 reserved */
10499        0                       /* 63 reserved */
10500};
10501
10502static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar __devinitdata = {
10503        0,                      /* 00 cfg_lsw */
10504        0,                      /* 01 cfg_msw */
10505        0,                      /* 02 disc_enable */
10506        0,                      /* 03 wdtr_able */
10507        0,                      /* 04 sdtr_speed1 */
10508        0,                      /* 05 start_motor */
10509        0,                      /* 06 tagqng_able */
10510        0,                      /* 07 bios_scan */
10511        0,                      /* 08 scam_tolerant */
10512        1,                      /* 09 adapter_scsi_id */
10513        1,                      /*    bios_boot_delay */
10514        1,                      /* 10 scsi_reset_delay */
10515        1,                      /*    bios_id_lun */
10516        1,                      /* 11 termination_se */
10517        1,                      /*    termination_lvd */
10518        0,                      /* 12 bios_ctrl */
10519        0,                      /* 13 sdtr_speed2 */
10520        0,                      /* 14 sdtr_speed3 */
10521        1,                      /* 15 max_host_qng */
10522        1,                      /*    max_dvc_qng */
10523        0,                      /* 16 dvc_cntl */
10524        0,                      /* 17 sdtr_speed4 */
10525        0,                      /* 18 serial_number_word1 */
10526        0,                      /* 19 serial_number_word2 */
10527        0,                      /* 20 serial_number_word3 */
10528        0,                      /* 21 check_sum */
10529        {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10530        ,                       /* 22-29 oem_name[16] */
10531        0,                      /* 30 dvc_err_code */
10532        0,                      /* 31 adv_err_code */
10533        0,                      /* 32 adv_err_addr */
10534        0,                      /* 33 saved_dvc_err_code */
10535        0,                      /* 34 saved_adv_err_code */
10536        0,                      /* 35 saved_adv_err_addr */
10537        0,                      /* 36 reserved */
10538        0,                      /* 37 reserved */
10539        0,                      /* 38 reserved */
10540        0,                      /* 39 reserved */
10541        0,                      /* 40 reserved */
10542        0,                      /* 41 reserved */
10543        0,                      /* 42 reserved */
10544        0,                      /* 43 reserved */
10545        0,                      /* 44 reserved */
10546        0,                      /* 45 reserved */
10547        0,                      /* 46 reserved */
10548        0,                      /* 47 reserved */
10549        0,                      /* 48 reserved */
10550        0,                      /* 49 reserved */
10551        0,                      /* 50 reserved */
10552        0,                      /* 51 reserved */
10553        0,                      /* 52 reserved */
10554        0,                      /* 53 reserved */
10555        0,                      /* 54 reserved */
10556        0,                      /* 55 reserved */
10557        0,                      /* 56 cisptr_lsw */
10558        0,                      /* 57 cisprt_msw */
10559        0,                      /* 58 subsysvid */
10560        0,                      /* 59 subsysid */
10561        0,                      /* 60 reserved */
10562        0,                      /* 61 reserved */
10563        0,                      /* 62 reserved */
10564        0                       /* 63 reserved */
10565};
10566
10567static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config __devinitdata = {
10568        ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
10569        0x0000,                 /* 01 cfg_msw */
10570        0xFFFF,                 /* 02 disc_enable */
10571        0xFFFF,                 /* 03 wdtr_able */
10572        0x5555,                 /* 04 sdtr_speed1 */
10573        0xFFFF,                 /* 05 start_motor */
10574        0xFFFF,                 /* 06 tagqng_able */
10575        0xFFFF,                 /* 07 bios_scan */
10576        0,                      /* 08 scam_tolerant */
10577        7,                      /* 09 adapter_scsi_id */
10578        0,                      /*    bios_boot_delay */
10579        3,                      /* 10 scsi_reset_delay */
10580        0,                      /*    bios_id_lun */
10581        0,                      /* 11 termination_se */
10582        0,                      /*    termination_lvd */
10583        0xFFE7,                 /* 12 bios_ctrl */
10584        0x5555,                 /* 13 sdtr_speed2 */
10585        0x5555,                 /* 14 sdtr_speed3 */
10586        ASC_DEF_MAX_HOST_QNG,   /* 15 max_host_qng */
10587        ASC_DEF_MAX_DVC_QNG,    /*    max_dvc_qng */
10588        0,                      /* 16 dvc_cntl */
10589        0x5555,                 /* 17 sdtr_speed4 */
10590        0,                      /* 18 serial_number_word1 */
10591        0,                      /* 19 serial_number_word2 */
10592        0,                      /* 20 serial_number_word3 */
10593        0,                      /* 21 check_sum */
10594        {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10595        ,                       /* 22-29 oem_name[16] */
10596        0,                      /* 30 dvc_err_code */
10597        0,                      /* 31 adv_err_code */
10598        0,                      /* 32 adv_err_addr */
10599        0,                      /* 33 saved_dvc_err_code */
10600        0,                      /* 34 saved_adv_err_code */
10601        0,                      /* 35 saved_adv_err_addr */
10602        0,                      /* 36 reserved */
10603        0,                      /* 37 reserved */
10604        0,                      /* 38 reserved */
10605        0,                      /* 39 reserved */
10606        0,                      /* 40 reserved */
10607        0,                      /* 41 reserved */
10608        0,                      /* 42 reserved */
10609        0,                      /* 43 reserved */
10610        0,                      /* 44 reserved */
10611        0,                      /* 45 reserved */
10612        0,                      /* 46 reserved */
10613        0,                      /* 47 reserved */
10614        0,                      /* 48 reserved */
10615        0,                      /* 49 reserved */
10616        0,                      /* 50 reserved */
10617        0,                      /* 51 reserved */
10618        0,                      /* 52 reserved */
10619        0,                      /* 53 reserved */
10620        0,                      /* 54 reserved */
10621        0,                      /* 55 reserved */
10622        0,                      /* 56 cisptr_lsw */
10623        0,                      /* 57 cisprt_msw */
10624        PCI_VENDOR_ID_ASP,      /* 58 subsysvid */
10625        PCI_DEVICE_ID_38C1600_REV1,     /* 59 subsysid */
10626        0,                      /* 60 reserved */
10627        0,                      /* 61 reserved */
10628        0,                      /* 62 reserved */
10629        0                       /* 63 reserved */
10630};
10631
10632static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar __devinitdata = {
10633        0,                      /* 00 cfg_lsw */
10634        0,                      /* 01 cfg_msw */
10635        0,                      /* 02 disc_enable */
10636        0,                      /* 03 wdtr_able */
10637        0,                      /* 04 sdtr_speed1 */
10638        0,                      /* 05 start_motor */
10639        0,                      /* 06 tagqng_able */
10640        0,                      /* 07 bios_scan */
10641        0,                      /* 08 scam_tolerant */
10642        1,                      /* 09 adapter_scsi_id */
10643        1,                      /*    bios_boot_delay */
10644        1,                      /* 10 scsi_reset_delay */
10645        1,                      /*    bios_id_lun */
10646        1,                      /* 11 termination_se */
10647        1,                      /*    termination_lvd */
10648        0,                      /* 12 bios_ctrl */
10649        0,                      /* 13 sdtr_speed2 */
10650        0,                      /* 14 sdtr_speed3 */
10651        1,                      /* 15 max_host_qng */
10652        1,                      /*    max_dvc_qng */
10653        0,                      /* 16 dvc_cntl */
10654        0,                      /* 17 sdtr_speed4 */
10655        0,                      /* 18 serial_number_word1 */
10656        0,                      /* 19 serial_number_word2 */
10657        0,                      /* 20 serial_number_word3 */
10658        0,                      /* 21 check_sum */
10659        {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10660        ,                       /* 22-29 oem_name[16] */
10661        0,                      /* 30 dvc_err_code */
10662        0,                      /* 31 adv_err_code */
10663        0,                      /* 32 adv_err_addr */
10664        0,                      /* 33 saved_dvc_err_code */
10665        0,                      /* 34 saved_adv_err_code */
10666        0,                      /* 35 saved_adv_err_addr */
10667        0,                      /* 36 reserved */
10668        0,                      /* 37 reserved */
10669        0,                      /* 38 reserved */
10670        0,                      /* 39 reserved */
10671        0,                      /* 40 reserved */
10672        0,                      /* 41 reserved */
10673        0,                      /* 42 reserved */
10674        0,                      /* 43 reserved */
10675        0,                      /* 44 reserved */
10676        0,                      /* 45 reserved */
10677        0,                      /* 46 reserved */
10678        0,                      /* 47 reserved */
10679        0,                      /* 48 reserved */
10680        0,                      /* 49 reserved */
10681        0,                      /* 50 reserved */
10682        0,                      /* 51 reserved */
10683        0,                      /* 52 reserved */
10684        0,                      /* 53 reserved */
10685        0,                      /* 54 reserved */
10686        0,                      /* 55 reserved */
10687        0,                      /* 56 cisptr_lsw */
10688        0,                      /* 57 cisprt_msw */
10689        0,                      /* 58 subsysvid */
10690        0,                      /* 59 subsysid */
10691        0,                      /* 60 reserved */
10692        0,                      /* 61 reserved */
10693        0,                      /* 62 reserved */
10694        0                       /* 63 reserved */
10695};
10696
10697#ifdef CONFIG_PCI
10698/*
10699 * Wait for EEPROM command to complete
10700 */
10701static void __devinit AdvWaitEEPCmd(AdvPortAddr iop_base)
10702{
10703        int eep_delay_ms;
10704
10705        for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) {
10706                if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) &
10707                    ASC_EEP_CMD_DONE) {
10708                        break;
10709                }
10710                mdelay(1);
10711        }
10712        if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) ==
10713            0)
10714                BUG();
10715}
10716
10717/*
10718 * Read the EEPROM from specified location
10719 */
10720static ushort __devinit AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr)
10721{
10722        AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10723                             ASC_EEP_CMD_READ | eep_word_addr);
10724        AdvWaitEEPCmd(iop_base);
10725        return AdvReadWordRegister(iop_base, IOPW_EE_DATA);
10726}
10727
10728/*
10729 * Write the EEPROM from 'cfg_buf'.
