linux/drivers/spi/amba-pl022.c
<<
>>
Prefs
   1/*
   2 * drivers/spi/amba-pl022.c
   3 *
   4 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
   5 *
   6 * Copyright (C) 2008-2009 ST-Ericsson AB
   7 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
   8 *
   9 * Author: Linus Walleij <linus.walleij@stericsson.com>
  10 *
  11 * Initial version inspired by:
  12 *      linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
  13 * Initial adoption to PL022 by:
  14 *      Sachin Verma <sachin.verma@st.com>
  15 *
  16 * This program is free software; you can redistribute it and/or modify
  17 * it under the terms of the GNU General Public License as published by
  18 * the Free Software Foundation; either version 2 of the License, or
  19 * (at your option) any later version.
  20 *
  21 * This program is distributed in the hope that it will be useful,
  22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  24 * GNU General Public License for more details.
  25 */
  26
  27/*
  28 * TODO:
  29 * - add timeout on polled transfers
  30 * - add generic DMA framework support
  31 */
  32
  33#include <linux/init.h>
  34#include <linux/module.h>
  35#include <linux/device.h>
  36#include <linux/ioport.h>
  37#include <linux/errno.h>
  38#include <linux/interrupt.h>
  39#include <linux/spi/spi.h>
  40#include <linux/workqueue.h>
  41#include <linux/delay.h>
  42#include <linux/clk.h>
  43#include <linux/err.h>
  44#include <linux/amba/bus.h>
  45#include <linux/amba/pl022.h>
  46#include <linux/io.h>
  47
  48/*
  49 * This macro is used to define some register default values.
  50 * reg is masked with mask, the OR:ed with an (again masked)
  51 * val shifted sb steps to the left.
  52 */
  53#define SSP_WRITE_BITS(reg, val, mask, sb) \
  54 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
  55
  56/*
  57 * This macro is also used to define some default values.
  58 * It will just shift val by sb steps to the left and mask
  59 * the result with mask.
  60 */
  61#define GEN_MASK_BITS(val, mask, sb) \
  62 (((val)<<(sb)) & (mask))
  63
  64#define DRIVE_TX                0
  65#define DO_NOT_DRIVE_TX         1
  66
  67#define DO_NOT_QUEUE_DMA        0
  68#define QUEUE_DMA               1
  69
  70#define RX_TRANSFER             1
  71#define TX_TRANSFER             2
  72
  73/*
  74 * Macros to access SSP Registers with their offsets
  75 */
  76#define SSP_CR0(r)      (r + 0x000)
  77#define SSP_CR1(r)      (r + 0x004)
  78#define SSP_DR(r)       (r + 0x008)
  79#define SSP_SR(r)       (r + 0x00C)
  80#define SSP_CPSR(r)     (r + 0x010)
  81#define SSP_IMSC(r)     (r + 0x014)
  82#define SSP_RIS(r)      (r + 0x018)
  83#define SSP_MIS(r)      (r + 0x01C)
  84#define SSP_ICR(r)      (r + 0x020)
  85#define SSP_DMACR(r)    (r + 0x024)
  86#define SSP_ITCR(r)     (r + 0x080)
  87#define SSP_ITIP(r)     (r + 0x084)
  88#define SSP_ITOP(r)     (r + 0x088)
  89#define SSP_TDR(r)      (r + 0x08C)
  90
  91#define SSP_PID0(r)     (r + 0xFE0)
  92#define SSP_PID1(r)     (r + 0xFE4)
  93#define SSP_PID2(r)     (r + 0xFE8)
  94#define SSP_PID3(r)     (r + 0xFEC)
  95
  96#define SSP_CID0(r)     (r + 0xFF0)
  97#define SSP_CID1(r)     (r + 0xFF4)
  98#define SSP_CID2(r)     (r + 0xFF8)
  99#define SSP_CID3(r)     (r + 0xFFC)
 100
 101/*
 102 * SSP Control Register 0  - SSP_CR0
 103 */
 104#define SSP_CR0_MASK_DSS        (0x1FUL << 0)
 105#define SSP_CR0_MASK_HALFDUP    (0x1UL << 5)
 106#define SSP_CR0_MASK_SPO        (0x1UL << 6)
 107#define SSP_CR0_MASK_SPH        (0x1UL << 7)
 108#define SSP_CR0_MASK_SCR        (0xFFUL << 8)
 109#define SSP_CR0_MASK_CSS        (0x1FUL << 16)
 110#define SSP_CR0_MASK_FRF        (0x3UL << 21)
 111
 112/*
 113 * SSP Control Register 0  - SSP_CR1
 114 */
 115#define SSP_CR1_MASK_LBM        (0x1UL << 0)
