linux/drivers/scsi/sym53c8xx_2/sym_hipd.c
<<
>>
Prefs
   1/*
   2 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family 
   3 * of PCI-SCSI IO processors.
   4 *
   5 * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
   6 * Copyright (c) 2003-2005  Matthew Wilcox <matthew@wil.cx>
   7 *
   8 * This driver is derived from the Linux sym53c8xx driver.
   9 * Copyright (C) 1998-2000  Gerard Roudier
  10 *
  11 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 
  12 * a port of the FreeBSD ncr driver to Linux-1.2.13.
  13 *
  14 * The original ncr driver has been written for 386bsd and FreeBSD by
  15 *         Wolfgang Stanglmeier        <wolf@cologne.de>
  16 *         Stefan Esser                <se@mi.Uni-Koeln.de>
  17 * Copyright (C) 1994  Wolfgang Stanglmeier
  18 *
  19 * Other major contributions:
  20 *
  21 * NVRAM detection and reading.
  22 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
  23 *
  24 *-----------------------------------------------------------------------------
  25 *
  26 * This program is free software; you can redistribute it and/or modify
  27 * it under the terms of the GNU General Public License as published by
  28 * the Free Software Foundation; either version 2 of the License, or
  29 * (at your option) any later version.
  30 *
  31 * This program is distributed in the hope that it will be useful,
  32 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  34 * GNU General Public License for more details.
  35 *
  36 * You should have received a copy of the GNU General Public License
  37 * along with this program; if not, write to the Free Software
  38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  39 */
  40
  41#include <linux/slab.h>
  42#include <asm/param.h>          /* for timeouts in units of HZ */
  43
  44#include "sym_glue.h"
  45#include "sym_nvram.h"
  46
  47#if 0
  48#define SYM_DEBUG_GENERIC_SUPPORT
  49#endif
  50
  51/*
  52 *  Needed function prototypes.
  53 */
  54static void sym_int_ma (struct sym_hcb *np);
  55static void sym_int_sir(struct sym_hcb *);
  56static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np);
  57static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa);
  58static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln);
  59static void sym_complete_error (struct sym_hcb *np, struct sym_ccb *cp);
  60static void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp);
  61static int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp);
  62
  63/*
  64 *  Print a buffer in hexadecimal format with a ".\n" at end.
  65 */
  66static void sym_printl_hex(u_char *p, int n)
  67{
  68        while (n-- > 0)
  69                printf (" %x", *p++);
  70        printf (".\n");
  71}
  72
  73static void sym_print_msg(struct sym_ccb *cp, char *label, u_char *msg)
  74{
  75        if (label)
  76                sym_print_addr(cp->cmd, "%s: ", label);
  77        else
  78                sym_print_addr(cp->cmd, "");
  79
  80        spi_print_msg(msg);
  81        printf("\n");
  82}
  83
  84static void sym_print_nego_msg(struct sym_hcb *np, int target, char *label, u_char *msg)
  85{
  86        struct sym_tcb *tp = &np->target[target];
  87        dev_info(&tp->starget->dev, "%s: ", label);
  88
  89        spi_print_msg(msg);
  90        printf("\n");
  91}
  92
  93/*
  94 *  Print something that tells about extended errors.
  95 */
  96void sym_print_xerr(struct scsi_cmnd *cmd, int x_status)
  97{
  98        if (x_status & XE_PARITY_ERR) {
  99                sym_print_addr(cmd, "unrecovered SCSI parity error.\n");
 100        }
 101        if (x_status & XE_EXTRA_DATA) {
 102                sym_print_addr(cmd, "extraneous data discarded.\n");
 103        }
 104        if (x_status & XE_BAD_PHASE) {
 105                sym_print_addr(cmd, "illegal scsi phase (4/5).\n");
 106        }
 107        if (x_status & XE_SODL_UNRUN) {
 108                sym_print_addr(cmd, "ODD transfer in DATA OUT phase.\n");
 109        }
 110        if (x_status & XE_SWIDE_OVRUN) {
 111                sym_print_addr(cmd, "ODD transfer in DATA IN phase.\n");
 112        }
 113}
 114
 115/*
 116 *  Return a string for SCSI BUS mode.
 117 */
 118static char *sym_scsi_bus_mode(int mode)
 119{
 120        switch(mode) {
 121        case SMODE_HVD: return "HVD";
 122        case SMODE_SE:  return "SE";
 123        case SMODE_LVD: return "LVD";
 124        }
 125        return "??";
 126}
 127
 128/*
 129 *  Soft reset the chip.
 130 *
 131 *  Raising SRST when the chip is running may cause 
 132 *  problems on dual function chips (see below).
 133 *  On the other hand, LVD devices need some delay 
 134 *  to settle and report actual BUS mode in STEST4.
 135 */
 136static void sym_chip_reset (struct sym_hcb *np)
 137{
 138        OUTB(np, nc_istat, SRST);
 139        INB(np, nc_mbox1);
 140        udelay(10);
 141        OUTB(np, nc_istat, 0);
 142        INB(np, nc_mbox1);
 143        udelay(2000);   /* For BUS MODE to settle */
 144}
 145
 146/*
 147 *  Really soft reset the chip.:)
 148 *
 149 *  Some 896 and 876 chip revisions may hang-up if we set 
 150 *  the SRST (soft reset) bit at the wrong time when SCRIPTS 
 151 *  are running.
 152 *  So, we need to abort the current operation prior to 
 153 *  soft resetting the chip.
 154 */
 155static void sym_soft_reset (struct sym_hcb *np)
 156{
 157        u_char istat = 0;
 158        int i;
 159
 160        if (!(np->features & FE_ISTAT1) || !(INB(np, nc_istat1) & SCRUN))
 161                goto do_chip_reset;
 162
 163        OUTB(np, nc_istat, CABRT);
 164        for (i = 100000 ; i ; --i) {
 165                istat = INB(np, nc_istat);
 166                if (istat & SIP) {
 167                        INW(np, nc_sist);
 168                }
 169                else if (istat & DIP) {
 170                        if (INB(np, nc_dstat) & ABRT)
 171                                break;
 172                }
 173                udelay(5);
 174        }
 175        OUTB(np, nc_istat, 0);
 176        if (!i)
 177                printf("%s: unable to abort current chip operation, "
 178                       "ISTAT=0x%02x.\n", sym_name(np), istat);
 179do_chip_reset:
 180        sym_chip_reset(np);
 181}
 182
 183/*
 184 *  Start reset process.
 185 *
 186 *  The interrupt handler will reinitialize the chip.
 187 */
 188static void sym_start_reset(struct sym_hcb *np)
 189{
 190        sym_reset_scsi_bus(np, 1);
 191}
 192 
 193int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int)
 194{
 195        u32 term;
 196        int retv = 0;
 197
 198        sym_soft_reset(np);     /* Soft reset the chip */
 199        if (enab_int)
 200                OUTW(np, nc_sien, RST);
 201        /*
 202         *  Enable Tolerant, reset IRQD if present and 
 203         *  properly set IRQ mode, prior to resetting the bus.
 204         */
 205        OUTB(np, nc_stest3, TE);
 206        OUTB(np, nc_dcntl, (np->rv_dcntl & IRQM));
 207        OUTB(np, nc_scntl1, CRST);
 208        INB(np, nc_mbox1);
 209        udelay(200);
 210
 211        if (!SYM_SETUP_SCSI_BUS_CHECK)
 212                goto out;
 213        /*
 214         *  Check for no terminators or SCSI bus shorts to ground.
 215         *  Read SCSI data bus, data parity bits and control signals.
 216         *  We are expecting RESET to be TRUE and other signals to be 
 217         *  FALSE.
 218         */
 219        term =  INB(np, nc_sstat0);
 220        term =  ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */
 221        term |= ((INB(np, nc_sstat2) & 0x01) << 26) |   /* sdp1     */
 222                ((INW(np, nc_sbdl) & 0xff)   << 9)  |   /* d7-0     */
 223                ((INW(np, nc_sbdl) & 0xff00) << 10) |   /* d15-8    */
 224                INB(np, nc_sbcl);       /* req ack bsy sel atn msg cd io    */
 225
 226        if (!np->maxwide)
 227                term &= 0x3ffff;
 228
 229        if (term != (2<<7)) {
 230                printf("%s: suspicious SCSI data while resetting the BUS.\n",
 231                        sym_name(np));
 232                printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
 233                        "0x%lx, expecting 0x%lx\n",
 234                        sym_name(np),
 235                        (np->features & FE_WIDE) ? "dp1,d15-8," : "",
 236                        (u_long)term, (u_long)(2<<7));
 237                if (SYM_SETUP_SCSI_BUS_CHECK == 1)
 238                        retv = 1;
 239        }
 240out:
 241        OUTB(np, nc_scntl1, 0);
 242        return retv;
 243}
 244
 245/*
 246 *  Select SCSI clock frequency
 247 */
 248static void sym_selectclock(struct sym_hcb *np, u_char scntl3)
 249{
 250        /*
 251         *  If multiplier not present or not selected, leave here.
 252         */
 253        if (np->multiplier <= 1) {
 254                OUTB(np, nc_scntl3, scntl3);
 255                return;
 256        }
 257
 258        if (sym_verbose >= 2)
 259                printf ("%s: enabling clock multiplier\n", sym_name(np));
 260
 261        OUTB(np, nc_stest1, DBLEN);        /* Enable clock multiplier */
 262        /*
 263         *  Wait for the LCKFRQ bit to be set if supported by the chip.
 264         *  Otherwise wait 50 micro-seconds (at least).
 265         */
 266        if (np->features & FE_LCKFRQ) {
 267                int i = 20;
 268                while (!(INB(np, nc_stest4) & LCKFRQ) && --i > 0)
 269                        udelay(20);
 270                if (!i)
 271                        printf("%s: the chip cannot lock the frequency\n",
 272                                sym_name(np));
 273        } else {
 274                INB(np, nc_mbox1);
 275                udelay(50+10);
 276        }
 277        OUTB(np, nc_stest3, HSC);               /* Halt the scsi clock  */
 278        OUTB(np, nc_scntl3, scntl3);
 279        OUTB(np, nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier  */
 280        OUTB(np, nc_stest3, 0x00);              /* Restart scsi clock   */
 281}
 282
 283
 284/*
 285 *  Determine the chip's clock frequency.
 286 *
 287 *  This is essential for the negotiation of the synchronous 
 288 *  transfer rate.
 289 *
 290 *  Note: we have to return the correct value.
 291 *  THERE IS NO SAFE DEFAULT VALUE.
 292 *
 293 *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
 294 *  53C860 and 53C875 rev. 1 support fast20 transfers but 
 295 *  do not have a clock doubler and so are provided with a 
 296 *  80 MHz clock. All other fast20 boards incorporate a doubler 
 297 *  and so should be delivered with a 40 MHz clock.
 298 *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base 
 299 *  clock and provide a clock quadrupler (160 Mhz).
 300 */
 301
 302/*
 303 *  calculate SCSI clock frequency (in KHz)
 304 */
 305static unsigned getfreq (struct sym_hcb *np, int gen)
 306{
 307        unsigned int ms = 0;
 308        unsigned int f;
 309
 310        /*
 311         * Measure GEN timer delay in order 
 312         * to calculate SCSI clock frequency
 313         *
 314         * This code will never execute too
 315         * many loop iterations (if DELAY is 
 316         * reasonably correct). It could get
 317         * too low a delay (too high a freq.)
 318         * if the CPU is slow executing the 
 319         * loop for some reason (an NMI, for
 320         * example). For this reason we will
 321         * if multiple measurements are to be 
 322         * performed trust the higher delay 
 323         * (lower frequency returned).
 324         */
 325        OUTW(np, nc_sien, 0);   /* mask all scsi interrupts */
 326        INW(np, nc_sist);       /* clear pending scsi interrupt */
 327        OUTB(np, nc_dien, 0);   /* mask all dma interrupts */
 328        INW(np, nc_sist);       /* another one, just to be sure :) */
 329        /*
 330         * The C1010-33 core does not report GEN in SIST,
 331         * if this interrupt is masked in SIEN.
 332         * I don't know yet if the C1010-66 behaves the same way.
 333         */
 334        if (np->features & FE_C10) {
 335                OUTW(np, nc_sien, GEN);
 336                OUTB(np, nc_istat1, SIRQD);
 337        }
 338        OUTB(np, nc_scntl3, 4);    /* set pre-scaler to divide by 3 */
 339        OUTB(np, nc_stime1, 0);    /* disable general purpose timer */
 340        OUTB(np, nc_stime1, gen);  /* set to nominal delay of 1<<gen * 125us */
 341        while (!(INW(np, nc_sist) & GEN) && ms++ < 100000)
 342                udelay(1000/4);    /* count in 1/4 of ms */
 343        OUTB(np, nc_stime1, 0);    /* disable general purpose timer */
 344        /*
 345         * Undo C1010-33 specific settings.
 346         */
 347        if (np->features & FE_C10) {
 348                OUTW(np, nc_sien, 0);
 349                OUTB(np, nc_istat1, 0);
 350        }
 351        /*
 352         * set prescaler to divide by whatever 0 means
 353         * 0 ought to choose divide by 2, but appears
 354         * to set divide by 3.5 mode in my 53c810 ...
 355         */
 356        OUTB(np, nc_scntl3, 0);
 357
 358        /*
 359         * adjust for prescaler, and convert into KHz 
 360         */
 361        f = ms ? ((1 << gen) * (4340*4)) / ms : 0;
 362
 363        /*
 364         * The C1010-33 result is biased by a factor 
 365         * of 2/3 compared to earlier chips.
 366         */
 367        if (np->features & FE_C10)
 368                f = (f * 2) / 3;
 369
 370        if (sym_verbose >= 2)
 371                printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
 372                        sym_name(np), gen, ms/4, f);
 373
 374        return f;
 375}
 376
 377static unsigned sym_getfreq (struct sym_hcb *np)
 378{
 379        u_int f1, f2;
 380        int gen = 8;
 381
 382        getfreq (np, gen);      /* throw away first result */
 383        f1 = getfreq (np, gen);
 384        f2 = getfreq (np, gen);
 385        if (f1 > f2) f1 = f2;           /* trust lower result   */
 386        return f1;
 387}
 388
 389/*
 390 *  Get/probe chip SCSI clock frequency
 391 */
 392static void sym_getclock (struct sym_hcb *np, int mult)
 393{
 394        unsigned char scntl3 = np->sv_scntl3;
 395        unsigned char stest1 = np->sv_stest1;
 396        unsigned f1;
 397
 398        np->multiplier = 1;
 399        f1 = 40000;
 400        /*
 401         *  True with 875/895/896/895A with clock multiplier selected
 402         */
 403        if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
 404                if (sym_verbose >= 2)
 405                        printf ("%s: clock multiplier found\n", sym_name(np));
 406                np->multiplier = mult;
 407        }
 408
 409        /*
 410         *  If multiplier not found or scntl3 not 7,5,3,
 411         *  reset chip and get frequency from general purpose timer.
 412         *  Otherwise trust scntl3 BIOS setting.
 413         */
 414        if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
 415                OUTB(np, nc_stest1, 0);         /* make sure doubler is OFF */
 416                f1 = sym_getfreq (np);
 417
 418                if (sym_verbose)
 419                        printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
 420
 421                if      (f1 <   45000)          f1 =  40000;
 422                else if (f1 <   55000)          f1 =  50000;
 423                else                            f1 =  80000;
 424
 425                if (f1 < 80000 && mult > 1) {
 426                        if (sym_verbose >= 2)
 427                                printf ("%s: clock multiplier assumed\n",
 428                                        sym_name(np));
 429                        np->multiplier  = mult;
 430                }
 431        } else {
 432                if      ((scntl3 & 7) == 3)     f1 =  40000;
 433                else if ((scntl3 & 7) == 5)     f1 =  80000;
 434                else                            f1 = 160000;
 435
 436                f1 /= np->multiplier;
 437        }
 438
 439        /*
 440         *  Compute controller synchronous parameters.
 441         */
 442        f1              *= np->multiplier;
 443        np->clock_khz   = f1;
 444}
 445
 446/*
 447 *  Get/probe PCI clock frequency
 448 */
 449static int sym_getpciclock (struct sym_hcb *np)
 450{
 451        int f = 0;
 452
 453        /*
 454         *  For now, we only need to know about the actual 
 455         *  PCI BUS clock frequency for C1010-66 chips.
 456         */
 457#if 1
 458        if (np->features & FE_66MHZ) {
 459#else
 460        if (1) {
 461#endif
 462                OUTB(np, nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */
 463                f = sym_getfreq(np);
 464                OUTB(np, nc_stest1, 0);
 465        }
 466        np->pciclk_khz = f;
 467
 468        return f;
 469}
 470
 471/*
 472 *  SYMBIOS chip clock divisor table.
 473 *
 474 *  Divisors are multiplied by 10,000,000 in order to make 
 475 *  calculations more simple.
 476 */
 477#define _5M 5000000
 478static const u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
 479
 480/*
 481 *  Get clock factor and sync divisor for a given 
 482 *  synchronous factor period.
 483 */
 484static int 
 485sym_getsync(struct sym_hcb *np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
 486{
 487        u32     clk = np->clock_khz;    /* SCSI clock frequency in kHz  */
 488        int     div = np->clock_divn;   /* Number of divisors supported */
 489        u32     fak;                    /* Sync factor in sxfer         */
 490        u32     per;                    /* Period in tenths of ns       */
 491        u32     kpc;                    /* (per * clk)                  */
 492        int     ret;
 493
 494        /*
 495         *  Compute the synchronous period in tenths of nano-seconds
 496         */
 497        if (dt && sfac <= 9)    per = 125;
 498        else if (sfac <= 10)    per = 250;
 499        else if (sfac == 11)    per = 303;
 500        else if (sfac == 12)    per = 500;
 501        else                    per = 40 * sfac;
 502        ret = per;
 503
 504        kpc = per * clk;
 505        if (dt)
 506                kpc <<= 1;
 507
 508        /*
 509         *  For earliest C10 revision 0, we cannot use extra 
 510         *  clocks for the setting of the SCSI clocking.
 511         *  Note that this limits the lowest sync data transfer 
 512         *  to 5 Mega-transfers per second and may result in
 513         *  using higher clock divisors.
 514         */
 515#if 1
 516        if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
 517                /*
 518                 *  Look for the lowest clock divisor that allows an 
 519                 *  output speed not faster than the period.
 520                 */
 521                while (div > 0) {
 522                        --div;
 523                        if (kpc > (div_10M[div] << 2)) {
 524                                ++div;
 525                                break;
 526                        }
 527                }
 528                fak = 0;                        /* No extra clocks */
 529                if (div == np->clock_divn) {    /* Are we too fast ? */
 530                        ret = -1;
 531                }
 532                *divp = div;
 533                *fakp = fak;
 534                return ret;
 535        }
 536#endif
 537
 538        /*
 539         *  Look for the greatest clock divisor that allows an 
 540         *  input speed faster than the period.
 541         */
 542        while (div-- > 0)
 543                if (kpc >= (div_10M[div] << 2)) break;
 544
 545        /*
 546         *  Calculate the lowest clock factor that allows an output 
 547         *  speed not faster than the period, and the max output speed.
 548         *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
 549         *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
 550         */
 551        if (dt) {
 552                fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
 553                /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
 554        } else {
 555                fak = (kpc - 1) / div_10M[div] + 1 - 4;
 556                /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
 557        }
 558
 559        /*
 560         *  Check against our hardware limits, or bugs :).
 561         */
 562        if (fak > 2) {
 563                fak = 2;
 564                ret = -1;
 565        }
 566
 567        /*
 568         *  Compute and return sync parameters.
 569         */
 570        *divp = div;
 571        *fakp = fak;
 572
 573        return ret;
 574}
 575
 576/*
 577 *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
 578 *  128 transfers. All chips support at least 16 transfers 
 579 *  bursts. The 825A, 875 and 895 chips support bursts of up 
 580 *  to 128 transfers and the 895A and 896 support bursts of up
 581 *  to 64 transfers. All other chips support up to 16 
 582 *  transfers bursts.
 583 *
 584 *  For PCI 32 bit data transfers each transfer is a DWORD.
 585 *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
 586 *
 587 *  We use log base 2 (burst length) as internal code, with 
 588 *  value 0 meaning "burst disabled".
 589 */
 590
 591/*
 592 *  Burst length from burst code.
 593 */
 594#define burst_length(bc) (!(bc))? 0 : 1 << (bc)
 595
 596/*
 597 *  Burst code from io register bits.
 598 */
 599#define burst_code(dmode, ctest4, ctest5) \
 600        (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
 601
 602/*
 603 *  Set initial io register bits from burst code.
 604 */
 605static inline void sym_init_burst(struct sym_hcb *np, u_char bc)
 606{
 607        np->rv_ctest4   &= ~0x80;
 608        np->rv_dmode    &= ~(0x3 << 6);
 609        np->rv_ctest5   &= ~0x4;
 610
 611        if (!bc) {
 612                np->rv_ctest4   |= 0x80;
 613        }
 614        else {
 615                --bc;
 616                np->rv_dmode    |= ((bc & 0x3) << 6);
 617                np->rv_ctest5   |= (bc & 0x4);
 618        }
 619}
 620
 621/*
 622 *  Save initial settings of some IO registers.
 623 *  Assumed to have been set by BIOS.
 624 *  We cannot reset the chip prior to reading the 
 625 *  IO registers, since informations will be lost.
 626 *  Since the SCRIPTS processor may be running, this 
 627 *  is not safe on paper, but it seems to work quite 
 628 *  well. :)
 629 */
 630static void sym_save_initial_setting (struct sym_hcb *np)
 631{
 632        np->sv_scntl0   = INB(np, nc_scntl0) & 0x0a;
 633        np->sv_scntl3   = INB(np, nc_scntl3) & 0x07;
 634        np->sv_dmode    = INB(np, nc_dmode)  & 0xce;
 635        np->sv_dcntl    = INB(np, nc_dcntl)  & 0xa8;
 636        np->sv_ctest3   = INB(np, nc_ctest3) & 0x01;
 637        np->sv_ctest4   = INB(np, nc_ctest4) & 0x80;
 638        np->sv_gpcntl   = INB(np, nc_gpcntl);
 639        np->sv_stest1   = INB(np, nc_stest1);
 640        np->sv_stest2   = INB(np, nc_stest2) & 0x20;
 641        np->sv_stest4   = INB(np, nc_stest4);
 642        if (np->features & FE_C10) {    /* Always large DMA fifo + ultra3 */
 643                np->sv_scntl4   = INB(np, nc_scntl4);
 644                np->sv_ctest5   = INB(np, nc_ctest5) & 0x04;
 645        }
 646        else
 647                np->sv_ctest5   = INB(np, nc_ctest5) & 0x24;
 648}
 649
 650/*
 651 *  Set SCSI BUS mode.
 652 *  - LVD capable chips (895/895A/896/1010) report the current BUS mode
 653 *    through the STEST4 IO register.
 654 *  - For previous generation chips (825/825A/875), the user has to tell us
 655 *    how to check against HVD, since a 100% safe algorithm is not possible.
 656 */
 657static void sym_set_bus_mode(struct sym_hcb *np, struct sym_nvram *nvram)
 658{
 659        if (np->scsi_mode)
 660                return;
 661
 662        np->scsi_mode = SMODE_SE;
 663        if (np->features & (FE_ULTRA2|FE_ULTRA3))
 664                np->scsi_mode = (np->sv_stest4 & SMODE);
 665        else if (np->features & FE_DIFF) {
 666                if (SYM_SETUP_SCSI_DIFF == 1) {
 667                        if (np->sv_scntl3) {
 668                                if (np->sv_stest2 & 0x20)
 669                                        np->scsi_mode = SMODE_HVD;
 670                        } else if (nvram->type == SYM_SYMBIOS_NVRAM) {
 671                                if (!(INB(np, nc_gpreg) & 0x08))
 672                                        np->scsi_mode = SMODE_HVD;
 673                        }
 674                } else if (SYM_SETUP_SCSI_DIFF == 2)
 675                        np->scsi_mode = SMODE_HVD;
 676        }
 677        if (np->scsi_mode == SMODE_HVD)
 678                np->rv_stest2 |= 0x20;
 679}
 680
 681/*
 682 *  Prepare io register values used by sym_start_up() 
 683 *  according to selected and supported features.
 684 */
 685static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram)
 686{
 687        struct sym_data *sym_data = shost_priv(shost);
 688        struct pci_dev *pdev = sym_data->pdev;
 689        u_char  burst_max;
 690        u32     period;
 691        int i;
 692
 693        np->maxwide = (np->features & FE_WIDE) ? 1 : 0;
 694
 695        /*
 696         *  Guess the frequency of the chip's clock.
 697         */
 698        if      (np->features & (FE_ULTRA3 | FE_ULTRA2))
 699                np->clock_khz = 160000;
 700        else if (np->features & FE_ULTRA)
 701                np->clock_khz = 80000;
 702        else
 703                np->clock_khz = 40000;
 704
 705        /*
 706         *  Get the clock multiplier factor.