10730 */
10731static void __devinit
10732AdvSet3550EEPConfig(AdvPortAddr iop_base, ADVEEP_3550_CONFIG *cfg_buf)
10733{
10734        ushort *wbuf;
10735        ushort addr, chksum;
10736        ushort *charfields;
10737
10738        wbuf = (ushort *)cfg_buf;
10739        charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10740        chksum = 0;
10741
10742        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10743        AdvWaitEEPCmd(iop_base);
10744
10745        /*
10746         * Write EEPROM from word 0 to word 20.
10747         */
10748        for (addr = ADV_EEP_DVC_CFG_BEGIN;
10749             addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10750                ushort word;
10751
10752                if (*charfields++) {
10753                        word = cpu_to_le16(*wbuf);
10754                } else {
10755                        word = *wbuf;
10756                }
10757                chksum += *wbuf;        /* Checksum is calculated from word values. */
10758                AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10759                AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10760                                     ASC_EEP_CMD_WRITE | addr);
10761                AdvWaitEEPCmd(iop_base);
10762                mdelay(ADV_EEP_DELAY_MS);
10763        }
10764
10765        /*
10766         * Write EEPROM checksum at word 21.
10767         */
10768        AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10769        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10770        AdvWaitEEPCmd(iop_base);
10771        wbuf++;
10772        charfields++;
10773
10774        /*
10775         * Write EEPROM OEM name at words 22 to 29.
10776         */
10777        for (addr = ADV_EEP_DVC_CTL_BEGIN;
10778             addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10779                ushort word;
10780
10781                if (*charfields++) {
10782                        word = cpu_to_le16(*wbuf);
10783                } else {
10784                        word = *wbuf;
10785                }
10786                AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10787                AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10788                                     ASC_EEP_CMD_WRITE | addr);
10789                AdvWaitEEPCmd(iop_base);
10790        }
10791        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10792        AdvWaitEEPCmd(iop_base);
10793}
10794
10795/*
10796 * Write the EEPROM from 'cfg_buf'.
10797 */
10798static void __devinit
10799AdvSet38C0800EEPConfig(AdvPortAddr iop_base, ADVEEP_38C0800_CONFIG *cfg_buf)
10800{
10801        ushort *wbuf;
10802        ushort *charfields;
10803        ushort addr, chksum;
10804
10805        wbuf = (ushort *)cfg_buf;
10806        charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
10807        chksum = 0;
10808
10809        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10810        AdvWaitEEPCmd(iop_base);
10811
10812        /*
10813         * Write EEPROM from word 0 to word 20.
10814         */
10815        for (addr = ADV_EEP_DVC_CFG_BEGIN;
10816             addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10817                ushort word;
10818
10819                if (*charfields++) {
10820                        word = cpu_to_le16(*wbuf);
10821                } else {
10822                        word = *wbuf;
10823                }
10824                chksum += *wbuf;        /* Checksum is calculated from word values. */
10825                AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10826                AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10827                                     ASC_EEP_CMD_WRITE | addr);
10828                AdvWaitEEPCmd(iop_base);
10829                mdelay(ADV_EEP_DELAY_MS);
10830        }
10831
10832        /*
10833         * Write EEPROM checksum at word 21.
10834         */
10835        AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10836        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10837        AdvWaitEEPCmd(iop_base);
10838        wbuf++;
10839        charfields++;
10840
10841        /*
10842         * Write EEPROM OEM name at words 22 to 29.
10843         */
10844        for (addr = ADV_EEP_DVC_CTL_BEGIN;
10845             addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10846                ushort word;
10847
10848                if (*charfields++) {
10849                        word = cpu_to_le16(*wbuf);
10850                } else {
10851                        word = *wbuf;
10852                }
10853                AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10854                AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10855                                     ASC_EEP_CMD_WRITE | addr);
10856                AdvWaitEEPCmd(iop_base);
10857        }
10858        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10859        AdvWaitEEPCmd(iop_base);
10860}
10861
10862/*
10863 * Write the EEPROM from 'cfg_buf'.
10864 */
10865static void __devinit
10866AdvSet38C1600EEPConfig(AdvPortAddr iop_base, ADVEEP_38C1600_CONFIG *cfg_buf)
10867{
10868        ushort *wbuf;
10869        ushort *charfields;
10870        ushort addr, chksum;
10871
10872        wbuf = (ushort *)cfg_buf;
10873        charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
10874        chksum = 0;
10875
10876        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10877        AdvWaitEEPCmd(iop_base);
10878
10879        /*
10880         * Write EEPROM from word 0 to word 20.
10881         */
10882        for (addr = ADV_EEP_DVC_CFG_BEGIN;
10883             addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10884                ushort word;
10885
10886                if (*charfields++) {
10887                        word = cpu_to_le16(*wbuf);
10888                } else {
10889                        word = *wbuf;
10890                }
10891                chksum += *wbuf;        /* Checksum is calculated from word values. */
10892                AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10893                AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10894                                     ASC_EEP_CMD_WRITE | addr);
10895                AdvWaitEEPCmd(iop_base);
10896                mdelay(ADV_EEP_DELAY_MS);
10897        }
10898
10899        /*
10900         * Write EEPROM checksum at word 21.
10901         */
10902        AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10903        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10904        AdvWaitEEPCmd(iop_base);
10905        wbuf++;
10906        charfields++;
10907
10908        /*
10909         * Write EEPROM OEM name at words 22 to 29.
10910         */
10911        for (addr = ADV_EEP_DVC_CTL_BEGIN;
10912             addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10913                ushort word;
10914
10915                if (*charfields++) {
10916                        word = cpu_to_le16(*wbuf);
10917                } else {
10918                        word = *wbuf;
10919                }
10920                AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10921                AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10922                                     ASC_EEP_CMD_WRITE | addr);
10923                AdvWaitEEPCmd(iop_base);
10924        }
10925        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10926        AdvWaitEEPCmd(iop_base);
10927}
10928
10929/*
10930 * Read EEPROM configuration into the specified buffer.
10931 *
10932 * Return a checksum based on the EEPROM configuration read.
10933 */
10934static ushort __devinit
10935AdvGet3550EEPConfig(AdvPortAddr iop_base, ADVEEP_3550_CONFIG *cfg_buf)
10936{
10937        ushort wval, chksum;
10938        ushort *wbuf;
10939        int eep_addr;
10940        ushort *charfields;
10941
10942        charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10943        wbuf = (ushort *)cfg_buf;
10944        chksum = 0;
10945
10946        for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10947             eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10948                wval = AdvReadEEPWord(iop_base, eep_addr);
10949                chksum += wval; /* Checksum is calculated from word values. */
10950                if (*charfields++) {
10951                        *wbuf = le16_to_cpu(wval);
10952                } else {
10953                        *wbuf = wval;
10954                }
10955        }
10956        /* Read checksum word. */
10957        *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10958        wbuf++;
10959        charfields++;
10960
10961        /* Read rest of EEPROM not covered by the checksum. */
10962        for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10963             eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10964                *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10965                if (*charfields++) {
10966                        *wbuf = le16_to_cpu(*wbuf);
10967                }
10968        }
10969        return chksum;
10970}
10971
10972/*
10973 * Read EEPROM configuration into the specified buffer.
10974 *
10975 * Return a checksum based on the EEPROM configuration read.
10976 */
10977static ushort __devinit
10978AdvGet38C0800EEPConfig(AdvPortAddr iop_base, ADVEEP_38C0800_CONFIG *cfg_buf)
10979{
10980        ushort wval, chksum;
10981        ushort *wbuf;
10982        int eep_addr;
10983        ushort *charfields;
10984
10985        charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
10986        wbuf = (ushort *)cfg_buf;
10987        chksum = 0;
10988
10989        for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10990             eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10991                wval = AdvReadEEPWord(iop_base, eep_addr);
10992                chksum += wval; /* Checksum is calculated from word values. */
10993                if (*charfields++) {
10994                        *wbuf = le16_to_cpu(wval);
10995                } else {
10996                        *wbuf = wval;
10997                }
10998        }
10999        /* Read checksum word. */
11000        *wbuf = AdvReadEEPWord(iop_base, eep_addr);
11001        wbuf++;
11002        charfields++;
11003
11004        /* Read rest of EEPROM not covered by the checksum. */
11005        for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
11006             eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
11007                *wbuf = AdvReadEEPWord(iop_base, eep_addr);
11008                if (*charfields++) {
11009                        *wbuf = le16_to_cpu(*wbuf);
11010                }
11011        }
11012        return chksum;
11013}
11014
11015/*
11016 * Read EEPROM configuration into the specified buffer.
11017 *
11018 * Return a checksum based on the EEPROM configuration read.
11019 */
11020static ushort __devinit
11021AdvGet38C1600EEPConfig(AdvPortAddr iop_base, ADVEEP_38C1600_CONFIG *cfg_buf)
11022{
11023        ushort wval, chksum;
11024        ushort *wbuf;
11025        int eep_addr;
11026        ushort *charfields;
11027
11028        charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
11029        wbuf = (ushort *)cfg_buf;
11030        chksum = 0;
11031
11032        for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
11033             eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
11034                wval = AdvReadEEPWord(iop_base, eep_addr);
11035                chksum += wval; /* Checksum is calculated from word values. */
11036                if (*charfields++) {
11037                        *wbuf = le16_to_cpu(wval);
11038                } else {
11039                        *wbuf = wval;
11040                }
11041        }
11042        /* Read checksum word. */
11043        *wbuf = AdvReadEEPWord(iop_base, eep_addr);
11044        wbuf++;
11045        charfields++;
11046
11047        /* Read rest of EEPROM not covered by the checksum. */
11048        for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
11049             eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
11050                *wbuf = AdvReadEEPWord(iop_base, eep_addr);
11051                if (*charfields++) {
11052                        *wbuf = le16_to_cpu(*wbuf);
11053                }
11054        }
11055        return chksum;
11056}
11057
11058/*
11059 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
11060 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
11061 * all of this is done.
11062 *
11063 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11064 *
11065 * For a non-fatal error return a warning code. If there are no warnings
11066 * then 0 is returned.
11067 *
11068 * Note: Chip is stopped on entry.
