linux/drivers/scsi/libsas/sas_expander.c
<<
>>
Prefs
   1/*
   2 * Serial Attached SCSI (SAS) Expander discovery and configuration
   3 *
   4 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
   5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
   6 *
   7 * This file is licensed under GPLv2.
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License as
  11 * published by the Free Software Foundation; either version 2 of the
  12 * License, or (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful, but
  15 * WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  17 * General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  22 *
  23 */
  24
  25#include <linux/scatterlist.h>
  26#include <linux/blkdev.h>
  27
  28#include "sas_internal.h"
  29
  30#include <scsi/scsi_transport.h>
  31#include <scsi/scsi_transport_sas.h>
  32#include "../scsi_sas_internal.h"
  33
  34static int sas_discover_expander(struct domain_device *dev);
  35static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
  36static int sas_configure_phy(struct domain_device *dev, int phy_id,
  37                             u8 *sas_addr, int include);
  38static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
  39
  40/* ---------- SMP task management ---------- */
  41
  42static void smp_task_timedout(unsigned long _task)
  43{
  44        struct sas_task *task = (void *) _task;
  45        unsigned long flags;
  46
  47        spin_lock_irqsave(&task->task_state_lock, flags);
  48        if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
  49                task->task_state_flags |= SAS_TASK_STATE_ABORTED;
  50        spin_unlock_irqrestore(&task->task_state_lock, flags);
  51
  52        complete(&task->completion);
  53}
  54
  55static void smp_task_done(struct sas_task *task)
  56{
  57        if (!del_timer(&task->timer))
  58                return;
  59        complete(&task->completion);
  60}
  61
  62/* Give it some long enough timeout. In seconds. */
  63#define SMP_TIMEOUT 10
  64
  65static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
  66                            void *resp, int resp_size)
  67{
  68        int res, retry;
  69        struct sas_task *task = NULL;
  70        struct sas_internal *i =
  71                to_sas_internal(dev->port->ha->core.shost->transportt);
  72
  73        for (retry = 0; retry < 3; retry++) {
  74                task = sas_alloc_task(GFP_KERNEL);
  75                if (!task)
  76                        return -ENOMEM;
  77
  78                task->dev = dev;
  79                task->task_proto = dev->tproto;
  80                sg_init_one(&task->smp_task.smp_req, req, req_size);
  81                sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
  82
  83                task->task_done = smp_task_done;
  84
  85                task->timer.data = (unsigned long) task;
  86                task->timer.function = smp_task_timedout;
  87                task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
  88                add_timer(&task->timer);
  89
  90                res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
  91
  92                if (res) {
  93                        del_timer(&task->timer);
  94                        SAS_DPRINTK("executing SMP task failed:%d\n", res);
  95                        goto ex_err;
  96                }
  97
  98                wait_for_completion(&task->completion);
  99                res = -ECOMM;
 100                if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
 101                        SAS_DPRINTK("smp task timed out or aborted\n");
 102                        i->dft->lldd_abort_task(task);
 103                        if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
 104                                SAS_DPRINTK("SMP task aborted and not done\n");
 105                                goto ex_err;
 106                        }
 107                }
 108                if (task->task_status.resp == SAS_TASK_COMPLETE &&
 109                    task->task_status.stat == SAM_GOOD) {
 110                        res = 0;
 111                        break;
 112                } if (task->task_status.resp == SAS_TASK_COMPLETE &&
 113                      task->task_status.stat == SAS_DATA_UNDERRUN) {
 114                        /* no error, but return the number of bytes of
 115                         * underrun */
 116                        res = task->task_status.residual;
 117                        break;
 118                } if (task->task_status.resp == SAS_TASK_COMPLETE &&
 119                      task->task_status.stat == SAS_DATA_OVERRUN) {
 120                        res = -EMSGSIZE;
 121                        break;
 122                } else {
 123                        SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
 124                                    "status 0x%x\n", __func__,
 125                                    SAS_ADDR(dev->sas_addr),
 126                                    task->task_status.resp,
 127                                    task->task_status.stat);
 128                        sas_free_task(task);
 129                        task = NULL;
 130                }
 131        }
 132ex_err:
 133        BUG_ON(retry == 3 && task != NULL);
 134        if (task != NULL) {
 135                sas_free_task(task);
 136        }
 137        return res;
 138}
 139
 140/* ---------- Allocations ---------- */
 141
 142static inline void *alloc_smp_req(int size)
 143{
 144        u8 *p = kzalloc(size, GFP_KERNEL);
 145        if (p)
 146                p[0] = SMP_REQUEST;
 147        return p;
 148}
 149
 150static inline void *alloc_smp_resp(int size)
 151{
 152        return kzalloc(size, GFP_KERNEL);
 153}
 154
 155/* ---------- Expander configuration ---------- */
 156
 157static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
 158                           void *disc_resp)
 159{
 160        struct expander_device *ex = &dev->ex_dev;
 161        struct ex_phy *phy = &ex->ex_phy[phy_id];
 162        struct smp_resp *resp = disc_resp;
 163        struct discover_resp *dr = &resp->disc;
 164        struct sas_rphy *rphy = dev->rphy;
 165        int rediscover = (phy->phy != NULL);
 166
 167        if (!rediscover) {
 168                phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
 169
 170                /* FIXME: error_handling */
 171                BUG_ON(!phy->phy);
 172        }
 173
 174        switch (resp->result) {
 175        case SMP_RESP_PHY_VACANT:
 176                phy->phy_state = PHY_VACANT;
 177                return;
 178        default:
 179                phy->phy_state = PHY_NOT_PRESENT;
 180                return;
 181        case SMP_RESP_FUNC_ACC:
 182                phy->phy_state = PHY_EMPTY; /* do not know yet */
 183                break;
 184        }
 185
 186        phy->phy_id = phy_id;
 187        phy->attached_dev_type = dr->attached_dev_type;
 188        phy->linkrate = dr->linkrate;
 189        phy->attached_sata_host = dr->attached_sata_host;
 190        phy->attached_sata_dev  = dr->attached_sata_dev;
 191        phy->attached_sata_ps   = dr->attached_sata_ps;
 192        phy->attached_iproto = dr->iproto << 1;
 193        phy->attached_tproto = dr->tproto << 1;
 194        memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
 195        phy->attached_phy_id = dr->attached_phy_id;
 196        phy->phy_change_count = dr->change_count;
 197        phy->routing_attr = dr->routing_attr;
 198        phy->virtual = dr->virtual;
 199        phy->last_da_index = -1;
 200
 201        phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
 202        phy->phy->identify.target_port_protocols = phy->attached_tproto;
 203        phy->phy->identify.phy_identifier = phy_id;
 204        phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
 205        phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
 206        phy->phy->minimum_linkrate = dr->pmin_linkrate;
 207        phy->phy->maximum_linkrate = dr->pmax_linkrate;
 208        phy->phy->negotiated_linkrate = phy->linkrate;
 209
 210        if (!rediscover)
 211                sas_phy_add(phy->phy);
 212
 213        SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
 214                    SAS_ADDR(dev->sas_addr), phy->phy_id,
 215                    phy->routing_attr == TABLE_ROUTING ? 'T' :
 216                    phy->routing_attr == DIRECT_ROUTING ? 'D' :
 217                    phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
 218                    SAS_ADDR(phy->attached_sas_addr));
 219
 220        return;
 221}
 222
 223#define DISCOVER_REQ_SIZE  16
 224#define DISCOVER_RESP_SIZE 56
 225
 226static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
 227                                      u8 *disc_resp, int single)
 228{
 229        int i, res;
 230
 231        disc_req[9] = single;
 232        for (i = 1 ; i < 3; i++) {
 233                struct discover_resp *dr;
 234
 235                res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
 236                                       disc_resp, DISCOVER_RESP_SIZE);
 237                if (res)
 238                        return res;
 239                /* This is detecting a failure to transmit inital
 240                 * dev to host FIS as described in section G.5 of
 241                 * sas-2 r 04b */
 242                dr = &((struct smp_resp *)disc_resp)->disc;
 243                if (!(dr->attached_dev_type == 0 &&
 244                      dr->attached_sata_dev))
 245                        break;
 246                /* In order to generate the dev to host FIS, we
 247                 * send a link reset to the expander port */
 248                sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL);
 249                /* Wait for the reset to trigger the negotiation */
 250                msleep(500);
 251        }
 252        sas_set_ex_phy(dev, single, disc_resp);
 253        return 0;
 254}
 255
 256static int sas_ex_phy_discover(struct domain_device *dev, int single)
 257{
 258        struct expander_device *ex = &dev->ex_dev;
 259        int  res = 0;
 260        u8   *disc_req;
 261        u8   *disc_resp;
 262
 263        disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
 264        if (!disc_req)
 265                return -ENOMEM;
 266
 267        disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