 116#define SSP_CR1_MASK_SSE        (0x1UL << 1)
 117#define SSP_CR1_MASK_MS         (0x1UL << 2)
 118#define SSP_CR1_MASK_SOD        (0x1UL << 3)
 119#define SSP_CR1_MASK_RENDN      (0x1UL << 4)
 120#define SSP_CR1_MASK_TENDN      (0x1UL << 5)
 121#define SSP_CR1_MASK_MWAIT      (0x1UL << 6)
 122#define SSP_CR1_MASK_RXIFLSEL   (0x7UL << 7)
 123#define SSP_CR1_MASK_TXIFLSEL   (0x7UL << 10)
 124
 125/*
 126 * SSP Data Register - SSP_DR
 127 */
 128#define SSP_DR_MASK_DATA        0xFFFFFFFF
 129
 130/*
 131 * SSP Status Register - SSP_SR
 132 */
 133#define SSP_SR_MASK_TFE         (0x1UL << 0) /* Transmit FIFO empty */
 134#define SSP_SR_MASK_TNF         (0x1UL << 1) /* Transmit FIFO not full */
 135#define SSP_SR_MASK_RNE         (0x1UL << 2) /* Receive FIFO not empty */
 136#define SSP_SR_MASK_RFF         (0x1UL << 3) /* Receive FIFO full */
 137#define SSP_SR_MASK_BSY         (0x1UL << 4) /* Busy Flag */
 138
 139/*
 140 * SSP Clock Prescale Register  - SSP_CPSR
 141 */
 142#define SSP_CPSR_MASK_CPSDVSR   (0xFFUL << 0)
 143
 144/*
 145 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
 146 */
 147#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
 148#define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
 149#define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
 150#define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
 151
 152/*
 153 * SSP Raw Interrupt Status Register - SSP_RIS
 154 */
 155/* Receive Overrun Raw Interrupt status */
 156#define SSP_RIS_MASK_RORRIS             (0x1UL << 0)
 157/* Receive Timeout Raw Interrupt status */
 158#define SSP_RIS_MASK_RTRIS              (0x1UL << 1)
 159/* Receive FIFO Raw Interrupt status */
 160#define SSP_RIS_MASK_RXRIS              (0x1UL << 2)
 161/* Transmit FIFO Raw Interrupt status */
 162#define SSP_RIS_MASK_TXRIS              (0x1UL << 3)
 163
 164/*
 165 * SSP Masked Interrupt Status Register - SSP_MIS
 166 */
 167/* Receive Overrun Masked Interrupt status */
 168#define SSP_MIS_MASK_RORMIS             (0x1UL << 0)
 169/* Receive Timeout Masked Interrupt status */
 170#define SSP_MIS_MASK_RTMIS              (0x1UL << 1)
 171/* Receive FIFO Masked Interrupt status */
 172#define SSP_MIS_MASK_RXMIS              (0x1UL << 2)
 173/* Transmit FIFO Masked Interrupt status */
 174#define SSP_MIS_MASK_TXMIS              (0x1UL << 3)
 175
 176/*
 177 * SSP Interrupt Clear Register - SSP_ICR
 178 */
 179/* Receive Overrun Raw Clear Interrupt bit */
 180#define SSP_ICR_MASK_RORIC              (0x1UL << 0)
 181/* Receive Timeout Clear Interrupt bit */
 182#define SSP_ICR_MASK_RTIC               (0x1UL << 1)
 183
 184/*
 185 * SSP DMA Control Register - SSP_DMACR
 186 */
 187/* Receive DMA Enable bit */
 188#define SSP_DMACR_MASK_RXDMAE           (0x1UL << 0)
 189/* Transmit DMA Enable bit */
 190#define SSP_DMACR_MASK_TXDMAE           (0x1UL << 1)
 191
 192/*
 193 * SSP Integration Test control Register - SSP_ITCR
 194 */
 195#define SSP_ITCR_MASK_ITEN              (0x1UL << 0)
 196#define SSP_ITCR_MASK_TESTFIFO          (0x1UL << 1)
 197
 198/*
 199 * SSP Integration Test Input Register - SSP_ITIP
 200 */
 201#define ITIP_MASK_SSPRXD                 (0x1UL << 0)
 202#define ITIP_MASK_SSPFSSIN               (0x1UL << 1)
 203#define ITIP_MASK_SSPCLKIN               (0x1UL << 2)
 204#define ITIP_MASK_RXDMAC                 (0x1UL << 3)
 205#define ITIP_MASK_TXDMAC                 (0x1UL << 4)
 206#define ITIP_MASK_SSPTXDIN               (0x1UL << 5)
 207
 208/*
 209 * SSP Integration Test output Register - SSP_ITOP
 210 */
 211#define ITOP_MASK_SSPTXD                 (0x1UL << 0)
 212#define ITOP_MASK_SSPFSSOUT              (0x1UL << 1)
 213#define ITOP_MASK_SSPCLKOUT              (0x1UL << 2)
 214#define ITOP_MASK_SSPOEn                 (0x1UL << 3)
 215#define ITOP_MASK_SSPCTLOEn              (0x1UL << 4)