 707         */
 708        if      (np->features & FE_QUAD)
 709                np->multiplier  = 4;
 710        else if (np->features & FE_DBLR)
 711                np->multiplier  = 2;
 712        else
 713                np->multiplier  = 1;
 714
 715        /*
 716         *  Measure SCSI clock frequency for chips 
 717         *  it may vary from assumed one.
 718         */
 719        if (np->features & FE_VARCLK)
 720                sym_getclock(np, np->multiplier);
 721
 722        /*
 723         * Divisor to be used for async (timer pre-scaler).
 724         */
 725        i = np->clock_divn - 1;
 726        while (--i >= 0) {
 727                if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
 728                        ++i;
 729                        break;
 730                }
 731        }
 732        np->rv_scntl3 = i+1;
 733
 734        /*
 735         * The C1010 uses hardwired divisors for async.
 736         * So, we just throw away, the async. divisor.:-)
 737         */
 738        if (np->features & FE_C10)
 739                np->rv_scntl3 = 0;
 740
 741        /*
 742         * Minimum synchronous period factor supported by the chip.
 743         * Btw, 'period' is in tenths of nanoseconds.
 744         */
 745        period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
 746
 747        if      (period <= 250)         np->minsync = 10;
 748        else if (period <= 303)         np->minsync = 11;
 749        else if (period <= 500)         np->minsync = 12;
 750        else                            np->minsync = (period + 40 - 1) / 40;
 751
 752        /*
 753         * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
 754         */
 755        if      (np->minsync < 25 &&
 756                 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
 757                np->minsync = 25;
 758        else if (np->minsync < 12 &&
 759                 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
 760                np->minsync = 12;
 761
 762        /*
 763         * Maximum synchronous period factor supported by the chip.
 764         */
 765        period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
 766        np->maxsync = period > 2540 ? 254 : period / 10;
 767
 768        /*
 769         * If chip is a C1010, guess the sync limits in DT mode.
 770         */
 771        if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
 772                if (np->clock_khz == 160000) {
 773                        np->minsync_dt = 9;
 774                        np->maxsync_dt = 50;
 775                        np->maxoffs_dt = nvram->type ? 62 : 31;
 776                }
 777        }
 778        
 779        /*
 780         *  64 bit addressing  (895A/896/1010) ?
 781         */
 782        if (np->features & FE_DAC) {
 783                if (!use_dac(np))
 784                        np->rv_ccntl1 |= (DDAC);
 785                else if (SYM_CONF_DMA_ADDRESSING_MODE == 1)
 786                        np->rv_ccntl1 |= (XTIMOD | EXTIBMV);
 787                else if (SYM_CONF_DMA_ADDRESSING_MODE == 2)
 788                        np->rv_ccntl1 |= (0 | EXTIBMV);
 789        }
 790
 791        /*
 792         *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
 793         */
 794        if (np->features & FE_NOPM)
 795                np->rv_ccntl0   |= (ENPMJ);
 796
 797        /*
 798         *  C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed.
 799         *  In dual channel mode, contention occurs if internal cycles
 800         *  are used. Disable internal cycles.
 801         */
 802        if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 &&
 803            pdev->revision < 0x1)
 804                np->rv_ccntl0   |=  DILS;
 805
 806        /*
 807         *  Select burst length (dwords)
 808         */
 809        burst_max       = SYM_SETUP_BURST_ORDER;
 810        if (burst_max == 255)
 811                burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
 812                                       np->sv_ctest5);
 813        if (burst_max > 7)
 814                burst_max = 7;
 815        if (burst_max > np->maxburst)
 816                burst_max = np->maxburst;
 817
 818        /*
 819         *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
 820         *  This chip and the 860 Rev 1 may wrongly use PCI cache line 
 821         *  based transactions on LOAD/STORE instructions. So we have 
 822         *  to prevent these chips from using such PCI transactions in 
 823         *  this driver. The generic ncr driver that does not use 
 824         *  LOAD/STORE instructions does not need this work-around.
 825         */
 826        if ((pdev->device == PCI_DEVICE_ID_NCR_53C810 &&
 827             pdev->revision >= 0x10 && pdev->revision <= 0x11) ||
 828            (pdev->device == PCI_DEVICE_ID_NCR_53C860 &&
 829             pdev->revision <= 0x1))
 830                np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
 831
 832        /*
 833         *  Select all supported special features.
 834         *  If we are using on-board RAM for scripts, prefetch (PFEN) 
 835         *  does not help, but burst op fetch (BOF) does.
 836         *  Disabling PFEN makes sure BOF will be used.
 837         */
 838        if (np->features & FE_ERL)
 839                np->rv_dmode    |= ERL;         /* Enable Read Line */
 840        if (np->features & FE_BOF)
 841                np->rv_dmode    |= BOF;         /* Burst Opcode Fetch */
 842        if (np->features & FE_ERMP)
 843                np->rv_dmode    |= ERMP;        /* Enable Read Multiple */
 844#if 1
 845        if ((np->features & FE_PFEN) && !np->ram_ba)
 846#else
 847        if (np->features & FE_PFEN)
 848#endif
 849                np->rv_dcntl    |= PFEN;        /* Prefetch Enable */
 850        if (np->features & FE_CLSE)
 851                np->rv_dcntl    |= CLSE;        /* Cache Line Size Enable */
 852        if (np->features & FE_WRIE)
 853                np->rv_ctest3   |= WRIE;        /* Write and Invalidate */
 854        if (np->features & FE_DFS)
 855                np->rv_ctest5   |= DFS;         /* Dma Fifo Size */
 856
 857        /*
 858         *  Select some other
 859         */
 860        np->rv_ctest4   |= MPEE; /* Master parity checking */
 861        np->rv_scntl0   |= 0x0a; /*  full arb., ena parity, par->ATN  */
 862
 863        /*
 864         *  Get parity checking, host ID and verbose mode from NVRAM
 865         */
 866        np->myaddr = 255;
 867        np->scsi_mode = 0;
 868        sym_nvram_setup_host(shost, np, nvram);
 869
 870        /*
 871         *  Get SCSI addr of host adapter (set by bios?).
 872         */
 873        if (np->myaddr == 255) {
 874                np->myaddr = INB(np, nc_scid) & 0x07;
 875                if (!np->myaddr)
 876                        np->myaddr = SYM_SETUP_HOST_ID;
 877        }
 878
 879        /*
 880         *  Prepare initial io register bits for burst length
 881         */
 882        sym_init_burst(np, burst_max);
 883
 884        sym_set_bus_mode(np, nvram);
 885
 886        /*
 887         *  Set LED support from SCRIPTS.
 888         *  Ignore this feature for boards known to use a 
 889         *  specific GPIO wiring and for the 895A, 896 
 890         *  and 1010 that drive the LED directly.
 891         */
 892        if ((SYM_SETUP_SCSI_LED || 
 893             (nvram->type == SYM_SYMBIOS_NVRAM ||
 894              (nvram->type == SYM_TEKRAM_NVRAM &&
 895               pdev->device == PCI_DEVICE_ID_NCR_53C895))) &&
 896            !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
 897                np->features |= FE_LED0;
 898
 899        /*
 900         *  Set irq mode.
 901         */
 902        switch(SYM_SETUP_IRQ_MODE & 3) {
 903        case 2:
 904                np->rv_dcntl    |= IRQM;
 905                break;
 906        case 1:
 907                np->rv_dcntl    |= (np->sv_dcntl & IRQM);
 908                break;
 909        default:
 910                break;
 911        }
 912
 913        /*
 914         *  Configure targets according to driver setup.
 915         *  If NVRAM present get targets setup from NVRAM.
 916         */
 917        for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
 918                struct sym_tcb *tp = &np->target[i];
 919
 920                tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
 921                tp->usrtags = SYM_SETUP_MAX_TAG;
 922                tp->usr_width = np->maxwide;
 923                tp->usr_period = 9;
 924
 925                sym_nvram_setup_target(tp, i, nvram);
 926
 927                if (!tp->usrtags)
 928                        tp->usrflags &= ~SYM_TAGS_ENABLED;
 929        }
 930
 931        /*
 932         *  Let user know about the settings.
 933         */
 934        printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np),
 935                sym_nvram_type(nvram), np->myaddr,
 936                (np->features & FE_ULTRA3) ? 80 : 
 937                (np->features & FE_ULTRA2) ? 40 : 
 938                (np->features & FE_ULTRA)  ? 20 : 10,
 939                sym_scsi_bus_mode(np->scsi_mode),
 940                (np->rv_scntl0 & 0xa)   ? "parity checking" : "NO parity");
 941        /*
 942         *  Tell him more on demand.
 943         */
 944        if (sym_verbose) {
 945                printf("%s: %s IRQ line driver%s\n",
 946                        sym_name(np),
 947                        np->rv_dcntl & IRQM ? "totem pole" : "open drain",
 948                        np->ram_ba ? ", using on-chip SRAM" : "");
 949                printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
 950                if (np->features & FE_NOPM)
 951                        printf("%s: handling phase mismatch from SCRIPTS.\n", 
 952                               sym_name(np));
 953        }
 954        /*
 955         *  And still more.
 956         */
 957        if (sym_verbose >= 2) {
 958                printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
 959                        "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
 960                        sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
 961                        np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
 962
 963                printf ("%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
 964                        "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
 965                        sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
 966                        np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
 967        }
 968
 969        return 0;
 970}
 971
 972/*
 973 *  Test the pci bus snoop logic :-(
 974 *
 975 *  Has to be called with interrupts disabled.
 976 */
 977#ifdef CONFIG_SCSI_SYM53C8XX_MMIO
 978static int sym_regtest(struct sym_hcb *np)
 979{
 980        register volatile u32 data;
 981        /*
 982         *  chip registers may NOT be cached.
 983         *  write 0xffffffff to a read only register area,
 984         *  and try to read it back.
 985         */
 986        data = 0xffffffff;
 987        OUTL(np, nc_dstat, data);
 988        data = INL(np, nc_dstat);
 989#if 1
 990        if (data == 0xffffffff) {
 991#else
 992        if ((data & 0xe2f0fffd) != 0x02000080) {
 993#endif
 994                printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
 995                        (unsigned) data);
 996                return 0x10;
 997        }
 998        return 0;
 999}
1000#else
1001static inline int sym_regtest(struct sym_hcb *np)
1002{
1003        return 0;
1004}
1005#endif
1006
1007static int sym_snooptest(struct sym_hcb *np)
1008{
1009        u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
1010        int i, err;
1011
1012        err = sym_regtest(np);
1013        if (err)
1014                return err;
1015restart_test:
1016        /*
1017         *  Enable Master Parity Checking as we intend 
1018         *  to enable it for normal operations.
1019         */
1020        OUTB(np, nc_ctest4, (np->rv_ctest4 & MPEE));
1021        /*
1022         *  init
1023         */
1024        pc  = SCRIPTZ_BA(np, snooptest);
1025        host_wr = 1;
1026        sym_wr  = 2;
1027        /*
1028         *  Set memory and register.
1029         */
1030        np->scratch = cpu_to_scr(host_wr);
1031        OUTL(np, nc_temp, sym_wr);
1032        /*
1033         *  Start script (exchange values)
1034         */
1035        OUTL(np, nc_dsa, np->hcb_ba);
1036        OUTL_DSP(np, pc);
1037        /*
1038         *  Wait 'til done (with timeout)
1039         */
1040        for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
1041                if (INB(np, nc_istat) & (INTF|SIP|DIP))
1042                        break;
1043        if (i>=SYM_SNOOP_TIMEOUT) {
1044                printf ("CACHE TEST FAILED: timeout.\n");
1045                return (0x20);
1046        }
1047        /*
1048         *  Check for fatal DMA errors.
1049         */
1050        dstat = INB(np, nc_dstat);
1051#if 1   /* Band aiding for broken hardwares that fail PCI parity */
1052        if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
1053                printf ("%s: PCI DATA PARITY ERROR DETECTED - "
1054                        "DISABLING MASTER DATA PARITY CHECKING.\n",
1055                        sym_name(np));
1056                np->rv_ctest4 &= ~MPEE;
1057                goto restart_test;
1058        }
1059#endif
1060        if (dstat & (MDPE|BF|IID)) {
1061                printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
1062                return (0x80);
1063        }
1064        /*
1065         *  Save termination position.
1066         */
1067        pc = INL(np, nc_dsp);
1068        /*
1069         *  Read memory and register.
1070         */
1071        host_rd = scr_to_cpu(np->scratch);
1072        sym_rd  = INL(np, nc_scratcha);
1073        sym_bk  = INL(np, nc_temp);
1074        /*
1075         *  Check termination position.
1076         */
1077        if (pc != SCRIPTZ_BA(np, snoopend)+8) {
1078                printf ("CACHE TEST FAILED: script execution failed.\n");
1079                printf ("start=%08lx, pc=%08lx, end=%08lx\n", 
1080                        (u_long) SCRIPTZ_BA(np, snooptest), (u_long) pc,
1081                        (u_long) SCRIPTZ_BA(np, snoopend) +8);
1082                return (0x40);
1083        }
1084        /*
1085         *  Show results.
1086         */
1087        if (host_wr != sym_rd) {
1088                printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
1089                        (int) host_wr, (int) sym_rd);
1090                err |= 1;
1091        }
1092        if (host_rd != sym_wr) {
1093                printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
1094                        (int) sym_wr, (int) host_rd);
1095                err |= 2;
1096        }
1097        if (sym_bk != sym_wr) {
1098                printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
1099                        (int) sym_wr, (int) sym_bk);
1100                err |= 4;
1101        }
1102
1103        return err;
1104}
1105
1106/*
1107 *  log message for real hard errors
1108 *
1109 *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc).
1110 *            reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
1111 *
1112 *  exception register:
1113 *      ds:     dstat
1114 *      si:     sist
1115 *
1116 *  SCSI bus lines:
1117 *      so:     control lines as driven by chip.
1118 *      si:     control lines as seen by chip.
1119 *      sd:     scsi data lines as seen by chip.
1120 *
1121 *  wide/fastmode:
1122 *      sx:     sxfer  (see the manual)
1123 *      s3:     scntl3 (see the manual)
1124 *      s4:     scntl4 (see the manual)
1125 *
1126 *  current script command:
1127 *      dsp:    script address (relative to start of script).
1128 *      dbc:    first word of script command.
1129 *
1130 *  First 24 register of the chip:
1131 *      r0..rf
1132 */
1133static void sym_log_hard_error(struct Scsi_Host *shost, u_short sist, u_char dstat)
1134{
1135        struct sym_hcb *np = sym_get_hcb(shost);
1136        u32     dsp;
1137        int     script_ofs;
1138        int     script_size;
1139        char    *script_name;
1140        u_char  *script_base;
1141        int     i;
1142
1143        dsp     = INL(np, nc_dsp);
1144
1145        if      (dsp > np->scripta_ba &&
1146                 dsp <= np->scripta_ba + np->scripta_sz) {
1147                script_ofs      = dsp - np->scripta_ba;
1148                script_size     = np->scripta_sz;
1149                script_base     = (u_char *) np->scripta0;
1150                script_name     = "scripta";
1151        }
1152        else if (np->scriptb_ba < dsp && 
1153                 dsp <= np->scriptb_ba + np->scriptb_sz) {
1154                script_ofs      = dsp - np->scriptb_ba;
1155                script_size     = np->scriptb_sz;
1156                script_base     = (u_char *) np->scriptb0;
1157                script_name     = "scriptb";
1158        } else {
1159                script_ofs      = dsp;
1160                script_size     = 0;
1161                script_base     = NULL;
1162                script_name     = "mem";
1163        }
1164
1165        printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n",
1166                sym_name(np), (unsigned)INB(np, nc_sdid)&0x0f, dstat, sist,
1167                (unsigned)INB(np, nc_socl), (unsigned)INB(np, nc_sbcl),
1168                (unsigned)INB(np, nc_sbdl), (unsigned)INB(np, nc_sxfer),
1169                (unsigned)INB(np, nc_scntl3),
1170                (np->features & FE_C10) ?  (unsigned)INB(np, nc_scntl4) : 0,
1171                script_name, script_ofs,   (unsigned)INL(np, nc_dbc));
1172
1173        if (((script_ofs & 3) == 0) &&
1174            (unsigned)script_ofs < script_size) {
1175                printf ("%s: script cmd = %08x\n", sym_name(np),
1176                        scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
1177        }
1178
1179        printf("%s: regdump:", sym_name(np));
1180        for (i = 0; i < 24; i++)
1181                printf(" %02x", (unsigned)INB_OFF(np, i));
1182        printf(".\n");
1183
1184        /*
1185         *  PCI BUS error.
1186         */
1187        if (dstat & (MDPE|BF))
1188                sym_log_bus_error(shost);
1189}
1190
1191void sym_dump_registers(struct Scsi_Host *shost)
1192{
1193        struct sym_hcb *np = sym_get_hcb(shost);
1194        u_short sist;
1195        u_char dstat;
1196
1197        sist = INW(np, nc_sist);
1198        dstat = INB(np, nc_dstat);
1199        sym_log_hard_error(shost, sist, dstat);
1200}
1201
1202static struct sym_chip sym_dev_table[] = {
1203 {PCI_DEVICE_ID_NCR_53C810, 0x0f, "810", 4, 8, 4, 64,
1204 FE_ERL}
1205 ,
1206#ifdef SYM_DEBUG_GENERIC_SUPPORT
1207 {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4,  8, 4, 1,
1208 FE_BOF}
1209 ,
1210#else
1211 {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4,  8, 4, 1,
1212 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
1213 ,
1214#endif
1215 {PCI_DEVICE_ID_NCR_53C815, 0xff, "815", 4,  8, 4, 64,
1216 FE_BOF|FE_ERL}
1217 ,
1218 {PCI_DEVICE_ID_NCR_53C825, 0x0f, "825", 6,  8, 4, 64,
1219 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
1220 ,
1221 {PCI_DEVICE_ID_NCR_53C825, 0xff, "825a", 6,  8, 4, 2,
1222 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
1223 ,
1224 {PCI_DEVICE_ID_NCR_53C860, 0xff, "860", 4,  8, 5, 1,
1225 FE_ULTRA|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
1226 ,
1227 {PCI_DEVICE_ID_NCR_53C875, 0x01, "875", 6, 16, 5, 2,
1228 FE_WIDE|FE_ULTRA|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1229 FE_RAM|FE_DIFF|FE_VARCLK}
1230 ,
1231 {PCI_DEVICE_ID_NCR_53C875, 0xff, "875", 6, 16, 5, 2,
1232 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1233 FE_RAM|FE_DIFF|FE_VARCLK}
1234 ,
1235 {PCI_DEVICE_ID_NCR_53C875J, 0xff, "875J", 6, 16, 5, 2,
1236 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1237 FE_RAM|FE_DIFF|FE_VARCLK}
1238 ,
1239 {PCI_DEVICE_ID_NCR_53C885, 0xff, "885", 6, 16, 5, 2,
1240 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1241 FE_RAM|FE_DIFF|FE_VARCLK}
1242 ,
1243#ifdef SYM_DEBUG_GENERIC_SUPPORT
1244 {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1245 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
1246 FE_RAM|FE_LCKFRQ}
1247 ,
1248#else
1249 {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1250 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1251 FE_RAM|FE_LCKFRQ}
1252 ,
1253#endif
1254 {PCI_DEVICE_ID_NCR_53C896, 0xff, "896", 6, 31, 7, 4,
1255 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1256 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1257 ,
1258 {PCI_DEVICE_ID_LSI_53C895A, 0xff, "895a", 6, 31, 7, 4,
1259 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1260 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1261 ,
1262 {PCI_DEVICE_ID_LSI_53C875A, 0xff, "875a", 6, 31, 7, 4,
1263 FE_WIDE|FE_ULTRA|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1264 FE_RAM|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1265 ,
1266 {PCI_DEVICE_ID_LSI_53C1010_33, 0x00, "1010-33", 6, 31, 7, 8,
1267 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1268 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1269 FE_C10}
1270 ,
1271 {PCI_DEVICE_ID_LSI_53C1010_33, 0xff, "1010-33", 6, 31, 7, 8,
1272 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1273 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1274 FE_C10|FE_U3EN}
1275 ,
1276 {PCI_DEVICE_ID_LSI_53C1010_66, 0xff, "1010-66", 6, 31, 7, 8,
1277 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1278 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
1279 FE_C10|FE_U3EN}
1280 ,
1281 {PCI_DEVICE_ID_LSI_53C1510, 0xff, "1510d", 6, 31, 7, 4,
1282 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1283 FE_RAM|FE_IO256|FE_LEDC}
1284};
1285
1286#define sym_num_devs (ARRAY_SIZE(sym_dev_table))
1287
1288/*
1289 *  Look up the chip table.
1290 *
1291 *  Return a pointer to the chip entry if found, 
1292 *  zero otherwise.
1293 */
1294struct sym_chip *
1295sym_lookup_chip_table (u_short device_id, u_char revision)
1296{
1297        struct  sym_chip *chip;
1298        int     i;
1299
1300        for (i = 0; i < sym_num_devs; i++) {
1301                chip = &sym_dev_table[i];
1302                if (device_id != chip->device_id)
1303                        continue;
1304                if (revision > chip->revision_id)
1305                        continue;
1306                return chip;
1307        }
1308
1309        return NULL;
1310}
1311
1312#if SYM_CONF_DMA_ADDRESSING_MODE == 2
1313/*
1314 *  Lookup the 64 bit DMA segments map.
1315 *  This is only used if the direct mapping 
1316 *  has been unsuccessful.
1317 */
1318int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s)
1319{
1320        int i;
1321
1322        if (!use_dac(np))
1323                goto weird;
1324
1325        /* Look up existing mappings */
1326        for (i = SYM_DMAP_SIZE-1; i > 0; i--) {
1327                if (h == np->dmap_bah[i])
1328                        return i;
1329        }
1330        /* If direct mapping is free, get it */
1331        if (!np->dmap_bah[s])
1332                goto new;
1333        /* Collision -> lookup free mappings */
1334        for (s = SYM_DMAP_SIZE-1; s > 0; s--) {
1335                if (!np->dmap_bah[s])
1336                        goto new;
1337        }
1338weird:
1339        panic("sym: ran out of 64 bit DMA segment registers");
1340        return -1;
1341new:
1342        np->dmap_bah[s] = h;
1343        np->dmap_dirty = 1;
1344        return s;
1345}
1346
1347/*
1348 *  Update IO registers scratch C..R so they will be 
1349 *  in sync. with queued CCB expectations.
1350 */
1351static void sym_update_dmap_regs(struct sym_hcb *np)
1352{
1353        int o, i;
1354
1355        if (!np->dmap_dirty)
1356                return;
1357        o = offsetof(struct sym_reg, nc_scrx[0]);
1358        for (i = 0; i < SYM_DMAP_SIZE; i++) {
1359                OUTL_OFF(np, o, np->dmap_bah[i]);
1360                o += 4;
1361        }
1362        np->dmap_dirty = 0;
1363}
1364#endif
1365
1366/* Enforce all the fiddly SPI rules and the chip limitations */
1367static void sym_check_goals(struct sym_hcb *np, struct scsi_target *starget,
1368                struct sym_trans *goal)
1369{
1370        if (!spi_support_wide(starget))
1371                goal->width = 0;
1372
1373        if (!spi_support_sync(starget)) {
1374                goal->iu = 0;
1375                goal->dt = 0;
1376                goal->qas = 0;
1377                goal->offset = 0;
1378                return;
1379        }
1380
1381        if (spi_support_dt(starget)) {
1382                if (spi_support_dt_only(starget))
1383                        goal->dt = 1;
1384
1385                if (goal->offset == 0)
1386                        goal->dt = 0;
1387        } else {
1388                goal->dt = 0;
1389        }
1390
1391        /* Some targets fail to properly negotiate DT in SE mode */
1392        if ((np->scsi_mode != SMODE_LVD) || !(np->features & FE_U3EN))
1393                goal->dt = 0;
1394
1395        if (goal->dt) {
1396                /* all DT transfers must be wide */
1397                goal->width = 1;
1398                if (goal->offset > np->maxoffs_dt)
1399                        goal->offset = np->maxoffs_dt;
1400                if (goal->period < np->minsync_dt)
1401                        goal->period = np->minsync_dt;
1402                if (goal->period > np->maxsync_dt)
1403                        goal->period = np->maxsync_dt;
1404        } else {
1405                goal->iu = goal->qas = 0;
1406                if (goal->offset > np->maxoffs)
1407                        goal->offset = np->maxoffs;
1408                if (goal->period < np->minsync)
1409                        goal->period = np->minsync;
1410                if (goal->period > np->maxsync)
1411                        goal->period = np->maxsync;
1412        }
1413}
1414
1415/*
1416 *  Prepare the next negotiation message if needed.
1417 *
1418 *  Fill in the part of message buffer that contains the 
1419 *  negotiation and the nego_status field of the CCB.
1420 *  Returns the size of the message in bytes.