11069 */
11070static int __devinit AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc)
11071{
11072        AdvPortAddr iop_base;
11073        ushort warn_code;
11074        ADVEEP_3550_CONFIG eep_config;
11075
11076        iop_base = asc_dvc->iop_base;
11077
11078        warn_code = 0;
11079
11080        /*
11081         * Read the board's EEPROM configuration.
11082         *
11083         * Set default values if a bad checksum is found.
11084         */
11085        if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) {
11086                warn_code |= ASC_WARN_EEPROM_CHKSUM;
11087
11088                /*
11089                 * Set EEPROM default values.
11090                 */
11091                memcpy(&eep_config, &Default_3550_EEPROM_Config,
11092                        sizeof(ADVEEP_3550_CONFIG));
11093
11094                /*
11095                 * Assume the 6 byte board serial number that was read from
11096                 * EEPROM is correct even if the EEPROM checksum failed.
11097                 */
11098                eep_config.serial_number_word3 =
11099                    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
11100
11101                eep_config.serial_number_word2 =
11102                    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
11103
11104                eep_config.serial_number_word1 =
11105                    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
11106
11107                AdvSet3550EEPConfig(iop_base, &eep_config);
11108        }
11109        /*
11110         * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
11111         * EEPROM configuration that was read.
11112         *
11113         * This is the mapping of EEPROM fields to Adv Library fields.
11114         */
11115        asc_dvc->wdtr_able = eep_config.wdtr_able;
11116        asc_dvc->sdtr_able = eep_config.sdtr_able;
11117        asc_dvc->ultra_able = eep_config.ultra_able;
11118        asc_dvc->tagqng_able = eep_config.tagqng_able;
11119        asc_dvc->cfg->disc_enable = eep_config.disc_enable;
11120        asc_dvc->max_host_qng = eep_config.max_host_qng;
11121        asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11122        asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
11123        asc_dvc->start_motor = eep_config.start_motor;
11124        asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
11125        asc_dvc->bios_ctrl = eep_config.bios_ctrl;
11126        asc_dvc->no_scam = eep_config.scam_tolerant;
11127        asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
11128        asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
11129        asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
11130
11131        /*
11132         * Set the host maximum queuing (max. 253, min. 16) and the per device
11133         * maximum queuing (max. 63, min. 4).
11134         */
11135        if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
11136                eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11137        } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
11138                /* If the value is zero, assume it is uninitialized. */
11139                if (eep_config.max_host_qng == 0) {
11140                        eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11141                } else {
11142                        eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
11143                }
11144        }
11145
11146        if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
11147                eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11148        } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
11149                /* If the value is zero, assume it is uninitialized. */
11150                if (eep_config.max_dvc_qng == 0) {
11151                        eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11152                } else {
11153                        eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
11154                }
11155        }
11156
11157        /*
11158         * If 'max_dvc_qng' is greater than 'max_host_qng', then
11159         * set 'max_dvc_qng' to 'max_host_qng'.
11160         */
11161        if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
11162                eep_config.max_dvc_qng = eep_config.max_host_qng;
11163        }
11164
11165        /*
11166         * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
11167         * values based on possibly adjusted EEPROM values.
11168         */
11169        asc_dvc->max_host_qng = eep_config.max_host_qng;
11170        asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11171
11172        /*
11173         * If the EEPROM 'termination' field is set to automatic (0), then set
11174         * the ADV_DVC_CFG 'termination' field to automatic also.
11175         *
11176         * If the termination is specified with a non-zero 'termination'
11177         * value check that a legal value is set and set the ADV_DVC_CFG
11178         * 'termination' field appropriately.
11179         */
11180        if (eep_config.termination == 0) {
11181                asc_dvc->cfg->termination = 0;  /* auto termination */
11182        } else {
11183                /* Enable manual control with low off / high off. */
11184                if (eep_config.termination == 1) {
11185                        asc_dvc->cfg->termination = TERM_CTL_SEL;
11186
11187                        /* Enable manual control with low off / high on. */
11188                } else if (eep_config.termination == 2) {
11189                        asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H;
11190
11191                        /* Enable manual control with low on / high on. */
11192                } else if (eep_config.termination == 3) {
11193                        asc_dvc->cfg->termination =
11194                            TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L;
11195                } else {
11196                        /*
11197                         * The EEPROM 'termination' field contains a bad value. Use
11198                         * automatic termination instead.
11199                         */
11200                        asc_dvc->cfg->termination = 0;
11201                        warn_code |= ASC_WARN_EEPROM_TERMINATION;
11202                }
11203        }
11204
11205        return warn_code;
11206}
11207
11208/*
11209 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
11210 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
11211 * all of this is done.
11212 *
11213 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11214 *
11215 * For a non-fatal error return a warning code. If there are no warnings
11216 * then 0 is returned.
11217 *
11218 * Note: Chip is stopped on entry.
11219 */
11220static int __devinit AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc)
11221{
11222        AdvPortAddr iop_base;
11223        ushort warn_code;
11224        ADVEEP_38C0800_CONFIG eep_config;
11225        uchar tid, termination;
11226        ushort sdtr_speed = 0;
11227
11228        iop_base = asc_dvc->iop_base;
11229
11230        warn_code = 0;
11231
11232        /*
11233         * Read the board's EEPROM configuration.
11234         *
11235         * Set default values if a bad checksum is found.
11236         */
11237        if (AdvGet38C0800EEPConfig(iop_base, &eep_config) !=
11238            eep_config.check_sum) {
11239                warn_code |= ASC_WARN_EEPROM_CHKSUM;
11240
11241                /*
11242                 * Set EEPROM default values.
11243                 */
11244                memcpy(&eep_config, &Default_38C0800_EEPROM_Config,
11245                        sizeof(ADVEEP_38C0800_CONFIG));
11246
11247                /*
11248                 * Assume the 6 byte board serial number that was read from
11249                 * EEPROM is correct even if the EEPROM checksum failed.
11250                 */
11251                eep_config.serial_number_word3 =
11252                    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
11253
11254                eep_config.serial_number_word2 =
11255                    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
11256
11257                eep_config.serial_number_word1 =
11258                    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
11259
11260                AdvSet38C0800EEPConfig(iop_base, &eep_config);
11261        }
11262        /*
11263         * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
11264         * EEPROM configuration that was read.
11265         *
11266         * This is the mapping of EEPROM fields to Adv Library fields.
11267         */
11268        asc_dvc->wdtr_able = eep_config.wdtr_able;
11269        asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
11270        asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
11271        asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
11272        asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
11273        asc_dvc->tagqng_able = eep_config.tagqng_able;
11274        asc_dvc->cfg->disc_enable = eep_config.disc_enable;
11275        asc_dvc->max_host_qng = eep_config.max_host_qng;
11276        asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11277        asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
11278        asc_dvc->start_motor = eep_config.start_motor;
11279        asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
11280        asc_dvc->bios_ctrl = eep_config.bios_ctrl;
11281        asc_dvc->no_scam = eep_config.scam_tolerant;
11282        asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
11283        asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
11284        asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
11285
11286        /*
11287         * For every Target ID if any of its 'sdtr_speed[1234]' bits
11288         * are set, then set an 'sdtr_able' bit for it.
11289         */
11290        asc_dvc->sdtr_able = 0;
11291        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
11292                if (tid == 0) {
11293                        sdtr_speed = asc_dvc->sdtr_speed1;
11294                } else if (tid == 4) {
11295                        sdtr_speed = asc_dvc->sdtr_speed2;
11296                } else if (tid == 8) {
11297                        sdtr_speed = asc_dvc->sdtr_speed3;
11298                } else if (tid == 12) {
11299                        sdtr_speed = asc_dvc->sdtr_speed4;
11300                }
11301                if (sdtr_speed & ADV_MAX_TID) {
11302                        asc_dvc->sdtr_able |= (1 << tid);
11303                }
11304                sdtr_speed >>= 4;
11305        }
11306
11307        /*
11308         * Set the host maximum queuing (max. 253, min. 16) and the per device
11309         * maximum queuing (max. 63, min. 4).
11310         */
11311        if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
11312                eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11313        } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
11314                /* If the value is zero, assume it is uninitialized. */
11315                if (eep_config.max_host_qng == 0) {
11316                        eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11317                } else {
11318                        eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
11319                }
11320        }
11321
11322        if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
11323                eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11324        } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
11325                /* If the value is zero, assume it is uninitialized. */
11326                if (eep_config.max_dvc_qng == 0) {
11327                        eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11328                } else {
11329                        eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
11330                }
11331        }
11332
11333        /*
11334         * If 'max_dvc_qng' is greater than 'max_host_qng', then
11335         * set 'max_dvc_qng' to 'max_host_qng'.
11336         */
11337        if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
11338                eep_config.max_dvc_qng = eep_config.max_host_qng;
11339        }
11340
11341        /*
11342         * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
11343         * values based on possibly adjusted EEPROM values.
11344         */
11345        asc_dvc->max_host_qng = eep_config.max_host_qng;
11346        asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11347
11348        /*
11349         * If the EEPROM 'termination' field is set to automatic (0), then set
11350         * the ADV_DVC_CFG 'termination' field to automatic also.
11351         *
11352         * If the termination is specified with a non-zero 'termination'
11353         * value check that a legal value is set and set the ADV_DVC_CFG
11354         * 'termination' field appropriately.
11355         */
11356        if (eep_config.termination_se == 0) {
11357                termination = 0;        /* auto termination for SE */
11358        } else {
11359                /* Enable manual control with low off / high off. */
11360                if (eep_config.termination_se == 1) {
11361                        termination = 0;
11362
11363                        /* Enable manual control with low off / high on. */
11364                } else if (eep_config.termination_se == 2) {
11365                        termination = TERM_SE_HI;
11366
11367                        /* Enable manual control with low on / high on. */
11368                } else if (eep_config.termination_se == 3) {
11369                        termination = TERM_SE;
11370                } else {
11371                        /*
11372                         * The EEPROM 'termination_se' field contains a bad value.
11373                         * Use automatic termination instead.