 216#define ITOP_MASK_RORINTR                (0x1UL << 5)
 217#define ITOP_MASK_RTINTR                 (0x1UL << 6)
 218#define ITOP_MASK_RXINTR                 (0x1UL << 7)
 219#define ITOP_MASK_TXINTR                 (0x1UL << 8)
 220#define ITOP_MASK_INTR                   (0x1UL << 9)
 221#define ITOP_MASK_RXDMABREQ              (0x1UL << 10)
 222#define ITOP_MASK_RXDMASREQ              (0x1UL << 11)
 223#define ITOP_MASK_TXDMABREQ              (0x1UL << 12)
 224#define ITOP_MASK_TXDMASREQ              (0x1UL << 13)
 225
 226/*
 227 * SSP Test Data Register - SSP_TDR
 228 */
 229#define TDR_MASK_TESTDATA               (0xFFFFFFFF)
 230
 231/*
 232 * Message State
 233 * we use the spi_message.state (void *) pointer to
 234 * hold a single state value, that's why all this
 235 * (void *) casting is done here.
 236 */
 237#define STATE_START                     ((void *) 0)
 238#define STATE_RUNNING                   ((void *) 1)
 239#define STATE_DONE                      ((void *) 2)
 240#define STATE_ERROR                     ((void *) -1)
 241
 242/*
 243 * Queue State
 244 */
 245#define QUEUE_RUNNING                   (0)
 246#define QUEUE_STOPPED                   (1)
 247/*
 248 * SSP State - Whether Enabled or Disabled
 249 */
 250#define SSP_DISABLED                    (0)
 251#define SSP_ENABLED                     (1)
 252
 253/*
 254 * SSP DMA State - Whether DMA Enabled or Disabled
 255 */
 256#define SSP_DMA_DISABLED                (0)
 257#define SSP_DMA_ENABLED                 (1)
 258
 259/*
 260 * SSP Clock Defaults
 261 */
 262#define NMDK_SSP_DEFAULT_CLKRATE 0x2
 263#define NMDK_SSP_DEFAULT_PRESCALE 0x40
 264
 265/*
 266 * SSP Clock Parameter ranges
 267 */
 268#define CPSDVR_MIN 0x02
 269#define CPSDVR_MAX 0xFE
 270#define SCR_MIN 0x00
 271#define SCR_MAX 0xFF
 272
 273/*
 274 * SSP Interrupt related Macros
 275 */
 276#define DEFAULT_SSP_REG_IMSC  0x0UL
 277#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
 278#define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
 279
 280#define CLEAR_ALL_INTERRUPTS  0x3
 281
 282
 283/*
 284 * The type of reading going on on this chip
 285 */
 286enum ssp_reading {
 287        READING_NULL,
 288        READING_U8,
 289        READING_U16,
 290        READING_U32
 291};
 292
 293/**
 294 * The type of writing going on on this chip
 295 */
 296enum ssp_writing {
 297        WRITING_NULL,
 298        WRITING_U8,
 299        WRITING_U16,
 300        WRITING_U32
 301};
 302
 303/**
 304 * struct vendor_data - vendor-specific config parameters
 305 * for PL022 derivates
 306 * @fifodepth: depth of FIFOs (both)
 307 * @max_bpw: maximum number of bits per word
 308 * @unidir: supports unidirection transfers
 309 */
 310struct vendor_data {
 311        int fifodepth;
 312        int max_bpw;
 313        bool unidir;
 314};
 315
 316/**
 317 * struct pl022 - This is the private SSP driver data structure
 318 * @adev: AMBA device model hookup
 319 * @phybase: The physical memory where the SSP device resides
 320 * @virtbase: The virtual memory where the SSP is mapped
 321 * @master: SPI framework hookup
 322 * @master_info: controller-specific data from machine setup
 323 * @regs: SSP controller register's virtual address
 324 * @pump_messages: Work struct for scheduling work to the workqueue
 325 * @lock: spinlock to syncronise access to driver data
 326 * @workqueue: a workqueue on which any spi_message request is queued
 327 * @busy: workqueue is busy
 328 * @run: workqueue is running
 329 * @pump_transfers: Tasklet used in Interrupt Transfer mode
 330 * @cur_msg: Pointer to current spi_message being processed
 331 * @cur_transfer: Pointer to current spi_transfer
 332 * @cur_chip: pointer to current clients chip(assigned from controller_state)