 268        if (!disc_resp) {
 269                kfree(disc_req);
 270                return -ENOMEM;
 271        }
 272
 273        disc_req[1] = SMP_DISCOVER;
 274
 275        if (0 <= single && single < ex->num_phys) {
 276                res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
 277        } else {
 278                int i;
 279
 280                for (i = 0; i < ex->num_phys; i++) {
 281                        res = sas_ex_phy_discover_helper(dev, disc_req,
 282                                                         disc_resp, i);
 283                        if (res)
 284                                goto out_err;
 285                }
 286        }
 287out_err:
 288        kfree(disc_resp);
 289        kfree(disc_req);
 290        return res;
 291}
 292
 293static int sas_expander_discover(struct domain_device *dev)
 294{
 295        struct expander_device *ex = &dev->ex_dev;
 296        int res = -ENOMEM;
 297
 298        ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
 299        if (!ex->ex_phy)
 300                return -ENOMEM;
 301
 302        res = sas_ex_phy_discover(dev, -1);
 303        if (res)
 304                goto out_err;
 305
 306        return 0;
 307 out_err:
 308        kfree(ex->ex_phy);
 309        ex->ex_phy = NULL;
 310        return res;
 311}
 312
 313#define MAX_EXPANDER_PHYS 128
 314
 315static void ex_assign_report_general(struct domain_device *dev,
 316                                            struct smp_resp *resp)
 317{
 318        struct report_general_resp *rg = &resp->rg;
 319
 320        dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
 321        dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
 322        dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
 323        dev->ex_dev.conf_route_table = rg->conf_route_table;
 324        dev->ex_dev.configuring = rg->configuring;
 325        memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
 326}
 327
 328#define RG_REQ_SIZE   8
 329#define RG_RESP_SIZE 32
 330
 331static int sas_ex_general(struct domain_device *dev)
 332{
 333        u8 *rg_req;
 334        struct smp_resp *rg_resp;
 335        int res;
 336        int i;
 337
 338        rg_req = alloc_smp_req(RG_REQ_SIZE);
 339        if (!rg_req)
 340                return -ENOMEM;
 341
 342        rg_resp = alloc_smp_resp(RG_RESP_SIZE);
 343        if (!rg_resp) {
 344                kfree(rg_req);
 345                return -ENOMEM;
 346        }
 347
 348        rg_req[1] = SMP_REPORT_GENERAL;
 349
 350        for (i = 0; i < 5; i++) {
 351                res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
 352                                       RG_RESP_SIZE);
 353
 354                if (res) {
 355                        SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
 356                                    SAS_ADDR(dev->sas_addr), res);
 357                        goto out;
 358                } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
 359                        SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
 360                                    SAS_ADDR(dev->sas_addr), rg_resp->result);
 361                        res = rg_resp->result;
 362                        goto out;
 363                }
 364
 365                ex_assign_report_general(dev, rg_resp);
 366
 367                if (dev->ex_dev.configuring) {
 368                        SAS_DPRINTK("RG: ex %llx self-configuring...\n",
 369                                    SAS_ADDR(dev->sas_addr));
 370                        schedule_timeout_interruptible(5*HZ);
 371                } else
 372                        break;
 373        }
 374out:
 375        kfree(rg_req);
 376        kfree(rg_resp);
 377        return res;
 378}
 379
 380static void ex_assign_manuf_info(struct domain_device *dev, void
 381                                        *_mi_resp)
 382{
 383        u8 *mi_resp = _mi_resp;
 384        struct sas_rphy *rphy = dev->rphy;
 385        struct sas_expander_device *edev = rphy_to_expander_device(rphy);
 386
 387        memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
 388        memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
 389        memcpy(edev->product_rev, mi_resp + 36,
 390               SAS_EXPANDER_PRODUCT_REV_LEN);
 391
 392        if (mi_resp[8] & 1) {
 393                memcpy(edev->component_vendor_id, mi_resp + 40,
 394                       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
 395                edev->component_id = mi_resp[48] << 8 | mi_resp[49];
 396                edev->component_revision_id = mi_resp[50];
 397        }
 398}
 399
 400#define MI_REQ_SIZE   8
 401#define MI_RESP_SIZE 64
 402
 403static int sas_ex_manuf_info(struct domain_device *dev)
 404{
 405        u8 *mi_req;
 406        u8 *mi_resp;
 407        int res;
 408
 409        mi_req = alloc_smp_req(MI_REQ_SIZE);
 410        if (!mi_req)
 411                return -ENOMEM;
 412
 413        mi_resp = alloc_smp_resp(MI_RESP_SIZE);
 414        if (!mi_resp) {
 415                kfree(mi_req);
 416                return -ENOMEM;
 417        }
 418
 419        mi_req[1] = SMP_REPORT_MANUF_INFO;
 420
 421        res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
 422        if (res) {
 423                SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
 424                            SAS_ADDR(dev->sas_addr), res);
 425                goto out;
 426        } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
 427                SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
 428                            SAS_ADDR(dev->sas_addr), mi_resp[2]);
 429                goto out;
 430        }
 431
 432        ex_assign_manuf_info(dev, mi_resp);
 433out:
 434        kfree(mi_req);
 435        kfree(mi_resp);
 436        return res;
 437}
 438
 439#define PC_REQ_SIZE  44
 440#define PC_RESP_SIZE 8
 441
 442int sas_smp_phy_control(struct domain_device *dev, int phy_id,
 443                        enum phy_func phy_func,
 444                        struct sas_phy_linkrates *rates)
 445{
 446        u8 *pc_req;
 447        u8 *pc_resp;
 448        int res;
 449
 450        pc_req = alloc_smp_req(PC_REQ_SIZE);
 451        if (!pc_req)
 452                return -ENOMEM;
 453
 454        pc_resp = alloc_smp_resp(PC_RESP_SIZE);
 455        if (!pc_resp) {
 456                kfree(pc_req);
 457                return -ENOMEM;
 458        }
 459
 460        pc_req[1] = SMP_PHY_CONTROL;
 461        pc_req[9] = phy_id;
 462        pc_req[10]= phy_func;
 463        if (rates) {
 464                pc_req[32] = rates->minimum_linkrate << 4;
 465                pc_req[33] = rates->maximum_linkrate << 4;
 466        }
 467
 468        res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
 469
 470        kfree(pc_resp);
 471        kfree(pc_req);
 472        return res;
 473}
 474
 475static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
 476{
 477        struct expander_device *ex = &dev->ex_dev;
 478        struct ex_phy *phy = &ex->ex_phy[phy_id];
 479
 480        sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
 481        phy->linkrate = SAS_PHY_DISABLED;
 482}
 483
 484static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
 485{
 486        struct expander_device *ex = &dev->ex_dev;
 487        int i;
 488
 489        for (i = 0; i < ex->num_phys; i++) {
 490                struct ex_phy *phy = &ex->ex_phy[i];
 491
 492                if (phy->phy_state == PHY_VACANT ||
 493                    phy->phy_state == PHY_NOT_PRESENT)
 494                        continue;
 495
 496                if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
 497                        sas_ex_disable_phy(dev, i);
 498        }
 499}
 500
 501static int sas_dev_present_in_domain(struct asd_sas_port *port,
 502                                            u8 *sas_addr)
 503{
 504        struct domain_device *dev;
 505
 506        if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
 507                return 1;
 508        list_for_each_entry(dev, &port->dev_list, dev_list_node) {
 509                if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
 510                        return 1;
 511        }
 512        return 0;
 513}
 514
 515#define RPEL_REQ_SIZE   16
 516#define RPEL_RESP_SIZE  32
 517int sas_smp_get_phy_events(struct sas_phy *phy)
 518{
 519        int res;
 520        u8 *req;
 521        u8 *resp;
 522        struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
 523        struct domain_device *dev = sas_find_dev_by_rphy(rphy);
 524
 525        req = alloc_smp_req(RPEL_REQ_SIZE);
 526        if (!req)
 527                return -ENOMEM;
 528
 529        resp = alloc_smp_resp(RPEL_RESP_SIZE);
 530        if (!resp) {
 531                kfree(req);
 532                return -ENOMEM;
 533        }
 534
 535        req[1] = SMP_REPORT_PHY_ERR_LOG;
 536        req[9] = phy->number;
 537
 538        res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
 539                                    resp, RPEL_RESP_SIZE);
 540
 541        if (!res)
 542                goto out;
 543
 544        phy->invalid_dword_count = scsi_to_u32(&resp[12]);
 545        phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
 546        phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
 547        phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
 548
 549 out:
 550        kfree(resp);
 551        return res;
 552
 553}
 554
 555#ifdef CONFIG_SCSI_SAS_ATA
 556
 557#define RPS_REQ_SIZE  16
 558#define RPS_RESP_SIZE 60
 559
 560static int sas_get_report_phy_sata(struct domain_device *dev,
 561                                          int phy_id,
 562                                          struct smp_resp *rps_resp)
 563{
 564        int res;
 565        u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
 566        u8 *resp = (u8 *)rps_resp;
 567
 568        if (!rps_req)
 569                return -ENOMEM;
 570
 571        rps_req[1] = SMP_REPORT_PHY_SATA;
 572        rps_req[9] = phy_id;
 573
 574        res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
 575                                    rps_resp, RPS_RESP_SIZE);
 576
 577        /* 0x34 is the FIS type for the D2H fis.  There's a potential
 578         * standards cockup here.  sas-2 explicitly specifies the FIS
 579         * should be encoded so that FIS type is in resp[24].