11374                         */
11375                        termination = 0;
11376                        warn_code |= ASC_WARN_EEPROM_TERMINATION;
11377                }
11378        }
11379
11380        if (eep_config.termination_lvd == 0) {
11381                asc_dvc->cfg->termination = termination;        /* auto termination for LVD */
11382        } else {
11383                /* Enable manual control with low off / high off. */
11384                if (eep_config.termination_lvd == 1) {
11385                        asc_dvc->cfg->termination = termination;
11386
11387                        /* Enable manual control with low off / high on. */
11388                } else if (eep_config.termination_lvd == 2) {
11389                        asc_dvc->cfg->termination = termination | TERM_LVD_HI;
11390
11391                        /* Enable manual control with low on / high on. */
11392                } else if (eep_config.termination_lvd == 3) {
11393                        asc_dvc->cfg->termination = termination | TERM_LVD;
11394                } else {
11395                        /*
11396                         * The EEPROM 'termination_lvd' field contains a bad value.
11397                         * Use automatic termination instead.
11398                         */
11399                        asc_dvc->cfg->termination = termination;
11400                        warn_code |= ASC_WARN_EEPROM_TERMINATION;
11401                }
11402        }
11403
11404        return warn_code;
11405}
11406
11407/*
11408 * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
11409 * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
11410 * all of this is done.
11411 *
11412 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
11413 *
11414 * For a non-fatal error return a warning code. If there are no warnings
11415 * then 0 is returned.
11416 *
11417 * Note: Chip is stopped on entry.
11418 */
11419static int __devinit AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc)
11420{
11421        AdvPortAddr iop_base;
11422        ushort warn_code;
11423        ADVEEP_38C1600_CONFIG eep_config;
11424        uchar tid, termination;
11425        ushort sdtr_speed = 0;
11426
11427        iop_base = asc_dvc->iop_base;
11428
11429        warn_code = 0;
11430
11431        /*
11432         * Read the board's EEPROM configuration.
11433         *
11434         * Set default values if a bad checksum is found.
11435         */
11436        if (AdvGet38C1600EEPConfig(iop_base, &eep_config) !=
11437            eep_config.check_sum) {
11438                struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
11439                warn_code |= ASC_WARN_EEPROM_CHKSUM;
11440
11441                /*
11442                 * Set EEPROM default values.
11443                 */
11444                memcpy(&eep_config, &Default_38C1600_EEPROM_Config,
11445                        sizeof(ADVEEP_38C1600_CONFIG));
11446
11447                if (PCI_FUNC(pdev->devfn) != 0) {
11448                        u8 ints;
11449                        /*
11450                         * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
11451                         * and old Mac system booting problem. The Expansion
11452                         * ROM must be disabled in Function 1 for these systems
11453                         */
11454                        eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE;
11455                        /*
11456                         * Clear the INTAB (bit 11) if the GPIO 0 input
11457                         * indicates the Function 1 interrupt line is wired
11458                         * to INTB.
11459                         *
11460                         * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
11461                         *   1 - Function 1 interrupt line wired to INT A.
11462                         *   0 - Function 1 interrupt line wired to INT B.
11463                         *
11464                         * Note: Function 0 is always wired to INTA.
11465                         * Put all 5 GPIO bits in input mode and then read
11466                         * their input values.
11467                         */
11468                        AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0);
11469                        ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA);
11470                        if ((ints & 0x01) == 0)
11471                                eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB;
11472                }
11473
11474                /*
11475                 * Assume the 6 byte board serial number that was read from
11476                 * EEPROM is correct even if the EEPROM checksum failed.
11477                 */
11478                eep_config.serial_number_word3 =
11479                        AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
11480                eep_config.serial_number_word2 =
11481                        AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
11482                eep_config.serial_number_word1 =
11483                        AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
11484
11485                AdvSet38C1600EEPConfig(iop_base, &eep_config);
11486        }
11487
11488        /*
11489         * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
11490         * EEPROM configuration that was read.
11491         *
11492         * This is the mapping of EEPROM fields to Adv Library fields.
11493         */
11494        asc_dvc->wdtr_able = eep_config.wdtr_able;
11495        asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
11496        asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
11497        asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
11498        asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
11499        asc_dvc->ppr_able = 0;
11500        asc_dvc->tagqng_able = eep_config.tagqng_able;
11501        asc_dvc->cfg->disc_enable = eep_config.disc_enable;
11502        asc_dvc->max_host_qng = eep_config.max_host_qng;
11503        asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11504        asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID);
11505        asc_dvc->start_motor = eep_config.start_motor;
11506        asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
11507        asc_dvc->bios_ctrl = eep_config.bios_ctrl;
11508        asc_dvc->no_scam = eep_config.scam_tolerant;
11509
11510        /*
11511         * For every Target ID if any of its 'sdtr_speed[1234]' bits
11512         * are set, then set an 'sdtr_able' bit for it.
11513         */
11514        asc_dvc->sdtr_able = 0;
11515        for (tid = 0; tid <= ASC_MAX_TID; tid++) {
11516                if (tid == 0) {
11517                        sdtr_speed = asc_dvc->sdtr_speed1;
11518                } else if (tid == 4) {
11519                        sdtr_speed = asc_dvc->sdtr_speed2;
11520                } else if (tid == 8) {
11521                        sdtr_speed = asc_dvc->sdtr_speed3;
11522                } else if (tid == 12) {
11523                        sdtr_speed = asc_dvc->sdtr_speed4;
11524                }
11525                if (sdtr_speed & ASC_MAX_TID) {
11526                        asc_dvc->sdtr_able |= (1 << tid);
11527                }
11528                sdtr_speed >>= 4;
11529        }
11530
11531        /*
11532         * Set the host maximum queuing (max. 253, min. 16) and the per device
11533         * maximum queuing (max. 63, min. 4).
11534         */
11535        if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
11536                eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11537        } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
11538                /* If the value is zero, assume it is uninitialized. */
11539                if (eep_config.max_host_qng == 0) {
11540                        eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11541                } else {
11542                        eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
11543                }
11544        }
11545
11546        if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
11547                eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11548        } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
11549                /* If the value is zero, assume it is uninitialized. */
11550                if (eep_config.max_dvc_qng == 0) {
11551                        eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11552                } else {
11553                        eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
11554                }
11555        }
11556
11557        /*
11558         * If 'max_dvc_qng' is greater than 'max_host_qng', then
11559         * set 'max_dvc_qng' to 'max_host_qng'.
11560         */
11561        if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
11562                eep_config.max_dvc_qng = eep_config.max_host_qng;
11563        }
11564
11565        /*
11566         * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
11567         * values based on possibly adjusted EEPROM values.
11568         */
11569        asc_dvc->max_host_qng = eep_config.max_host_qng;
11570        asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11571
11572        /*
11573         * If the EEPROM 'termination' field is set to automatic (0), then set
11574         * the ASC_DVC_CFG 'termination' field to automatic also.
11575         *
11576         * If the termination is specified with a non-zero 'termination'
11577         * value check that a legal value is set and set the ASC_DVC_CFG
11578         * 'termination' field appropriately.
11579         */
11580        if (eep_config.termination_se == 0) {
11581                termination = 0;        /* auto termination for SE */
11582        } else {
11583                /* Enable manual control with low off / high off. */
11584                if (eep_config.termination_se == 1) {
11585                        termination = 0;
11586
11587                        /* Enable manual control with low off / high on. */
11588                } else if (eep_config.termination_se == 2) {
11589                        termination = TERM_SE_HI;
11590
11591                        /* Enable manual control with low on / high on. */
11592                } else if (eep_config.termination_se == 3) {
11593                        termination = TERM_SE;
11594                } else {
11595                        /*
11596                         * The EEPROM 'termination_se' field contains a bad value.
11597                         * Use automatic termination instead.
11598                         */
11599                        termination = 0;
11600                        warn_code |= ASC_WARN_EEPROM_TERMINATION;
11601                }
11602        }
11603
11604        if (eep_config.termination_lvd == 0) {
11605                asc_dvc->cfg->termination = termination;        /* auto termination for LVD */
11606        } else {
11607                /* Enable manual control with low off / high off. */
11608                if (eep_config.termination_lvd == 1) {
11609                        asc_dvc->cfg->termination = termination;
11610
11611                        /* Enable manual control with low off / high on. */
11612                } else if (eep_config.termination_lvd == 2) {
11613                        asc_dvc->cfg->termination = termination | TERM_LVD_HI;
11614
11615                        /* Enable manual control with low on / high on. */
11616                } else if (eep_config.termination_lvd == 3) {
11617                        asc_dvc->cfg->termination = termination | TERM_LVD;
11618                } else {
11619                        /*
11620                         * The EEPROM 'termination_lvd' field contains a bad value.
11621                         * Use automatic termination instead.
11622                         */
11623                        asc_dvc->cfg->termination = termination;
11624                        warn_code |= ASC_WARN_EEPROM_TERMINATION;
11625                }
11626        }
11627
11628        return warn_code;
11629}
11630
11631/*
11632 * Initialize the ADV_DVC_VAR structure.
11633 *
11634 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11635 *
11636 * For a non-fatal error return a warning code. If there are no warnings
11637 * then 0 is returned.
11638 */
11639static int __devinit
11640AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
11641{
11642        struct asc_board *board = shost_priv(shost);
11643        ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var;
11644        unsigned short warn_code = 0;
11645        AdvPortAddr iop_base = asc_dvc->iop_base;
11646        u16 cmd;
11647        int status;
11648
11649        asc_dvc->err_code = 0;
11650
11651        /*
11652         * Save the state of the PCI Configuration Command Register
11653         * "Parity Error Response Control" Bit. If the bit is clear (0),
11654         * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
11655         * DMA parity errors.
11656         */
11657        asc_dvc->cfg->control_flag = 0;
11658        pci_read_config_word(pdev, PCI_COMMAND, &cmd);
11659        if ((cmd & PCI_COMMAND_PARITY) == 0)
11660                asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR;
11661
11662        asc_dvc->cfg->chip_version =
11663            AdvGetChipVersion(iop_base, asc_dvc->bus_type);
11664
11665        ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
11666                 (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1),
11667                 (ushort)ADV_CHIP_ID_BYTE);
11668
11669        ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
11670                 (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0),
11671                 (ushort)ADV_CHIP_ID_WORD);
11672
11673        /*
11674         * Reset the chip to start and allow register writes.