 333 * @tx: current position in TX buffer to be read
 334 * @tx_end: end position in TX buffer to be read
 335 * @rx: current position in RX buffer to be written
 336 * @rx_end: end position in RX buffer to be written
 337 * @readingtype: the type of read currently going on
 338 * @writingtype: the type or write currently going on
 339 */
 340struct pl022 {
 341        struct amba_device              *adev;
 342        struct vendor_data              *vendor;
 343        resource_size_t                 phybase;
 344        void __iomem                    *virtbase;
 345        struct clk                      *clk;
 346        struct spi_master               *master;
 347        struct pl022_ssp_controller     *master_info;
 348        /* Driver message queue */
 349        struct workqueue_struct         *workqueue;
 350        struct work_struct              pump_messages;
 351        spinlock_t                      queue_lock;
 352        struct list_head                queue;
 353        int                             busy;
 354        int                             run;
 355        /* Message transfer pump */
 356        struct tasklet_struct           pump_transfers;
 357        struct spi_message              *cur_msg;
 358        struct spi_transfer             *cur_transfer;
 359        struct chip_data                *cur_chip;
 360        void                            *tx;
 361        void                            *tx_end;
 362        void                            *rx;
 363        void                            *rx_end;
 364        enum ssp_reading                read;
 365        enum ssp_writing                write;
 366};
 367
 368/**
 369 * struct chip_data - To maintain runtime state of SSP for each client chip
 370 * @cr0: Value of control register CR0 of SSP
 371 * @cr1: Value of control register CR1 of SSP
 372 * @dmacr: Value of DMA control Register of SSP
 373 * @cpsr: Value of Clock prescale register
 374 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
 375 * @enable_dma: Whether to enable DMA or not
 376 * @write: function ptr to be used to write when doing xfer for this chip
 377 * @read: function ptr to be used to read when doing xfer for this chip
 378 * @cs_control: chip select callback provided by chip
 379 * @xfer_type: polling/interrupt/DMA
 380 *
 381 * Runtime state of the SSP controller, maintained per chip,
 382 * This would be set according to the current message that would be served
 383 */
 384struct chip_data {
 385        u16 cr0;
 386        u16 cr1;
 387        u16 dmacr;
 388        u16 cpsr;
 389        u8 n_bytes;
 390        u8 enable_dma:1;
 391        enum ssp_reading read;
 392        enum ssp_writing write;
 393        void (*cs_control) (u32 command);
 394        int xfer_type;
 395};
 396
 397/**
 398 * null_cs_control - Dummy chip select function
 399 * @command: select/delect the chip
 400 *
 401 * If no chip select function is provided by client this is used as dummy
 402 * chip select
 403 */
 404static void null_cs_control(u32 command)
 405{
 406        pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
 407}
 408
 409/**
 410 * giveback - current spi_message is over, schedule next message and call
 411 * callback of this message. Assumes that caller already
 412 * set message->status; dma and pio irqs are blocked
 413 * @pl022: SSP driver private data structure
 414 */
 415static void giveback(struct pl022 *pl022)
 416{
 417        struct spi_transfer *last_transfer;
 418        unsigned long flags;
 419        struct spi_message *msg;
 420        void (*curr_cs_control) (u32 command);
 421
 422        /*
 423         * This local reference to the chip select function
 424         * is needed because we set curr_chip to NULL
 425         * as a step toward termininating the message.