 580         * However, some expanders endian reverse this.  Undo the
 581         * reversal here */
 582        if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
 583                int i;
 584
 585                for (i = 0; i < 5; i++) {
 586                        int j = 24 + (i*4);
 587                        u8 a, b;
 588                        a = resp[j + 0];
 589                        b = resp[j + 1];
 590                        resp[j + 0] = resp[j + 3];
 591                        resp[j + 1] = resp[j + 2];
 592                        resp[j + 2] = b;
 593                        resp[j + 3] = a;
 594                }
 595        }
 596
 597        kfree(rps_req);
 598        return res;
 599}
 600#endif
 601
 602static void sas_ex_get_linkrate(struct domain_device *parent,
 603                                       struct domain_device *child,
 604                                       struct ex_phy *parent_phy)
 605{
 606        struct expander_device *parent_ex = &parent->ex_dev;
 607        struct sas_port *port;
 608        int i;
 609
 610        child->pathways = 0;
 611
 612        port = parent_phy->port;
 613
 614        for (i = 0; i < parent_ex->num_phys; i++) {
 615                struct ex_phy *phy = &parent_ex->ex_phy[i];
 616
 617                if (phy->phy_state == PHY_VACANT ||
 618                    phy->phy_state == PHY_NOT_PRESENT)
 619                        continue;
 620
 621                if (SAS_ADDR(phy->attached_sas_addr) ==
 622                    SAS_ADDR(child->sas_addr)) {
 623
 624                        child->min_linkrate = min(parent->min_linkrate,
 625                                                  phy->linkrate);
 626                        child->max_linkrate = max(parent->max_linkrate,
 627                                                  phy->linkrate);
 628                        child->pathways++;
 629                        sas_port_add_phy(port, phy->phy);
 630                }
 631        }
 632        child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
 633        child->pathways = min(child->pathways, parent->pathways);
 634}
 635
 636static struct domain_device *sas_ex_discover_end_dev(
 637        struct domain_device *parent, int phy_id)
 638{
 639        struct expander_device *parent_ex = &parent->ex_dev;
 640        struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
 641        struct domain_device *child = NULL;
 642        struct sas_rphy *rphy;
 643        int res;
 644
 645        if (phy->attached_sata_host || phy->attached_sata_ps)
 646                return NULL;
 647
 648        child = kzalloc(sizeof(*child), GFP_KERNEL);
 649        if (!child)
 650                return NULL;
 651
 652        child->parent = parent;
 653        child->port   = parent->port;
 654        child->iproto = phy->attached_iproto;
 655        memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 656        sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 657        if (!phy->port) {
 658                phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 659                if (unlikely(!phy->port))
 660                        goto out_err;
 661                if (unlikely(sas_port_add(phy->port) != 0)) {
 662                        sas_port_free(phy->port);
 663                        goto out_err;
 664                }
 665        }
 666        sas_ex_get_linkrate(parent, child, phy);
 667
 668#ifdef CONFIG_SCSI_SAS_ATA
 669        if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
 670                child->dev_type = SATA_DEV;
 671                if (phy->attached_tproto & SAS_PROTOCOL_STP)
 672                        child->tproto = phy->attached_tproto;
 673                if (phy->attached_sata_dev)
 674                        child->tproto |= SATA_DEV;
 675                res = sas_get_report_phy_sata(parent, phy_id,
 676                                              &child->sata_dev.rps_resp);
 677                if (res) {
 678                        SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
 679                                    "0x%x\n", SAS_ADDR(parent->sas_addr),
 680                                    phy_id, res);
 681                        goto out_free;
 682                }
 683                memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
 684                       sizeof(struct dev_to_host_fis));
 685
 686                rphy = sas_end_device_alloc(phy->port);
 687                if (unlikely(!rphy))
 688                        goto out_free;
 689
 690                sas_init_dev(child);
 691
 692                child->rphy = rphy;
 693
 694                spin_lock_irq(&parent->port->dev_list_lock);
 695                list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 696                spin_unlock_irq(&parent->port->dev_list_lock);
 697
 698                res = sas_discover_sata(child);
 699                if (res) {
 700                        SAS_DPRINTK("sas_discover_sata() for device %16llx at "
 701                                    "%016llx:0x%x returned 0x%x\n",
 702                                    SAS_ADDR(child->sas_addr),
 703                                    SAS_ADDR(parent->sas_addr), phy_id, res);
 704                        goto out_list_del;
 705                }
 706        } else
 707#endif
 708          if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
 709                child->dev_type = SAS_END_DEV;
 710                rphy = sas_end_device_alloc(phy->port);
 711                /* FIXME: error handling */
 712                if (unlikely(!rphy))
 713                        goto out_free;
 714                child->tproto = phy->attached_tproto;
 715                sas_init_dev(child);
 716
 717                child->rphy = rphy;
 718                sas_fill_in_rphy(child, rphy);
 719
 720                spin_lock_irq(&parent->port->dev_list_lock);
 721                list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 722                spin_unlock_irq(&parent->port->dev_list_lock);
 723
 724                res = sas_discover_end_dev(child);
 725                if (res) {
 726                        SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
 727                                    "at %016llx:0x%x returned 0x%x\n",
 728                                    SAS_ADDR(child->sas_addr),
 729                                    SAS_ADDR(parent->sas_addr), phy_id, res);
 730                        goto out_list_del;
 731                }
 732        } else {
 733                SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
 734                            phy->attached_tproto, SAS_ADDR(parent->sas_addr),
 735                            phy_id);
 736                goto out_free;
 737        }
 738
 739        list_add_tail(&child->siblings, &parent_ex->children);
 740        return child;
 741
 742 out_list_del:
 743        sas_rphy_free(child->rphy);
 744        child->rphy = NULL;
 745        list_del(&child->dev_list_node);
 746 out_free:
 747        sas_port_delete(phy->port);
 748 out_err:
 749        phy->port = NULL;
 750        kfree(child);
 751        return NULL;
 752}
 753
 754/* See if this phy is part of a wide port */
 755static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
 756{
 757        struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 758        int i;
 759
 760        for (i = 0; i < parent->ex_dev.num_phys; i++) {
 761                struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
 762
 763                if (ephy == phy)
 764                        continue;
 765
 766                if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
 767                            SAS_ADDR_SIZE) && ephy->port) {
 768                        sas_port_add_phy(ephy->port, phy->phy);
 769                        phy->port = ephy->port;
 770                        phy->phy_state = PHY_DEVICE_DISCOVERED;
 771                        return 0;
 772                }
 773        }
 774
 775        return -ENODEV;
 776}
 777
 778static struct domain_device *sas_ex_discover_expander(
 779        struct domain_device *parent, int phy_id)
 780{
 781        struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
 782        struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 783        struct domain_device *child = NULL;
 784        struct sas_rphy *rphy;
 785        struct sas_expander_device *edev;
 786        struct asd_sas_port *port;
 787        int res;
 788
 789        if (phy->routing_attr == DIRECT_ROUTING) {
 790                SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
 791                            "allowed\n",
 792                            SAS_ADDR(parent->sas_addr), phy_id,
 793                            SAS_ADDR(phy->attached_sas_addr),
 794                            phy->attached_phy_id);
 795                return NULL;
 796        }
 797        child = kzalloc(sizeof(*child), GFP_KERNEL);
 798        if (!child)
 799                return NULL;
 800
 801        phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 802        /* FIXME: better error handling */
 803        BUG_ON(sas_port_add(phy->port) != 0);
 804
 805
 806        switch (phy->attached_dev_type) {
 807        case EDGE_DEV:
 808                rphy = sas_expander_alloc(phy->port,
 809                                          SAS_EDGE_EXPANDER_DEVICE);
 810                break;
 811        case FANOUT_DEV:
 812                rphy = sas_expander_alloc(phy->port,