11675         */
11676        if (AdvFindSignature(iop_base) == 0) {
11677                asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
11678                return ADV_ERROR;
11679        } else {
11680                /*
11681                 * The caller must set 'chip_type' to a valid setting.
11682                 */
11683                if (asc_dvc->chip_type != ADV_CHIP_ASC3550 &&
11684                    asc_dvc->chip_type != ADV_CHIP_ASC38C0800 &&
11685                    asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
11686                        asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE;
11687                        return ADV_ERROR;
11688                }
11689
11690                /*
11691                 * Reset Chip.
11692                 */
11693                AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
11694                                     ADV_CTRL_REG_CMD_RESET);
11695                mdelay(100);
11696                AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
11697                                     ADV_CTRL_REG_CMD_WR_IO_REG);
11698
11699                if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
11700                        status = AdvInitFrom38C1600EEP(asc_dvc);
11701                } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
11702                        status = AdvInitFrom38C0800EEP(asc_dvc);
11703                } else {
11704                        status = AdvInitFrom3550EEP(asc_dvc);
11705                }
11706                warn_code |= status;
11707        }
11708
11709        if (warn_code != 0)
11710                shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code);
11711
11712        if (asc_dvc->err_code)
11713                shost_printk(KERN_ERR, shost, "error code 0x%x\n",
11714                                asc_dvc->err_code);
11715
11716        return asc_dvc->err_code;
11717}
11718#endif
11719
11720static struct scsi_host_template advansys_template = {
11721        .proc_name = DRV_NAME,
11722#ifdef CONFIG_PROC_FS
11723        .proc_info = advansys_proc_info,
11724#endif
11725        .name = DRV_NAME,
11726        .info = advansys_info,
11727        .queuecommand = advansys_queuecommand,
11728        .eh_bus_reset_handler = advansys_reset,
11729        .bios_param = advansys_biosparam,
11730        .slave_configure = advansys_slave_configure,
11731        /*
11732         * Because the driver may control an ISA adapter 'unchecked_isa_dma'
11733         * must be set. The flag will be cleared in advansys_board_found
11734         * for non-ISA adapters.
11735         */
11736        .unchecked_isa_dma = 1,
11737        /*
11738         * All adapters controlled by this driver are capable of large
11739         * scatter-gather lists. According to the mid-level SCSI documentation
11740         * this obviates any performance gain provided by setting
11741         * 'use_clustering'. But empirically while CPU utilization is increased
11742         * by enabling clustering, I/O throughput increases as well.
11743         */
11744        .use_clustering = ENABLE_CLUSTERING,
11745};
11746
11747static int __devinit advansys_wide_init_chip(struct Scsi_Host *shost)
11748{
11749        struct asc_board *board = shost_priv(shost);
11750        struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
11751        int req_cnt = 0;
11752        adv_req_t *reqp = NULL;
11753        int sg_cnt = 0;
11754        adv_sgblk_t *sgp;
11755        int warn_code, err_code;
11756
11757        /*
11758         * Allocate buffer carrier structures. The total size
11759         * is about 4 KB, so allocate all at once.
11760         */
11761        adv_dvc->carrier_buf = kmalloc(ADV_CARRIER_BUFSIZE, GFP_KERNEL);
11762        ASC_DBG(1, "carrier_buf 0x%p\n", adv_dvc->carrier_buf);
11763
11764        if (!adv_dvc->carrier_buf)
11765                goto kmalloc_failed;
11766
11767        /*
11768         * Allocate up to 'max_host_qng' request structures for the Wide
11769         * board. The total size is about 16 KB, so allocate all at once.
11770         * If the allocation fails decrement and try again.
11771         */
11772        for (req_cnt = adv_dvc->max_host_qng; req_cnt > 0; req_cnt--) {
11773                reqp = kmalloc(sizeof(adv_req_t) * req_cnt, GFP_KERNEL);
11774
11775                ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", reqp, req_cnt,
11776                         (ulong)sizeof(adv_req_t) * req_cnt);
11777
11778                if (reqp)
11779                        break;
11780        }
11781
11782        if (!reqp)
11783                goto kmalloc_failed;
11784
11785        adv_dvc->orig_reqp = reqp;
11786
11787        /*
11788         * Allocate up to ADV_TOT_SG_BLOCK request structures for
11789         * the Wide board. Each structure is about 136 bytes.
11790         */
11791        board->adv_sgblkp = NULL;
11792        for (sg_cnt = 0; sg_cnt < ADV_TOT_SG_BLOCK; sg_cnt++) {
11793                sgp = kmalloc(sizeof(adv_sgblk_t), GFP_KERNEL);
11794
11795                if (!sgp)
11796                        break;
11797
11798                sgp->next_sgblkp = board->adv_sgblkp;
11799                board->adv_sgblkp = sgp;
11800
11801        }
11802
11803        ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", sg_cnt, sizeof(adv_sgblk_t),
11804                 sizeof(adv_sgblk_t) * sg_cnt);
11805
11806        if (!board->adv_sgblkp)
11807                goto kmalloc_failed;
11808
11809        /*
11810         * Point 'adv_reqp' to the request structures and
11811         * link them together.
11812         */
11813        req_cnt--;
11814        reqp[req_cnt].next_reqp = NULL;
11815        for (; req_cnt > 0; req_cnt--) {
11816                reqp[req_cnt - 1].next_reqp = &reqp[req_cnt];
11817        }
11818        board->adv_reqp = &reqp[0];
11819
11820        if (adv_dvc->chip_type == ADV_CHIP_ASC3550) {
11821                ASC_DBG(2, "AdvInitAsc3550Driver()\n");
11822                warn_code = AdvInitAsc3550Driver(adv_dvc);
11823        } else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) {
11824                ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
11825                warn_code = AdvInitAsc38C0800Driver(adv_dvc);
11826        } else {
11827                ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
11828                warn_code = AdvInitAsc38C1600Driver(adv_dvc);
11829        }
11830        err_code = adv_dvc->err_code;
11831
11832        if (warn_code || err_code) {
11833                shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error "
11834                        "0x%x\n", warn_code, err_code);
11835        }
11836
11837        goto exit;
11838
11839 kmalloc_failed:
11840        shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n");
11841        err_code = ADV_ERROR;
11842 exit:
11843        return err_code;
11844}
11845
11846static void advansys_wide_free_mem(struct asc_board *board)
11847{
11848        struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
11849        kfree(adv_dvc->carrier_buf);
11850        adv_dvc->carrier_buf = NULL;
11851        kfree(adv_dvc->orig_reqp);
11852        adv_dvc->orig_reqp = board->adv_reqp = NULL;
11853        while (board->adv_sgblkp) {
11854                adv_sgblk_t *sgp = board->adv_sgblkp;
11855                board->adv_sgblkp = sgp->next_sgblkp;
11856                kfree(sgp);
11857        }
11858}
11859
11860static int __devinit advansys_board_found(struct Scsi_Host *shost,
11861                                          unsigned int iop, int bus_type)
11862{
11863        struct pci_dev *pdev;
11864        struct asc_board *boardp = shost_priv(shost);
11865        ASC_DVC_VAR *asc_dvc_varp = NULL;
11866        ADV_DVC_VAR *adv_dvc_varp = NULL;
11867        int share_irq, warn_code, ret;
11868
11869        pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL;
11870
11871        if (ASC_NARROW_BOARD(boardp)) {
11872                ASC_DBG(1, "narrow board\n");
11873                asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
11874                asc_dvc_varp->bus_type = bus_type;
11875                asc_dvc_varp->drv_ptr = boardp;
11876                asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg;
11877                asc_dvc_varp->iop_base = iop;
11878        } else {
11879#ifdef CONFIG_PCI
11880                adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
11881                adv_dvc_varp->drv_ptr = boardp;
11882                adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg;
11883                if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) {
11884                        ASC_DBG(1, "wide board ASC-3550\n");
11885                        adv_dvc_varp->chip_type = ADV_CHIP_ASC3550;
11886                } else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) {
11887                        ASC_DBG(1, "wide board ASC-38C0800\n");
11888                        adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800;
11889                } else {
11890                        ASC_DBG(1, "wide board ASC-38C1600\n");
11891                        adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600;
11892                }
11893
11894                boardp->asc_n_io_port = pci_resource_len(pdev, 1);
11895                boardp->ioremap_addr = pci_ioremap_bar(pdev, 1);
11896                if (!boardp->ioremap_addr) {
11897                        shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) "
11898                                        "returned NULL\n",
11899                                        (long)pci_resource_start(pdev, 1),
11900                                        boardp->asc_n_io_port);
11901                        ret = -ENODEV;
11902                        goto err_shost;
11903                }
11904                adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr;
11905                ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base);
11906
11907                /*
11908                 * Even though it isn't used to access wide boards, other
11909                 * than for the debug line below, save I/O Port address so
11910                 * that it can be reported.
11911                 */
11912                boardp->ioport = iop;
11913
11914                ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
11915                                (ushort)inp(iop + 1), (ushort)inpw(iop));
11916#endif /* CONFIG_PCI */
11917        }
11918
11919#ifdef CONFIG_PROC_FS
11920        /*
11921         * Allocate buffer for printing information from
11922         * /proc/scsi/advansys/[0...].
11923         */
11924        boardp->prtbuf = kmalloc(ASC_PRTBUF_SIZE, GFP_KERNEL);
11925        if (!boardp->prtbuf) {
11926                shost_printk(KERN_ERR, shost, "kmalloc(%d) returned NULL\n",
11927                                ASC_PRTBUF_SIZE);
11928                ret = -ENOMEM;
11929                goto err_unmap;
11930        }
11931#endif /* CONFIG_PROC_FS */
11932
11933        if (ASC_NARROW_BOARD(boardp)) {
11934                /*
11935                 * Set the board bus type and PCI IRQ before
11936                 * calling AscInitGetConfig().