1421 */
1422static int sym_prepare_nego(struct sym_hcb *np, struct sym_ccb *cp, u_char *msgptr)
1423{
1424        struct sym_tcb *tp = &np->target[cp->target];
1425        struct scsi_target *starget = tp->starget;
1426        struct sym_trans *goal = &tp->tgoal;
1427        int msglen = 0;
1428        int nego;
1429
1430        sym_check_goals(np, starget, goal);
1431
1432        /*
1433         * Many devices implement PPR in a buggy way, so only use it if we
1434         * really want to.
1435         */
1436        if (goal->renego == NS_PPR || (goal->offset &&
1437            (goal->iu || goal->dt || goal->qas || (goal->period < 0xa)))) {
1438                nego = NS_PPR;
1439        } else if (goal->renego == NS_WIDE || goal->width) {
1440                nego = NS_WIDE;
1441        } else if (goal->renego == NS_SYNC || goal->offset) {
1442                nego = NS_SYNC;
1443        } else {
1444                goal->check_nego = 0;
1445                nego = 0;
1446        }
1447
1448        switch (nego) {
1449        case NS_SYNC:
1450                msglen += spi_populate_sync_msg(msgptr + msglen, goal->period,
1451                                goal->offset);
1452                break;
1453        case NS_WIDE:
1454                msglen += spi_populate_width_msg(msgptr + msglen, goal->width);
1455                break;
1456        case NS_PPR:
1457                msglen += spi_populate_ppr_msg(msgptr + msglen, goal->period,
1458                                goal->offset, goal->width,
1459                                (goal->iu ? PPR_OPT_IU : 0) |
1460                                        (goal->dt ? PPR_OPT_DT : 0) |
1461                                        (goal->qas ? PPR_OPT_QAS : 0));
1462                break;
1463        }
1464
1465        cp->nego_status = nego;
1466
1467        if (nego) {
1468                tp->nego_cp = cp; /* Keep track a nego will be performed */
1469                if (DEBUG_FLAGS & DEBUG_NEGO) {
1470                        sym_print_nego_msg(np, cp->target, 
1471                                          nego == NS_SYNC ? "sync msgout" :
1472                                          nego == NS_WIDE ? "wide msgout" :
1473                                          "ppr msgout", msgptr);
1474                }
1475        }
1476
1477        return msglen;
1478}
1479
1480/*
1481 *  Insert a job into the start queue.
1482 */
1483void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp)
1484{
1485        u_short qidx;
1486
1487#ifdef SYM_CONF_IARB_SUPPORT
1488        /*
1489         *  If the previously queued CCB is not yet done, 
1490         *  set the IARB hint. The SCRIPTS will go with IARB 
1491         *  for this job when starting the previous one.
1492         *  We leave devices a chance to win arbitration by 
1493         *  not using more than 'iarb_max' consecutive 
1494         *  immediate arbitrations.
1495         */
1496        if (np->last_cp && np->iarb_count < np->iarb_max) {
1497                np->last_cp->host_flags |= HF_HINT_IARB;
1498                ++np->iarb_count;
1499        }
1500        else
1501                np->iarb_count = 0;
1502        np->last_cp = cp;
1503#endif
1504
1505#if   SYM_CONF_DMA_ADDRESSING_MODE == 2
1506        /*
1507         *  Make SCRIPTS aware of the 64 bit DMA 
1508         *  segment registers not being up-to-date.
1509         */
1510        if (np->dmap_dirty)
1511                cp->host_xflags |= HX_DMAP_DIRTY;
1512#endif
1513
1514        /*
1515         *  Insert first the idle task and then our job.
1516         *  The MBs should ensure proper ordering.
1517         */
1518        qidx = np->squeueput + 2;
1519        if (qidx >= MAX_QUEUE*2) qidx = 0;
1520
1521        np->squeue [qidx]          = cpu_to_scr(np->idletask_ba);
1522        MEMORY_WRITE_BARRIER();
1523        np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
1524
1525        np->squeueput = qidx;
1526
1527        if (DEBUG_FLAGS & DEBUG_QUEUE)
1528                scmd_printk(KERN_DEBUG, cp->cmd, "queuepos=%d\n",
1529                                                        np->squeueput);
1530
1531        /*
1532         *  Script processor may be waiting for reselect.
1533         *  Wake it up.
1534         */
1535        MEMORY_WRITE_BARRIER();
1536        OUTB(np, nc_istat, SIGP|np->istat_sem);
1537}
1538
1539#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1540/*
1541 *  Start next ready-to-start CCBs.
1542 */
1543void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn)
1544{
1545        SYM_QUEHEAD *qp;
1546        struct sym_ccb *cp;
1547
1548        /* 
1549         *  Paranoia, as usual. :-)
1550         */
1551        assert(!lp->started_tags || !lp->started_no_tag);
1552
1553        /*
1554         *  Try to start as many commands as asked by caller.
1555         *  Prevent from having both tagged and untagged 
1556         *  commands queued to the device at the same time.
1557         */
1558        while (maxn--) {
1559                qp = sym_remque_head(&lp->waiting_ccbq);
1560                if (!qp)
1561                        break;
1562                cp = sym_que_entry(qp, struct sym_ccb, link2_ccbq);
1563                if (cp->tag != NO_TAG) {
1564                        if (lp->started_no_tag ||
1565                            lp->started_tags >= lp->started_max) {
1566                                sym_insque_head(qp, &lp->waiting_ccbq);
1567                                break;
1568                        }
1569                        lp->itlq_tbl[cp->tag] = cpu_to_scr(cp->ccb_ba);
1570                        lp->head.resel_sa =
1571                                cpu_to_scr(SCRIPTA_BA(np, resel_tag));
1572                        ++lp->started_tags;
1573                } else {
1574                        if (lp->started_no_tag || lp->started_tags) {
1575                                sym_insque_head(qp, &lp->waiting_ccbq);
1576                                break;
1577                        }
1578                        lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
1579                        lp->head.resel_sa =
1580                              cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
1581                        ++lp->started_no_tag;
1582                }
1583                cp->started = 1;
1584                sym_insque_tail(qp, &lp->started_ccbq);
1585                sym_put_start_queue(np, cp);
1586        }
1587}
1588#endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */
1589
1590/*
1591 *  The chip may have completed jobs. Look at the DONE QUEUE.
1592 *
1593 *  On paper, memory read barriers may be needed here to 
1594 *  prevent out of order LOADs by the CPU from having 
1595 *  prefetched stale data prior to DMA having occurred.
1596 */
1597static int sym_wakeup_done (struct sym_hcb *np)
1598{
1599        struct sym_ccb *cp;
1600        int i, n;
1601        u32 dsa;
1602
1603        n = 0;
1604        i = np->dqueueget;
1605
1606        /* MEMORY_READ_BARRIER(); */
1607        while (1) {
1608                dsa = scr_to_cpu(np->dqueue[i]);
1609                if (!dsa)
1610                        break;
1611                np->dqueue[i] = 0;
1612                if ((i = i+2) >= MAX_QUEUE*2)
1613                        i = 0;
1614
1615                cp = sym_ccb_from_dsa(np, dsa);
1616                if (cp) {
1617                        MEMORY_READ_BARRIER();
1618                        sym_complete_ok (np, cp);
1619                        ++n;
1620                }
1621                else
1622                        printf ("%s: bad DSA (%x) in done queue.\n",
1623                                sym_name(np), (u_int) dsa);
1624        }
1625        np->dqueueget = i;
1626
1627        return n;
1628}
1629
1630/*
1631 *  Complete all CCBs queued to the COMP queue.
1632 *
1633 *  These CCBs are assumed:
1634 *  - Not to be referenced either by devices or 
1635 *    SCRIPTS-related queues and datas.
1636 *  - To have to be completed with an error condition 
1637 *    or requeued.
1638 *
1639 *  The device queue freeze count is incremented 
1640 *  for each CCB that does not prevent this.
1641 *  This function is called when all CCBs involved 
1642 *  in error handling/recovery have been reaped.
1643 */
1644static void sym_flush_comp_queue(struct sym_hcb *np, int cam_status)
1645{
1646        SYM_QUEHEAD *qp;
1647        struct sym_ccb *cp;
1648
1649        while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) {
1650                struct scsi_cmnd *cmd;
1651                cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
1652                sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
1653                /* Leave quiet CCBs waiting for resources */
1654                if (cp->host_status == HS_WAIT)
1655                        continue;
1656                cmd = cp->cmd;
1657                if (cam_status)
1658                        sym_set_cam_status(cmd, cam_status);
1659#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1660                if (sym_get_cam_status(cmd) == DID_SOFT_ERROR) {
1661                        struct sym_tcb *tp = &np->target[cp->target];
1662                        struct sym_lcb *lp = sym_lp(tp, cp->lun);
1663                        if (lp) {
1664                                sym_remque(&cp->link2_ccbq);
1665                                sym_insque_tail(&cp->link2_ccbq,
1666                                                &lp->waiting_ccbq);
1667                                if (cp->started) {
1668                                        if (cp->tag != NO_TAG)
1669                                                --lp->started_tags;
1670                                        else
1671                                                --lp->started_no_tag;
1672                                }
1673                        }
1674                        cp->started = 0;
1675                        continue;
1676                }
1677#endif
1678                sym_free_ccb(np, cp);
1679                sym_xpt_done(np, cmd);
1680        }
1681}
1682
1683/*
1684 *  Complete all active CCBs with error.
1685 *  Used on CHIP/SCSI RESET.
1686 */
1687static void sym_flush_busy_queue (struct sym_hcb *np, int cam_status)
1688{
1689        /*
1690         *  Move all active CCBs to the COMP queue 
1691         *  and flush this queue.
1692         */
1693        sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
1694        sym_que_init(&np->busy_ccbq);
1695        sym_flush_comp_queue(np, cam_status);
1696}
1697
1698/*
1699 *  Start chip.
1700 *
1701 *  'reason' means:
1702 *     0: initialisation.
1703 *     1: SCSI BUS RESET delivered or received.
1704 *     2: SCSI BUS MODE changed.
1705 */
1706void sym_start_up(struct Scsi_Host *shost, int reason)
1707{
1708        struct sym_data *sym_data = shost_priv(shost);
1709        struct pci_dev *pdev = sym_data->pdev;
1710        struct sym_hcb *np = sym_data->ncb;
1711        int     i;
1712        u32     phys;
1713
1714        /*
1715         *  Reset chip if asked, otherwise just clear fifos.
1716         */
1717        if (reason == 1)
1718                sym_soft_reset(np);
1719        else {
1720                OUTB(np, nc_stest3, TE|CSF);
1721                OUTONB(np, nc_ctest3, CLF);
1722        }
1723 
1724        /*
1725         *  Clear Start Queue
1726         */
1727        phys = np->squeue_ba;
1728        for (i = 0; i < MAX_QUEUE*2; i += 2) {
1729                np->squeue[i]   = cpu_to_scr(np->idletask_ba);
1730                np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
1731        }
1732        np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1733
1734        /*
1735         *  Start at first entry.
1736         */
1737        np->squeueput = 0;
1738
1739        /*
1740         *  Clear Done Queue
1741         */
1742        phys = np->dqueue_ba;
1743        for (i = 0; i < MAX_QUEUE*2; i += 2) {
1744                np->dqueue[i]   = 0;
1745                np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
1746        }
1747        np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1748
1749        /*
1750         *  Start at first entry.
1751         */
1752        np->dqueueget = 0;
1753
1754        /*
1755         *  Install patches in scripts.
1756         *  This also let point to first position the start 
1757         *  and done queue pointers used from SCRIPTS.
1758         */
1759        np->fw_patch(shost);
1760
1761        /*
1762         *  Wakeup all pending jobs.
1763         */
1764        sym_flush_busy_queue(np, DID_RESET);
1765
1766        /*
1767         *  Init chip.
1768         */
1769        OUTB(np, nc_istat,  0x00);                      /*  Remove Reset, abort */
1770        INB(np, nc_mbox1);
1771        udelay(2000); /* The 895 needs time for the bus mode to settle */
1772
1773        OUTB(np, nc_scntl0, np->rv_scntl0 | 0xc0);
1774                                        /*  full arb., ena parity, par->ATN  */
1775        OUTB(np, nc_scntl1, 0x00);              /*  odd parity, and remove CRST!! */
1776
1777        sym_selectclock(np, np->rv_scntl3);     /* Select SCSI clock */
1778
1779        OUTB(np, nc_scid  , RRE|np->myaddr);    /* Adapter SCSI address */
1780        OUTW(np, nc_respid, 1ul<<np->myaddr);   /* Id to respond to */
1781        OUTB(np, nc_istat , SIGP        );              /*  Signal Process */
1782        OUTB(np, nc_dmode , np->rv_dmode);              /* Burst length, dma mode */
1783        OUTB(np, nc_ctest5, np->rv_ctest5);     /* Large fifo + large burst */
1784
1785        OUTB(np, nc_dcntl , NOCOM|np->rv_dcntl);        /* Protect SFBR */
1786        OUTB(np, nc_ctest3, np->rv_ctest3);     /* Write and invalidate */
1787        OUTB(np, nc_ctest4, np->rv_ctest4);     /* Master parity checking */
1788
1789        /* Extended Sreq/Sack filtering not supported on the C10 */
1790        if (np->features & FE_C10)
1791                OUTB(np, nc_stest2, np->rv_stest2);
1792        else
1793                OUTB(np, nc_stest2, EXT|np->rv_stest2);
1794
1795        OUTB(np, nc_stest3, TE);                        /* TolerANT enable */
1796        OUTB(np, nc_stime0, 0x0c);                      /* HTH disabled  STO 0.25 sec */
1797
1798        /*
1799         *  For now, disable AIP generation on C1010-66.
1800         */
1801        if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_66)
1802                OUTB(np, nc_aipcntl1, DISAIP);
1803
1804        /*
1805         *  C10101 rev. 0 errata.
1806         *  Errant SGE's when in narrow. Write bits 4 & 5 of
1807         *  STEST1 register to disable SGE. We probably should do 
1808         *  that from SCRIPTS for each selection/reselection, but 
1809         *  I just don't want. :)
1810         */
1811        if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 &&
1812            pdev->revision < 1)
1813                OUTB(np, nc_stest1, INB(np, nc_stest1) | 0x30);
1814
1815        /*
1816         *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
1817         *  Disable overlapped arbitration for some dual function devices, 
1818         *  regardless revision id (kind of post-chip-design feature. ;-))
1819         */
1820        if (pdev->device == PCI_DEVICE_ID_NCR_53C875)
1821                OUTB(np, nc_ctest0, (1<<5));
1822        else if (pdev->device == PCI_DEVICE_ID_NCR_53C896)
1823                np->rv_ccntl0 |= DPR;
1824
1825        /*
1826         *  Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing 
1827         *  and/or hardware phase mismatch, since only such chips 
1828         *  seem to support those IO registers.
1829         */
1830        if (np->features & (FE_DAC|FE_NOPM)) {
1831                OUTB(np, nc_ccntl0, np->rv_ccntl0);
1832                OUTB(np, nc_ccntl1, np->rv_ccntl1);
1833        }
1834
1835#if     SYM_CONF_DMA_ADDRESSING_MODE == 2
1836        /*
1837         *  Set up scratch C and DRS IO registers to map the 32 bit 
1838         *  DMA address range our data structures are located in.
1839         */
1840        if (use_dac(np)) {
1841                np->dmap_bah[0] = 0;    /* ??? */
1842                OUTL(np, nc_scrx[0], np->dmap_bah[0]);
1843                OUTL(np, nc_drs, np->dmap_bah[0]);
1844        }
1845#endif
1846
1847        /*
1848         *  If phase mismatch handled by scripts (895A/896/1010),
1849         *  set PM jump addresses.
1850         */
1851        if (np->features & FE_NOPM) {
1852                OUTL(np, nc_pmjad1, SCRIPTB_BA(np, pm_handle));
1853                OUTL(np, nc_pmjad2, SCRIPTB_BA(np, pm_handle));
1854        }
1855
1856        /*
1857         *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
1858         *    Also set GPIO5 and clear GPIO6 if hardware LED control.
1859         */
1860        if (np->features & FE_LED0)
1861                OUTB(np, nc_gpcntl, INB(np, nc_gpcntl) & ~0x01);
1862        else if (np->features & FE_LEDC)
1863                OUTB(np, nc_gpcntl, (INB(np, nc_gpcntl) & ~0x41) | 0x20);
1864
1865        /*
1866         *      enable ints
1867         */
1868        OUTW(np, nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
1869        OUTB(np, nc_dien , MDPE|BF|SSI|SIR|IID);
1870
1871        /*
1872         *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
1873         *  Try to eat the spurious SBMC interrupt that may occur when 
1874         *  we reset the chip but not the SCSI BUS (at initialization).
1875         */
1876        if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
1877                OUTONW(np, nc_sien, SBMC);
1878                if (reason == 0) {
1879                        INB(np, nc_mbox1);
1880                        mdelay(100);
1881                        INW(np, nc_sist);
1882                }
1883                np->scsi_mode = INB(np, nc_stest4) & SMODE;
1884        }
1885
1886        /*
1887         *  Fill in target structure.
1888         *  Reinitialize usrsync.
1889         *  Reinitialize usrwide.
1890         *  Prepare sync negotiation according to actual SCSI bus mode.
1891         */
1892        for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
1893                struct sym_tcb *tp = &np->target[i];
1894
1895                tp->to_reset  = 0;
1896                tp->head.sval = 0;
1897                tp->head.wval = np->rv_scntl3;
1898                tp->head.uval = 0;
1899                if (tp->lun0p)
1900                        tp->lun0p->to_clear = 0;
1901                if (tp->lunmp) {
1902                        int ln;
1903
1904                        for (ln = 1; ln < SYM_CONF_MAX_LUN; ln++)
1905                                if (tp->lunmp[ln])
1906                                        tp->lunmp[ln]->to_clear = 0;
1907                }
1908        }
1909
1910        /*
1911         *  Download SCSI SCRIPTS to on-chip RAM if present,
1912         *  and start script processor.
1913         *  We do the download preferently from the CPU.
1914         *  For platforms that may not support PCI memory mapping,
1915         *  we use simple SCRIPTS that performs MEMORY MOVEs.
1916         */
1917        phys = SCRIPTA_BA(np, init);
1918        if (np->ram_ba) {
1919                if (sym_verbose >= 2)
1920                        printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np));
1921                memcpy_toio(np->s.ramaddr, np->scripta0, np->scripta_sz);
1922                if (np->features & FE_RAM8K) {
1923                        memcpy_toio(np->s.ramaddr + 4096, np->scriptb0, np->scriptb_sz);
1924                        phys = scr_to_cpu(np->scr_ram_seg);
1925                        OUTL(np, nc_mmws, phys);
1926                        OUTL(np, nc_mmrs, phys);
1927                        OUTL(np, nc_sfs,  phys);
1928                        phys = SCRIPTB_BA(np, start64);
1929                }
1930        }
1931
1932        np->istat_sem = 0;
1933
1934        OUTL(np, nc_dsa, np->hcb_ba);
1935        OUTL_DSP(np, phys);
1936
1937        /*
1938         *  Notify the XPT about the RESET condition.
1939         */
1940        if (reason != 0)
1941                sym_xpt_async_bus_reset(np);
1942}
1943
1944/*
1945 *  Switch trans mode for current job and its target.
1946 */
1947static void sym_settrans(struct sym_hcb *np, int target, u_char opts, u_char ofs,
1948                         u_char per, u_char wide, u_char div, u_char fak)
1949{
1950        SYM_QUEHEAD *qp;
1951        u_char sval, wval, uval;
1952        struct sym_tcb *tp = &np->target[target];
1953
1954        assert(target == (INB(np, nc_sdid) & 0x0f));
1955
1956        sval = tp->head.sval;
1957        wval = tp->head.wval;
1958        uval = tp->head.uval;
1959
1960#if 0
1961        printf("XXXX sval=%x wval=%x uval=%x (%x)\n", 
1962                sval, wval, uval, np->rv_scntl3);
1963#endif
1964        /*
1965         *  Set the offset.
1966         */
1967        if (!(np->features & FE_C10))
1968                sval = (sval & ~0x1f) | ofs;
1969        else
1970                sval = (sval & ~0x3f) | ofs;
1971
1972        /*
1973         *  Set the sync divisor and extra clock factor.
1974         */
1975        if (ofs != 0) {
1976                wval = (wval & ~0x70) | ((div+1) << 4);
1977                if (!(np->features & FE_C10))
1978                        sval = (sval & ~0xe0) | (fak << 5);
1979                else {
1980                        uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
1981                        if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
1982                        if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
1983                }
1984        }
1985
1986        /*
1987         *  Set the bus width.
1988         */
1989        wval = wval & ~EWS;
1990        if (wide != 0)
1991                wval |= EWS;
1992
1993        /*
1994         *  Set misc. ultra enable bits.
1995         */
1996        if (np->features & FE_C10) {
1997                uval = uval & ~(U3EN|AIPCKEN);
1998                if (opts)       {
1999                        assert(np->features & FE_U3EN);
2000                        uval |= U3EN;
2001                }
2002        } else {
2003                wval = wval & ~ULTRA;
2004                if (per <= 12)  wval |= ULTRA;
2005        }
2006
2007        /*
2008         *   Stop there if sync parameters are unchanged.
2009         */
2010        if (tp->head.sval == sval && 
2011            tp->head.wval == wval &&
2012            tp->head.uval == uval)
2013                return;
2014        tp->head.sval = sval;
2015        tp->head.wval = wval;
2016        tp->head.uval = uval;
2017
2018        /*
2019         *  Disable extended Sreq/Sack filtering if per < 50.
2020         *  Not supported on the C1010.
2021         */
2022        if (per < 50 && !(np->features & FE_C10))
2023                OUTOFFB(np, nc_stest2, EXT);
2024
2025        /*
2026         *  set actual value and sync_status
2027         */
2028        OUTB(np, nc_sxfer,  tp->head.sval);
2029        OUTB(np, nc_scntl3, tp->head.wval);
2030
2031        if (np->features & FE_C10) {
2032                OUTB(np, nc_scntl4, tp->head.uval);
2033        }
2034
2035        /*
2036         *  patch ALL busy ccbs of this target.
2037         */
2038        FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
2039                struct sym_ccb *cp;
2040                cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
2041                if (cp->target != target)
2042                        continue;
2043                cp->phys.select.sel_scntl3 = tp->head.wval;
2044                cp->phys.select.sel_sxfer  = tp->head.sval;
2045                if (np->features & FE_C10) {
2046                        cp->phys.select.sel_scntl4 = tp->head.uval;
2047                }
2048        }
2049}
2050
2051static void sym_announce_transfer_rate(struct sym_tcb *tp)
2052{
2053        struct scsi_target *starget = tp->starget;
2054
2055        if (tp->tprint.period != spi_period(starget) ||
2056            tp->tprint.offset != spi_offset(starget) ||
2057            tp->tprint.width != spi_width(starget) ||
2058            tp->tprint.iu != spi_iu(starget) ||
2059            tp->tprint.dt != spi_dt(starget) ||
2060            tp->tprint.qas != spi_qas(starget) ||
2061            !tp->tprint.check_nego) {
2062                tp->tprint.period = spi_period(starget);
2063                tp->tprint.offset = spi_offset(starget);
2064                tp->tprint.width = spi_width(starget);
2065                tp->tprint.iu = spi_iu(starget);
2066                tp->tprint.dt = spi_dt(starget);
2067                tp->tprint.qas = spi_qas(starget);
2068                tp->tprint.check_nego = 1;
2069
2070                spi_display_xfer_agreement(starget);
2071        }
2072}
2073
2074/*
2075 *  We received a WDTR.
2076 *  Let everything be aware of the changes.
2077 */
2078static void sym_setwide(struct sym_hcb *np, int target, u_char wide)
2079{
2080        struct sym_tcb *tp = &np->target[target];
2081        struct scsi_target *starget = tp->starget;
2082
2083        sym_settrans(np, target, 0, 0, 0, wide, 0, 0);
2084
2085        if (wide)
2086                tp->tgoal.renego = NS_WIDE;
2087        else
2088                tp->tgoal.renego = 0;
2089        tp->tgoal.check_nego = 0;
2090        tp->tgoal.width = wide;
2091        spi_offset(starget) = 0;
2092        spi_period(starget) = 0;
2093        spi_width(starget) = wide;
2094        spi_iu(starget) = 0;
2095        spi_dt(starget) = 0;
2096        spi_qas(starget) = 0;
2097
2098        if (sym_verbose >= 3)
2099                sym_announce_transfer_rate(tp);
2100}
2101
2102/*
2103 *  We received a SDTR.
2104 *  Let everything be aware of the changes.
2105 */
2106static void
2107sym_setsync(struct sym_hcb *np, int target,
2108            u_char ofs, u_char per, u_char div, u_char fak)
2109{
2110        struct sym_tcb *tp = &np->target[target];
2111        struct scsi_target *starget = tp->starget;
2112        u_char wide = (tp->head.wval & EWS) ? BUS_16_BIT : BUS_8_BIT;
2113
2114        sym_settrans(np, target, 0, ofs, per, wide, div, fak);
2115
2116        if (wide)
2117                tp->tgoal.renego = NS_WIDE;
2118        else if (ofs)
2119                tp->tgoal.renego = NS_SYNC;
2120        else
2121                tp->tgoal.renego = 0;
2122        spi_period(starget) = per;
2123        spi_offset(starget) = ofs;
2124        spi_iu(starget) = spi_dt(starget) = spi_qas(starget) = 0;
2125
2126        if (!tp->tgoal.dt && !tp->tgoal.iu && !tp->tgoal.qas) {
2127                tp->tgoal.period = per;
2128                tp->tgoal.offset = ofs;
2129                tp->tgoal.check_nego = 0;
2130        }
2131
2132        sym_announce_transfer_rate(tp);
2133}
2134
2135/*
2136 *  We received a PPR.