 813                                          SAS_FANOUT_EXPANDER_DEVICE);
 814                break;
 815        default:
 816                rphy = NULL;    /* shut gcc up */
 817                BUG();
 818        }
 819        port = parent->port;
 820        child->rphy = rphy;
 821        edev = rphy_to_expander_device(rphy);
 822        child->dev_type = phy->attached_dev_type;
 823        child->parent = parent;
 824        child->port = port;
 825        child->iproto = phy->attached_iproto;
 826        child->tproto = phy->attached_tproto;
 827        memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 828        sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 829        sas_ex_get_linkrate(parent, child, phy);
 830        edev->level = parent_ex->level + 1;
 831        parent->port->disc.max_level = max(parent->port->disc.max_level,
 832                                           edev->level);
 833        sas_init_dev(child);
 834        sas_fill_in_rphy(child, rphy);
 835        sas_rphy_add(rphy);
 836
 837        spin_lock_irq(&parent->port->dev_list_lock);
 838        list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 839        spin_unlock_irq(&parent->port->dev_list_lock);
 840
 841        res = sas_discover_expander(child);
 842        if (res) {
 843                kfree(child);
 844                return NULL;
 845        }
 846        list_add_tail(&child->siblings, &parent->ex_dev.children);
 847        return child;
 848}
 849
 850static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
 851{
 852        struct expander_device *ex = &dev->ex_dev;
 853        struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
 854        struct domain_device *child = NULL;
 855        int res = 0;
 856
 857        /* Phy state */
 858        if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
 859                if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
 860                        res = sas_ex_phy_discover(dev, phy_id);
 861                if (res)
 862                        return res;
 863        }
 864
 865        /* Parent and domain coherency */
 866        if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
 867                             SAS_ADDR(dev->port->sas_addr))) {
 868                sas_add_parent_port(dev, phy_id);
 869                return 0;
 870        }
 871        if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
 872                            SAS_ADDR(dev->parent->sas_addr))) {
 873                sas_add_parent_port(dev, phy_id);
 874                if (ex_phy->routing_attr == TABLE_ROUTING)
 875                        sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
 876                return 0;
 877        }
 878
 879        if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
 880                sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
 881
 882        if (ex_phy->attached_dev_type == NO_DEVICE) {
 883                if (ex_phy->routing_attr == DIRECT_ROUTING) {
 884                        memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 885                        sas_configure_routing(dev, ex_phy->attached_sas_addr);
 886                }
 887                return 0;
 888        } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
 889                return 0;
 890
 891        if (ex_phy->attached_dev_type != SAS_END_DEV &&
 892            ex_phy->attached_dev_type != FANOUT_DEV &&
 893            ex_phy->attached_dev_type != EDGE_DEV) {
 894                SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
 895                            "phy 0x%x\n", ex_phy->attached_dev_type,
 896                            SAS_ADDR(dev->sas_addr),
 897                            phy_id);
 898                return 0;
 899        }
 900
 901        res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
 902        if (res) {
 903                SAS_DPRINTK("configure routing for dev %016llx "
 904                            "reported 0x%x. Forgotten\n",
 905                            SAS_ADDR(ex_phy->attached_sas_addr), res);
 906                sas_disable_routing(dev, ex_phy->attached_sas_addr);
 907                return res;
 908        }
 909
 910        res = sas_ex_join_wide_port(dev, phy_id);
 911        if (!res) {
 912                SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
 913                            phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
 914                return res;
 915        }
 916
 917        switch (ex_phy->attached_dev_type) {
 918        case SAS_END_DEV:
 919                child = sas_ex_discover_end_dev(dev, phy_id);
 920                break;
 921        case FANOUT_DEV:
 922                if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
 923                        SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
 924                                    "attached to ex %016llx phy 0x%x\n",
 925                                    SAS_ADDR(ex_phy->attached_sas_addr),
 926                                    ex_phy->attached_phy_id,
 927                                    SAS_ADDR(dev->sas_addr),
 928                                    phy_id);
 929                        sas_ex_disable_phy(dev, phy_id);
 930                        break;
 931                } else
 932                        memcpy(dev->port->disc.fanout_sas_addr,
 933                               ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
 934                /* fallthrough */
 935        case EDGE_DEV:
 936                child = sas_ex_discover_expander(dev, phy_id);
 937                break;
 938        default:
 939                break;
 940        }
 941
 942        if (child) {
 943                int i;
 944
 945                for (i = 0; i < ex->num_phys; i++) {
 946                        if (ex->ex_phy[i].phy_state == PHY_VACANT ||
 947                            ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
 948                                continue;
 949                        /*
 950                         * Due to races, the phy might not get added to the
 951                         * wide port, so we add the phy to the wide port here.
 952                         */
 953                        if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
 954                            SAS_ADDR(child->sas_addr)) {
 955                                ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
 956                                res = sas_ex_join_wide_port(dev, i);
 957                                if (!res)
 958                                        SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
 959                                                    i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
 960
 961                        }
 962                }
 963        }
 964
 965        return res;
 966}
 967
 968static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
 969{
 970        struct expander_device *ex = &dev->ex_dev;
 971        int i;
 972
 973        for (i = 0; i < ex->num_phys; i++) {
 974                struct ex_phy *phy = &ex->ex_phy[i];
 975
 976                if (phy->phy_state == PHY_VACANT ||
 977                    phy->phy_state == PHY_NOT_PRESENT)
 978                        continue;
 979
 980                if ((phy->attached_dev_type == EDGE_DEV ||
 981                     phy->attached_dev_type == FANOUT_DEV) &&
 982                    phy->routing_attr == SUBTRACTIVE_ROUTING) {
 983
 984                        memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
 985
 986                        return 1;
 987                }
 988        }
 989        return 0;
 990}
 991
 992static int sas_check_level_subtractive_boundary(struct domain_device *dev)
 993{
 994        struct expander_device *ex = &dev->ex_dev;
 995        struct domain_device *child;
 996        u8 sub_addr[8] = {0, };
 997
 998        list_for_each_entry(child, &ex->children, siblings) {
 999                if (child->dev_type != EDGE_DEV &&
1000                    child->dev_type != FANOUT_DEV)
1001                        continue;
1002                if (sub_addr[0] == 0) {
1003                        sas_find_sub_addr(child, sub_addr);
1004                        continue;
1005                } else {
1006                        u8 s2[8];
1007
1008                        if (sas_find_sub_addr(child, s2) &&
1009                            (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1010
1011                                SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1012                                            "diverges from subtractive "
1013                                            "boundary %016llx\n",
1014                                            SAS_ADDR(dev->sas_addr),
1015                                            SAS_ADDR(child->sas_addr),
1016                                            SAS_ADDR(s2),
1017                                            SAS_ADDR(sub_addr));
1018
1019                                sas_ex_disable_port(child, s2);
1020                        }
1021                }
1022        }
1023        return 0;
1024}
1025/**
1026 * sas_ex_discover_devices -- discover devices attached to this expander
1027 * dev: pointer to the expander domain device
1028 * single: if you want to do a single phy, else set to -1;
1029 *
1030 * Configure this expander for use with its devices and register the
1031 * devices of this expander.