11937                 */
11938                switch (asc_dvc_varp->bus_type) {
11939#ifdef CONFIG_ISA
11940                case ASC_IS_ISA:
11941                        shost->unchecked_isa_dma = TRUE;
11942                        share_irq = 0;
11943                        break;
11944                case ASC_IS_VL:
11945                        shost->unchecked_isa_dma = FALSE;
11946                        share_irq = 0;
11947                        break;
11948                case ASC_IS_EISA:
11949                        shost->unchecked_isa_dma = FALSE;
11950                        share_irq = IRQF_SHARED;
11951                        break;
11952#endif /* CONFIG_ISA */
11953#ifdef CONFIG_PCI
11954                case ASC_IS_PCI:
11955                        shost->unchecked_isa_dma = FALSE;
11956                        share_irq = IRQF_SHARED;
11957                        break;
11958#endif /* CONFIG_PCI */
11959                default:
11960                        shost_printk(KERN_ERR, shost, "unknown adapter type: "
11961                                        "%d\n", asc_dvc_varp->bus_type);
11962                        shost->unchecked_isa_dma = TRUE;
11963                        share_irq = 0;
11964                        break;
11965                }
11966
11967                /*
11968                 * NOTE: AscInitGetConfig() may change the board's
11969                 * bus_type value. The bus_type value should no
11970                 * longer be used. If the bus_type field must be
11971                 * referenced only use the bit-wise AND operator "&".
11972                 */
11973                ASC_DBG(2, "AscInitGetConfig()\n");
11974                ret = AscInitGetConfig(shost) ? -ENODEV : 0;
11975        } else {
11976#ifdef CONFIG_PCI
11977                /*
11978                 * For Wide boards set PCI information before calling
11979                 * AdvInitGetConfig().
11980                 */
11981                shost->unchecked_isa_dma = FALSE;
11982                share_irq = IRQF_SHARED;
11983                ASC_DBG(2, "AdvInitGetConfig()\n");
11984
11985                ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0;
11986#endif /* CONFIG_PCI */
11987        }
11988
11989        if (ret)
11990                goto err_free_proc;
11991
11992        /*
11993         * Save the EEPROM configuration so that it can be displayed
11994         * from /proc/scsi/advansys/[0...].
11995         */
11996        if (ASC_NARROW_BOARD(boardp)) {
11997
11998                ASCEEP_CONFIG *ep;
11999
12000                /*
12001                 * Set the adapter's target id bit in the 'init_tidmask' field.
12002                 */
12003                boardp->init_tidmask |=
12004                    ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id);
12005
12006                /*
12007                 * Save EEPROM settings for the board.
12008                 */
12009                ep = &boardp->eep_config.asc_eep;
12010
12011                ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable;
12012                ep->disc_enable = asc_dvc_varp->cfg->disc_enable;
12013                ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled;
12014                ASC_EEP_SET_DMA_SPD(ep, asc_dvc_varp->cfg->isa_dma_speed);
12015                ep->start_motor = asc_dvc_varp->start_motor;
12016                ep->cntl = asc_dvc_varp->dvc_cntl;
12017                ep->no_scam = asc_dvc_varp->no_scam;
12018                ep->max_total_qng = asc_dvc_varp->max_total_qng;
12019                ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id);
12020                /* 'max_tag_qng' is set to the same value for every device. */
12021                ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0];
12022                ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0];
12023                ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1];
12024                ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2];
12025                ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3];
12026                ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4];
12027                ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5];
12028
12029                /*
12030                 * Modify board configuration.
12031                 */
12032                ASC_DBG(2, "AscInitSetConfig()\n");
12033                ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0;
12034                if (ret)
12035                        goto err_free_proc;
12036        } else {
12037                ADVEEP_3550_CONFIG *ep_3550;
12038                ADVEEP_38C0800_CONFIG *ep_38C0800;
12039                ADVEEP_38C1600_CONFIG *ep_38C1600;
12040
12041                /*
12042                 * Save Wide EEP Configuration Information.
12043                 */
12044                if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
12045                        ep_3550 = &boardp->eep_config.adv_3550_eep;
12046
12047                        ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id;
12048                        ep_3550->max_host_qng = adv_dvc_varp->max_host_qng;
12049                        ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
12050                        ep_3550->termination = adv_dvc_varp->cfg->termination;
12051                        ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable;
12052                        ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl;
12053                        ep_3550->wdtr_able = adv_dvc_varp->wdtr_able;
12054                        ep_3550->sdtr_able = adv_dvc_varp->sdtr_able;
12055                        ep_3550->ultra_able = adv_dvc_varp->ultra_able;
12056                        ep_3550->tagqng_able = adv_dvc_varp->tagqng_able;
12057                        ep_3550->start_motor = adv_dvc_varp->start_motor;
12058                        ep_3550->scsi_reset_delay =
12059                            adv_dvc_varp->scsi_reset_wait;
12060                        ep_3550->serial_number_word1 =
12061                            adv_dvc_varp->cfg->serial1;
12062                        ep_3550->serial_number_word2 =
12063                            adv_dvc_varp->cfg->serial2;
12064                        ep_3550->serial_number_word3 =
12065                            adv_dvc_varp->cfg->serial3;
12066                } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
12067                        ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
12068
12069                        ep_38C0800->adapter_scsi_id =
12070                            adv_dvc_varp->chip_scsi_id;
12071                        ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng;
12072                        ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
12073                        ep_38C0800->termination_lvd =
12074                            adv_dvc_varp->cfg->termination;
12075                        ep_38C0800->disc_enable =
12076                            adv_dvc_varp->cfg->disc_enable;
12077                        ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl;
12078                        ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able;
12079                        ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
12080                        ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
12081                        ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
12082                        ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
12083                        ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
12084                        ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
12085                        ep_38C0800->start_motor = adv_dvc_varp->start_motor;
12086                        ep_38C0800->scsi_reset_delay =
12087                            adv_dvc_varp->scsi_reset_wait;
12088                        ep_38C0800->serial_number_word1 =
12089                            adv_dvc_varp->cfg->serial1;
12090                        ep_38C0800->serial_number_word2 =
12091                            adv_dvc_varp->cfg->serial2;
12092                        ep_38C0800->serial_number_word3 =
12093                            adv_dvc_varp->cfg->serial3;
12094                } else {
12095                        ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
12096
12097                        ep_38C1600->adapter_scsi_id =
12098                            adv_dvc_varp->chip_scsi_id;
12099                        ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng;
12100                        ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
12101                        ep_38C1600->termination_lvd =
12102                            adv_dvc_varp->cfg->termination;
12103                        ep_38C1600->disc_enable =
12104                            adv_dvc_varp->cfg->disc_enable;
12105                        ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl;
12106                        ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able;
12107                        ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
12108                        ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
12109                        ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
12110                        ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
12111                        ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
12112                        ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
12113                        ep_38C1600->start_motor = adv_dvc_varp->start_motor;
12114                        ep_38C1600->scsi_reset_delay =
12115                            adv_dvc_varp->scsi_reset_wait;
12116                        ep_38C1600->serial_number_word1 =
12117                            adv_dvc_varp->cfg->serial1;
12118                        ep_38C1600->serial_number_word2 =
12119                            adv_dvc_varp->cfg->serial2;
12120                        ep_38C1600->serial_number_word3 =
12121                            adv_dvc_varp->cfg->serial3;
12122                }
12123
12124                /*
12125                 * Set the adapter's target id bit in the 'init_tidmask' field.
12126                 */
12127                boardp->init_tidmask |=
12128                    ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id);
12129        }
12130
12131        /*
12132         * Channels are numbered beginning with 0. For AdvanSys one host
12133         * structure supports one channel. Multi-channel boards have a
12134         * separate host structure for each channel.
12135         */
12136        shost->max_channel = 0;
12137        if (ASC_NARROW_BOARD(boardp)) {
12138                shost->max_id = ASC_MAX_TID + 1;
12139                shost->max_lun = ASC_MAX_LUN + 1;
12140                shost->max_cmd_len = ASC_MAX_CDB_LEN;
12141
12142                shost->io_port = asc_dvc_varp->iop_base;
12143                boardp->asc_n_io_port = ASC_IOADR_GAP;
12144                shost->this_id = asc_dvc_varp->cfg->chip_scsi_id;
12145
12146                /* Set maximum number of queues the adapter can handle. */
12147                shost->can_queue = asc_dvc_varp->max_total_qng;
12148        } else {
12149                shost->max_id = ADV_MAX_TID + 1;
12150                shost->max_lun = ADV_MAX_LUN + 1;
12151                shost->max_cmd_len = ADV_MAX_CDB_LEN;
12152
12153                /*
12154                 * Save the I/O Port address and length even though
12155                 * I/O ports are not used to access Wide boards.
12156                 * Instead the Wide boards are accessed with
12157                 * PCI Memory Mapped I/O.
12158                 */
12159                shost->io_port = iop;
12160
12161                shost->this_id = adv_dvc_varp->chip_scsi_id;
12162
12163                /* Set maximum number of queues the adapter can handle. */
12164                shost->can_queue = adv_dvc_varp->max_host_qng;
12165        }
12166
12167        /*
12168         * Following v1.3.89, 'cmd_per_lun' is no longer needed
12169         * and should be set to zero.
12170         *
12171         * But because of a bug introduced in v1.3.89 if the driver is
12172         * compiled as a module and 'cmd_per_lun' is zero, the Mid-Level
12173         * SCSI function 'allocate_device' will panic. To allow the driver
12174         * to work as a module in these kernels set 'cmd_per_lun' to 1.
12175         *
12176         * Note: This is wrong.  cmd_per_lun should be set to the depth
12177         * you want on untagged devices always.
12178         #ifdef MODULE
12179         */
12180        shost->cmd_per_lun = 1;
12181/* #else
12182            shost->cmd_per_lun = 0;
12183#endif */
12184
12185        /*
12186         * Set the maximum number of scatter-gather elements the
12187         * adapter can handle.
12188         */
12189        if (ASC_NARROW_BOARD(boardp)) {
12190                /*
12191                 * Allow two commands with 'sg_tablesize' scatter-gather
12192                 * elements to be executed simultaneously. This value is
12193                 * the theoretical hardware limit. It may be decreased
12194                 * below.