2137 *  Let everything be aware of the changes.
2138 */
2139static void 
2140sym_setpprot(struct sym_hcb *np, int target, u_char opts, u_char ofs,
2141             u_char per, u_char wide, u_char div, u_char fak)
2142{
2143        struct sym_tcb *tp = &np->target[target];
2144        struct scsi_target *starget = tp->starget;
2145
2146        sym_settrans(np, target, opts, ofs, per, wide, div, fak);
2147
2148        if (wide || ofs)
2149                tp->tgoal.renego = NS_PPR;
2150        else
2151                tp->tgoal.renego = 0;
2152        spi_width(starget) = tp->tgoal.width = wide;
2153        spi_period(starget) = tp->tgoal.period = per;
2154        spi_offset(starget) = tp->tgoal.offset = ofs;
2155        spi_iu(starget) = tp->tgoal.iu = !!(opts & PPR_OPT_IU);
2156        spi_dt(starget) = tp->tgoal.dt = !!(opts & PPR_OPT_DT);
2157        spi_qas(starget) = tp->tgoal.qas = !!(opts & PPR_OPT_QAS);
2158        tp->tgoal.check_nego = 0;
2159
2160        sym_announce_transfer_rate(tp);
2161}
2162
2163/*
2164 *  generic recovery from scsi interrupt
2165 *
2166 *  The doc says that when the chip gets an SCSI interrupt,
2167 *  it tries to stop in an orderly fashion, by completing 
2168 *  an instruction fetch that had started or by flushing 
2169 *  the DMA fifo for a write to memory that was executing.
2170 *  Such a fashion is not enough to know if the instruction 
2171 *  that was just before the current DSP value has been 
2172 *  executed or not.
2173 *
2174 *  There are some small SCRIPTS sections that deal with 
2175 *  the start queue and the done queue that may break any 
2176 *  assomption from the C code if we are interrupted 
2177 *  inside, so we reset if this happens. Btw, since these 
2178 *  SCRIPTS sections are executed while the SCRIPTS hasn't 
2179 *  started SCSI operations, it is very unlikely to happen.
2180 *
2181 *  All the driver data structures are supposed to be 
2182 *  allocated from the same 4 GB memory window, so there 
2183 *  is a 1 to 1 relationship between DSA and driver data 
2184 *  structures. Since we are careful :) to invalidate the 
2185 *  DSA when we complete a command or when the SCRIPTS 
2186 *  pushes a DSA into a queue, we can trust it when it 
2187 *  points to a CCB.
2188 */
2189static void sym_recover_scsi_int (struct sym_hcb *np, u_char hsts)
2190{
2191        u32     dsp     = INL(np, nc_dsp);
2192        u32     dsa     = INL(np, nc_dsa);
2193        struct sym_ccb *cp      = sym_ccb_from_dsa(np, dsa);
2194
2195        /*
2196         *  If we haven't been interrupted inside the SCRIPTS 
2197         *  critical pathes, we can safely restart the SCRIPTS 
2198         *  and trust the DSA value if it matches a CCB.
2199         */
2200        if ((!(dsp > SCRIPTA_BA(np, getjob_begin) &&
2201               dsp < SCRIPTA_BA(np, getjob_end) + 1)) &&
2202            (!(dsp > SCRIPTA_BA(np, ungetjob) &&
2203               dsp < SCRIPTA_BA(np, reselect) + 1)) &&
2204            (!(dsp > SCRIPTB_BA(np, sel_for_abort) &&
2205               dsp < SCRIPTB_BA(np, sel_for_abort_1) + 1)) &&
2206            (!(dsp > SCRIPTA_BA(np, done) &&
2207               dsp < SCRIPTA_BA(np, done_end) + 1))) {
2208                OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo  */
2209                OUTB(np, nc_stest3, TE|CSF);            /* clear scsi fifo */
2210                /*
2211                 *  If we have a CCB, let the SCRIPTS call us back for 
2212                 *  the handling of the error with SCRATCHA filled with 
2213                 *  STARTPOS. This way, we will be able to freeze the 
2214                 *  device queue and requeue awaiting IOs.
2215                 */
2216                if (cp) {
2217                        cp->host_status = hsts;
2218                        OUTL_DSP(np, SCRIPTA_BA(np, complete_error));
2219                }
2220                /*
2221                 *  Otherwise just restart the SCRIPTS.
2222                 */
2223                else {
2224                        OUTL(np, nc_dsa, 0xffffff);
2225                        OUTL_DSP(np, SCRIPTA_BA(np, start));
2226                }
2227        }
2228        else
2229                goto reset_all;
2230
2231        return;
2232
2233reset_all:
2234        sym_start_reset(np);
2235}
2236
2237/*
2238 *  chip exception handler for selection timeout
2239 */
2240static void sym_int_sto (struct sym_hcb *np)
2241{
2242        u32 dsp = INL(np, nc_dsp);
2243
2244        if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
2245
2246        if (dsp == SCRIPTA_BA(np, wf_sel_done) + 8)
2247                sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
2248        else
2249                sym_start_reset(np);
2250}
2251
2252/*
2253 *  chip exception handler for unexpected disconnect
2254 */
2255static void sym_int_udc (struct sym_hcb *np)
2256{
2257        printf ("%s: unexpected disconnect\n", sym_name(np));
2258        sym_recover_scsi_int(np, HS_UNEXPECTED);
2259}
2260
2261/*
2262 *  chip exception handler for SCSI bus mode change
2263 *
2264 *  spi2-r12 11.2.3 says a transceiver mode change must 
2265 *  generate a reset event and a device that detects a reset 
2266 *  event shall initiate a hard reset. It says also that a
2267 *  device that detects a mode change shall set data transfer 
2268 *  mode to eight bit asynchronous, etc...
2269 *  So, just reinitializing all except chip should be enough.
2270 */
2271static void sym_int_sbmc(struct Scsi_Host *shost)
2272{
2273        struct sym_hcb *np = sym_get_hcb(shost);
2274        u_char scsi_mode = INB(np, nc_stest4) & SMODE;
2275
2276        /*
2277         *  Notify user.
2278         */
2279        printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np),
2280                sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
2281
2282        /*
2283         *  Should suspend command processing for a few seconds and 
2284         *  reinitialize all except the chip.
2285         */
2286        sym_start_up(shost, 2);
2287}
2288
2289/*
2290 *  chip exception handler for SCSI parity error.
2291 *
2292 *  When the chip detects a SCSI parity error and is 
2293 *  currently executing a (CH)MOV instruction, it does 
2294 *  not interrupt immediately, but tries to finish the 
2295 *  transfer of the current scatter entry before 
2296 *  interrupting. The following situations may occur:
2297 *
2298 *  - The complete scatter entry has been transferred 
2299 *    without the device having changed phase.
2300 *    The chip will then interrupt with the DSP pointing 
2301 *    to the instruction that follows the MOV.
2302 *
2303 *  - A phase mismatch occurs before the MOV finished 
2304 *    and phase errors are to be handled by the C code.
2305 *    The chip will then interrupt with both PAR and MA 
2306 *    conditions set.
2307 *
2308 *  - A phase mismatch occurs before the MOV finished and 
2309 *    phase errors are to be handled by SCRIPTS.
2310 *    The chip will load the DSP with the phase mismatch 
2311 *    JUMP address and interrupt the host processor.
2312 */
2313static void sym_int_par (struct sym_hcb *np, u_short sist)
2314{
2315        u_char  hsts    = INB(np, HS_PRT);
2316        u32     dsp     = INL(np, nc_dsp);
2317        u32     dbc     = INL(np, nc_dbc);
2318        u32     dsa     = INL(np, nc_dsa);
2319        u_char  sbcl    = INB(np, nc_sbcl);
2320        u_char  cmd     = dbc >> 24;
2321        int phase       = cmd & 7;
2322        struct sym_ccb *cp      = sym_ccb_from_dsa(np, dsa);
2323
2324        if (printk_ratelimit())
2325                printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
2326                        sym_name(np), hsts, dbc, sbcl);
2327
2328        /*
2329         *  Check that the chip is connected to the SCSI BUS.
2330         */
2331        if (!(INB(np, nc_scntl1) & ISCON)) {
2332                sym_recover_scsi_int(np, HS_UNEXPECTED);
2333                return;
2334        }
2335
2336        /*
2337         *  If the nexus is not clearly identified, reset the bus.
2338         *  We will try to do better later.
2339         */
2340        if (!cp)
2341                goto reset_all;
2342
2343        /*
2344         *  Check instruction was a MOV, direction was INPUT and 
2345         *  ATN is asserted.
2346         */
2347        if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
2348                goto reset_all;
2349
2350        /*
2351         *  Keep track of the parity error.
2352         */
2353        OUTONB(np, HF_PRT, HF_EXT_ERR);
2354        cp->xerr_status |= XE_PARITY_ERR;
2355
2356        /*
2357         *  Prepare the message to send to the device.
2358         */
2359        np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
2360
2361        /*
2362         *  If the old phase was DATA IN phase, we have to deal with
2363         *  the 3 situations described above.
2364         *  For other input phases (MSG IN and STATUS), the device 
2365         *  must resend the whole thing that failed parity checking 
2366         *  or signal error. So, jumping to dispatcher should be OK.
2367         */
2368        if (phase == 1 || phase == 5) {
2369                /* Phase mismatch handled by SCRIPTS */
2370                if (dsp == SCRIPTB_BA(np, pm_handle))
2371                        OUTL_DSP(np, dsp);
2372                /* Phase mismatch handled by the C code */
2373                else if (sist & MA)
2374                        sym_int_ma (np);
2375                /* No phase mismatch occurred */
2376                else {
2377                        sym_set_script_dp (np, cp, dsp);
2378                        OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2379                }
2380        }
2381        else if (phase == 7)    /* We definitely cannot handle parity errors */
2382#if 1                           /* in message-in phase due to the relection  */
2383                goto reset_all; /* path and various message anticipations.   */
2384#else
2385                OUTL_DSP(np, SCRIPTA_BA(np, clrack));
2386#endif
2387        else
2388                OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2389        return;
2390
2391reset_all:
2392        sym_start_reset(np);
2393        return;
2394}
2395
2396/*
2397 *  chip exception handler for phase errors.
2398 *
2399 *  We have to construct a new transfer descriptor,
2400 *  to transfer the rest of the current block.
2401 */
2402static void sym_int_ma (struct sym_hcb *np)
2403{
2404        u32     dbc;
2405        u32     rest;
2406        u32     dsp;
2407        u32     dsa;
2408        u32     nxtdsp;
2409        u32     *vdsp;
2410        u32     oadr, olen;
2411        u32     *tblp;
2412        u32     newcmd;
2413        u_int   delta;
2414        u_char  cmd;
2415        u_char  hflags, hflags0;
2416        struct  sym_pmc *pm;
2417        struct sym_ccb *cp;
2418
2419        dsp     = INL(np, nc_dsp);
2420        dbc     = INL(np, nc_dbc);
2421        dsa     = INL(np, nc_dsa);
2422
2423        cmd     = dbc >> 24;
2424        rest    = dbc & 0xffffff;
2425        delta   = 0;
2426
2427        /*
2428         *  locate matching cp if any.
2429         */
2430        cp = sym_ccb_from_dsa(np, dsa);
2431
2432        /*
2433         *  Donnot take into account dma fifo and various buffers in 
2434         *  INPUT phase since the chip flushes everything before 
2435         *  raising the MA interrupt for interrupted INPUT phases.
2436         *  For DATA IN phase, we will check for the SWIDE later.
2437         */
2438        if ((cmd & 7) != 1 && (cmd & 7) != 5) {
2439                u_char ss0, ss2;
2440
2441                if (np->features & FE_DFBC)
2442                        delta = INW(np, nc_dfbc);
2443                else {
2444                        u32 dfifo;
2445
2446                        /*
2447                         * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
2448                         */
2449                        dfifo = INL(np, nc_dfifo);
2450
2451                        /*
2452                         *  Calculate remaining bytes in DMA fifo.
2453                         *  (CTEST5 = dfifo >> 16)
2454                         */
2455                        if (dfifo & (DFS << 16))
2456                                delta = ((((dfifo >> 8) & 0x300) |
2457                                          (dfifo & 0xff)) - rest) & 0x3ff;
2458                        else
2459                                delta = ((dfifo & 0xff) - rest) & 0x7f;
2460                }
2461
2462                /*
2463                 *  The data in the dma fifo has not been transfered to
2464                 *  the target -> add the amount to the rest
2465                 *  and clear the data.
2466                 *  Check the sstat2 register in case of wide transfer.
2467                 */
2468                rest += delta;
2469                ss0  = INB(np, nc_sstat0);
2470                if (ss0 & OLF) rest++;
2471                if (!(np->features & FE_C10))
2472                        if (ss0 & ORF) rest++;
2473                if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
2474                        ss2 = INB(np, nc_sstat2);
2475                        if (ss2 & OLF1) rest++;
2476                        if (!(np->features & FE_C10))
2477                                if (ss2 & ORF1) rest++;
2478                }
2479
2480                /*
2481                 *  Clear fifos.
2482                 */
2483                OUTB(np, nc_ctest3, np->rv_ctest3 | CLF);       /* dma fifo  */
2484                OUTB(np, nc_stest3, TE|CSF);            /* scsi fifo */
2485        }
2486
2487        /*
2488         *  log the information
2489         */
2490        if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
2491                printf ("P%x%x RL=%d D=%d ", cmd&7, INB(np, nc_sbcl)&7,
2492                        (unsigned) rest, (unsigned) delta);
2493
2494        /*
2495         *  try to find the interrupted script command,
2496         *  and the address at which to continue.
2497         */
2498        vdsp    = NULL;
2499        nxtdsp  = 0;
2500        if      (dsp >  np->scripta_ba &&
2501                 dsp <= np->scripta_ba + np->scripta_sz) {
2502                vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
2503                nxtdsp = dsp;
2504        }
2505        else if (dsp >  np->scriptb_ba &&
2506                 dsp <= np->scriptb_ba + np->scriptb_sz) {
2507                vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
2508                nxtdsp = dsp;
2509        }
2510
2511        /*
2512         *  log the information
2513         */
2514        if (DEBUG_FLAGS & DEBUG_PHASE) {
2515                printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
2516                        cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
2517        }
2518
2519        if (!vdsp) {
2520                printf ("%s: interrupted SCRIPT address not found.\n", 
2521                        sym_name (np));
2522                goto reset_all;
2523        }
2524
2525        if (!cp) {
2526                printf ("%s: SCSI phase error fixup: CCB already dequeued.\n", 
2527                        sym_name (np));
2528                goto reset_all;
2529        }
2530
2531        /*
2532         *  get old startaddress and old length.
2533         */
2534        oadr = scr_to_cpu(vdsp[1]);
2535
2536        if (cmd & 0x10) {       /* Table indirect */
2537                tblp = (u32 *) ((char*) &cp->phys + oadr);
2538                olen = scr_to_cpu(tblp[0]);
2539                oadr = scr_to_cpu(tblp[1]);
2540        } else {
2541                tblp = (u32 *) 0;
2542                olen = scr_to_cpu(vdsp[0]) & 0xffffff;
2543        }
2544
2545        if (DEBUG_FLAGS & DEBUG_PHASE) {
2546                printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
2547                        (unsigned) (scr_to_cpu(vdsp[0]) >> 24),
2548                        tblp,
2549                        (unsigned) olen,
2550                        (unsigned) oadr);
2551        }
2552
2553        /*
2554         *  check cmd against assumed interrupted script command.
2555         *  If dt data phase, the MOVE instruction hasn't bit 4 of 
2556         *  the phase.
2557         */
2558        if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
2559                sym_print_addr(cp->cmd,
2560                        "internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
2561                        cmd, scr_to_cpu(vdsp[0]) >> 24);
2562
2563                goto reset_all;
2564        }
2565
2566        /*
2567         *  if old phase not dataphase, leave here.
2568         */
2569        if (cmd & 2) {
2570                sym_print_addr(cp->cmd,
2571                        "phase change %x-%x %d@%08x resid=%d.\n",
2572                        cmd&7, INB(np, nc_sbcl)&7, (unsigned)olen,
2573                        (unsigned)oadr, (unsigned)rest);
2574                goto unexpected_phase;
2575        }
2576
2577        /*
2578         *  Choose the correct PM save area.
2579         *
2580         *  Look at the PM_SAVE SCRIPT if you want to understand 
2581         *  this stuff. The equivalent code is implemented in 
2582         *  SCRIPTS for the 895A, 896 and 1010 that are able to 
2583         *  handle PM from the SCRIPTS processor.
2584         */
2585        hflags0 = INB(np, HF_PRT);
2586        hflags = hflags0;
2587
2588        if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
2589                if (hflags & HF_IN_PM0)
2590                        nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
2591                else if (hflags & HF_IN_PM1)
2592                        nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
2593
2594                if (hflags & HF_DP_SAVED)
2595                        hflags ^= HF_ACT_PM;
2596        }
2597
2598        if (!(hflags & HF_ACT_PM)) {
2599                pm = &cp->phys.pm0;
2600                newcmd = SCRIPTA_BA(np, pm0_data);
2601        }
2602        else {
2603                pm = &cp->phys.pm1;
2604                newcmd = SCRIPTA_BA(np, pm1_data);
2605        }
2606
2607        hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
2608        if (hflags != hflags0)
2609                OUTB(np, HF_PRT, hflags);
2610
2611        /*
2612         *  fillin the phase mismatch context
2613         */
2614        pm->sg.addr = cpu_to_scr(oadr + olen - rest);
2615        pm->sg.size = cpu_to_scr(rest);
2616        pm->ret     = cpu_to_scr(nxtdsp);
2617
2618        /*
2619         *  If we have a SWIDE,
2620         *  - prepare the address to write the SWIDE from SCRIPTS,
2621         *  - compute the SCRIPTS address to restart from,
2622         *  - move current data pointer context by one byte.
2623         */
2624        nxtdsp = SCRIPTA_BA(np, dispatch);
2625        if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
2626            (INB(np, nc_scntl2) & WSR)) {
2627                u32 tmp;
2628
2629                /*
2630                 *  Set up the table indirect for the MOVE
2631                 *  of the residual byte and adjust the data 
2632                 *  pointer context.
2633                 */
2634                tmp = scr_to_cpu(pm->sg.addr);
2635                cp->phys.wresid.addr = cpu_to_scr(tmp);
2636                pm->sg.addr = cpu_to_scr(tmp + 1);
2637                tmp = scr_to_cpu(pm->sg.size);
2638                cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
2639                pm->sg.size = cpu_to_scr(tmp - 1);
2640
2641                /*
2642                 *  If only the residual byte is to be moved, 
2643                 *  no PM context is needed.
2644                 */
2645                if ((tmp&0xffffff) == 1)
2646                        newcmd = pm->ret;
2647
2648                /*
2649                 *  Prepare the address of SCRIPTS that will 
2650                 *  move the residual byte to memory.
2651                 */
2652                nxtdsp = SCRIPTB_BA(np, wsr_ma_helper);
2653        }
2654
2655        if (DEBUG_FLAGS & DEBUG_PHASE) {
2656                sym_print_addr(cp->cmd, "PM %x %x %x / %x %x %x.\n",
2657                        hflags0, hflags, newcmd,
2658                        (unsigned)scr_to_cpu(pm->sg.addr),
2659                        (unsigned)scr_to_cpu(pm->sg.size),
2660                        (unsigned)scr_to_cpu(pm->ret));
2661        }
2662
2663        /*
2664         *  Restart the SCRIPTS processor.
2665         */
2666        sym_set_script_dp (np, cp, newcmd);
2667        OUTL_DSP(np, nxtdsp);
2668        return;
2669
2670        /*
2671         *  Unexpected phase changes that occurs when the current phase 
2672         *  is not a DATA IN or DATA OUT phase are due to error conditions.
2673         *  Such event may only happen when the SCRIPTS is using a 
2674         *  multibyte SCSI MOVE.
2675         *
2676         *  Phase change                Some possible cause
2677         *
2678         *  COMMAND  --> MSG IN SCSI parity error detected by target.
2679         *  COMMAND  --> STATUS Bad command or refused by target.
2680         *  MSG OUT  --> MSG IN     Message rejected by target.
2681         *  MSG OUT  --> COMMAND    Bogus target that discards extended
2682         *                      negotiation messages.
2683         *
2684         *  The code below does not care of the new phase and so 
2685         *  trusts the target. Why to annoy it ?
2686         *  If the interrupted phase is COMMAND phase, we restart at
2687         *  dispatcher.
2688         *  If a target does not get all the messages after selection, 
2689         *  the code assumes blindly that the target discards extended 
2690         *  messages and clears the negotiation status.
2691         *  If the target does not want all our response to negotiation,
2692         *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids 
2693         *  bloat for such a should_not_happen situation).
2694         *  In all other situation, we reset the BUS.
2695         *  Are these assumptions reasonnable ? (Wait and see ...)
2696         */
2697unexpected_phase:
2698        dsp -= 8;
2699        nxtdsp = 0;
2700
2701        switch (cmd & 7) {
2702        case 2: /* COMMAND phase */
2703                nxtdsp = SCRIPTA_BA(np, dispatch);
2704                break;
2705#if 0
2706        case 3: /* STATUS  phase */
2707                nxtdsp = SCRIPTA_BA(np, dispatch);
2708                break;
2709#endif
2710        case 6: /* MSG OUT phase */
2711                /*
2712                 *  If the device may want to use untagged when we want 
2713                 *  tagged, we prepare an IDENTIFY without disc. granted, 
2714                 *  since we will not be able to handle reselect.
2715                 *  Otherwise, we just don't care.
2716                 */
2717                if      (dsp == SCRIPTA_BA(np, send_ident)) {
2718                        if (cp->tag != NO_TAG && olen - rest <= 3) {
2719                                cp->host_status = HS_BUSY;
2720                                np->msgout[0] = IDENTIFY(0, cp->lun);
2721                                nxtdsp = SCRIPTB_BA(np, ident_break_atn);
2722                        }
2723                        else
2724                                nxtdsp = SCRIPTB_BA(np, ident_break);
2725                }
2726                else if (dsp == SCRIPTB_BA(np, send_wdtr) ||
2727                         dsp == SCRIPTB_BA(np, send_sdtr) ||
2728                         dsp == SCRIPTB_BA(np, send_ppr)) {
2729                        nxtdsp = SCRIPTB_BA(np, nego_bad_phase);
2730                        if (dsp == SCRIPTB_BA(np, send_ppr)) {
2731                                struct scsi_device *dev = cp->cmd->device;
2732                                dev->ppr = 0;
2733                        }
2734                }
2735                break;
2736#if 0
2737        case 7: /* MSG IN  phase */
2738                nxtdsp = SCRIPTA_BA(np, clrack);
2739                break;
2740#endif
2741        }
2742
2743        if (nxtdsp) {
2744                OUTL_DSP(np, nxtdsp);
2745                return;
2746        }
2747
2748reset_all:
2749        sym_start_reset(np);
2750}
2751
2752/*
2753 *  chip interrupt handler
2754 *
2755 *  In normal situations, interrupt conditions occur one at 
2756 *  a time. But when something bad happens on the SCSI BUS, 
2757 *  the chip may raise several interrupt flags before 
2758 *  stopping and interrupting the CPU. The additionnal 
2759 *  interrupt flags are stacked in some extra registers 
2760 *  after the SIP and/or DIP flag has been raised in the 
2761 *  ISTAT. After the CPU has read the interrupt condition 
2762 *  flag from SIST or DSTAT, the chip unstacks the other 
2763 *  interrupt flags and sets the corresponding bits in 
2764 *  SIST or DSTAT. Since the chip starts stacking once the 
2765 *  SIP or DIP flag is set, there is a small window of time 
2766 *  where the stacking does not occur.
2767 *
2768 *  Typically, multiple interrupt conditions may happen in 
2769 *  the following situations:
2770 *
2771 *  - SCSI parity error + Phase mismatch  (PAR|MA)
2772 *    When an parity error is detected in input phase 
2773 *    and the device switches to msg-in phase inside a 
2774 *    block MOV.
2775 *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
2776 *    When a stupid device does not want to handle the 
2777 *    recovery of an SCSI parity error.
2778 *  - Some combinations of STO, PAR, UDC, ...
2779 *    When using non compliant SCSI stuff, when user is 
2780 *    doing non compliant hot tampering on the BUS, when 
2781 *    something really bad happens to a device, etc ...
2782 *
2783 *  The heuristic suggested by SYMBIOS to handle 
2784 *  multiple interrupts is to try unstacking all 
2785 *  interrupts conditions and to handle them on some 
2786 *  priority based on error severity.