1032 */
1033static int sas_ex_discover_devices(struct domain_device *dev, int single)
1034{
1035        struct expander_device *ex = &dev->ex_dev;
1036        int i = 0, end = ex->num_phys;
1037        int res = 0;
1038
1039        if (0 <= single && single < end) {
1040                i = single;
1041                end = i+1;
1042        }
1043
1044        for ( ; i < end; i++) {
1045                struct ex_phy *ex_phy = &ex->ex_phy[i];
1046
1047                if (ex_phy->phy_state == PHY_VACANT ||
1048                    ex_phy->phy_state == PHY_NOT_PRESENT ||
1049                    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1050                        continue;
1051
1052                switch (ex_phy->linkrate) {
1053                case SAS_PHY_DISABLED:
1054                case SAS_PHY_RESET_PROBLEM:
1055                case SAS_SATA_PORT_SELECTOR:
1056                        continue;
1057                default:
1058                        res = sas_ex_discover_dev(dev, i);
1059                        if (res)
1060                                break;
1061                        continue;
1062                }
1063        }
1064
1065        if (!res)
1066                sas_check_level_subtractive_boundary(dev);
1067
1068        return res;
1069}
1070
1071static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1072{
1073        struct expander_device *ex = &dev->ex_dev;
1074        int i;
1075        u8  *sub_sas_addr = NULL;
1076
1077        if (dev->dev_type != EDGE_DEV)
1078                return 0;
1079
1080        for (i = 0; i < ex->num_phys; i++) {
1081                struct ex_phy *phy = &ex->ex_phy[i];
1082
1083                if (phy->phy_state == PHY_VACANT ||
1084                    phy->phy_state == PHY_NOT_PRESENT)
1085                        continue;
1086
1087                if ((phy->attached_dev_type == FANOUT_DEV ||
1088                     phy->attached_dev_type == EDGE_DEV) &&
1089                    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1090
1091                        if (!sub_sas_addr)
1092                                sub_sas_addr = &phy->attached_sas_addr[0];
1093                        else if (SAS_ADDR(sub_sas_addr) !=
1094                                 SAS_ADDR(phy->attached_sas_addr)) {
1095
1096                                SAS_DPRINTK("ex %016llx phy 0x%x "
1097                                            "diverges(%016llx) on subtractive "
1098                                            "boundary(%016llx). Disabled\n",
1099                                            SAS_ADDR(dev->sas_addr), i,
1100                                            SAS_ADDR(phy->attached_sas_addr),
1101                                            SAS_ADDR(sub_sas_addr));
1102                                sas_ex_disable_phy(dev, i);
1103                        }
1104                }
1105        }
1106        return 0;
1107}
1108
1109static void sas_print_parent_topology_bug(struct domain_device *child,
1110                                                 struct ex_phy *parent_phy,
1111                                                 struct ex_phy *child_phy)
1112{
1113        static const char ra_char[] = {
1114                [DIRECT_ROUTING] = 'D',
1115                [SUBTRACTIVE_ROUTING] = 'S',
1116                [TABLE_ROUTING] = 'T',
1117        };
1118        static const char *ex_type[] = {
1119                [EDGE_DEV] = "edge",
1120                [FANOUT_DEV] = "fanout",
1121        };
1122        struct domain_device *parent = child->parent;
1123
1124        sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
1125                   "has %c:%c routing link!\n",
1126
1127                   ex_type[parent->dev_type],
1128                   SAS_ADDR(parent->sas_addr),
1129                   parent_phy->phy_id,
1130
1131                   ex_type[child->dev_type],
1132                   SAS_ADDR(child->sas_addr),
1133                   child_phy->phy_id,
1134
1135                   ra_char[parent_phy->routing_attr],
1136                   ra_char[child_phy->routing_attr]);
1137}
1138
1139static int sas_check_eeds(struct domain_device *child,
1140                                 struct ex_phy *parent_phy,
1141                                 struct ex_phy *child_phy)
1142{
1143        int res = 0;
1144        struct domain_device *parent = child->parent;
1145
1146        if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1147                res = -ENODEV;
1148                SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1149                            "phy S:0x%x, while there is a fanout ex %016llx\n",
1150                            SAS_ADDR(parent->sas_addr),
1151                            parent_phy->phy_id,
1152                            SAS_ADDR(child->sas_addr),
1153                            child_phy->phy_id,
1154                            SAS_ADDR(parent->port->disc.fanout_sas_addr));
1155        } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1156                memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1157                       SAS_ADDR_SIZE);
1158                memcpy(parent->port->disc.eeds_b, child->sas_addr,
1159                       SAS_ADDR_SIZE);
1160        } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1161                    SAS_ADDR(parent->sas_addr)) ||
1162                   (SAS_ADDR(parent->port->disc.eeds_a) ==
1163                    SAS_ADDR(child->sas_addr)))
1164                   &&
1165                   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1166                     SAS_ADDR(parent->sas_addr)) ||
1167                    (SAS_ADDR(parent->port->disc.eeds_b) ==
1168                     SAS_ADDR(child->sas_addr))))
1169                ;
1170        else {
1171                res = -ENODEV;
1172                SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1173                            "phy 0x%x link forms a third EEDS!\n",
1174                            SAS_ADDR(parent->sas_addr),
1175                            parent_phy->phy_id,
1176                            SAS_ADDR(child->sas_addr),
1177                            child_phy->phy_id);
1178        }
1179
1180        return res;
1181}
1182
1183/* Here we spill over 80 columns.  It is intentional.