12195                 */
12196                shost->sg_tablesize =
12197                    (((asc_dvc_varp->max_total_qng - 2) / 2) *
12198                     ASC_SG_LIST_PER_Q) + 1;
12199        } else {
12200                shost->sg_tablesize = ADV_MAX_SG_LIST;
12201        }
12202
12203        /*
12204         * The value of 'sg_tablesize' can not exceed the SCSI
12205         * mid-level driver definition of SG_ALL. SG_ALL also
12206         * must not be exceeded, because it is used to define the
12207         * size of the scatter-gather table in 'struct asc_sg_head'.
12208         */
12209        if (shost->sg_tablesize > SG_ALL) {
12210                shost->sg_tablesize = SG_ALL;
12211        }
12212
12213        ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize);
12214
12215        /* BIOS start address. */
12216        if (ASC_NARROW_BOARD(boardp)) {
12217                shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base,
12218                                                    asc_dvc_varp->bus_type);
12219        } else {
12220                /*
12221                 * Fill-in BIOS board variables. The Wide BIOS saves
12222                 * information in LRAM that is used by the driver.
12223                 */
12224                AdvReadWordLram(adv_dvc_varp->iop_base,
12225                                BIOS_SIGNATURE, boardp->bios_signature);
12226                AdvReadWordLram(adv_dvc_varp->iop_base,
12227                                BIOS_VERSION, boardp->bios_version);
12228                AdvReadWordLram(adv_dvc_varp->iop_base,
12229                                BIOS_CODESEG, boardp->bios_codeseg);
12230                AdvReadWordLram(adv_dvc_varp->iop_base,
12231                                BIOS_CODELEN, boardp->bios_codelen);
12232
12233                ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
12234                         boardp->bios_signature, boardp->bios_version);
12235
12236                ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
12237                         boardp->bios_codeseg, boardp->bios_codelen);
12238
12239                /*
12240                 * If the BIOS saved a valid signature, then fill in
12241                 * the BIOS code segment base address.
12242                 */
12243                if (boardp->bios_signature == 0x55AA) {
12244                        /*
12245                         * Convert x86 realmode code segment to a linear
12246                         * address by shifting left 4.
12247                         */
12248                        shost->base = ((ulong)boardp->bios_codeseg << 4);
12249                } else {
12250                        shost->base = 0;
12251                }
12252        }
12253
12254        /*
12255         * Register Board Resources - I/O Port, DMA, IRQ
12256         */
12257
12258        /* Register DMA Channel for Narrow boards. */
12259        shost->dma_channel = NO_ISA_DMA;        /* Default to no ISA DMA. */
12260#ifdef CONFIG_ISA
12261        if (ASC_NARROW_BOARD(boardp)) {
12262                /* Register DMA channel for ISA bus. */
12263                if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
12264                        shost->dma_channel = asc_dvc_varp->cfg->isa_dma_channel;
12265                        ret = request_dma(shost->dma_channel, DRV_NAME);
12266                        if (ret) {
12267                                shost_printk(KERN_ERR, shost, "request_dma() "
12268                                                "%d failed %d\n",
12269                                                shost->dma_channel, ret);
12270                                goto err_free_proc;
12271                        }
12272                        AscEnableIsaDma(shost->dma_channel);
12273                }
12274        }
12275#endif /* CONFIG_ISA */
12276
12277        /* Register IRQ Number. */
12278        ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost);
12279
12280        ret = request_irq(boardp->irq, advansys_interrupt, share_irq,
12281                          DRV_NAME, shost);
12282
12283        if (ret) {
12284                if (ret == -EBUSY) {
12285                        shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
12286                                        "already in use\n", boardp->irq);
12287                } else if (ret == -EINVAL) {
12288                        shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
12289                                        "not valid\n", boardp->irq);
12290                } else {
12291                        shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
12292                                        "failed with %d\n", boardp->irq, ret);
12293                }
12294                goto err_free_dma;
12295        }
12296
12297        /*
12298         * Initialize board RISC chip and enable interrupts.
12299         */
12300        if (ASC_NARROW_BOARD(boardp)) {
12301                ASC_DBG(2, "AscInitAsc1000Driver()\n");
12302
12303                asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL);
12304                if (!asc_dvc_varp->overrun_buf) {
12305                        ret = -ENOMEM;
12306                        goto err_free_wide_mem;
12307                }
12308                warn_code = AscInitAsc1000Driver(asc_dvc_varp);
12309
12310                if (warn_code || asc_dvc_varp->err_code) {
12311                        shost_printk(KERN_ERR, shost, "error: init_state 0x%x, "
12312                                        "warn 0x%x, error 0x%x\n",
12313                                        asc_dvc_varp->init_state, warn_code,
12314                                        asc_dvc_varp->err_code);
12315                        if (asc_dvc_varp->err_code) {
12316                                ret = -ENODEV;
12317                                kfree(asc_dvc_varp->overrun_buf);
12318                        }
12319                }
12320        } else {
12321                if (advansys_wide_init_chip(shost))
12322                        ret = -ENODEV;
12323        }
12324
12325        if (ret)
12326                goto err_free_wide_mem;
12327
12328        ASC_DBG_PRT_SCSI_HOST(2, shost);
12329
12330        ret = scsi_add_host(shost, boardp->dev);
12331        if (ret)
12332                goto err_free_wide_mem;
12333
12334        scsi_scan_host(shost);
12335        return 0;
12336
12337 err_free_wide_mem:
12338        advansys_wide_free_mem(boardp);
12339        free_irq(boardp->irq, shost);
12340 err_free_dma:
12341#ifdef CONFIG_ISA
12342        if (shost->dma_channel != NO_ISA_DMA)
12343                free_dma(shost->dma_channel);
12344#endif
12345 err_free_proc:
12346        kfree(boardp->prtbuf);
12347 err_unmap:
12348        if (boardp->ioremap_addr)
12349                iounmap(boardp->ioremap_addr);
12350 err_shost:
12351        return ret;
12352}
12353
12354/*
12355 * advansys_release()
12356 *
12357 * Release resources allocated for a single AdvanSys adapter.
12358 */
12359static int advansys_release(struct Scsi_Host *shost)
12360{
12361        struct asc_board *board = shost_priv(shost);
12362        ASC_DBG(1, "begin\n");
12363        scsi_remove_host(shost);
12364        free_irq(board->irq, shost);
12365#ifdef CONFIG_ISA
12366        if (shost->dma_channel != NO_ISA_DMA) {
12367                ASC_DBG(1, "free_dma()\n");
12368                free_dma(shost->dma_channel);
12369        }
12370#endif
12371        if (ASC_NARROW_BOARD(board)) {
12372                dma_unmap_single(board->dev,
12373                                        board->dvc_var.asc_dvc_var.overrun_dma,
12374                                        ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
12375                kfree(board->dvc_var.asc_dvc_var.overrun_buf);
12376        } else {
12377                iounmap(board->ioremap_addr);
12378                advansys_wide_free_mem(board);
12379        }
12380        kfree(board->prtbuf);
12381        scsi_host_put(shost);
12382        ASC_DBG(1, "end\n");
12383        return 0;
12384}
12385
12386#define ASC_IOADR_TABLE_MAX_IX  11
12387
12388static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = {
12389        0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
12390        0x0210, 0x0230, 0x0250, 0x0330
12391};
12392
12393/*
12394 * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw.  It decodes as:
12395 * 00: 10
12396 * 01: 11
12397 * 10: 12
12398 * 11: 15
12399 */
12400static unsigned int __devinit advansys_isa_irq_no(PortAddr iop_base)
12401{
12402        unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
12403        unsigned int chip_irq = ((cfg_lsw >> 2) & 0x03) + 10;
12404        if (chip_irq == 13)
12405                chip_irq = 15;
12406        return chip_irq;
12407}
12408
12409static int __devinit advansys_isa_probe(struct device *dev, unsigned int id)
12410{
12411        int err = -ENODEV;
12412        PortAddr iop_base = _asc_def_iop_base[id];
12413        struct Scsi_Host *shost;
12414        struct asc_board *board;
12415
12416        if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
12417                ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
12418                return -ENODEV;
12419        }
12420        ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
12421        if (!AscFindSignature(iop_base))
12422                goto release_region;
12423        if (!(AscGetChipVersion(iop_base, ASC_IS_ISA) & ASC_CHIP_VER_ISA_BIT))
12424                goto release_region;
12425
12426        err = -ENOMEM;
12427        shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12428        if (!shost)
12429                goto release_region;
12430
12431        board = shost_priv(shost);
12432        board->irq = advansys_isa_irq_no(iop_base);
12433        board->dev = dev;
12434
12435        err = advansys_board_found(shost, iop_base, ASC_IS_ISA);
12436        if (err)
12437                goto free_host;
12438
12439        dev_set_drvdata(dev, shost);
12440        return 0;
12441
12442 free_host:
12443        scsi_host_put(shost);
12444 release_region:
12445        release_region(iop_base, ASC_IOADR_GAP);
12446        return err;
12447}
12448
12449static int __devexit advansys_isa_remove(struct device *dev, unsigned int id)
12450{
12451        int ioport = _asc_def_iop_base[id];
12452        advansys_release(dev_get_drvdata(dev));
12453        release_region(ioport, ASC_IOADR_GAP);
12454        return 0;
12455}
12456
12457static struct isa_driver advansys_isa_driver = {
12458        .probe          = advansys_isa_probe,
12459        .remove         = __devexit_p(advansys_isa_remove),
12460        .driver = {
12461                .owner  = THIS_MODULE,
12462                .name   = DRV_NAME,
12463        },
12464};
12465
12466/*
12467 * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw.  It decodes as:
12468 * 000: invalid
12469 * 001: 10
12470 * 010: 11
12471 * 011: 12
12472 * 100: invalid
12473 * 101: 14
12474 * 110: 15
12475 * 111: invalid
12476 */
12477static unsigned int __devinit advansys_vlb_irq_no(PortAddr iop_base)
12478{
12479        unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
12480        unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9;
12481        if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15))
12482                return 0;
12483        return chip_irq;
12484}
12485
12486static int __devinit advansys_vlb_probe(struct device *dev, unsigned int id)
12487{
12488        int err = -ENODEV;
12489        PortAddr iop_base = _asc_def_iop_base[id];
12490        struct Scsi_Host *shost;
12491        struct asc_board *board;
12492
12493        if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
12494                ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
12495                return -ENODEV;
12496        }
12497        ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
12498        if (!AscFindSignature(iop_base))
12499                goto release_region;
12500        /*
12501         * I don't think this condition can actually happen, but the old
12502         * driver did it, and the chances of finding a VLB setup in 2007
12503         * to do testing with is slight to none.