 426         */
 427        curr_cs_control = pl022->cur_chip->cs_control;
 428        spin_lock_irqsave(&pl022->queue_lock, flags);
 429        msg = pl022->cur_msg;
 430        pl022->cur_msg = NULL;
 431        pl022->cur_transfer = NULL;
 432        pl022->cur_chip = NULL;
 433        queue_work(pl022->workqueue, &pl022->pump_messages);
 434        spin_unlock_irqrestore(&pl022->queue_lock, flags);
 435
 436        last_transfer = list_entry(msg->transfers.prev,
 437                                        struct spi_transfer,
 438                                        transfer_list);
 439
 440        /* Delay if requested before any change in chip select */
 441        if (last_transfer->delay_usecs)
 442                /*
 443                 * FIXME: This runs in interrupt context.
 444                 * Is this really smart?
 445                 */
 446                udelay(last_transfer->delay_usecs);
 447
 448        /*
 449         * Drop chip select UNLESS cs_change is true or we are returning
 450         * a message with an error, or next message is for another chip
 451         */
 452        if (!last_transfer->cs_change)
 453                curr_cs_control(SSP_CHIP_DESELECT);
 454        else {
 455                struct spi_message *next_msg;
 456
 457                /* Holding of cs was hinted, but we need to make sure
 458                 * the next message is for the same chip.  Don't waste
 459                 * time with the following tests unless this was hinted.
 460                 *
 461                 * We cannot postpone this until pump_messages, because
 462                 * after calling msg->complete (below) the driver that
 463                 * sent the current message could be unloaded, which
 464                 * could invalidate the cs_control() callback...
 465                 */
 466
 467                /* get a pointer to the next message, if any */
 468                spin_lock_irqsave(&pl022->queue_lock, flags);
 469                if (list_empty(&pl022->queue))
 470                        next_msg = NULL;
 471                else
 472                        next_msg = list_entry(pl022->queue.next,
 473                                        struct spi_message, queue);
 474                spin_unlock_irqrestore(&pl022->queue_lock, flags);
 475
 476                /* see if the next and current messages point
 477                 * to the same chip
 478                 */
 479                if (next_msg && next_msg->spi != msg->spi)
 480                        next_msg = NULL;
 481                if (!next_msg || msg->state == STATE_ERROR)
 482                        curr_cs_control(SSP_CHIP_DESELECT);
 483        }
 484        msg->state = NULL;
 485        if (msg->complete)
 486                msg->complete(msg->context);
 487        /* This message is completed, so let's turn off the clock! */
 488        clk_disable(pl022->clk);
 489}
 490
 491/**
 492 * flush - flush the FIFO to reach a clean state
 493 * @pl022: SSP driver private data structure
 494 */
 495static int flush(struct pl022 *pl022)
 496{
 497        unsigned long limit = loops_per_jiffy << 1;
 498
 499        dev_dbg(&pl022->adev->dev, "flush\n");
 500        do {
 501                while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 502                        readw(SSP_DR(pl022->virtbase));
 503        } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
 504        return limit;
 505}
 506
 507/**
 508 * restore_state - Load configuration of current chip
 509 * @pl022: SSP driver private data structure
 510 */
 511static void restore_state(struct pl022 *pl022)
 512{
 513        struct chip_data *chip = pl022->cur_chip;
 514
 515        writew(chip->cr0, SSP_CR0(pl022->virtbase));
 516        writew(chip->cr1, SSP_CR1(pl022->virtbase));
 517        writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
 518        writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
 519        writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
 520        writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
 521}
 522
 523/**
 524 * load_ssp_default_config - Load default configuration for SSP
 525 * @pl022: SSP driver private data structure
 526 */
 527
 528/*
 529 * Default SSP Register Values
 530 */
 531#define DEFAULT_SSP_REG_CR0 ( \
 532        GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)    | \
 533        GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP, 5) | \
 534        GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 535        GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 536        GEN_MASK_BITS(NMDK_SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
 537        GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS, 16) | \
 538        GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 21) \
 539)
 540
 541#define DEFAULT_SSP_REG_CR1 ( \
 542        GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
 543        GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
 544        GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
 545        GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
 546        GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN, 4) | \
 547        GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN, 5) | \
 548        GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT, 6) |\
 549        GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL, 7) | \
 550        GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL, 10) \
 551)
 552
 553#define DEFAULT_SSP_REG_CPSR ( \
 554        GEN_MASK_BITS(NMDK_SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
 555)
 556
 557#define DEFAULT_SSP_REG_DMACR (\
 558        GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
 559        GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
 560)
 561
 562
 563static void load_ssp_default_config(struct pl022 *pl022)
 564{
 565        writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
 566        writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
 567        writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
 568        writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
 569        writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
 570        writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
 571}
 572
 573/**
 574 * This will write to TX and read from RX according to the parameters
 575 * set in pl022.