1184 */
1185static int sas_check_parent_topology(struct domain_device *child)
1186{
1187        struct expander_device *child_ex = &child->ex_dev;
1188        struct expander_device *parent_ex;
1189        int i;
1190        int res = 0;
1191
1192        if (!child->parent)
1193                return 0;
1194
1195        if (child->parent->dev_type != EDGE_DEV &&
1196            child->parent->dev_type != FANOUT_DEV)
1197                return 0;
1198
1199        parent_ex = &child->parent->ex_dev;
1200
1201        for (i = 0; i < parent_ex->num_phys; i++) {
1202                struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1203                struct ex_phy *child_phy;
1204
1205                if (parent_phy->phy_state == PHY_VACANT ||
1206                    parent_phy->phy_state == PHY_NOT_PRESENT)
1207                        continue;
1208
1209                if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1210                        continue;
1211
1212                child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1213
1214                switch (child->parent->dev_type) {
1215                case EDGE_DEV:
1216                        if (child->dev_type == FANOUT_DEV) {
1217                                if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1218                                    child_phy->routing_attr != TABLE_ROUTING) {
1219                                        sas_print_parent_topology_bug(child, parent_phy, child_phy);
1220                                        res = -ENODEV;
1221                                }
1222                        } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1223                                if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1224                                        res = sas_check_eeds(child, parent_phy, child_phy);
1225                                } else if (child_phy->routing_attr != TABLE_ROUTING) {
1226                                        sas_print_parent_topology_bug(child, parent_phy, child_phy);
1227                                        res = -ENODEV;
1228                                }
1229                        } else if (parent_phy->routing_attr == TABLE_ROUTING &&
1230                                   child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1231                                sas_print_parent_topology_bug(child, parent_phy, child_phy);
1232                                res = -ENODEV;
1233                        }
1234                        break;
1235                case FANOUT_DEV:
1236                        if (parent_phy->routing_attr != TABLE_ROUTING ||
1237                            child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1238                                sas_print_parent_topology_bug(child, parent_phy, child_phy);
1239                                res = -ENODEV;
1240                        }
1241                        break;
1242                default:
1243                        break;
1244                }
1245        }
1246
1247        return res;
1248}
1249
1250#define RRI_REQ_SIZE  16
1251#define RRI_RESP_SIZE 44
1252
1253static int sas_configure_present(struct domain_device *dev, int phy_id,
1254                                 u8 *sas_addr, int *index, int *present)
1255{
1256        int i, res = 0;
1257        struct expander_device *ex = &dev->ex_dev;
1258        struct ex_phy *phy = &ex->ex_phy[phy_id];
1259        u8 *rri_req;
1260        u8 *rri_resp;
1261
1262        *present = 0;
1263        *index = 0;
1264
1265        rri_req = alloc_smp_req(RRI_REQ_SIZE);
1266        if (!rri_req)
1267                return -ENOMEM;
1268
1269        rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1270        if (!rri_resp) {
1271                kfree(rri_req);
1272                return -ENOMEM;
1273        }
1274
1275        rri_req[1] = SMP_REPORT_ROUTE_INFO;
1276        rri_req[9] = phy_id;
1277
1278        for (i = 0; i < ex->max_route_indexes ; i++) {
1279                *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1280                res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1281                                       RRI_RESP_SIZE);
1282                if (res)
1283                        goto out;
1284                res = rri_resp[2];
1285                if (res == SMP_RESP_NO_INDEX) {
1286                        SAS_DPRINTK("overflow of indexes: dev %016llx "
1287                                    "phy 0x%x index 0x%x\n",
1288                                    SAS_ADDR(dev->sas_addr), phy_id, i);
1289                        goto out;
1290                } else if (res != SMP_RESP_FUNC_ACC) {
1291                        SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1292                                    "result 0x%x\n", __func__,
1293                                    SAS_ADDR(dev->sas_addr), phy_id, i, res);
1294                        goto out;
1295                }
1296                if (SAS_ADDR(sas_addr) != 0) {
1297                        if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1298                                *index = i;
1299                                if ((rri_resp[12] & 0x80) == 0x80)
1300                                        *present = 0;
1301                                else
1302                                        *present = 1;
1303                                goto out;
1304                        } else if (SAS_ADDR(rri_resp+16) == 0) {
1305                                *index = i;
1306                                *present = 0;
1307                                goto out;
1308                        }
1309                } else if (SAS_ADDR(rri_resp+16) == 0 &&
1310                           phy->last_da_index < i) {
1311                        phy->last_da_index = i;
1312                        *index = i;
1313                        *present = 0;
1314                        goto out;
1315                }
1316        }
1317        res = -1;
1318out:
1319        kfree(rri_req);
1320        kfree(rri_resp);
1321        return res;
1322}
1323
1324#define CRI_REQ_SIZE  44
1325#define CRI_RESP_SIZE  8
1326
1327static int sas_configure_set(struct domain_device *dev, int phy_id,
1328                             u8 *sas_addr, int index, int include)
1329{
1330        int res;
1331        u8 *cri_req;
1332        u8 *cri_resp;
1333
1334        cri_req = alloc_smp_req(CRI_REQ_SIZE);
1335        if (!cri_req)
1336                return -ENOMEM;
1337
1338        cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1339        if (!cri_resp) {
1340                kfree(cri_req);
1341                return -ENOMEM;
1342        }
1343
1344        cri_req[1] = SMP_CONF_ROUTE_INFO;
1345        *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1346        cri_req[9] = phy_id;
1347        if (SAS_ADDR(sas_addr) == 0 || !include)
1348                cri_req[12] |= 0x80;
1349        memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1350
1351        res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1352                               CRI_RESP_SIZE);
1353        if (res)
1354                goto out;
1355        res = cri_resp[2];
1356        if (res == SMP_RESP_NO_INDEX) {
1357                SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1358                            "index 0x%x\n",
1359                            SAS_ADDR(dev->sas_addr), phy_id, index);
1360        }
1361out:
1362        kfree(cri_req);
1363        kfree(cri_resp);
1364        return res;
1365}
1366
1367static int sas_configure_phy(struct domain_device *dev, int phy_id,
1368                                    u8 *sas_addr, int include)
1369{
1370        int index;
1371        int present;
1372        int res;
1373
1374        res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1375        if (res)
1376                return res;
1377        if (include ^ present)
1378                return sas_configure_set(dev, phy_id, sas_addr, index,include);
1379
1380        return res;
1381}
1382
1383/**
1384 * sas_configure_parent -- configure routing table of parent
1385 * parent: parent expander
1386 * child: child expander
1387 * sas_addr: SAS port identifier of device directly attached to child
1388 */
1389static int sas_configure_parent(struct domain_device *parent,
1390                                struct domain_device *child,
1391                                u8 *sas_addr, int include)
1392{
1393        struct expander_device *ex_parent = &parent->ex_dev;
1394        int res = 0;
1395        int i;
1396
1397        if (parent->parent) {
1398                res = sas_configure_parent(parent->parent, parent, sas_addr,
1399                                           include);
1400                if (res)
1401                        return res;
1402        }
1403
1404        if (ex_parent->conf_route_table == 0) {
1405                SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1406                            SAS_ADDR(parent->sas_addr));
1407                return 0;
1408        }
1409
1410        for (i = 0; i < ex_parent->num_phys; i++) {
1411                struct ex_phy *phy = &ex_parent->ex_phy[i];
1412
1413                if ((phy->routing_attr == TABLE_ROUTING) &&
1414                    (SAS_ADDR(phy->attached_sas_addr) ==
1415                     SAS_ADDR(child->sas_addr))) {
1416                        res = sas_configure_phy(parent, i, sas_addr, include);
1417                        if (res)
1418                                return res;
1419                }
1420        }
1421
1422        return res;
1423}
1424
1425/**
1426 * sas_configure_routing -- configure routing
1427 * dev: expander device
1428 * sas_addr: port identifier of device directly attached to the expander device
1429 */
1430static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1431{
1432        if (dev->parent)
1433                return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1434        return 0;
1435}
1436
1437static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1438{
1439        if (dev->parent)
1440                return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1441        return 0;
1442}
1443
1444/**
1445 * sas_discover_expander -- expander discovery
1446 * @ex: pointer to expander domain device
1447 *
1448 * See comment in sas_discover_sata().