12504         */
12505        if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL)
12506                goto release_region;
12507
12508        err = -ENOMEM;
12509        shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12510        if (!shost)
12511                goto release_region;
12512
12513        board = shost_priv(shost);
12514        board->irq = advansys_vlb_irq_no(iop_base);
12515        board->dev = dev;
12516
12517        err = advansys_board_found(shost, iop_base, ASC_IS_VL);
12518        if (err)
12519                goto free_host;
12520
12521        dev_set_drvdata(dev, shost);
12522        return 0;
12523
12524 free_host:
12525        scsi_host_put(shost);
12526 release_region:
12527        release_region(iop_base, ASC_IOADR_GAP);
12528        return -ENODEV;
12529}
12530
12531static struct isa_driver advansys_vlb_driver = {
12532        .probe          = advansys_vlb_probe,
12533        .remove         = __devexit_p(advansys_isa_remove),
12534        .driver = {
12535                .owner  = THIS_MODULE,
12536                .name   = "advansys_vlb",
12537        },
12538};
12539
12540static struct eisa_device_id advansys_eisa_table[] __devinitdata = {
12541        { "ABP7401" },
12542        { "ABP7501" },
12543        { "" }
12544};
12545
12546MODULE_DEVICE_TABLE(eisa, advansys_eisa_table);
12547
12548/*
12549 * EISA is a little more tricky than PCI; each EISA device may have two
12550 * channels, and this driver is written to make each channel its own Scsi_Host
12551 */
12552struct eisa_scsi_data {
12553        struct Scsi_Host *host[2];
12554};
12555
12556/*
12557 * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw.  It decodes as:
12558 * 000: 10
12559 * 001: 11
12560 * 010: 12
12561 * 011: invalid
12562 * 100: 14
12563 * 101: 15
12564 * 110: invalid
12565 * 111: invalid
12566 */
12567static unsigned int __devinit advansys_eisa_irq_no(struct eisa_device *edev)
12568{
12569        unsigned short cfg_lsw = inw(edev->base_addr + 0xc86);
12570        unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10;
12571        if ((chip_irq == 13) || (chip_irq > 15))
12572                return 0;
12573        return chip_irq;
12574}
12575
12576static int __devinit advansys_eisa_probe(struct device *dev)
12577{
12578        int i, ioport, irq = 0;
12579        int err;
12580        struct eisa_device *edev = to_eisa_device(dev);
12581        struct eisa_scsi_data *data;
12582
12583        err = -ENOMEM;
12584        data = kzalloc(sizeof(*data), GFP_KERNEL);
12585        if (!data)
12586                goto fail;
12587        ioport = edev->base_addr + 0xc30;
12588
12589        err = -ENODEV;
12590        for (i = 0; i < 2; i++, ioport += 0x20) {
12591                struct asc_board *board;
12592                struct Scsi_Host *shost;
12593                if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) {
12594                        printk(KERN_WARNING "Region %x-%x busy\n", ioport,
12595                               ioport + ASC_IOADR_GAP - 1);
12596                        continue;
12597                }
12598                if (!AscFindSignature(ioport)) {
12599                        release_region(ioport, ASC_IOADR_GAP);
12600                        continue;
12601                }
12602
12603                /*
12604                 * I don't know why we need to do this for EISA chips, but
12605                 * not for any others.  It looks to be equivalent to
12606                 * AscGetChipCfgMsw, but I may have overlooked something,
12607                 * so I'm not converting it until I get an EISA board to
12608                 * test with.
12609                 */
12610                inw(ioport + 4);
12611
12612                if (!irq)
12613                        irq = advansys_eisa_irq_no(edev);
12614
12615                err = -ENOMEM;
12616                shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12617                if (!shost)
12618                        goto release_region;
12619
12620                board = shost_priv(shost);
12621                board->irq = irq;
12622                board->dev = dev;
12623
12624                err = advansys_board_found(shost, ioport, ASC_IS_EISA);
12625                if (!err) {
12626                        data->host[i] = shost;
12627                        continue;
12628                }
12629
12630                scsi_host_put(shost);
12631 release_region:
12632                release_region(ioport, ASC_IOADR_GAP);
12633                break;
12634        }
12635
12636        if (err)
12637                goto free_data;
12638        dev_set_drvdata(dev, data);
12639        return 0;
12640
12641 free_data:
12642        kfree(data->host[0]);
12643        kfree(data->host[1]);
12644        kfree(data);
12645 fail:
12646        return err;
12647}
12648
12649static __devexit int advansys_eisa_remove(struct device *dev)
12650{
12651        int i;
12652        struct eisa_scsi_data *data = dev_get_drvdata(dev);
12653
12654        for (i = 0; i < 2; i++) {
12655                int ioport;
12656                struct Scsi_Host *shost = data->host[i];
12657                if (!shost)
12658                        continue;
12659                ioport = shost->io_port;
12660                advansys_release(shost);
12661                release_region(ioport, ASC_IOADR_GAP);
12662        }
12663
12664        kfree(data);
12665        return 0;
12666}
12667
12668static struct eisa_driver advansys_eisa_driver = {
12669        .id_table =             advansys_eisa_table,
12670        .driver = {
12671                .name =         DRV_NAME,
12672                .probe =        advansys_eisa_probe,
12673                .remove =       __devexit_p(advansys_eisa_remove),
12674        }
12675};
12676
12677/* PCI Devices supported by this driver */
12678static struct pci_device_id advansys_pci_tbl[] __devinitdata = {
12679        {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A,
12680         PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12681        {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940,
12682         PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12683        {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U,
12684         PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12685        {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW,
12686         PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12687        {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1,
12688         PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12689        {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1,
12690         PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12691        {}
12692};
12693
12694MODULE_DEVICE_TABLE(pci, advansys_pci_tbl);
12695
12696static void __devinit advansys_set_latency(struct pci_dev *pdev)
12697{
12698        if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
12699            (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
12700                pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0);
12701        } else {
12702                u8 latency;
12703                pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency);
12704                if (latency < 0x20)
12705                        pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20);
12706        }
12707}
12708
12709static int __devinit
12710advansys_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
12711{
12712        int err, ioport;
12713        struct Scsi_Host *shost;
12714        struct asc_board *board;
12715
12716        err = pci_enable_device(pdev);
12717        if (err)
12718                goto fail;
12719        err = pci_request_regions(pdev, DRV_NAME);
12720        if (err)
12721                goto disable_device;
12722        pci_set_master(pdev);
12723        advansys_set_latency(pdev);
12724
12725        err = -ENODEV;
12726        if (pci_resource_len(pdev, 0) == 0)
12727                goto release_region;
12728
12729        ioport = pci_resource_start(pdev, 0);
12730
12731        err = -ENOMEM;
12732        shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12733        if (!shost)
12734                goto release_region;
12735
12736        board = shost_priv(shost);
12737        board->irq = pdev->irq;
12738        board->dev = &pdev->dev;
12739
12740        if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW ||
12741            pdev->device == PCI_DEVICE_ID_38C0800_REV1 ||
12742            pdev->device == PCI_DEVICE_ID_38C1600_REV1) {
12743                board->flags |= ASC_IS_WIDE_BOARD;
12744        }
12745
12746        err = advansys_board_found(shost, ioport, ASC_IS_PCI);
12747        if (err)
12748                goto free_host;
12749
12750        pci_set_drvdata(pdev, shost);
12751        return 0;
12752
12753 free_host:
12754        scsi_host_put(shost);
12755 release_region:
12756        pci_release_regions(pdev);
12757 disable_device:
12758        pci_disable_device(pdev);
12759 fail:
12760        return err;
12761}
12762
12763static void __devexit advansys_pci_remove(struct pci_dev *pdev)
12764{
12765        advansys_release(pci_get_drvdata(pdev));
12766        pci_release_regions(pdev);
12767        pci_disable_device(pdev);
12768}
12769
12770static struct pci_driver advansys_pci_driver = {
12771        .name =         DRV_NAME,
12772        .id_table =     advansys_pci_tbl,
12773        .probe =        advansys_pci_probe,
12774        .remove =       __devexit_p(advansys_pci_remove),
12775};
12776
12777static int __init advansys_init(void)
12778{
12779        int error;
12780
12781        error = isa_register_driver(&advansys_isa_driver,
12782                                    ASC_IOADR_TABLE_MAX_IX);
12783        if (error)
12784                goto fail;
12785
12786        error = isa_register_driver(&advansys_vlb_driver,
12787                                    ASC_IOADR_TABLE_MAX_IX);
12788        if (error)
12789                goto unregister_isa;
12790
12791        error = eisa_driver_register(&advansys_eisa_driver);
12792        if (error)
12793                goto unregister_vlb;
12794
12795        error = pci_register_driver(&advansys_pci_driver);
12796        if (error)
12797                goto unregister_eisa;
12798
12799        return 0;
12800
12801 unregister_eisa:
12802        eisa_driver_unregister(&advansys_eisa_driver);
12803 unregister_vlb:
12804        isa_unregister_driver(&advansys_vlb_driver);
12805 unregister_isa:
12806        isa_unregister_driver(&advansys_isa_driver);
12807 fail:
12808        return error;
12809}
12810
12811static void __exit advansys_exit(void)
12812{
12813        pci_unregister_driver(&advansys_pci_driver);
12814        eisa_driver_unregister(&advansys_eisa_driver);
12815        isa_unregister_driver(&advansys_vlb_driver);
12816        isa_unregister_driver(&advansys_isa_driver);
12817}
12818
12819module_init(advansys_init);
12820module_exit(advansys_exit);
12821
12822MODULE_LICENSE("GPL");
12823MODULE_FIRMWARE("advansys/mcode.bin");
12824MODULE_FIRMWARE("advansys/3550.bin");
12825MODULE_FIRMWARE("advansys/38C0800.bin");
12826MODULE_FIRMWARE("advansys/38C1600.bin");
12827