 576 */
 577static void readwriter(struct pl022 *pl022)
 578{
 579
 580        /*
 581         * The FIFO depth is different inbetween primecell variants.
 582         * I believe filling in too much in the FIFO might cause
 583         * errons in 8bit wide transfers on ARM variants (just 8 words
 584         * FIFO, means only 8x8 = 64 bits in FIFO) at least.
 585         *
 586         * FIXME: currently we have no logic to account for this.
 587         * perhaps there is even something broken in HW regarding
 588         * 8bit transfers (it doesn't fail on 16bit) so this needs
 589         * more investigation...
 590         */
 591        dev_dbg(&pl022->adev->dev,
 592                "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
 593                __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
 594
 595        /* Read as much as you can */
 596        while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 597               && (pl022->rx < pl022->rx_end)) {
 598                switch (pl022->read) {
 599                case READING_NULL:
 600                        readw(SSP_DR(pl022->virtbase));
 601                        break;
 602                case READING_U8:
 603                        *(u8 *) (pl022->rx) =
 604                                readw(SSP_DR(pl022->virtbase)) & 0xFFU;
 605                        break;
 606                case READING_U16:
 607                        *(u16 *) (pl022->rx) =
 608                                (u16) readw(SSP_DR(pl022->virtbase));
 609                        break;
 610                case READING_U32:
 611                        *(u32 *) (pl022->rx) =
 612                                readl(SSP_DR(pl022->virtbase));
 613                        break;
 614                }
 615                pl022->rx += (pl022->cur_chip->n_bytes);
 616        }
 617        /*
 618         * Write as much as you can, while keeping an eye on the RX FIFO!
 619         */
 620        while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
 621               && (pl022->tx < pl022->tx_end)) {
 622                switch (pl022->write) {
 623                case WRITING_NULL:
 624                        writew(0x0, SSP_DR(pl022->virtbase));
 625                        break;
 626                case WRITING_U8:
 627                        writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
 628                        break;
 629                case WRITING_U16:
 630                        writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
 631                        break;
 632                case WRITING_U32:
 633                        writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
 634                        break;
 635                }
 636                pl022->tx += (pl022->cur_chip->n_bytes);
 637                /*
 638                 * This inner reader takes care of things appearing in the RX
 639                 * FIFO as we're transmitting. This will happen a lot since the
 640                 * clock starts running when you put things into the TX FIFO,
 641                 * and then things are continously clocked into the RX FIFO.
 642                 */
 643                while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 644                       && (pl022->rx < pl022->rx_end)) {
 645                        switch (pl022->read) {
 646                        case READING_NULL:
 647                                readw(SSP_DR(pl022->virtbase));
 648                                break;
 649                        case READING_U8:
 650                                *(u8 *) (pl022->rx) =
 651                                        readw(SSP_DR(pl022->virtbase)) & 0xFFU;
 652                                break;
 653                        case READING_U16:
 654                                *(u16 *) (pl022->rx) =
 655                                        (u16) readw(SSP_DR(pl022->virtbase));
 656                                break;
 657                        case READING_U32:
 658                                *(u32 *) (pl022->rx) =
 659                                        readl(SSP_DR(pl022->virtbase));
 660                                break;
 661                        }
 662                        pl022->rx += (pl022->cur_chip->n_bytes);
 663                }
 664        }
 665        /*
 666         * When we exit here the TX FIFO should be full and the RX FIFO
 667         * should be empty
 668         */
 669}
 670
 671
 672/**
 673 * next_transfer - Move to the Next transfer in the current spi message
 674 * @pl022: SSP driver private data structure
 675 *
 676 * This function moves though the linked list of spi transfers in the
 677 * current spi message and returns with the state of current spi
 678 * message i.e whether its last transfer is done(STATE_DONE) or
 679 * Next transfer is ready(STATE_RUNNING)
 680 */
 681static void *next_transfer(struct pl022 *pl022)
 682{
 683        struct spi_message *msg = pl022->cur_msg;
 684        struct spi_transfer *trans = pl022->cur_transfer;
 685
 686        /* Move to next transfer */
 687        if (trans->transfer_list.next != &msg->transfers) {
 688                pl022->cur_transfer =
 689                    list_entry(trans->transfer_list.next,
 690                               struct spi_transfer, transfer_list);
 691                return STATE_RUNNING;
 692        }
 693        return STATE_DONE;
 694}
 695/**
 696 * pl022_interrupt_handler - Interrupt handler for SSP controller
 697 *
 698 * This function handles interrupts generated for an interrupt based transfer.