2787 *  This will work when the unstacking has been 
2788 *  successful, but we cannot be 100 % sure of that, 
2789 *  since the CPU may have been faster to unstack than 
2790 *  the chip is able to stack. Hmmm ... But it seems that 
2791 *  such a situation is very unlikely to happen.
2792 *
2793 *  If this happen, for example STO caught by the CPU 
2794 *  then UDC happenning before the CPU have restarted 
2795 *  the SCRIPTS, the driver may wrongly complete the 
2796 *  same command on UDC, since the SCRIPTS didn't restart 
2797 *  and the DSA still points to the same command.
2798 *  We avoid this situation by setting the DSA to an 
2799 *  invalid value when the CCB is completed and before 
2800 *  restarting the SCRIPTS.
2801 *
2802 *  Another issue is that we need some section of our 
2803 *  recovery procedures to be somehow uninterruptible but 
2804 *  the SCRIPTS processor does not provides such a 
2805 *  feature. For this reason, we handle recovery preferently 
2806 *  from the C code and check against some SCRIPTS critical 
2807 *  sections from the C code.
2808 *
2809 *  Hopefully, the interrupt handling of the driver is now 
2810 *  able to resist to weird BUS error conditions, but donnot 
2811 *  ask me for any guarantee that it will never fail. :-)
2812 *  Use at your own decision and risk.
2813 */
2814
2815irqreturn_t sym_interrupt(struct Scsi_Host *shost)
2816{
2817        struct sym_data *sym_data = shost_priv(shost);
2818        struct sym_hcb *np = sym_data->ncb;
2819        struct pci_dev *pdev = sym_data->pdev;
2820        u_char  istat, istatc;
2821        u_char  dstat;
2822        u_short sist;
2823
2824        /*
2825         *  interrupt on the fly ?
2826         *  (SCRIPTS may still be running)
2827         *
2828         *  A `dummy read' is needed to ensure that the 
2829         *  clear of the INTF flag reaches the device 
2830         *  and that posted writes are flushed to memory
2831         *  before the scanning of the DONE queue.
2832         *  Note that SCRIPTS also (dummy) read to memory 
2833         *  prior to deliver the INTF interrupt condition.
2834         */
2835        istat = INB(np, nc_istat);
2836        if (istat & INTF) {
2837                OUTB(np, nc_istat, (istat & SIGP) | INTF | np->istat_sem);
2838                istat |= INB(np, nc_istat);             /* DUMMY READ */
2839                if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
2840                sym_wakeup_done(np);
2841        }
2842
2843        if (!(istat & (SIP|DIP)))
2844                return (istat & INTF) ? IRQ_HANDLED : IRQ_NONE;
2845
2846#if 0   /* We should never get this one */
2847        if (istat & CABRT)
2848                OUTB(np, nc_istat, CABRT);
2849#endif
2850
2851        /*
2852         *  PAR and MA interrupts may occur at the same time,
2853         *  and we need to know of both in order to handle 
2854         *  this situation properly. We try to unstack SCSI 
2855         *  interrupts for that reason. BTW, I dislike a LOT 
2856         *  such a loop inside the interrupt routine.
2857         *  Even if DMA interrupt stacking is very unlikely to 
2858         *  happen, we also try unstacking these ones, since 
2859         *  this has no performance impact.
2860         */
2861        sist    = 0;
2862        dstat   = 0;
2863        istatc  = istat;
2864        do {
2865                if (istatc & SIP)
2866                        sist  |= INW(np, nc_sist);
2867                if (istatc & DIP)
2868                        dstat |= INB(np, nc_dstat);
2869                istatc = INB(np, nc_istat);
2870                istat |= istatc;
2871
2872                /* Prevent deadlock waiting on a condition that may
2873                 * never clear. */
2874                if (unlikely(sist == 0xffff && dstat == 0xff)) {
2875                        if (pci_channel_offline(pdev))
2876                                return IRQ_NONE;
2877                }
2878        } while (istatc & (SIP|DIP));
2879
2880        if (DEBUG_FLAGS & DEBUG_TINY)
2881                printf ("<%d|%x:%x|%x:%x>",
2882                        (int)INB(np, nc_scr0),
2883                        dstat,sist,
2884                        (unsigned)INL(np, nc_dsp),
2885                        (unsigned)INL(np, nc_dbc));
2886        /*
2887         *  On paper, a memory read barrier may be needed here to 
2888         *  prevent out of order LOADs by the CPU from having 
2889         *  prefetched stale data prior to DMA having occurred.
2890         *  And since we are paranoid ... :)
2891         */
2892        MEMORY_READ_BARRIER();
2893
2894        /*
2895         *  First, interrupts we want to service cleanly.
2896         *
2897         *  Phase mismatch (MA) is the most frequent interrupt 
2898         *  for chip earlier than the 896 and so we have to service 
2899         *  it as quickly as possible.
2900         *  A SCSI parity error (PAR) may be combined with a phase 
2901         *  mismatch condition (MA).
2902         *  Programmed interrupts (SIR) are used to call the C code 
2903         *  from SCRIPTS.
2904         *  The single step interrupt (SSI) is not used in this 
2905         *  driver.
2906         */
2907        if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
2908            !(dstat & (MDPE|BF|ABRT|IID))) {
2909                if      (sist & PAR)    sym_int_par (np, sist);
2910                else if (sist & MA)     sym_int_ma (np);
2911                else if (dstat & SIR)   sym_int_sir(np);
2912                else if (dstat & SSI)   OUTONB_STD();
2913                else                    goto unknown_int;
2914                return IRQ_HANDLED;
2915        }
2916
2917        /*
2918         *  Now, interrupts that donnot happen in normal 
2919         *  situations and that we may need to recover from.
2920         *
2921         *  On SCSI RESET (RST), we reset everything.
2922         *  On SCSI BUS MODE CHANGE (SBMC), we complete all 
2923         *  active CCBs with RESET status, prepare all devices 
2924         *  for negotiating again and restart the SCRIPTS.
2925         *  On STO and UDC, we complete the CCB with the corres- 
2926         *  ponding status and restart the SCRIPTS.
2927         */
2928        if (sist & RST) {
2929                printf("%s: SCSI BUS reset detected.\n", sym_name(np));
2930                sym_start_up(shost, 1);
2931                return IRQ_HANDLED;
2932        }
2933
2934        OUTB(np, nc_ctest3, np->rv_ctest3 | CLF);       /* clear dma fifo  */
2935        OUTB(np, nc_stest3, TE|CSF);            /* clear scsi fifo */
2936
2937        if (!(sist  & (GEN|HTH|SGE)) &&
2938            !(dstat & (MDPE|BF|ABRT|IID))) {
2939                if      (sist & SBMC)   sym_int_sbmc(shost);
2940                else if (sist & STO)    sym_int_sto (np);
2941                else if (sist & UDC)    sym_int_udc (np);
2942                else                    goto unknown_int;
2943                return IRQ_HANDLED;
2944        }
2945
2946        /*
2947         *  Now, interrupts we are not able to recover cleanly.
2948         *
2949         *  Log message for hard errors.
2950         *  Reset everything.
2951         */
2952
2953        sym_log_hard_error(shost, sist, dstat);
2954
2955        if ((sist & (GEN|HTH|SGE)) ||
2956                (dstat & (MDPE|BF|ABRT|IID))) {
2957                sym_start_reset(np);
2958                return IRQ_HANDLED;
2959        }
2960
2961unknown_int:
2962        /*
2963         *  We just miss the cause of the interrupt. :(
2964         *  Print a message. The timeout will do the real work.
2965         */
2966        printf( "%s: unknown interrupt(s) ignored, "
2967                "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
2968                sym_name(np), istat, dstat, sist);
2969        return IRQ_NONE;
2970}
2971
2972/*
2973 *  Dequeue from the START queue all CCBs that match 
2974 *  a given target/lun/task condition (-1 means all),
2975 *  and move them from the BUSY queue to the COMP queue 
2976 *  with DID_SOFT_ERROR status condition.
2977 *  This function is used during error handling/recovery.
2978 *  It is called with SCRIPTS not running.
2979 */
2980static int 
2981sym_dequeue_from_squeue(struct sym_hcb *np, int i, int target, int lun, int task)
2982{
2983        int j;
2984        struct sym_ccb *cp;
2985
2986        /*
2987         *  Make sure the starting index is within range.
2988         */
2989        assert((i >= 0) && (i < 2*MAX_QUEUE));
2990
2991        /*
2992         *  Walk until end of START queue and dequeue every job 
2993         *  that matches the target/lun/task condition.
2994         */
2995        j = i;
2996        while (i != np->squeueput) {
2997                cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
2998                assert(cp);
2999#ifdef SYM_CONF_IARB_SUPPORT
3000                /* Forget hints for IARB, they may be no longer relevant */
3001                cp->host_flags &= ~HF_HINT_IARB;
3002#endif
3003                if ((target == -1 || cp->target == target) &&
3004                    (lun    == -1 || cp->lun    == lun)    &&
3005                    (task   == -1 || cp->tag    == task)) {
3006                        sym_set_cam_status(cp->cmd, DID_SOFT_ERROR);
3007                        sym_remque(&cp->link_ccbq);
3008                        sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3009                }
3010                else {
3011                        if (i != j)
3012                                np->squeue[j] = np->squeue[i];
3013                        if ((j += 2) >= MAX_QUEUE*2) j = 0;
3014                }
3015                if ((i += 2) >= MAX_QUEUE*2) i = 0;
3016        }
3017        if (i != j)             /* Copy back the idle task if needed */
3018                np->squeue[j] = np->squeue[i];
3019        np->squeueput = j;      /* Update our current start queue pointer */
3020
3021        return (i - j) / 2;
3022}
3023
3024/*
3025 *  chip handler for bad SCSI status condition
3026 *
3027 *  In case of bad SCSI status, we unqueue all the tasks 
3028 *  currently queued to the controller but not yet started 
3029 *  and then restart the SCRIPTS processor immediately.
3030 *
3031 *  QUEUE FULL and BUSY conditions are handled the same way.
3032 *  Basically all the not yet started tasks are requeued in 
3033 *  device queue and the queue is frozen until a completion.
3034 *
3035 *  For CHECK CONDITION and COMMAND TERMINATED status, we use 
3036 *  the CCB of the failed command to prepare a REQUEST SENSE 
3037 *  SCSI command and queue it to the controller queue.
3038 *
3039 *  SCRATCHA is assumed to have been loaded with STARTPOS 
3040 *  before the SCRIPTS called the C code.
3041 */
3042static void sym_sir_bad_scsi_status(struct sym_hcb *np, int num, struct sym_ccb *cp)
3043{
3044        u32             startp;
3045        u_char          s_status = cp->ssss_status;
3046        u_char          h_flags  = cp->host_flags;
3047        int             msglen;
3048        int             i;
3049
3050        /*
3051         *  Compute the index of the next job to start from SCRIPTS.
3052         */
3053        i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3054
3055        /*
3056         *  The last CCB queued used for IARB hint may be 
3057         *  no longer relevant. Forget it.
3058         */
3059#ifdef SYM_CONF_IARB_SUPPORT
3060        if (np->last_cp)
3061                np->last_cp = 0;
3062#endif
3063
3064        /*
3065         *  Now deal with the SCSI status.
3066         */
3067        switch(s_status) {
3068        case S_BUSY:
3069        case S_QUEUE_FULL:
3070                if (sym_verbose >= 2) {
3071                        sym_print_addr(cp->cmd, "%s\n",
3072                                s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
3073                }
3074        default:        /* S_INT, S_INT_COND_MET, S_CONFLICT */
3075                sym_complete_error (np, cp);
3076                break;
3077        case S_TERMINATED:
3078        case S_CHECK_COND:
3079                /*
3080                 *  If we get an SCSI error when requesting sense, give up.
3081                 */
3082                if (h_flags & HF_SENSE) {
3083                        sym_complete_error (np, cp);
3084                        break;
3085                }
3086
3087                /*
3088                 *  Dequeue all queued CCBs for that device not yet started,
3089                 *  and restart the SCRIPTS processor immediately.
3090                 */
3091                sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3092                OUTL_DSP(np, SCRIPTA_BA(np, start));
3093
3094                /*
3095                 *  Save some info of the actual IO.
3096                 *  Compute the data residual.
3097                 */
3098                cp->sv_scsi_status = cp->ssss_status;
3099                cp->sv_xerr_status = cp->xerr_status;
3100                cp->sv_resid = sym_compute_residual(np, cp);
3101
3102                /*
3103                 *  Prepare all needed data structures for 
3104                 *  requesting sense data.
3105                 */
3106
3107                cp->scsi_smsg2[0] = IDENTIFY(0, cp->lun);
3108                msglen = 1;
3109
3110                /*
3111                 *  If we are currently using anything different from 
3112                 *  async. 8 bit data transfers with that target,
3113                 *  start a negotiation, since the device may want 
3114                 *  to report us a UNIT ATTENTION condition due to 
3115                 *  a cause we currently ignore, and we donnot want 
3116                 *  to be stuck with WIDE and/or SYNC data transfer.
3117                 *
3118                 *  cp->nego_status is filled by sym_prepare_nego().
3119                 */
3120                cp->nego_status = 0;
3121                msglen += sym_prepare_nego(np, cp, &cp->scsi_smsg2[msglen]);
3122                /*
3123                 *  Message table indirect structure.
3124                 */
3125                cp->phys.smsg.addr      = CCB_BA(cp, scsi_smsg2);
3126                cp->phys.smsg.size      = cpu_to_scr(msglen);
3127
3128                /*
3129                 *  sense command
3130                 */
3131                cp->phys.cmd.addr       = CCB_BA(cp, sensecmd);
3132                cp->phys.cmd.size       = cpu_to_scr(6);
3133
3134                /*
3135                 *  patch requested size into sense command
3136                 */
3137                cp->sensecmd[0]         = REQUEST_SENSE;
3138                cp->sensecmd[1]         = 0;
3139                if (cp->cmd->device->scsi_level <= SCSI_2 && cp->lun <= 7)
3140                        cp->sensecmd[1] = cp->lun << 5;
3141                cp->sensecmd[4]         = SYM_SNS_BBUF_LEN;
3142                cp->data_len            = SYM_SNS_BBUF_LEN;
3143
3144                /*
3145                 *  sense data
3146                 */
3147                memset(cp->sns_bbuf, 0, SYM_SNS_BBUF_LEN);
3148                cp->phys.sense.addr     = CCB_BA(cp, sns_bbuf);
3149                cp->phys.sense.size     = cpu_to_scr(SYM_SNS_BBUF_LEN);
3150
3151                /*
3152                 *  requeue the command.
3153                 */
3154                startp = SCRIPTB_BA(np, sdata_in);
3155
3156                cp->phys.head.savep     = cpu_to_scr(startp);
3157                cp->phys.head.lastp     = cpu_to_scr(startp);
3158                cp->startp              = cpu_to_scr(startp);
3159                cp->goalp               = cpu_to_scr(startp + 16);
3160
3161                cp->host_xflags = 0;
3162                cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
3163                cp->ssss_status = S_ILLEGAL;
3164                cp->host_flags  = (HF_SENSE|HF_DATA_IN);
3165                cp->xerr_status = 0;
3166                cp->extra_bytes = 0;
3167
3168                cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
3169
3170                /*
3171                 *  Requeue the command.
3172                 */
3173                sym_put_start_queue(np, cp);
3174
3175                /*
3176                 *  Give back to upper layer everything we have dequeued.
3177                 */
3178                sym_flush_comp_queue(np, 0);
3179                break;
3180        }
3181}
3182
3183/*
3184 *  After a device has accepted some management message 
3185 *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when 
3186 *  a device signals a UNIT ATTENTION condition, some 
3187 *  tasks are thrown away by the device. We are required 
3188 *  to reflect that on our tasks list since the device 
3189 *  will never complete these tasks.
3190 *
3191 *  This function move from the BUSY queue to the COMP 
3192 *  queue all disconnected CCBs for a given target that 
3193 *  match the following criteria:
3194 *  - lun=-1  means any logical UNIT otherwise a given one.
3195 *  - task=-1 means any task, otherwise a given one.
3196 */
3197int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task)
3198{
3199        SYM_QUEHEAD qtmp, *qp;
3200        int i = 0;
3201        struct sym_ccb *cp;
3202
3203        /*
3204         *  Move the entire BUSY queue to our temporary queue.
3205         */
3206        sym_que_init(&qtmp);
3207        sym_que_splice(&np->busy_ccbq, &qtmp);
3208        sym_que_init(&np->busy_ccbq);
3209
3210        /*
3211         *  Put all CCBs that matches our criteria into 
3212         *  the COMP queue and put back other ones into 
3213         *  the BUSY queue.
3214         */
3215        while ((qp = sym_remque_head(&qtmp)) != NULL) {
3216                struct scsi_cmnd *cmd;
3217                cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3218                cmd = cp->cmd;
3219                if (cp->host_status != HS_DISCONNECT ||
3220                    cp->target != target             ||
3221                    (lun  != -1 && cp->lun != lun)   ||
3222                    (task != -1 && 
3223                        (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
3224                        sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
3225                        continue;
3226                }
3227                sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3228
3229                /* Preserve the software timeout condition */
3230                if (sym_get_cam_status(cmd) != DID_TIME_OUT)
3231                        sym_set_cam_status(cmd, cam_status);
3232                ++i;
3233#if 0
3234printf("XXXX TASK @%p CLEARED\n", cp);
3235#endif
3236        }
3237        return i;
3238}
3239
3240/*
3241 *  chip handler for TASKS recovery
3242 *
3243 *  We cannot safely abort a command, while the SCRIPTS 
3244 *  processor is running, since we just would be in race 
3245 *  with it.
3246 *
3247 *  As long as we have tasks to abort, we keep the SEM 
3248 *  bit set in the ISTAT. When this bit is set, the 
3249 *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED) 
3250 *  each time it enters the scheduler.
3251 *
3252 *  If we have to reset a target, clear tasks of a unit,
3253 *  or to perform the abort of a disconnected job, we 
3254 *  restart the SCRIPTS for selecting the target. Once 
3255 *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
3256 *  If it loses arbitration, the SCRIPTS will interrupt again 
3257 *  the next time it will enter its scheduler, and so on ...
3258 *
3259 *  On SIR_TARGET_SELECTED, we scan for the more 
3260 *  appropriate thing to do:
3261 *
3262 *  - If nothing, we just sent a M_ABORT message to the 
3263 *    target to get rid of the useless SCSI bus ownership.
3264 *    According to the specs, no tasks shall be affected.
3265 *  - If the target is to be reset, we send it a M_RESET 
3266 *    message.
3267 *  - If a logical UNIT is to be cleared , we send the 
3268 *    IDENTIFY(lun) + M_ABORT.
3269 *  - If an untagged task is to be aborted, we send the 
3270 *    IDENTIFY(lun) + M_ABORT.
3271 *  - If a tagged task is to be aborted, we send the 
3272 *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
3273 *
3274 *  Once our 'kiss of death' :) message has been accepted 
3275 *  by the target, the SCRIPTS interrupts again 
3276 *  (SIR_ABORT_SENT). On this interrupt, we complete 
3277 *  all the CCBs that should have been aborted by the 
3278 *  target according to our message.
3279 */
3280static void sym_sir_task_recovery(struct sym_hcb *np, int num)
3281{
3282        SYM_QUEHEAD *qp;
3283        struct sym_ccb *cp;
3284        struct sym_tcb *tp = NULL; /* gcc isn't quite smart enough yet */
3285        struct scsi_target *starget;
3286        int target=-1, lun=-1, task;
3287        int i, k;
3288
3289        switch(num) {
3290        /*
3291         *  The SCRIPTS processor stopped before starting
3292         *  the next command in order to allow us to perform 
3293         *  some task recovery.
3294         */
3295        case SIR_SCRIPT_STOPPED:
3296                /*
3297                 *  Do we have any target to reset or unit to clear ?
3298                 */
3299                for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
3300                        tp = &np->target[i];
3301                        if (tp->to_reset || 
3302                            (tp->lun0p && tp->lun0p->to_clear)) {
3303                                target = i;
3304                                break;
3305                        }
3306                        if (!tp->lunmp)
3307                                continue;
3308                        for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3309                                if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3310                                        target  = i;
3311                                        break;
3312                                }
3313                        }
3314                        if (target != -1)
3315                                break;
3316                }
3317
3318                /*
3319                 *  If not, walk the busy queue for any 
3320                 *  disconnected CCB to be aborted.
3321                 */
3322                if (target == -1) {
3323                        FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3324                                cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
3325                                if (cp->host_status != HS_DISCONNECT)
3326                                        continue;
3327                                if (cp->to_abort) {
3328                                        target = cp->target;
3329                                        break;
3330                                }
3331                        }
3332                }
3333
3334                /*
3335                 *  If some target is to be selected, 
3336                 *  prepare and start the selection.
3337                 */
3338                if (target != -1) {
3339                        tp = &np->target[target];
3340                        np->abrt_sel.sel_id     = target;
3341                        np->abrt_sel.sel_scntl3 = tp->head.wval;
3342                        np->abrt_sel.sel_sxfer  = tp->head.sval;
3343                        OUTL(np, nc_dsa, np->hcb_ba);
3344                        OUTL_DSP(np, SCRIPTB_BA(np, sel_for_abort));
3345                        return;
3346                }
3347
3348                /*
3349                 *  Now look for a CCB to abort that haven't started yet.
3350                 *  Btw, the SCRIPTS processor is still stopped, so 
3351                 *  we are not in race.
3352                 */
3353                i = 0;
3354                cp = NULL;
3355                FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3356                        cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3357                        if (cp->host_status != HS_BUSY &&
3358                            cp->host_status != HS_NEGOTIATE)
3359                                continue;
3360                        if (!cp->to_abort)
3361                                continue;
3362#ifdef SYM_CONF_IARB_SUPPORT
3363                        /*
3364                         *    If we are using IMMEDIATE ARBITRATION, we donnot 
3365                         *    want to cancel the last queued CCB, since the 
3366                         *    SCRIPTS may have anticipated the selection.
3367                         */
3368                        if (cp == np->last_cp) {
3369                                cp->to_abort = 0;
3370                                continue;
3371                        }
3372#endif
3373                        i = 1;  /* Means we have found some */
3374                        break;
3375                }
3376                if (!i) {
3377                        /*
3378                         *  We are done, so we donnot need 
3379                         *  to synchronize with the SCRIPTS anylonger.
3380                         *  Remove the SEM flag from the ISTAT.
3381                         */
3382                        np->istat_sem = 0;
3383                        OUTB(np, nc_istat, SIGP);
3384                        break;
3385                }
3386                /*
3387                 *  Compute index of next position in the start 
3388                 *  queue the SCRIPTS intends to start and dequeue 
3389                 *  all CCBs for that device that haven't been started.
3390                 */
3391                i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3392                i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3393
3394                /*
3395                 *  Make sure at least our IO to abort has been dequeued.
3396                 */
3397#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
3398                assert(i && sym_get_cam_status(cp->cmd) == DID_SOFT_ERROR);
3399#else
3400                sym_remque(&cp->link_ccbq);
3401                sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3402#endif
3403                /*
3404                 *  Keep track in cam status of the reason of the abort.
3405                 */
3406                if (cp->to_abort == 2)
3407                        sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3408                else
3409                        sym_set_cam_status(cp->cmd, DID_ABORT);
3410
3411                /*
3412                 *  Complete with error everything that we have dequeued.
3413                 */
3414                sym_flush_comp_queue(np, 0);
3415                break;
3416        /*
3417         *  The SCRIPTS processor has selected a target 
3418         *  we may have some manual recovery to perform for.
3419         */
3420        case SIR_TARGET_SELECTED:
3421                target = INB(np, nc_sdid) & 0xf;
3422                tp = &np->target[target];
3423
3424                np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
3425
3426                /*
3427                 *  If the target is to be reset, prepare a 
3428                 *  M_RESET message and clear the to_reset flag 
3429                 *  since we donnot expect this operation to fail.
3430                 */
3431                if (tp->to_reset) {
3432                        np->abrt_msg[0] = M_RESET;
3433                        np->abrt_tbl.size = 1;
3434                        tp->to_reset = 0;
3435                        break;
3436                }
3437
3438                /*
3439                 *  Otherwise, look for some logical unit to be cleared.
3440                 */
3441                if (tp->lun0p && tp->lun0p->to_clear)
3442                        lun = 0;
3443                else if (tp->lunmp) {
3444                        for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3445                                if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3446                                        lun = k;
3447                                        break;
3448                                }
3449                        }
3450                }
3451
3452                /*
3453                 *  If a logical unit is to be cleared, prepare 
3454                 *  an IDENTIFY(lun) + ABORT MESSAGE.
3455                 */
3456                if (lun != -1) {
3457                        struct sym_lcb *lp = sym_lp(tp, lun);
3458                        lp->to_clear = 0; /* We don't expect to fail here */
3459                        np->abrt_msg[0] = IDENTIFY(0, lun);
3460                        np->abrt_msg[1] = M_ABORT;
3461                        np->abrt_tbl.size = 2;
3462                        break;
3463                }
3464
3465                /*
3466                 *  Otherwise, look for some disconnected job to 
3467                 *  abort for this target.