1449 */
1450static int sas_discover_expander(struct domain_device *dev)
1451{
1452        int res;
1453
1454        res = sas_notify_lldd_dev_found(dev);
1455        if (res)
1456                return res;
1457
1458        res = sas_ex_general(dev);
1459        if (res)
1460                goto out_err;
1461        res = sas_ex_manuf_info(dev);
1462        if (res)
1463                goto out_err;
1464
1465        res = sas_expander_discover(dev);
1466        if (res) {
1467                SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1468                            SAS_ADDR(dev->sas_addr), res);
1469                goto out_err;
1470        }
1471
1472        sas_check_ex_subtractive_boundary(dev);
1473        res = sas_check_parent_topology(dev);
1474        if (res)
1475                goto out_err;
1476        return 0;
1477out_err:
1478        sas_notify_lldd_dev_gone(dev);
1479        return res;
1480}
1481
1482static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1483{
1484        int res = 0;
1485        struct domain_device *dev;
1486
1487        list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1488                if (dev->dev_type == EDGE_DEV ||
1489                    dev->dev_type == FANOUT_DEV) {
1490                        struct sas_expander_device *ex =
1491                                rphy_to_expander_device(dev->rphy);
1492
1493                        if (level == ex->level)
1494                                res = sas_ex_discover_devices(dev, -1);
1495                        else if (level > 0)
1496                                res = sas_ex_discover_devices(port->port_dev, -1);
1497
1498                }
1499        }
1500
1501        return res;
1502}
1503
1504static int sas_ex_bfs_disc(struct asd_sas_port *port)
1505{
1506        int res;
1507        int level;
1508
1509        do {
1510                level = port->disc.max_level;
1511                res = sas_ex_level_discovery(port, level);
1512                mb();
1513        } while (level < port->disc.max_level);
1514
1515        return res;
1516}
1517
1518int sas_discover_root_expander(struct domain_device *dev)
1519{
1520        int res;
1521        struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1522
1523        res = sas_rphy_add(dev->rphy);
1524        if (res)
1525                goto out_err;
1526
1527        ex->level = dev->port->disc.max_level; /* 0 */
1528        res = sas_discover_expander(dev);
1529        if (res)
1530                goto out_err2;
1531
1532        sas_ex_bfs_disc(dev->port);
1533
1534        return res;
1535
1536out_err2:
1537        sas_rphy_remove(dev->rphy);
1538out_err:
1539        return res;
1540}
1541
1542/* ---------- Domain revalidation ---------- */
1543
1544static int sas_get_phy_discover(struct domain_device *dev,
1545                                int phy_id, struct smp_resp *disc_resp)
1546{
1547        int res;
1548        u8 *disc_req;
1549
1550        disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1551        if (!disc_req)
1552                return -ENOMEM;
1553
1554        disc_req[1] = SMP_DISCOVER;
1555        disc_req[9] = phy_id;
1556
1557        res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1558                               disc_resp, DISCOVER_RESP_SIZE);
1559        if (res)
1560                goto out;
1561        else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1562                res = disc_resp->result;
1563                goto out;
1564        }
1565out:
1566        kfree(disc_req);
1567        return res;
1568}
1569
1570static int sas_get_phy_change_count(struct domain_device *dev,
1571                                    int phy_id, int *pcc)
1572{
1573        int res;
1574        struct smp_resp *disc_resp;
1575
1576        disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1577        if (!disc_resp)
1578                return -ENOMEM;
1579
1580        res = sas_get_phy_discover(dev, phy_id, disc_resp);
1581        if (!res)
1582                *pcc = disc_resp->disc.change_count;
1583
1584        kfree(disc_resp);
1585        return res;
1586}
1587
1588static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1589                                         int phy_id, u8 *attached_sas_addr)
1590{
1591        int res;
1592        struct smp_resp *disc_resp;
1593        struct discover_resp *dr;
1594
1595        disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1596        if (!disc_resp)
1597                return -ENOMEM;
1598        dr = &disc_resp->disc;
1599
1600        res = sas_get_phy_discover(dev, phy_id, disc_resp);
1601        if (!res) {
1602                memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1603                if (dr->attached_dev_type == 0)
1604                        memset(attached_sas_addr, 0, 8);
1605        }
1606        kfree(disc_resp);
1607        return res;
1608}
1609
1610static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1611                              int from_phy, bool update)
1612{
1613        struct expander_device *ex = &dev->ex_dev;
1614        int res = 0;
1615        int i;
1616
1617        for (i = from_phy; i < ex->num_phys; i++) {
1618                int phy_change_count = 0;
1619
1620                res = sas_get_phy_change_count(dev, i, &phy_change_count);
1621                if (res)
1622                        goto out;
1623                else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1624                        if (update)
1625                                ex->ex_phy[i].phy_change_count =
1626                                        phy_change_count;
1627                        *phy_id = i;
1628                        return 0;
1629                }
1630        }
1631out:
1632        return res;
1633}
1634
1635static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1636{
1637        int res;
1638        u8  *rg_req;
1639        struct smp_resp  *rg_resp;
1640
1641        rg_req = alloc_smp_req(RG_REQ_SIZE);
1642        if (!rg_req)
1643                return -ENOMEM;
1644
1645        rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1646        if (!rg_resp) {
1647                kfree(rg_req);
1648                return -ENOMEM;
1649        }
1650
1651        rg_req[1] = SMP_REPORT_GENERAL;
1652
1653        res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1654                               RG_RESP_SIZE);
1655        if (res)
1656                goto out;
1657        if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1658                res = rg_resp->result;
1659                goto out;
1660        }
1661
1662        *ecc = be16_to_cpu(rg_resp->rg.change_count);
1663out:
1664        kfree(rg_resp);
1665        kfree(rg_req);
1666        return res;
1667}
1668/**
1669 * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1670 * @dev:domain device to be detect.
1671 * @src_dev: the device which originated BROADCAST(CHANGE).
1672 *
1673 * Add self-configuration expander suport. Suppose two expander cascading,
1674 * when the first level expander is self-configuring, hotplug the disks in
1675 * second level expander, BROADCAST(CHANGE) will not only be originated
1676 * in the second level expander, but also be originated in the first level
1677 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1678 * expander changed count in two level expanders will all increment at least
1679 * once, but the phy which chang count has changed is the source device which
1680 * we concerned.
1681 */
1682
1683static int sas_find_bcast_dev(struct domain_device *dev,
1684                              struct domain_device **src_dev)
1685{
1686        struct expander_device *ex = &dev->ex_dev;
1687        int ex_change_count = -1;
1688        int phy_id = -1;
1689        int res;
1690        struct domain_device *ch;
1691
1692        res = sas_get_ex_change_count(dev, &ex_change_count);
1693        if (res)
1694                goto out;
1695        if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1696                /* Just detect if this expander phys phy change count changed,
1697                * in order to determine if this expander originate BROADCAST,
1698                * and do not update phy change count field in our structure.
1699                */
1700                res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1701                if (phy_id != -1) {
1702                        *src_dev = dev;
1703                        ex->ex_change_count = ex_change_count;
1704                        SAS_DPRINTK("Expander phy change count has changed\n");
1705                        return res;
1706                } else
1707                        SAS_DPRINTK("Expander phys DID NOT change\n");
1708        }
1709        list_for_each_entry(ch, &ex->children, siblings) {
1710                if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1711                        res = sas_find_bcast_dev(ch, src_dev);
1712                        if (src_dev)
1713                                return res;
1714                }
1715        }
1716out:
1717        return res;
1718}
1719
1720static void sas_unregister_ex_tree(struct domain_device *dev)
1721{
1722        struct expander_device *ex = &dev->ex_dev;
1723        struct domain_device *child, *n;
1724
1725        list_for_each_entry_safe(child, n, &ex->children, siblings) {
1726                if (child->dev_type == EDGE_DEV ||
1727                    child->dev_type == FANOUT_DEV)
1728                        sas_unregister_ex_tree(child);
1729                else
1730                        sas_unregister_dev(child);
1731        }
1732        sas_unregister_dev(dev);
1733}
1734
1735static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1736                                         int phy_id, bool last)
1737{
1738        struct expander_device *ex_dev = &parent->ex_dev;
1739        struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1740        struct domain_device *child, *n;
1741        if (last) {
1742                list_for_each_entry_safe(child, n,
1743                        &ex_dev->children, siblings) {
1744                        if (SAS_ADDR(child->sas_addr) ==
1745                            SAS_ADDR(phy->attached_sas_addr)) {
1746                                if (child->dev_type == EDGE_DEV ||
1747                                    child->dev_type == FANOUT_DEV)
1748                                        sas_unregister_ex_tree(child);