 699 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
 700 * current message's state as STATE_ERROR and schedule the tasklet
 701 * pump_transfers which will do the postprocessing of the current message by
 702 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
 703 * more data, and writes data in TX FIFO till it is not full. If we complete
 704 * the transfer we move to the next transfer and schedule the tasklet.
 705 */
 706static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
 707{
 708        struct pl022 *pl022 = dev_id;
 709        struct spi_message *msg = pl022->cur_msg;
 710        u16 irq_status = 0;
 711        u16 flag = 0;
 712
 713        if (unlikely(!msg)) {
 714                dev_err(&pl022->adev->dev,
 715                        "bad message state in interrupt handler");
 716                /* Never fail */
 717                return IRQ_HANDLED;
 718        }
 719
 720        /* Read the Interrupt Status Register */
 721        irq_status = readw(SSP_MIS(pl022->virtbase));
 722
 723        if (unlikely(!irq_status))
 724                return IRQ_NONE;
 725
 726        /* This handles the error code interrupts */
 727        if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
 728                /*
 729                 * Overrun interrupt - bail out since our Data has been
 730                 * corrupted
 731                 */
 732                dev_err(&pl022->adev->dev,
 733                        "FIFO overrun\n");
 734                if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
 735                        dev_err(&pl022->adev->dev,
 736                                "RXFIFO is full\n");
 737                if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
 738                        dev_err(&pl022->adev->dev,
 739                                "TXFIFO is full\n");
 740
 741                /*
 742                 * Disable and clear interrupts, disable SSP,
 743                 * mark message with bad status so it can be
 744                 * retried.
 745                 */
 746                writew(DISABLE_ALL_INTERRUPTS,
 747                       SSP_IMSC(pl022->virtbase));
 748                writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
 749                writew((readw(SSP_CR1(pl022->virtbase)) &
 750                        (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
 751                msg->state = STATE_ERROR;
 752
 753                /* Schedule message queue handler */
 754                tasklet_schedule(&pl022->pump_transfers);
 755                return IRQ_HANDLED;
 756        }
 757
 758        readwriter(pl022);
 759
 760        if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
 761                flag = 1;
 762                /* Disable Transmit interrupt */
 763                writew(readw(SSP_IMSC(pl022->virtbase)) &
 764                       (~SSP_IMSC_MASK_TXIM),
 765                       SSP_IMSC(pl022->virtbase));
 766        }
 767
 768        /*
 769         * Since all transactions must write as much as shall be read,
 770         * we can conclude the entire transaction once RX is complete.
 771         * At this point, all TX will always be finished.
 772         */
 773        if (pl022->rx >= pl022->rx_end) {
 774                writew(DISABLE_ALL_INTERRUPTS,
 775                       SSP_IMSC(pl022->virtbase));
 776                writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
 777                if (unlikely(pl022->rx > pl022->rx_end)) {
 778                        dev_warn(&pl022->adev->dev, "read %u surplus "
 779                                 "bytes (did you request an odd "
 780                                 "number of bytes on a 16bit bus?)\n",
 781                                 (u32) (pl022->rx - pl022->rx_end));
 782                }
 783                /* Update total bytes transfered */
 784                msg->actual_length += pl022->cur_transfer->len;
 785                if (pl022->cur_transfer->cs_change)
 786                        pl022->cur_chip->
 787                                cs_control(SSP_CHIP_DESELECT);
 788                /* Move to next transfer */
 789                msg->state = next_transfer(pl022);
 790                tasklet_schedule(&pl022->pump_transfers);
 791                return IRQ_HANDLED;
 792        }
 793
 794        return IRQ_HANDLED;
 795}
 796
 797/**
 798 * This sets up the pointers to memory for the next message to
 799 * send out on the SPI bus.