3468                 */
3469                i = 0;
3470                cp = NULL;
3471                FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3472                        cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3473                        if (cp->host_status != HS_DISCONNECT)
3474                                continue;
3475                        if (cp->target != target)
3476                                continue;
3477                        if (!cp->to_abort)
3478                                continue;
3479                        i = 1;  /* Means we have some */
3480                        break;
3481                }
3482
3483                /*
3484                 *  If we have none, probably since the device has 
3485                 *  completed the command before we won abitration,
3486                 *  send a M_ABORT message without IDENTIFY.
3487                 *  According to the specs, the device must just 
3488                 *  disconnect the BUS and not abort any task.
3489                 */
3490                if (!i) {
3491                        np->abrt_msg[0] = M_ABORT;
3492                        np->abrt_tbl.size = 1;
3493                        break;
3494                }
3495
3496                /*
3497                 *  We have some task to abort.
3498                 *  Set the IDENTIFY(lun)
3499                 */
3500                np->abrt_msg[0] = IDENTIFY(0, cp->lun);
3501
3502                /*
3503                 *  If we want to abort an untagged command, we 
3504                 *  will send a IDENTIFY + M_ABORT.
3505                 *  Otherwise (tagged command), we will send 
3506                 *  a IDENTITFY + task attributes + ABORT TAG.
3507                 */
3508                if (cp->tag == NO_TAG) {
3509                        np->abrt_msg[1] = M_ABORT;
3510                        np->abrt_tbl.size = 2;
3511                } else {
3512                        np->abrt_msg[1] = cp->scsi_smsg[1];
3513                        np->abrt_msg[2] = cp->scsi_smsg[2];
3514                        np->abrt_msg[3] = M_ABORT_TAG;
3515                        np->abrt_tbl.size = 4;
3516                }
3517                /*
3518                 *  Keep track of software timeout condition, since the 
3519                 *  peripheral driver may not count retries on abort 
3520                 *  conditions not due to timeout.
3521                 */
3522                if (cp->to_abort == 2)
3523                        sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3524                cp->to_abort = 0; /* We donnot expect to fail here */
3525                break;
3526
3527        /*
3528         *  The target has accepted our message and switched 
3529         *  to BUS FREE phase as we expected.
3530         */
3531        case SIR_ABORT_SENT:
3532                target = INB(np, nc_sdid) & 0xf;
3533                tp = &np->target[target];
3534                starget = tp->starget;
3535                
3536                /*
3537                **  If we didn't abort anything, leave here.
3538                */
3539                if (np->abrt_msg[0] == M_ABORT)
3540                        break;
3541
3542                /*
3543                 *  If we sent a M_RESET, then a hardware reset has 
3544                 *  been performed by the target.
3545                 *  - Reset everything to async 8 bit
3546                 *  - Tell ourself to negotiate next time :-)
3547                 *  - Prepare to clear all disconnected CCBs for 
3548                 *    this target from our task list (lun=task=-1)
3549                 */
3550                lun = -1;
3551                task = -1;
3552                if (np->abrt_msg[0] == M_RESET) {
3553                        tp->head.sval = 0;
3554                        tp->head.wval = np->rv_scntl3;
3555                        tp->head.uval = 0;
3556                        spi_period(starget) = 0;
3557                        spi_offset(starget) = 0;
3558                        spi_width(starget) = 0;
3559                        spi_iu(starget) = 0;
3560                        spi_dt(starget) = 0;
3561                        spi_qas(starget) = 0;
3562                        tp->tgoal.check_nego = 1;
3563                        tp->tgoal.renego = 0;
3564                }
3565
3566                /*
3567                 *  Otherwise, check for the LUN and TASK(s) 
3568                 *  concerned by the cancelation.
3569                 *  If it is not ABORT_TAG then it is CLEAR_QUEUE 
3570                 *  or an ABORT message :-)
3571                 */
3572                else {
3573                        lun = np->abrt_msg[0] & 0x3f;
3574                        if (np->abrt_msg[1] == M_ABORT_TAG)
3575                                task = np->abrt_msg[2];
3576                }
3577
3578                /*
3579                 *  Complete all the CCBs the device should have 
3580                 *  aborted due to our 'kiss of death' message.
3581                 */
3582                i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3583                sym_dequeue_from_squeue(np, i, target, lun, -1);
3584                sym_clear_tasks(np, DID_ABORT, target, lun, task);
3585                sym_flush_comp_queue(np, 0);
3586
3587                /*
3588                 *  If we sent a BDR, make upper layer aware of that.
3589                 */
3590                if (np->abrt_msg[0] == M_RESET)
3591                        starget_printk(KERN_NOTICE, starget,
3592                                                        "has been reset\n");
3593                break;
3594        }
3595
3596        /*
3597         *  Print to the log the message we intend to send.
3598         */
3599        if (num == SIR_TARGET_SELECTED) {
3600                dev_info(&tp->starget->dev, "control msgout:");
3601                sym_printl_hex(np->abrt_msg, np->abrt_tbl.size);
3602                np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
3603        }
3604
3605        /*
3606         *  Let the SCRIPTS processor continue.
3607         */
3608        OUTONB_STD();
3609}
3610
3611/*
3612 *  Gerard's alchemy:) that deals with with the data 
3613 *  pointer for both MDP and the residual calculation.
3614 *
3615 *  I didn't want to bloat the code by more than 200 
3616 *  lines for the handling of both MDP and the residual.
3617 *  This has been achieved by using a data pointer 
3618 *  representation consisting in an index in the data 
3619 *  array (dp_sg) and a negative offset (dp_ofs) that 
3620 *  have the following meaning:
3621 *
3622 *  - dp_sg = SYM_CONF_MAX_SG
3623 *    we are at the end of the data script.
3624 *  - dp_sg < SYM_CONF_MAX_SG
3625 *    dp_sg points to the next entry of the scatter array 
3626 *    we want to transfer.
3627 *  - dp_ofs < 0
3628 *    dp_ofs represents the residual of bytes of the 
3629 *    previous entry scatter entry we will send first.
3630 *  - dp_ofs = 0
3631 *    no residual to send first.
3632 *
3633 *  The function sym_evaluate_dp() accepts an arbitray 
3634 *  offset (basically from the MDP message) and returns 
3635 *  the corresponding values of dp_sg and dp_ofs.
3636 */
3637
3638static int sym_evaluate_dp(struct sym_hcb *np, struct sym_ccb *cp, u32 scr, int *ofs)
3639{
3640        u32     dp_scr;
3641        int     dp_ofs, dp_sg, dp_sgmin;
3642        int     tmp;
3643        struct sym_pmc *pm;
3644
3645        /*
3646         *  Compute the resulted data pointer in term of a script 
3647         *  address within some DATA script and a signed byte offset.
3648         */
3649        dp_scr = scr;
3650        dp_ofs = *ofs;
3651        if      (dp_scr == SCRIPTA_BA(np, pm0_data))
3652                pm = &cp->phys.pm0;
3653        else if (dp_scr == SCRIPTA_BA(np, pm1_data))
3654                pm = &cp->phys.pm1;
3655        else
3656                pm = NULL;
3657
3658        if (pm) {
3659                dp_scr  = scr_to_cpu(pm->ret);
3660                dp_ofs -= scr_to_cpu(pm->sg.size) & 0x00ffffff;
3661        }
3662
3663        /*
3664         *  If we are auto-sensing, then we are done.
3665         */
3666        if (cp->host_flags & HF_SENSE) {
3667                *ofs = dp_ofs;
3668                return 0;
3669        }
3670
3671        /*
3672         *  Deduce the index of the sg entry.
3673         *  Keep track of the index of the first valid entry.
3674         *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the 
3675         *  end of the data.
3676         */
3677        tmp = scr_to_cpu(cp->goalp);
3678        dp_sg = SYM_CONF_MAX_SG;
3679        if (dp_scr != tmp)
3680                dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
3681        dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3682
3683        /*
3684         *  Move to the sg entry the data pointer belongs to.
3685         *
3686         *  If we are inside the data area, we expect result to be:
3687         *
3688         *  Either,
3689         *      dp_ofs = 0 and dp_sg is the index of the sg entry
3690         *      the data pointer belongs to (or the end of the data)
3691         *  Or,
3692         *      dp_ofs < 0 and dp_sg is the index of the sg entry 
3693         *      the data pointer belongs to + 1.
3694         */
3695        if (dp_ofs < 0) {
3696                int n;
3697                while (dp_sg > dp_sgmin) {
3698                        --dp_sg;
3699                        tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3700                        n = dp_ofs + (tmp & 0xffffff);
3701                        if (n > 0) {
3702                                ++dp_sg;
3703                                break;
3704                        }
3705                        dp_ofs = n;
3706                }
3707        }
3708        else if (dp_ofs > 0) {
3709                while (dp_sg < SYM_CONF_MAX_SG) {
3710                        tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3711                        dp_ofs -= (tmp & 0xffffff);
3712                        ++dp_sg;
3713                        if (dp_ofs <= 0)
3714                                break;
3715                }
3716        }
3717
3718        /*
3719         *  Make sure the data pointer is inside the data area.
3720         *  If not, return some error.
3721         */
3722        if      (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
3723                goto out_err;
3724        else if (dp_sg > SYM_CONF_MAX_SG ||
3725                 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
3726                goto out_err;
3727
3728        /*
3729         *  Save the extreme pointer if needed.
3730         */
3731        if (dp_sg > cp->ext_sg ||
3732            (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
3733                cp->ext_sg  = dp_sg;
3734                cp->ext_ofs = dp_ofs;
3735        }
3736
3737        /*
3738         *  Return data.
3739         */
3740        *ofs = dp_ofs;
3741        return dp_sg;
3742
3743out_err:
3744        return -1;
3745}
3746
3747/*
3748 *  chip handler for MODIFY DATA POINTER MESSAGE
3749 *
3750 *  We also call this function on IGNORE WIDE RESIDUE 
3751 *  messages that do not match a SWIDE full condition.
3752 *  Btw, we assume in that situation that such a message 
3753 *  is equivalent to a MODIFY DATA POINTER (offset=-1).
3754 */
3755
3756static void sym_modify_dp(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp, int ofs)
3757{
3758        int dp_ofs      = ofs;
3759        u32     dp_scr  = sym_get_script_dp (np, cp);
3760        u32     dp_ret;
3761        u32     tmp;
3762        u_char  hflags;
3763        int     dp_sg;
3764        struct  sym_pmc *pm;
3765
3766        /*
3767         *  Not supported for auto-sense.
3768         */
3769        if (cp->host_flags & HF_SENSE)
3770                goto out_reject;
3771
3772        /*
3773         *  Apply our alchemy:) (see comments in sym_evaluate_dp()), 
3774         *  to the resulted data pointer.
3775         */
3776        dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
3777        if (dp_sg < 0)
3778                goto out_reject;
3779
3780        /*
3781         *  And our alchemy:) allows to easily calculate the data 
3782         *  script address we want to return for the next data phase.
3783         */
3784        dp_ret = cpu_to_scr(cp->goalp);
3785        dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
3786
3787        /*
3788         *  If offset / scatter entry is zero we donnot need 
3789         *  a context for the new current data pointer.
3790         */
3791        if (dp_ofs == 0) {
3792                dp_scr = dp_ret;
3793                goto out_ok;
3794        }
3795
3796        /*
3797         *  Get a context for the new current data pointer.
3798         */
3799        hflags = INB(np, HF_PRT);
3800
3801        if (hflags & HF_DP_SAVED)
3802                hflags ^= HF_ACT_PM;
3803
3804        if (!(hflags & HF_ACT_PM)) {
3805                pm  = &cp->phys.pm0;
3806                dp_scr = SCRIPTA_BA(np, pm0_data);
3807        }
3808        else {
3809                pm = &cp->phys.pm1;
3810                dp_scr = SCRIPTA_BA(np, pm1_data);
3811        }
3812
3813        hflags &= ~(HF_DP_SAVED);
3814
3815        OUTB(np, HF_PRT, hflags);
3816
3817        /*
3818         *  Set up the new current data pointer.
3819         *  ofs < 0 there, and for the next data phase, we 
3820         *  want to transfer part of the data of the sg entry 
3821         *  corresponding to index dp_sg-1 prior to returning 
3822         *  to the main data script.
3823         */
3824        pm->ret = cpu_to_scr(dp_ret);
3825        tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
3826        tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
3827        pm->sg.addr = cpu_to_scr(tmp);
3828        pm->sg.size = cpu_to_scr(-dp_ofs);
3829
3830out_ok:
3831        sym_set_script_dp (np, cp, dp_scr);
3832        OUTL_DSP(np, SCRIPTA_BA(np, clrack));
3833        return;
3834
3835out_reject:
3836        OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
3837}
3838
3839
3840/*
3841 *  chip calculation of the data residual.
3842 *
3843 *  As I used to say, the requirement of data residual 
3844 *  in SCSI is broken, useless and cannot be achieved 
3845 *  without huge complexity.
3846 *  But most OSes and even the official CAM require it.
3847 *  When stupidity happens to be so widely spread inside 
3848 *  a community, it gets hard to convince.
3849 *
3850 *  Anyway, I don't care, since I am not going to use 
3851 *  any software that considers this data residual as 
3852 *  a relevant information. :)
3853 */
3854
3855int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp)
3856{
3857        int dp_sg, dp_sgmin, resid = 0;
3858        int dp_ofs = 0;
3859
3860        /*
3861         *  Check for some data lost or just thrown away.
3862         *  We are not required to be quite accurate in this 
3863         *  situation. Btw, if we are odd for output and the 
3864         *  device claims some more data, it may well happen 
3865         *  than our residual be zero. :-)
3866         */
3867        if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
3868                if (cp->xerr_status & XE_EXTRA_DATA)
3869                        resid -= cp->extra_bytes;
3870                if (cp->xerr_status & XE_SODL_UNRUN)
3871                        ++resid;
3872                if (cp->xerr_status & XE_SWIDE_OVRUN)
3873                        --resid;
3874        }
3875
3876        /*
3877         *  If all data has been transferred,
3878         *  there is no residual.
3879         */
3880        if (cp->phys.head.lastp == cp->goalp)
3881                return resid;
3882
3883        /*
3884         *  If no data transfer occurs, or if the data
3885         *  pointer is weird, return full residual.
3886         */
3887        if (cp->startp == cp->phys.head.lastp ||
3888            sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
3889                            &dp_ofs) < 0) {
3890                return cp->data_len - cp->odd_byte_adjustment;
3891        }
3892
3893        /*
3894         *  If we were auto-sensing, then we are done.
3895         */
3896        if (cp->host_flags & HF_SENSE) {
3897                return -dp_ofs;
3898        }
3899
3900        /*
3901         *  We are now full comfortable in the computation 
3902         *  of the data residual (2's complement).
3903         */
3904        dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3905        resid = -cp->ext_ofs;
3906        for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
3907                u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3908                resid += (tmp & 0xffffff);
3909        }
3910
3911        resid -= cp->odd_byte_adjustment;
3912
3913        /*
3914         *  Hopefully, the result is not too wrong.
3915         */
3916        return resid;
3917}
3918
3919/*
3920 *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
3921 *
3922 *  When we try to negotiate, we append the negotiation message
3923 *  to the identify and (maybe) simple tag message.
3924 *  The host status field is set to HS_NEGOTIATE to mark this
3925 *  situation.
3926 *
3927 *  If the target doesn't answer this message immediately
3928 *  (as required by the standard), the SIR_NEGO_FAILED interrupt
3929 *  will be raised eventually.
3930 *  The handler removes the HS_NEGOTIATE status, and sets the
3931 *  negotiated value to the default (async / nowide).
3932 *
3933 *  If we receive a matching answer immediately, we check it
3934 *  for validity, and set the values.
3935 *
3936 *  If we receive a Reject message immediately, we assume the
3937 *  negotiation has failed, and fall back to standard values.
3938 *
3939 *  If we receive a negotiation message while not in HS_NEGOTIATE
3940 *  state, it's a target initiated negotiation. We prepare a
3941 *  (hopefully) valid answer, set our parameters, and send back 
3942 *  this answer to the target.
3943 *
3944 *  If the target doesn't fetch the answer (no message out phase),
3945 *  we assume the negotiation has failed, and fall back to default
3946 *  settings (SIR_NEGO_PROTO interrupt).
3947 *
3948 *  When we set the values, we adjust them in all ccbs belonging 
3949 *  to this target, in the controller's register, and in the "phys"
3950 *  field of the controller's struct sym_hcb.
3951 */
3952
3953/*
3954 *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
3955 */
3956static int  
3957sym_sync_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
3958{
3959        int target = cp->target;
3960        u_char  chg, ofs, per, fak, div;
3961
3962        if (DEBUG_FLAGS & DEBUG_NEGO) {
3963                sym_print_nego_msg(np, target, "sync msgin", np->msgin);
3964        }
3965
3966        /*
3967         *  Get requested values.
3968         */
3969        chg = 0;
3970        per = np->msgin[3];
3971        ofs = np->msgin[4];
3972
3973        /*
3974         *  Check values against our limits.
3975         */
3976        if (ofs) {
3977                if (ofs > np->maxoffs)
3978                        {chg = 1; ofs = np->maxoffs;}
3979        }
3980
3981        if (ofs) {
3982                if (per < np->minsync)
3983                        {chg = 1; per = np->minsync;}
3984        }
3985
3986        /*
3987         *  Get new chip synchronous parameters value.
3988         */
3989        div = fak = 0;
3990        if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
3991                goto reject_it;
3992
3993        if (DEBUG_FLAGS & DEBUG_NEGO) {
3994                sym_print_addr(cp->cmd,
3995                                "sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
3996                                ofs, per, div, fak, chg);
3997        }
3998
3999        /*
4000         *  If it was an answer we want to change, 
4001         *  then it isn't acceptable. Reject it.
4002         */
4003        if (!req && chg)
4004                goto reject_it;
4005
4006        /*
4007         *  Apply new values.
4008         */
4009        sym_setsync (np, target, ofs, per, div, fak);
4010
4011        /*
4012         *  It was an answer. We are done.
4013         */
4014        if (!req)
4015                return 0;
4016
4017        /*
4018         *  It was a request. Prepare an answer message.
4019         */
4020        spi_populate_sync_msg(np->msgout, per, ofs);
4021
4022        if (DEBUG_FLAGS & DEBUG_NEGO) {
4023                sym_print_nego_msg(np, target, "sync msgout", np->msgout);
4024        }
4025
4026        np->msgin [0] = M_NOOP;
4027
4028        return 0;
4029
4030reject_it:
4031        sym_setsync (np, target, 0, 0, 0, 0);
4032        return -1;
4033}
4034
4035static void sym_sync_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4036{
4037        int req = 1;
4038        int result;
4039
4040        /*
4041         *  Request or answer ?
4042         */
4043        if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4044                OUTB(np, HS_PRT, HS_BUSY);
4045                if (cp->nego_status && cp->nego_status != NS_SYNC)
4046                        goto reject_it;
4047                req = 0;
4048        }
4049
4050        /*
4051         *  Check and apply new values.
4052         */
4053        result = sym_sync_nego_check(np, req, cp);
4054        if (result)     /* Not acceptable, reject it */
4055                goto reject_it;
4056        if (req) {      /* Was a request, send response. */
4057                cp->nego_status = NS_SYNC;
4058                OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4059        }
4060        else            /* Was a response, we are done. */
4061                OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4062        return;
4063
4064reject_it:
4065        OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4066}
4067
4068/*
4069 *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
4070 */
4071static int 
4072sym_ppr_nego_check(struct sym_hcb *np, int req, int target)
4073{
4074        struct sym_tcb *tp = &np->target[target];
4075        unsigned char fak, div;
4076        int dt, chg = 0;
4077
4078        unsigned char per = np->msgin[3];
4079        unsigned char ofs = np->msgin[5];
4080        unsigned char wide = np->msgin[6];
4081        unsigned char opts = np->msgin[7] & PPR_OPT_MASK;
4082
4083        if (DEBUG_FLAGS & DEBUG_NEGO) {
4084                sym_print_nego_msg(np, target, "ppr msgin", np->msgin);
4085        }
4086
4087        /*
4088         *  Check values against our limits.
4089         */
4090        if (wide > np->maxwide) {
4091                chg = 1;
4092                wide = np->maxwide;
4093        }
4094        if (!wide || !(np->features & FE_U3EN))
4095                opts = 0;
4096
4097        if (opts != (np->msgin[7] & PPR_OPT_MASK))
4098                chg = 1;
4099
4100        dt = opts & PPR_OPT_DT;
4101
4102        if (ofs) {
4103                unsigned char maxoffs = dt ? np->maxoffs_dt : np->maxoffs;
4104                if (ofs > maxoffs) {
4105                        chg = 1;
4106                        ofs = maxoffs;
4107                }
4108        }
4109
4110        if (ofs) {
4111                unsigned char minsync = dt ? np->minsync_dt : np->minsync;
4112                if (per < minsync) {
4113                        chg = 1;
4114                        per = minsync;
4115                }
4116        }
4117
4118        /*
4119         *  Get new chip synchronous parameters value.
4120         */
4121        div = fak = 0;
4122        if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
4123                goto reject_it;
4124
4125        /*
4126         *  If it was an answer we want to change, 
4127         *  then it isn't acceptable. Reject it.
4128         */
4129        if (!req && chg)
4130                goto reject_it;
4131
4132        /*
4133         *  Apply new values.
4134         */
4135        sym_setpprot(np, target, opts, ofs, per, wide, div, fak);
4136
4137        /*
4138         *  It was an answer. We are done.
4139         */
4140        if (!req)
4141                return 0;
4142
4143        /*
4144         *  It was a request. Prepare an answer message.
4145         */
4146        spi_populate_ppr_msg(np->msgout, per, ofs, wide, opts);
4147
4148        if (DEBUG_FLAGS & DEBUG_NEGO) {
4149                sym_print_nego_msg(np, target, "ppr msgout", np->msgout);
4150        }
4151
4152        np->msgin [0] = M_NOOP;
4153
4154        return 0;
4155
4156reject_it:
4157        sym_setpprot (np, target, 0, 0, 0, 0, 0, 0);
4158        /*
4159         *  If it is a device response that should result in  
4160         *  ST, we may want to try a legacy negotiation later.
4161         */
4162        if (!req && !opts) {
4163                tp->tgoal.period = per;
4164                tp->tgoal.offset = ofs;
4165                tp->tgoal.width = wide;
4166                tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4167                tp->tgoal.check_nego = 1;
4168        }
4169        return -1;
4170}
4171
4172static void sym_ppr_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4173{
4174        int req = 1;
4175        int result;
4176
4177        /*
4178         *  Request or answer ?
4179         */
4180        if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4181                OUTB(np, HS_PRT, HS_BUSY);
4182                if (cp->nego_status && cp->nego_status != NS_PPR)
4183                        goto reject_it;
4184                req = 0;
4185        }
4186
4187        /*
4188         *  Check and apply new values.
4189         */
4190        result = sym_ppr_nego_check(np, req, cp->target);
4191        if (result)     /* Not acceptable, reject it */
4192                goto reject_it;
4193        if (req) {      /* Was a request, send response. */
4194                cp->nego_status = NS_PPR;
4195                OUTL_DSP(np, SCRIPTB_BA(np, ppr_resp));
4196        }
4197        else            /* Was a response, we are done. */
4198                OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4199        return;
4200
4201reject_it:
4202        OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4203}
4204
4205/*
4206 *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
4207 */
4208static int  
4209sym_wide_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
4210{
4211        int target = cp->target;
4212        u_char  chg, wide;
4213
4214        if (DEBUG_FLAGS & DEBUG_NEGO) {
4215                sym_print_nego_msg(np, target, "wide msgin", np->msgin);
4216        }
4217
4218        /*
4219         *  Get requested values.
4220         */
4221        chg  = 0;
4222        wide = np->msgin[3];
4223
4224        /*
4225         *  Check values against our limits.
4226         */
4227        if (wide > np->maxwide) {
4228                chg = 1;
4229                wide = np->maxwide;
4230        }
4231
4232        if (DEBUG_FLAGS & DEBUG_NEGO) {
4233                sym_print_addr(cp->cmd, "wdtr: wide=%d chg=%d.\n",
4234                                wide, chg);
4235        }
4236
4237        /*
4238         *  If it was an answer we want to change, 
4239         *  then it isn't acceptable. Reject it.
4240         */
4241        if (!req && chg)
4242                goto reject_it;
4243
4244        /*
4245         *  Apply new values.
4246         */
4247        sym_setwide (np, target, wide);
4248
4249        /*
4250         *  It was an answer. We are done.
4251         */
4252        if (!req)
4253                return 0;
4254
4255        /*
4256         *  It was a request. Prepare an answer message.
4257         */
4258        spi_populate_width_msg(np->msgout, wide);
4259
4260        np->msgin [0] = M_NOOP;
4261
4262        if (DEBUG_FLAGS & DEBUG_NEGO) {
4263                sym_print_nego_msg(np, target, "wide msgout", np->msgout);
4264        }
4265
4266        return 0;
4267
4268reject_it:
4269        return -1;
4270}
4271
4272static void sym_wide_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4273{
4274        int req = 1;
4275        int result;
4276
4277        /*
4278         *  Request or answer ?