1749                                else
1750                                        sas_unregister_dev(child);
1751                                break;
1752                        }
1753                }
1754                sas_disable_routing(parent, phy->attached_sas_addr);
1755        }
1756        memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1757        sas_port_delete_phy(phy->port, phy->phy);
1758        if (phy->port->num_phys == 0)
1759                sas_port_delete(phy->port);
1760        phy->port = NULL;
1761}
1762
1763static int sas_discover_bfs_by_root_level(struct domain_device *root,
1764                                          const int level)
1765{
1766        struct expander_device *ex_root = &root->ex_dev;
1767        struct domain_device *child;
1768        int res = 0;
1769
1770        list_for_each_entry(child, &ex_root->children, siblings) {
1771                if (child->dev_type == EDGE_DEV ||
1772                    child->dev_type == FANOUT_DEV) {
1773                        struct sas_expander_device *ex =
1774                                rphy_to_expander_device(child->rphy);
1775
1776                        if (level > ex->level)
1777                                res = sas_discover_bfs_by_root_level(child,
1778                                                                     level);
1779                        else if (level == ex->level)
1780                                res = sas_ex_discover_devices(child, -1);
1781                }
1782        }
1783        return res;
1784}
1785
1786static int sas_discover_bfs_by_root(struct domain_device *dev)
1787{
1788        int res;
1789        struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1790        int level = ex->level+1;
1791
1792        res = sas_ex_discover_devices(dev, -1);
1793        if (res)
1794                goto out;
1795        do {
1796                res = sas_discover_bfs_by_root_level(dev, level);
1797                mb();
1798                level += 1;
1799        } while (level <= dev->port->disc.max_level);
1800out:
1801        return res;
1802}
1803
1804static int sas_discover_new(struct domain_device *dev, int phy_id)
1805{
1806        struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1807        struct domain_device *child;
1808        bool found = false;
1809        int res, i;
1810
1811        SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1812                    SAS_ADDR(dev->sas_addr), phy_id);
1813        res = sas_ex_phy_discover(dev, phy_id);
1814        if (res)
1815                goto out;
1816        /* to support the wide port inserted */
1817        for (i = 0; i < dev->ex_dev.num_phys; i++) {
1818                struct ex_phy *ex_phy_temp = &dev->ex_dev.ex_phy[i];
1819                if (i == phy_id)
1820                        continue;
1821                if (SAS_ADDR(ex_phy_temp->attached_sas_addr) ==
1822                    SAS_ADDR(ex_phy->attached_sas_addr)) {
1823                        found = true;
1824                        break;
1825                }
1826        }
1827        if (found) {
1828                sas_ex_join_wide_port(dev, phy_id);
1829                return 0;
1830        }
1831        res = sas_ex_discover_devices(dev, phy_id);
1832        if (!res)
1833                goto out;
1834        list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1835                if (SAS_ADDR(child->sas_addr) ==
1836                    SAS_ADDR(ex_phy->attached_sas_addr)) {
1837                        if (child->dev_type == EDGE_DEV ||
1838                            child->dev_type == FANOUT_DEV)
1839                                res = sas_discover_bfs_by_root(child);
1840                        break;
1841                }
1842        }
1843out:
1844        return res;
1845}
1846
1847static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1848{
1849        struct expander_device *ex = &dev->ex_dev;
1850        struct ex_phy *phy = &ex->ex_phy[phy_id];
1851        u8 attached_sas_addr[8];
1852        int res;
1853
1854        res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1855        switch (res) {
1856        case SMP_RESP_NO_PHY:
1857                phy->phy_state = PHY_NOT_PRESENT;
1858                sas_unregister_devs_sas_addr(dev, phy_id, last);
1859                goto out; break;
1860        case SMP_RESP_PHY_VACANT:
1861                phy->phy_state = PHY_VACANT;
1862                sas_unregister_devs_sas_addr(dev, phy_id, last);
1863                goto out; break;
1864        case SMP_RESP_FUNC_ACC:
1865                break;
1866        }
1867
1868        if (SAS_ADDR(attached_sas_addr) == 0) {
1869                phy->phy_state = PHY_EMPTY;
1870                sas_unregister_devs_sas_addr(dev, phy_id, last);
1871        } else if (SAS_ADDR(attached_sas_addr) ==
1872                   SAS_ADDR(phy->attached_sas_addr)) {
1873                SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1874                            SAS_ADDR(dev->sas_addr), phy_id);
1875                sas_ex_phy_discover(dev, phy_id);
1876        } else
1877                res = sas_discover_new(dev, phy_id);
1878out:
1879        return res;
1880}
1881
1882/**
1883 * sas_rediscover - revalidate the domain.
1884 * @dev:domain device to be detect.
1885 * @phy_id: the phy id will be detected.
1886 *
1887 * NOTE: this process _must_ quit (return) as soon as any connection
1888 * errors are encountered.  Connection recovery is done elsewhere.
1889 * Discover process only interrogates devices in order to discover the
1890 * domain.For plugging out, we un-register the device only when it is
1891 * the last phy in the port, for other phys in this port, we just delete it
1892 * from the port.For inserting, we do discovery when it is the
1893 * first phy,for other phys in this port, we add it to the port to
1894 * forming the wide-port.
1895 */
1896static int sas_rediscover(struct domain_device *dev, const int phy_id)
1897{
1898        struct expander_device *ex = &dev->ex_dev;
1899        struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1900        int res = 0;
1901        int i;
1902        bool last = true;       /* is this the last phy of the port */
1903
1904        SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1905                    SAS_ADDR(dev->sas_addr), phy_id);
1906
1907        if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1908                for (i = 0; i < ex->num_phys; i++) {
1909                        struct ex_phy *phy = &ex->ex_phy[i];
1910
1911                        if (i == phy_id)
1912                                continue;
1913                        if (SAS_ADDR(phy->attached_sas_addr) ==
1914                            SAS_ADDR(changed_phy->attached_sas_addr)) {
1915                                SAS_DPRINTK("phy%d part of wide port with "
1916                                            "phy%d\n", phy_id, i);
1917                                last = false;
1918                                break;
1919                        }
1920                }
1921                res = sas_rediscover_dev(dev, phy_id, last);
1922        } else
1923                res = sas_discover_new(dev, phy_id);
1924        return res;
1925}
1926
1927/**
1928 * sas_revalidate_domain -- revalidate the domain
1929 * @port: port to the domain of interest
1930 *
1931 * NOTE: this process _must_ quit (return) as soon as any connection
1932 * errors are encountered.  Connection recovery is done elsewhere.
1933 * Discover process only interrogates devices in order to discover the
1934 * domain.
1935 */
1936int sas_ex_revalidate_domain(struct domain_device *port_dev)
1937{
1938        int res;
1939        struct domain_device *dev = NULL;
1940
1941        res = sas_find_bcast_dev(port_dev, &dev);
1942        if (res)
1943                goto out;
1944        if (dev) {
1945                struct expander_device *ex = &dev->ex_dev;
1946                int i = 0, phy_id;
1947
1948                do {
1949                        phy_id = -1;
1950                        res = sas_find_bcast_phy(dev, &phy_id, i, true);
1951                        if (phy_id == -1)
1952                                break;
1953                        res = sas_rediscover(dev, phy_id);
1954                        i = phy_id + 1;
1955                } while (i < ex->num_phys);
1956        }
1957out:
1958        return res;
1959}
1960
1961int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
1962                    struct request *req)
1963{
1964        struct domain_device *dev;
1965        int ret, type;
1966        struct request *rsp = req->next_rq;
1967
1968        if (!rsp) {
1969                printk("%s: space for a smp response is missing\n",
1970                       __func__);
1971                return -EINVAL;
1972        }
1973
1974        /* no rphy means no smp target support (ie aic94xx host) */
1975        if (!rphy)
1976                return sas_smp_host_handler(shost, req, rsp);
1977
1978        type = rphy->identify.device_type;
1979
1980        if (type != SAS_EDGE_EXPANDER_DEVICE &&
1981            type != SAS_FANOUT_EXPANDER_DEVICE) {
1982                printk("%s: can we send a smp request to a device?\n",
1983                       __func__);
1984                return -EINVAL;
1985        }
1986
1987        dev = sas_find_dev_by_rphy(rphy);
1988        if (!dev) {
1989                printk("%s: fail to find a domain_device?\n", __func__);
1990                return -EINVAL;
1991        }
1992
1993        /* do we need to support multiple segments? */
1994        if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
1995                printk("%s: multiple segments req %u %u, rsp %u %u\n",
1996                       __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
1997                       rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
1998                return -EINVAL;
1999        }
2000
2001        ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2002                               bio_data(rsp->bio), blk_rq_bytes(rsp));
2003        if (ret > 0) {
2004                /* positive number is the untransferred residual */
2005                rsp->resid_len = ret;
2006                req->resid_len = 0;
2007                ret = 0;
2008        } else if (ret == 0) {
2009                rsp->resid_len = 0;
2010                req->resid_len = 0;
2011        }
2012
2013        return ret;
2014}
2015