4279         */
4280        if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4281                OUTB(np, HS_PRT, HS_BUSY);
4282                if (cp->nego_status && cp->nego_status != NS_WIDE)
4283                        goto reject_it;
4284                req = 0;
4285        }
4286
4287        /*
4288         *  Check and apply new values.
4289         */
4290        result = sym_wide_nego_check(np, req, cp);
4291        if (result)     /* Not acceptable, reject it */
4292                goto reject_it;
4293        if (req) {      /* Was a request, send response. */
4294                cp->nego_status = NS_WIDE;
4295                OUTL_DSP(np, SCRIPTB_BA(np, wdtr_resp));
4296        } else {                /* Was a response. */
4297                /*
4298                 * Negotiate for SYNC immediately after WIDE response.
4299                 * This allows to negotiate for both WIDE and SYNC on 
4300                 * a single SCSI command (Suggested by Justin Gibbs).
4301                 */
4302                if (tp->tgoal.offset) {
4303                        spi_populate_sync_msg(np->msgout, tp->tgoal.period,
4304                                        tp->tgoal.offset);
4305
4306                        if (DEBUG_FLAGS & DEBUG_NEGO) {
4307                                sym_print_nego_msg(np, cp->target,
4308                                                   "sync msgout", np->msgout);
4309                        }
4310
4311                        cp->nego_status = NS_SYNC;
4312                        OUTB(np, HS_PRT, HS_NEGOTIATE);
4313                        OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4314                        return;
4315                } else
4316                        OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4317        }
4318
4319        return;
4320
4321reject_it:
4322        OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4323}
4324
4325/*
4326 *  Reset DT, SYNC or WIDE to default settings.
4327 *
4328 *  Called when a negotiation does not succeed either 
4329 *  on rejection or on protocol error.
4330 *
4331 *  A target that understands a PPR message should never 
4332 *  reject it, and messing with it is very unlikely.
4333 *  So, if a PPR makes problems, we may just want to 
4334 *  try a legacy negotiation later.
4335 */
4336static void sym_nego_default(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4337{
4338        switch (cp->nego_status) {
4339        case NS_PPR:
4340#if 0
4341                sym_setpprot (np, cp->target, 0, 0, 0, 0, 0, 0);
4342#else
4343                if (tp->tgoal.period < np->minsync)
4344                        tp->tgoal.period = np->minsync;
4345                if (tp->tgoal.offset > np->maxoffs)
4346                        tp->tgoal.offset = np->maxoffs;
4347                tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4348                tp->tgoal.check_nego = 1;
4349#endif
4350                break;
4351        case NS_SYNC:
4352                sym_setsync (np, cp->target, 0, 0, 0, 0);
4353                break;
4354        case NS_WIDE:
4355                sym_setwide (np, cp->target, 0);
4356                break;
4357        }
4358        np->msgin [0] = M_NOOP;
4359        np->msgout[0] = M_NOOP;
4360        cp->nego_status = 0;
4361}
4362
4363/*
4364 *  chip handler for MESSAGE REJECT received in response to 
4365 *  PPR, WIDE or SYNCHRONOUS negotiation.
4366 */
4367static void sym_nego_rejected(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4368{
4369        sym_nego_default(np, tp, cp);
4370        OUTB(np, HS_PRT, HS_BUSY);
4371}
4372
4373/*
4374 *  chip exception handler for programmed interrupts.
4375 */
4376static void sym_int_sir(struct sym_hcb *np)
4377{
4378        u_char  num     = INB(np, nc_dsps);
4379        u32     dsa     = INL(np, nc_dsa);
4380        struct sym_ccb *cp      = sym_ccb_from_dsa(np, dsa);
4381        u_char  target  = INB(np, nc_sdid) & 0x0f;
4382        struct sym_tcb *tp      = &np->target[target];
4383        int     tmp;
4384
4385        if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
4386
4387        switch (num) {
4388#if   SYM_CONF_DMA_ADDRESSING_MODE == 2
4389        /*
4390         *  SCRIPTS tell us that we may have to update 
4391         *  64 bit DMA segment registers.
4392         */
4393        case SIR_DMAP_DIRTY:
4394                sym_update_dmap_regs(np);
4395                goto out;
4396#endif
4397        /*
4398         *  Command has been completed with error condition 
4399         *  or has been auto-sensed.
4400         */
4401        case SIR_COMPLETE_ERROR:
4402                sym_complete_error(np, cp);
4403                return;
4404        /*
4405         *  The C code is currently trying to recover from something.
4406         *  Typically, user want to abort some command.
4407         */
4408        case SIR_SCRIPT_STOPPED:
4409        case SIR_TARGET_SELECTED:
4410        case SIR_ABORT_SENT:
4411                sym_sir_task_recovery(np, num);
4412                return;
4413        /*
4414         *  The device didn't go to MSG OUT phase after having 
4415         *  been selected with ATN.  We do not want to handle that.
4416         */
4417        case SIR_SEL_ATN_NO_MSG_OUT:
4418                scmd_printk(KERN_WARNING, cp->cmd,
4419                                "No MSG OUT phase after selection with ATN\n");
4420                goto out_stuck;
4421        /*
4422         *  The device didn't switch to MSG IN phase after 
4423         *  having reselected the initiator.
4424         */
4425        case SIR_RESEL_NO_MSG_IN:
4426                scmd_printk(KERN_WARNING, cp->cmd,
4427                                "No MSG IN phase after reselection\n");
4428                goto out_stuck;
4429        /*
4430         *  After reselection, the device sent a message that wasn't 
4431         *  an IDENTIFY.
4432         */
4433        case SIR_RESEL_NO_IDENTIFY:
4434                scmd_printk(KERN_WARNING, cp->cmd,
4435                                "No IDENTIFY after reselection\n");
4436                goto out_stuck;
4437        /*
4438         *  The device reselected a LUN we do not know about.
4439         */
4440        case SIR_RESEL_BAD_LUN:
4441                np->msgout[0] = M_RESET;
4442                goto out;
4443        /*
4444         *  The device reselected for an untagged nexus and we 
4445         *  haven't any.
4446         */
4447        case SIR_RESEL_BAD_I_T_L:
4448                np->msgout[0] = M_ABORT;
4449                goto out;
4450        /*
4451         * The device reselected for a tagged nexus that we do not have.
4452         */
4453        case SIR_RESEL_BAD_I_T_L_Q:
4454                np->msgout[0] = M_ABORT_TAG;
4455                goto out;
4456        /*
4457         *  The SCRIPTS let us know that the device has grabbed 
4458         *  our message and will abort the job.
4459         */
4460        case SIR_RESEL_ABORTED:
4461                np->lastmsg = np->msgout[0];
4462                np->msgout[0] = M_NOOP;
4463                scmd_printk(KERN_WARNING, cp->cmd,
4464                        "message %x sent on bad reselection\n", np->lastmsg);
4465                goto out;
4466        /*
4467         *  The SCRIPTS let us know that a message has been 
4468         *  successfully sent to the device.
4469         */
4470        case SIR_MSG_OUT_DONE:
4471                np->lastmsg = np->msgout[0];
4472                np->msgout[0] = M_NOOP;
4473                /* Should we really care of that */
4474                if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
4475                        if (cp) {
4476                                cp->xerr_status &= ~XE_PARITY_ERR;
4477                                if (!cp->xerr_status)
4478                                        OUTOFFB(np, HF_PRT, HF_EXT_ERR);
4479                        }
4480                }
4481                goto out;
4482        /*
4483         *  The device didn't send a GOOD SCSI status.
4484         *  We may have some work to do prior to allow 
4485         *  the SCRIPTS processor to continue.
4486         */
4487        case SIR_BAD_SCSI_STATUS:
4488                if (!cp)
4489                        goto out;
4490                sym_sir_bad_scsi_status(np, num, cp);
4491                return;
4492        /*
4493         *  We are asked by the SCRIPTS to prepare a 
4494         *  REJECT message.
4495         */
4496        case SIR_REJECT_TO_SEND:
4497                sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
4498                np->msgout[0] = M_REJECT;
4499                goto out;
4500        /*
4501         *  We have been ODD at the end of a DATA IN 
4502         *  transfer and the device didn't send a 
4503         *  IGNORE WIDE RESIDUE message.
4504         *  It is a data overrun condition.
4505         */
4506        case SIR_SWIDE_OVERRUN:
4507                if (cp) {
4508                        OUTONB(np, HF_PRT, HF_EXT_ERR);
4509                        cp->xerr_status |= XE_SWIDE_OVRUN;
4510                }
4511                goto out;
4512        /*
4513         *  We have been ODD at the end of a DATA OUT 
4514         *  transfer.
4515         *  It is a data underrun condition.
4516         */
4517        case SIR_SODL_UNDERRUN:
4518                if (cp) {
4519                        OUTONB(np, HF_PRT, HF_EXT_ERR);
4520                        cp->xerr_status |= XE_SODL_UNRUN;
4521                }
4522                goto out;
4523        /*
4524         *  The device wants us to tranfer more data than 
4525         *  expected or in the wrong direction.
4526         *  The number of extra bytes is in scratcha.
4527         *  It is a data overrun condition.
4528         */
4529        case SIR_DATA_OVERRUN:
4530                if (cp) {
4531                        OUTONB(np, HF_PRT, HF_EXT_ERR);
4532                        cp->xerr_status |= XE_EXTRA_DATA;
4533                        cp->extra_bytes += INL(np, nc_scratcha);
4534                }
4535                goto out;
4536        /*
4537         *  The device switched to an illegal phase (4/5).
4538         */
4539        case SIR_BAD_PHASE:
4540                if (cp) {
4541                        OUTONB(np, HF_PRT, HF_EXT_ERR);
4542                        cp->xerr_status |= XE_BAD_PHASE;
4543                }
4544                goto out;
4545        /*
4546         *  We received a message.
4547         */
4548        case SIR_MSG_RECEIVED:
4549                if (!cp)
4550                        goto out_stuck;
4551                switch (np->msgin [0]) {
4552                /*
4553                 *  We received an extended message.
4554                 *  We handle MODIFY DATA POINTER, SDTR, WDTR 
4555                 *  and reject all other extended messages.
4556                 */
4557                case M_EXTENDED:
4558                        switch (np->msgin [2]) {
4559                        case M_X_MODIFY_DP:
4560                                if (DEBUG_FLAGS & DEBUG_POINTER)
4561                                        sym_print_msg(cp, NULL, np->msgin);
4562                                tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) + 
4563                                      (np->msgin[5]<<8)  + (np->msgin[6]);
4564                                sym_modify_dp(np, tp, cp, tmp);
4565                                return;
4566                        case M_X_SYNC_REQ:
4567                                sym_sync_nego(np, tp, cp);
4568                                return;
4569                        case M_X_PPR_REQ:
4570                                sym_ppr_nego(np, tp, cp);
4571                                return;
4572                        case M_X_WIDE_REQ:
4573                                sym_wide_nego(np, tp, cp);
4574                                return;
4575                        default:
4576                                goto out_reject;
4577                        }
4578                        break;
4579                /*
4580                 *  We received a 1/2 byte message not handled from SCRIPTS.
4581                 *  We are only expecting MESSAGE REJECT and IGNORE WIDE 
4582                 *  RESIDUE messages that haven't been anticipated by 
4583                 *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE 
4584                 *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
4585                 */
4586                case M_IGN_RESIDUE:
4587                        if (DEBUG_FLAGS & DEBUG_POINTER)
4588                                sym_print_msg(cp, NULL, np->msgin);
4589                        if (cp->host_flags & HF_SENSE)
4590                                OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4591                        else
4592                                sym_modify_dp(np, tp, cp, -1);
4593                        return;
4594                case M_REJECT:
4595                        if (INB(np, HS_PRT) == HS_NEGOTIATE)
4596                                sym_nego_rejected(np, tp, cp);
4597                        else {
4598                                sym_print_addr(cp->cmd,
4599                                        "M_REJECT received (%x:%x).\n",
4600                                        scr_to_cpu(np->lastmsg), np->msgout[0]);
4601                        }
4602                        goto out_clrack;
4603                        break;
4604                default:
4605                        goto out_reject;
4606                }
4607                break;
4608        /*
4609         *  We received an unknown message.
4610         *  Ignore all MSG IN phases and reject it.
4611         */
4612        case SIR_MSG_WEIRD:
4613                sym_print_msg(cp, "WEIRD message received", np->msgin);
4614                OUTL_DSP(np, SCRIPTB_BA(np, msg_weird));
4615                return;
4616        /*
4617         *  Negotiation failed.
4618         *  Target does not send us the reply.
4619         *  Remove the HS_NEGOTIATE status.
4620         */
4621        case SIR_NEGO_FAILED:
4622                OUTB(np, HS_PRT, HS_BUSY);
4623        /*
4624         *  Negotiation failed.
4625         *  Target does not want answer message.
4626         */
4627        case SIR_NEGO_PROTO:
4628                sym_nego_default(np, tp, cp);
4629                goto out;
4630        }
4631
4632out:
4633        OUTONB_STD();
4634        return;
4635out_reject:
4636        OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4637        return;
4638out_clrack:
4639        OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4640        return;
4641out_stuck:
4642        return;
4643}
4644
4645/*
4646 *  Acquire a control block
4647 */
4648struct sym_ccb *sym_get_ccb (struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order)
4649{
4650        u_char tn = cmd->device->id;
4651        u_char ln = cmd->device->lun;
4652        struct sym_tcb *tp = &np->target[tn];
4653        struct sym_lcb *lp = sym_lp(tp, ln);
4654        u_short tag = NO_TAG;
4655        SYM_QUEHEAD *qp;
4656        struct sym_ccb *cp = NULL;
4657
4658        /*
4659         *  Look for a free CCB
4660         */
4661        if (sym_que_empty(&np->free_ccbq))
4662                sym_alloc_ccb(np);
4663        qp = sym_remque_head(&np->free_ccbq);
4664        if (!qp)
4665                goto out;
4666        cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4667
4668        {
4669                /*
4670                 *  If we have been asked for a tagged command.
4671                 */
4672                if (tag_order) {
4673                        /*
4674                         *  Debugging purpose.
4675                         */
4676#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4677                        if (lp->busy_itl != 0)
4678                                goto out_free;
4679#endif
4680                        /*
4681                         *  Allocate resources for tags if not yet.
4682                         */
4683                        if (!lp->cb_tags) {
4684                                sym_alloc_lcb_tags(np, tn, ln);
4685                                if (!lp->cb_tags)
4686                                        goto out_free;
4687                        }
4688                        /*
4689                         *  Get a tag for this SCSI IO and set up
4690                         *  the CCB bus address for reselection, 
4691                         *  and count it for this LUN.
4692                         *  Toggle reselect path to tagged.
4693                         */
4694                        if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
4695                                tag = lp->cb_tags[lp->ia_tag];
4696                                if (++lp->ia_tag == SYM_CONF_MAX_TASK)
4697                                        lp->ia_tag = 0;
4698                                ++lp->busy_itlq;
4699#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4700                                lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
4701                                lp->head.resel_sa =
4702                                        cpu_to_scr(SCRIPTA_BA(np, resel_tag));
4703#endif
4704#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4705                                cp->tags_si = lp->tags_si;
4706                                ++lp->tags_sum[cp->tags_si];
4707                                ++lp->tags_since;
4708#endif
4709                        }
4710                        else
4711                                goto out_free;
4712                }
4713                /*
4714                 *  This command will not be tagged.
4715                 *  If we already have either a tagged or untagged 
4716                 *  one, refuse to overlap this untagged one.
4717                 */
4718                else {
4719                        /*
4720                         *  Debugging purpose.
4721                         */
4722#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4723                        if (lp->busy_itl != 0 || lp->busy_itlq != 0)
4724                                goto out_free;
4725#endif
4726                        /*
4727                         *  Count this nexus for this LUN.
4728                         *  Set up the CCB bus address for reselection.
4729                         *  Toggle reselect path to untagged.
4730                         */
4731                        ++lp->busy_itl;
4732#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4733                        if (lp->busy_itl == 1) {
4734                                lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
4735                                lp->head.resel_sa =
4736                                      cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
4737                        }
4738                        else
4739                                goto out_free;
4740#endif
4741                }
4742        }
4743        /*
4744         *  Put the CCB into the busy queue.
4745         */
4746        sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4747#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4748        if (lp) {
4749                sym_remque(&cp->link2_ccbq);
4750                sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq);
4751        }
4752
4753#endif
4754        cp->to_abort = 0;
4755        cp->odd_byte_adjustment = 0;
4756        cp->tag    = tag;
4757        cp->order  = tag_order;
4758        cp->target = tn;
4759        cp->lun    = ln;
4760
4761        if (DEBUG_FLAGS & DEBUG_TAGS) {
4762                sym_print_addr(cmd, "ccb @%p using tag %d.\n", cp, tag);
4763        }
4764
4765out:
4766        return cp;
4767out_free:
4768        sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4769        return NULL;
4770}
4771
4772/*
4773 *  Release one control block
4774 */
4775void sym_free_ccb (struct sym_hcb *np, struct sym_ccb *cp)
4776{
4777        struct sym_tcb *tp = &np->target[cp->target];
4778        struct sym_lcb *lp = sym_lp(tp, cp->lun);
4779
4780        if (DEBUG_FLAGS & DEBUG_TAGS) {
4781                sym_print_addr(cp->cmd, "ccb @%p freeing tag %d.\n",
4782                                cp, cp->tag);
4783        }
4784
4785        /*
4786         *  If LCB available,
4787         */
4788        if (lp) {
4789                /*
4790                 *  If tagged, release the tag, set the relect path 
4791                 */
4792                if (cp->tag != NO_TAG) {
4793#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4794                        --lp->tags_sum[cp->tags_si];
4795#endif
4796                        /*
4797                         *  Free the tag value.
4798                         */
4799                        lp->cb_tags[lp->if_tag] = cp->tag;
4800                        if (++lp->if_tag == SYM_CONF_MAX_TASK)
4801                                lp->if_tag = 0;
4802                        /*
4803                         *  Make the reselect path invalid, 
4804                         *  and uncount this CCB.
4805                         */
4806                        lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
4807                        --lp->busy_itlq;
4808                } else {        /* Untagged */
4809                        /*
4810                         *  Make the reselect path invalid, 
4811                         *  and uncount this CCB.
4812                         */
4813                        lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
4814                        --lp->busy_itl;
4815                }
4816                /*
4817                 *  If no JOB active, make the LUN reselect path invalid.
4818                 */
4819                if (lp->busy_itlq == 0 && lp->busy_itl == 0)
4820                        lp->head.resel_sa =
4821                                cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
4822        }
4823
4824        /*
4825         *  We donnot queue more than 1 ccb per target 
4826         *  with negotiation at any time. If this ccb was 
4827         *  used for negotiation, clear this info in the tcb.
4828         */
4829        if (cp == tp->nego_cp)
4830                tp->nego_cp = NULL;
4831
4832#ifdef SYM_CONF_IARB_SUPPORT
4833        /*
4834         *  If we just complete the last queued CCB,
4835         *  clear this info that is no longer relevant.
4836         */
4837        if (cp == np->last_cp)
4838                np->last_cp = 0;
4839#endif
4840
4841        /*
4842         *  Make this CCB available.
4843         */
4844        cp->cmd = NULL;
4845        cp->host_status = HS_IDLE;
4846        sym_remque(&cp->link_ccbq);
4847        sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4848
4849#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4850        if (lp) {
4851                sym_remque(&cp->link2_ccbq);
4852                sym_insque_tail(&cp->link2_ccbq, &np->dummy_ccbq);
4853                if (cp->started) {
4854                        if (cp->tag != NO_TAG)
4855                                --lp->started_tags;
4856                        else
4857                                --lp->started_no_tag;
4858                }
4859        }
4860        cp->started = 0;
4861#endif
4862}
4863
4864/*
4865 *  Allocate a CCB from memory and initialize its fixed part.
4866 */
4867static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np)
4868{
4869        struct sym_ccb *cp = NULL;
4870        int hcode;
4871
4872        /*
4873         *  Prevent from allocating more CCBs than we can 
4874         *  queue to the controller.
4875         */
4876        if (np->actccbs >= SYM_CONF_MAX_START)
4877                return NULL;
4878
4879        /*
4880         *  Allocate memory for this CCB.
4881         */
4882        cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
4883        if (!cp)
4884                goto out_free;
4885
4886        /*
4887         *  Count it.
4888         */
4889        np->actccbs++;
4890
4891        /*
4892         *  Compute the bus address of this ccb.
4893         */
4894        cp->ccb_ba = vtobus(cp);
4895
4896        /*
4897         *  Insert this ccb into the hashed list.
4898         */
4899        hcode = CCB_HASH_CODE(cp->ccb_ba);
4900        cp->link_ccbh = np->ccbh[hcode];
4901        np->ccbh[hcode] = cp;
4902
4903        /*
4904         *  Initialyze the start and restart actions.
4905         */
4906        cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA(np, idle));
4907        cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
4908
4909        /*
4910         *  Initilialyze some other fields.
4911         */
4912        cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
4913
4914        /*
4915         *  Chain into free ccb queue.
4916         */
4917        sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4918
4919        /*
4920         *  Chain into optionnal lists.
4921         */
4922#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4923        sym_insque_head(&cp->link2_ccbq, &np->dummy_ccbq);
4924#endif
4925        return cp;
4926out_free:
4927        if (cp)
4928                sym_mfree_dma(cp, sizeof(*cp), "CCB");
4929        return NULL;
4930}
4931
4932/*
4933 *  Look up a CCB from a DSA value.
4934 */
4935static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa)
4936{
4937        int hcode;
4938        struct sym_ccb *cp;
4939
4940        hcode = CCB_HASH_CODE(dsa);
4941        cp = np->ccbh[hcode];
4942        while (cp) {
4943                if (cp->ccb_ba == dsa)
4944                        break;
4945                cp = cp->link_ccbh;
4946        }
4947
4948        return cp;
4949}
4950
4951/*
4952 *  Target control block initialisation.
4953 *  Nothing important to do at the moment.
4954 */
4955static void sym_init_tcb (struct sym_hcb *np, u_char tn)
4956{
4957#if 0   /*  Hmmm... this checking looks paranoid. */
4958        /*
4959         *  Check some alignments required by the chip.
4960         */     
4961        assert (((offsetof(struct sym_reg, nc_sxfer) ^
4962                offsetof(struct sym_tcb, head.sval)) &3) == 0);
4963        assert (((offsetof(struct sym_reg, nc_scntl3) ^
4964                offsetof(struct sym_tcb, head.wval)) &3) == 0);
4965#endif
4966}
4967
4968/*
4969 *  Lun control block allocation and initialization.
4970 */
4971struct sym_lcb *sym_alloc_lcb (struct sym_hcb *np, u_char tn, u_char ln)
4972{
4973        struct sym_tcb *tp = &np->target[tn];
4974        struct sym_lcb *lp = NULL;
4975
4976        /*
4977         *  Initialize the target control block if not yet.
4978         */
4979        sym_init_tcb (np, tn);
4980
4981        /*
4982         *  Allocate the LCB bus address array.
4983         *  Compute the bus address of this table.
4984         */
4985        if (ln && !tp->luntbl) {
4986                int i;
4987
4988                tp->luntbl = sym_calloc_dma(256, "LUNTBL");
4989                if (!tp->luntbl)
4990                        goto fail;
4991                for (i = 0 ; i < 64 ; i++)
4992                        tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
4993                tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
4994        }
4995
4996        /*
4997         *  Allocate the table of pointers for LUN(s) > 0, if needed.
4998         */
4999        if (ln && !tp->lunmp) {
5000                tp->lunmp = kcalloc(SYM_CONF_MAX_LUN, sizeof(struct sym_lcb *),
5001                                GFP_ATOMIC);
5002                if (!tp->lunmp)
5003                        goto fail;
5004        }
5005
5006        /*
5007         *  Allocate the lcb.
5008         *  Make it available to the chip.
5009         */
5010        lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
5011        if (!lp)
5012                goto fail;
5013        if (ln) {
5014                tp->lunmp[ln] = lp;
5015                tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
5016        }
5017        else {
5018                tp->lun0p = lp;
5019                tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
5020        }
5021        tp->nlcb++;
5022
5023        /*
5024         *  Let the itl task point to error handling.
5025         */
5026        lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
5027
5028        /*
5029         *  Set the reselect pattern to our default. :)
5030         */
5031        lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5032
5033        /*
5034         *  Set user capabilities.
5035         */
5036        lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
5037
5038#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5039        /*
5040         *  Initialize device queueing.
5041         */
5042        sym_que_init(&lp->waiting_ccbq);
5043        sym_que_init(&lp->started_ccbq);
5044        lp->started_max   = SYM_CONF_MAX_TASK;
5045        lp->started_limit = SYM_CONF_MAX_TASK;
5046#endif
5047
5048fail:
5049        return lp;
5050}
5051
5052/*
5053 *  Allocate LCB resources for tagged command queuing.
5054 */
5055static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln)
5056{
5057        struct sym_tcb *tp = &np->target[tn];
5058        struct sym_lcb *lp = sym_lp(tp, ln);
5059        int i;
5060
5061        /*
5062         *  Allocate the task table and and the tag allocation 
5063         *  circular buffer. We want both or none.
5064         */
5065        lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5066        if (!lp->itlq_tbl)
5067                goto fail;
5068        lp->cb_tags = kcalloc(SYM_CONF_MAX_TASK, 1, GFP_ATOMIC);
5069        if (!lp->cb_tags) {
5070                sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5071                lp->itlq_tbl = NULL;
5072                goto fail;
5073        }
5074
5075        /*
5076         *  Initialize the task table with invalid entries.
5077         */
5078        for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5079                lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
5080
5081        /*
5082         *  Fill up the tag buffer with tag numbers.
5083         */
5084        for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5085                lp->cb_tags[i] = i;
5086
5087        /*
5088         *  Make the task table available to SCRIPTS, 
5089         *  And accept tagged commands now.
5090         */
5091        lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
5092
5093        return;
5094fail:
5095        return;
5096}
5097
5098/*
5099 *  Lun control block deallocation. Returns the number of valid remaing LCBs
5100 *  for the target.
5101 */
5102int sym_free_lcb(struct sym_hcb *np, u_char tn, u_char ln)
5103{
5104        struct sym_tcb *tp = &np->target[tn];
5105        struct sym_lcb *lp = sym_lp(tp, ln);
5106
5107        tp->nlcb--;
5108
5109        if (ln) {
5110                if (!tp->nlcb) {
5111                        kfree(tp->lunmp);
5112                        sym_mfree_dma(tp->luntbl, 256, "LUNTBL");
5113                        tp->lunmp = NULL;
5114                        tp->luntbl = NULL;
5115                        tp->head.luntbl_sa = cpu_to_scr(vtobus(np->badluntbl));
5116                } else {
5117                        tp->luntbl[ln] = cpu_to_scr(vtobus(&np->badlun_sa));
5118                        tp->lunmp[ln] = NULL;
5119                }
5120        } else {
5121                tp->lun0p = NULL;
5122                tp->head.lun0_sa = cpu_to_scr(vtobus(&np->badlun_sa));
5123        }
5124
5125        if (lp->itlq_tbl) {
5126                sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5127                kfree(lp->cb_tags);
5128        }
5129
5130        sym_mfree_dma(lp, sizeof(*lp), "LCB");
5131
5132        return tp->nlcb;
5133}
5134
5135/*
5136 *  Queue a SCSI IO to the controller.
5137 */
5138int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
5139{
5140        struct scsi_device *sdev = cmd->device;
5141        struct sym_tcb *tp;
5142        struct sym_lcb *lp;
5143        u_char  *msgptr;
5144        u_int   msglen;
5145        int can_disconnect;
5146
5147        /*
5148         *  Keep track of the IO in our CCB.
5149         */
5150        cp->cmd = cmd;
5151
5152        /*
5153         *  Retrieve the target descriptor.
5154         */
5155        tp = &np->target[cp->target];
5156
5157        /*
5158         *  Retrieve the lun descriptor.
5159         */
5160        lp = sym_lp(tp, sdev->lun);
5161
5162        can_disconnect = (cp->tag != NO_TAG) ||
5163                (lp && (lp->curr_flags & SYM_DISC_ENABLED));
5164
5165        msgptr = cp->scsi_smsg;
5166        msglen = 0;
5167        msgptr[msglen++] = IDENTIFY(can_disconnect, sdev->lun);
5168
5169        /*
5170         *  Build the tag message if present.
5171         */
5172        if (cp->tag != NO_TAG) {
5173                u_char order = cp->order;
5174
5175                switch(order) {
5176                case M_ORDERED_TAG:
5177                        break;
5178                case M_HEAD_TAG:
5179                        break;
5180                default:
5181                        order = M_SIMPLE_TAG;
5182                }
5183#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
5184                /*
5185                 *  Avoid too much reordering of SCSI commands.
5186                 *  The algorithm tries to prevent completion of any 
5187                 *  tagged command from being delayed against more 
5188                 *  than 3 times the max number of queued commands.
5189                 */
5190                if (lp && lp->tags_since > 3*SYM_CONF_MAX_TAG) {
5191                        lp->tags_si = !(lp->tags_si);
5192                        if (lp->tags_sum[lp->tags_si]) {
5193                                order = M_ORDERED_TAG;
5194                                if ((DEBUG_FLAGS & DEBUG_TAGS)||sym_verbose>1) {
5195                                        sym_print_addr(cmd,
5196                                                "ordered tag forced.\n");
5197                                }
5198                        }
5199                        lp->tags_since = 0;
5200                }
5201#endif
5202                msgptr[msglen++] = order;
5203
5204                /*
5205                 *  For less than 128 tags, actual tags are numbered 
5206                 *  1,3,5,..2*MAXTAGS+1,since we may have to deal 
5207                 *  with devices that have problems with #TAG 0 or too 
5208                 *  great #TAG numbers. For more tags (up to 256), 
5209                 *  we use directly our tag number.
5210                 */
5211#if SYM_CONF_MAX_TASK > (512/4)
5212                msgptr[msglen++] = cp->tag;
5213#else
5214                msgptr[msglen++] = (cp->tag << 1) + 1;
5215#endif
5216        }
5217
5218        /*
5219         *  Build a negotiation message if needed.
5220         *  (nego_status is filled by sym_prepare_nego())
5221         *
5222         *  Always negotiate on INQUIRY and REQUEST SENSE.
5223         *
5224         */
5225        cp->nego_status = 0;
5226        if ((tp->tgoal.check_nego ||
5227             cmd->cmnd[0] == INQUIRY || cmd->cmnd[0] == REQUEST_SENSE) &&
5228            !tp->nego_cp && lp) {
5229                msglen += sym_prepare_nego(np, cp, msgptr + msglen);
5230        }
5231
5232        /*
5233         *  Startqueue
5234         */
5235        cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA(np, select));
5236        cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA(np, resel_dsa));
5237
5238        /*
5239         *  select
5240         */
5241        cp->phys.select.sel_id          = cp->target;
5242        cp->phys.select.sel_scntl3      = tp->head.wval;
5243        cp->phys.select.sel_sxfer       = tp->head.sval;
5244        cp->phys.select.sel_scntl4      = tp->head.uval;
5245
5246        /*
5247         *  message
5248         */
5249        cp->phys.smsg.addr      = CCB_BA(cp, scsi_smsg);
5250        cp->phys.smsg.size      = cpu_to_scr(msglen);
5251
5252        /*
5253         *  status
5254         */
5255        cp->host_xflags         = 0;
5256        cp->host_status         = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
5257        cp->ssss_status         = S_ILLEGAL;
5258        cp->xerr_status         = 0;
5259        cp->host_flags          = 0;
5260        cp->extra_bytes         = 0;
5261
5262        /*
5263         *  extreme data pointer.
5264         *  shall be positive, so -1 is lower than lowest.:)
5265         */
5266        cp->ext_sg  = -1;
5267        cp->ext_ofs = 0;
5268
5269        /*
5270         *  Build the CDB and DATA descriptor block 
5271         *  and start the IO.
5272         */
5273        return sym_setup_data_and_start(np, cmd, cp);
5274}
5275
5276/*
5277 *  Reset a SCSI target (all LUNs of this target).
5278 */
5279int sym_reset_scsi_target(struct sym_hcb *np, int target)
5280{
5281        struct sym_tcb *tp;
5282
5283        if (target == np->myaddr || (u_int)target >= SYM_CONF_MAX_TARGET)
5284                return -1;
5285
5286        tp = &np->target[target];
5287        tp->to_reset = 1;
5288
5289        np->istat_sem = SEM;
5290        OUTB(np, nc_istat, SIGP|SEM);
5291
5292        return 0;
5293}
5294
5295/*
5296 *  Abort a SCSI IO.
5297 */
5298static int sym_abort_ccb(struct sym_hcb *np, struct sym_ccb *cp, int timed_out)
5299{
5300        /*
5301         *  Check that the IO is active.
5302         */
5303        if (!cp || !cp->host_status || cp->host_status == HS_WAIT)
5304                return -1;
5305
5306        /*
5307         *  If a previous abort didn't succeed in time,
5308         *  perform a BUS reset.
5309         */
5310        if (cp->to_abort) {
5311                sym_reset_scsi_bus(np, 1);
5312                return 0;
5313        }
5314
5315        /*
5316         *  Mark the CCB for abort and allow time for.
5317         */
5318        cp->to_abort = timed_out ? 2 : 1;
5319
5320        /*
5321         *  Tell the SCRIPTS processor to stop and synchronize with us.
5322         */
5323        np->istat_sem = SEM;
5324        OUTB(np, nc_istat, SIGP|SEM);
5325        return 0;
5326}
5327
5328int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, int timed_out)
5329{
5330        struct sym_ccb *cp;
5331        SYM_QUEHEAD *qp;
5332
5333        /*
5334         *  Look up our CCB control block.
5335         */
5336        cp = NULL;
5337        FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5338                struct sym_ccb *cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5339                if (cp2->cmd == cmd) {
5340                        cp = cp2;
5341                        break;
5342                }
5343        }
5344
5345        return sym_abort_ccb(np, cp, timed_out);
5346}
5347
5348/*
5349 *  Complete execution of a SCSI command with extended 
5350 *  error, SCSI status error, or having been auto-sensed.
5351 *
5352 *  The SCRIPTS processor is not running there, so we 
5353 *  can safely access IO registers and remove JOBs from  
5354 *  the START queue.
5355 *  SCRATCHA is assumed to have been loaded with STARTPOS 
5356 *  before the SCRIPTS called the C code.
5357 */
5358void sym_complete_error(struct sym_hcb *np, struct sym_ccb *cp)
5359{
5360        struct scsi_device *sdev;
5361        struct scsi_cmnd *cmd;
5362        struct sym_tcb *tp;
5363        struct sym_lcb *lp;
5364        int resid;
5365        int i;
5366
5367        /*
5368         *  Paranoid check. :)
5369         */
5370        if (!cp || !cp->cmd)
5371                return;
5372
5373        cmd = cp->cmd;
5374        sdev = cmd->device;
5375        if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
5376                dev_info(&sdev->sdev_gendev, "CCB=%p STAT=%x/%x/%x\n", cp,
5377                        cp->host_status, cp->ssss_status, cp->host_flags);
5378        }
5379
5380        /*
5381         *  Get target and lun pointers.
5382         */
5383        tp = &np->target[cp->target];
5384        lp = sym_lp(tp, sdev->lun);
5385
5386        /*
5387         *  Check for extended errors.
5388         */
5389        if (cp->xerr_status) {
5390                if (sym_verbose)
5391                        sym_print_xerr(cmd, cp->xerr_status);
5392                if (cp->host_status == HS_COMPLETE)
5393                        cp->host_status = HS_COMP_ERR;
5394        }
5395
5396        /*
5397         *  Calculate the residual.
5398         */
5399        resid = sym_compute_residual(np, cp);
5400
5401        if (!SYM_SETUP_RESIDUAL_SUPPORT) {/* If user does not want residuals */
5402                resid  = 0;              /* throw them away. :)             */
5403                cp->sv_resid = 0;
5404        }
5405#ifdef DEBUG_2_0_X
5406if (resid)
5407        printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5408#endif
5409
5410        /*
5411         *  Dequeue all queued CCBs for that device 
5412         *  not yet started by SCRIPTS.
5413         */
5414        i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
5415        i = sym_dequeue_from_squeue(np, i, cp->target, sdev->lun, -1);
5416
5417        /*
5418         *  Restart the SCRIPTS processor.
5419         */
5420        OUTL_DSP(np, SCRIPTA_BA(np, start));
5421
5422#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5423        if (cp->host_status == HS_COMPLETE &&
5424            cp->ssss_status == S_QUEUE_FULL) {
5425                if (!lp || lp->started_tags - i < 2)
5426                        goto weirdness;
5427                /*
5428                 *  Decrease queue depth as needed.
5429                 */
5430                lp->started_max = lp->started_tags - i - 1;
5431                lp->num_sgood = 0;
5432
5433                if (sym_verbose >= 2) {
5434                        sym_print_addr(cmd, " queue depth is now %d\n",
5435                                        lp->started_max);
5436                }
5437
5438                /*
5439                 *  Repair the CCB.
5440                 */
5441                cp->host_status = HS_BUSY;
5442                cp->ssss_status = S_ILLEGAL;
5443
5444                /*
5445                 *  Let's requeue it to device.
5446                 */
5447                sym_set_cam_status(cmd, DID_SOFT_ERROR);
5448                goto finish;
5449        }
5450weirdness:
5451#endif
5452        /*
5453         *  Build result in CAM ccb.
5454         */
5455        sym_set_cam_result_error(np, cp, resid);
5456
5457#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5458finish:
5459#endif
5460        /*
5461         *  Add this one to the COMP queue.
5462         */
5463        sym_remque(&cp->link_ccbq);
5464        sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
5465
5466        /*
5467         *  Complete all those commands with either error 
5468         *  or requeue condition.
5469         */
5470        sym_flush_comp_queue(np, 0);
5471
5472#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5473        /*
5474         *  Donnot start more than 1 command after an error.
5475         */
5476        sym_start_next_ccbs(np, lp, 1);
5477#endif
5478}
5479
5480/*
5481 *  Complete execution of a successful SCSI command.
5482 *
5483 *  Only successful commands go to the DONE queue, 
5484 *  since we need to have the SCRIPTS processor 
5485 *  stopped on any error condition.
5486 *  The SCRIPTS processor is running while we are 
5487 *  completing successful commands.
5488 */
5489void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp)
5490{
5491        struct sym_tcb *tp;
5492        struct sym_lcb *lp;
5493        struct scsi_cmnd *cmd;
5494        int resid;
5495
5496        /*
5497         *  Paranoid check. :)
5498         */
5499        if (!cp || !cp->cmd)
5500                return;
5501        assert (cp->host_status == HS_COMPLETE);
5502
5503        /*
5504         *  Get user command.
5505         */
5506        cmd = cp->cmd;
5507
5508        /*
5509         *  Get target and lun pointers.
5510         */
5511        tp = &np->target[cp->target];
5512        lp = sym_lp(tp, cp->lun);
5513
5514        /*
5515         *  If all data have been transferred, given than no
5516         *  extended error did occur, there is no residual.
5517         */
5518        resid = 0;
5519        if (cp->phys.head.lastp != cp->goalp)
5520                resid = sym_compute_residual(np, cp);
5521
5522        /*
5523         *  Wrong transfer residuals may be worse than just always 
5524         *  returning zero. User can disable this feature in 
5525         *  sym53c8xx.h. Residual support is enabled by default.
5526         */
5527        if (!SYM_SETUP_RESIDUAL_SUPPORT)
5528                resid  = 0;
5529#ifdef DEBUG_2_0_X
5530if (resid)
5531        printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5532#endif
5533
5534        /*
5535         *  Build result in CAM ccb.
5536         */
5537        sym_set_cam_result_ok(cp, cmd, resid);
5538
5539#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5540        /*
5541         *  If max number of started ccbs had been reduced,
5542         *  increase it if 200 good status received.
5543         */
5544        if (lp && lp->started_max < lp->started_limit) {
5545                ++lp->num_sgood;
5546                if (lp->num_sgood >= 200) {
5547                        lp->num_sgood = 0;
5548                        ++lp->started_max;
5549                        if (sym_verbose >= 2) {
5550                                sym_print_addr(cmd, " queue depth is now %d\n",
5551                                       lp->started_max);
5552                        }
5553                }
5554        }
5555#endif
5556
5557        /*
5558         *  Free our CCB.
5559         */
5560        sym_free_ccb (np, cp);
5561
5562#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5563        /*
5564         *  Requeue a couple of awaiting scsi commands.
5565         */
5566        if (!sym_que_empty(&lp->waiting_ccbq))
5567                sym_start_next_ccbs(np, lp, 2);
5568#endif
5569        /*
5570         *  Complete the command.
5571         */
5572        sym_xpt_done(np, cmd);
5573}
5574
5575/*
5576 *  Soft-attach the controller.
5577 */
5578int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram)
5579{
5580        struct sym_hcb *np = sym_get_hcb(shost);
5581        int i;
5582
5583        /*
5584         *  Get some info about the firmware.
5585         */
5586        np->scripta_sz   = fw->a_size;
5587        np->scriptb_sz   = fw->b_size;
5588        np->scriptz_sz   = fw->z_size;
5589        np->fw_setup     = fw->setup;
5590        np->fw_patch     = fw->patch;
5591        np->fw_name      = fw->name;
5592
5593        /*
5594         *  Save setting of some IO registers, so we will 
5595         *  be able to probe specific implementations.
5596         */
5597        sym_save_initial_setting (np);
5598
5599        /*
5600         *  Reset the chip now, since it has been reported 
5601         *  that SCSI clock calibration may not work properly 
5602         *  if the chip is currently active.
5603         */
5604        sym_chip_reset(np);
5605
5606        /*
5607         *  Prepare controller and devices settings, according 
5608         *  to chip features, user set-up and driver set-up.
5609         */
5610        sym_prepare_setting(shost, np, nvram);
5611
5612        /*
5613         *  Check the PCI clock frequency.
5614         *  Must be performed after prepare_setting since it destroys 
5615         *  STEST1 that is used to probe for the clock doubler.
5616         */
5617        i = sym_getpciclock(np);
5618        if (i > 37000 && !(np->features & FE_66MHZ))
5619                printf("%s: PCI BUS clock seems too high: %u KHz.\n",
5620                        sym_name(np), i);
5621
5622        /*
5623         *  Allocate the start queue.
5624         */
5625        np->squeue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
5626        if (!np->squeue)
5627                goto attach_failed;
5628        np->squeue_ba = vtobus(np->squeue);
5629
5630        /*
5631         *  Allocate the done queue.
5632         */
5633        np->dqueue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
5634        if (!np->dqueue)
5635                goto attach_failed;
5636        np->dqueue_ba = vtobus(np->dqueue);
5637
5638        /*
5639         *  Allocate the target bus address array.
5640         */
5641        np->targtbl = sym_calloc_dma(256, "TARGTBL");
5642        if (!np->targtbl)
5643                goto attach_failed;
5644        np->targtbl_ba = vtobus(np->targtbl);
5645
5646        /*
5647         *  Allocate SCRIPTS areas.
5648         */
5649        np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
5650        np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
5651        np->scriptz0 = sym_calloc_dma(np->scriptz_sz, "SCRIPTZ0");
5652        if (!np->scripta0 || !np->scriptb0 || !np->scriptz0)
5653                goto attach_failed;
5654
5655        /*
5656         *  Allocate the array of lists of CCBs hashed by DSA.
5657         */
5658        np->ccbh = kcalloc(CCB_HASH_SIZE, sizeof(struct sym_ccb **), GFP_KERNEL);
5659        if (!np->ccbh)
5660                goto attach_failed;
5661
5662        /*
5663         *  Initialyze the CCB free and busy queues.
5664         */
5665        sym_que_init(&np->free_ccbq);
5666        sym_que_init(&np->busy_ccbq);
5667        sym_que_init(&np->comp_ccbq);
5668
5669        /*
5670         *  Initialization for optional handling 
5671         *  of device queueing.
5672         */
5673#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5674        sym_que_init(&np->dummy_ccbq);
5675#endif
5676        /*
5677         *  Allocate some CCB. We need at least ONE.
5678         */
5679        if (!sym_alloc_ccb(np))
5680                goto attach_failed;
5681
5682        /*
5683         *  Calculate BUS addresses where we are going 
5684         *  to load the SCRIPTS.
5685         */
5686        np->scripta_ba  = vtobus(np->scripta0);
5687        np->scriptb_ba  = vtobus(np->scriptb0);
5688        np->scriptz_ba  = vtobus(np->scriptz0);
5689
5690        if (np->ram_ba) {
5691                np->scripta_ba = np->ram_ba;
5692                if (np->features & FE_RAM8K) {
5693                        np->scriptb_ba = np->scripta_ba + 4096;
5694#if 0   /* May get useful for 64 BIT PCI addressing */
5695                        np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
5696#endif
5697                }
5698        }
5699
5700        /*
5701         *  Copy scripts to controller instance.
5702         */
5703        memcpy(np->scripta0, fw->a_base, np->scripta_sz);
5704        memcpy(np->scriptb0, fw->b_base, np->scriptb_sz);
5705        memcpy(np->scriptz0, fw->z_base, np->scriptz_sz);
5706
5707        /*
5708         *  Setup variable parts in scripts and compute
5709         *  scripts bus addresses used from the C code.
5710         */
5711        np->fw_setup(np, fw);
5712
5713        /*
5714         *  Bind SCRIPTS with physical addresses usable by the 
5715         *  SCRIPTS processor (as seen from the BUS = BUS addresses).
5716         */
5717        sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
5718        sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
5719        sym_fw_bind_script(np, (u32 *) np->scriptz0, np->scriptz_sz);
5720
5721#ifdef SYM_CONF_IARB_SUPPORT
5722        /*
5723         *    If user wants IARB to be set when we win arbitration 
5724         *    and have other jobs, compute the max number of consecutive 
5725         *    settings of IARB hints before we leave devices a chance to 
5726         *    arbitrate for reselection.
5727         */
5728#ifdef  SYM_SETUP_IARB_MAX
5729        np->iarb_max = SYM_SETUP_IARB_MAX;
5730#else
5731        np->iarb_max = 4;
5732#endif
5733#endif
5734
5735        /*
5736         *  Prepare the idle and invalid task actions.
5737         */
5738        np->idletask.start      = cpu_to_scr(SCRIPTA_BA(np, idle));
5739        np->idletask.restart    = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5740        np->idletask_ba         = vtobus(&np->idletask);
5741
5742        np->notask.start        = cpu_to_scr(SCRIPTA_BA(np, idle));
5743        np->notask.restart      = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5744        np->notask_ba           = vtobus(&np->notask);
5745
5746        np->bad_itl.start       = cpu_to_scr(SCRIPTA_BA(np, idle));
5747        np->bad_itl.restart     = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5748        np->bad_itl_ba          = vtobus(&np->bad_itl);
5749
5750        np->bad_itlq.start      = cpu_to_scr(SCRIPTA_BA(np, idle));
5751        np->bad_itlq.restart    = cpu_to_scr(SCRIPTB_BA(np,bad_i_t_l_q));
5752        np->bad_itlq_ba         = vtobus(&np->bad_itlq);
5753
5754        /*
5755         *  Allocate and prepare the lun JUMP table that is used 
5756         *  for a target prior the probing of devices (bad lun table).
5757         *  A private table will be allocated for the target on the 
5758         *  first INQUIRY response received.
5759         */
5760        np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
5761        if (!np->badluntbl)
5762                goto attach_failed;
5763
5764        np->badlun_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5765        for (i = 0 ; i < 64 ; i++)      /* 64 luns/target, no less */
5766                np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
5767
5768        /*
5769         *  Prepare the bus address array that contains the bus 
5770         *  address of each target control block.
5771         *  For now, assume all logical units are wrong. :)
5772         */
5773        for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
5774                np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
5775                np->target[i].head.luntbl_sa =
5776                                cpu_to_scr(vtobus(np->badluntbl));
5777                np->target[i].head.lun0_sa =
5778                                cpu_to_scr(vtobus(&np->badlun_sa));
5779        }
5780
5781        /*
5782         *  Now check the cache handling of the pci chipset.
5783         */
5784        if (sym_snooptest (np)) {
5785                printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
5786                goto attach_failed;
5787        }
5788
5789        /*
5790         *  Sigh! we are done.
5791         */
5792        return 0;
5793
5794attach_failed:
5795        return -ENXIO;
5796}
5797
5798/*
5799 *  Free everything that has been allocated for this device.
5800 */
5801void sym_hcb_free(struct sym_hcb *np)
5802{
5803        SYM_QUEHEAD *qp;
5804        struct sym_ccb *cp;
5805        struct sym_tcb *tp;
5806        int target;
5807
5808        if (np->scriptz0)
5809                sym_mfree_dma(np->scriptz0, np->scriptz_sz, "SCRIPTZ0");
5810        if (np->scriptb0)
5811                sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
5812        if (np->scripta0)
5813                sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
5814        if (np->squeue)
5815                sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
5816        if (np->dqueue)
5817                sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
5818
5819        if (np->actccbs) {
5820                while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) {
5821                        cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5822                        sym_mfree_dma(cp, sizeof(*cp), "CCB");
5823                }
5824        }
5825        kfree(np->ccbh);
5826
5827        if (np->badluntbl)
5828                sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
5829
5830        for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
5831                tp = &np->target[target];
5832                if (tp->luntbl)
5833                        sym_mfree_dma(tp->luntbl, 256, "LUNTBL");
5834#if SYM_CONF_MAX_LUN > 1
5835                kfree(tp->lunmp);
5836#endif 
5837        }
5838        if (np->targtbl)
5839                sym_mfree_dma(np->targtbl, 256, "TARGTBL");
5840}
5841