 800 */
 801static int set_up_next_transfer(struct pl022 *pl022,
 802                                struct spi_transfer *transfer)
 803{
 804        int residue;
 805
 806        /* Sanity check the message for this bus width */
 807        residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
 808        if (unlikely(residue != 0)) {
 809                dev_err(&pl022->adev->dev,
 810                        "message of %u bytes to transmit but the current "
 811                        "chip bus has a data width of %u bytes!\n",
 812                        pl022->cur_transfer->len,
 813                        pl022->cur_chip->n_bytes);
 814                dev_err(&pl022->adev->dev, "skipping this message\n");
 815                return -EIO;
 816        }
 817        pl022->tx = (void *)transfer->tx_buf;
 818        pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
 819        pl022->rx = (void *)transfer->rx_buf;
 820        pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
 821        pl022->write =
 822            pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
 823        pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
 824        return 0;
 825}
 826
 827/**
 828 * pump_transfers - Tasklet function which schedules next interrupt transfer
 829 * when running in interrupt transfer mode.
 830 * @data: SSP driver private data structure
 831 *
 832 */
 833static void pump_transfers(unsigned long data)
 834{
 835        struct pl022 *pl022 = (struct pl022 *) data;
 836        struct spi_message *message = NULL;
 837        struct spi_transfer *transfer = NULL;
 838        struct spi_transfer *previous = NULL;
 839
 840        /* Get current state information */
 841        message = pl022->cur_msg;
 842        transfer = pl022->cur_transfer;
 843
 844        /* Handle for abort */
 845        if (message->state == STATE_ERROR) {
 846                message->status = -EIO;
 847                giveback(pl022);
 848                return;
 849        }
 850
 851        /* Handle end of message */
 852        if (message->state == STATE_DONE) {
 853                message->status = 0;
 854                giveback(pl022);
 855                return;
 856        }
 857
 858        /* Delay if requested at end of transfer before CS change */
 859        if (message->state == STATE_RUNNING) {
 860                previous = list_entry(transfer->transfer_list.prev,
 861                                        struct spi_transfer,
 862                                        transfer_list);
 863                if (previous->delay_usecs)
 864                        /*
 865                         * FIXME: This runs in interrupt context.
 866                         * Is this really smart?
 867                         */
 868                        udelay(previous->delay_usecs);
 869
 870                /* Drop chip select only if cs_change is requested */
 871                if (previous->cs_change)
 872                        pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
 873        } else {
 874                /* STATE_START */
 875                message->state = STATE_RUNNING;
 876        }
 877
 878        if (set_up_next_transfer(pl022, transfer)) {
 879                message->state = STATE_ERROR;
 880                message->status = -EIO;
 881                giveback(pl022);
 882                return;
 883        }
 884        /* Flush the FIFOs and let's go! */
 885        flush(pl022);
 886        writew(ENABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
 887}
 888
 889/**
 890 * NOT IMPLEMENTED
 891 * configure_dma - It configures the DMA pipes for DMA transfers
 892 * @data: SSP driver's private data structure
 893 *
 894 */
 895static int configure_dma(void *data)
 896{
 897        struct pl022 *pl022 = data;
 898        dev_dbg(&pl022->adev->dev, "configure DMA\n");
 899        return -ENOTSUPP;
 900}
 901
 902/**
 903 * do_dma_transfer - It handles transfers of the current message
 904 * if it is DMA xfer.
 905 * NOT FULLY IMPLEMENTED
 906 * @data: SSP driver's private data structure
 907 */
 908static void do_dma_transfer(void *data)
 909{
 910        struct pl022 *pl022 = data;
 911
 912        if (configure_dma(data)) {
 913                dev_dbg(&pl022->adev->dev, "configuration of DMA Failed!\n");
 914                goto err_config_dma;
 915        }
 916
 917        /* TODO: Implememt DMA setup of pipes here */
 918
 919        /* Enable target chip, set up transfer */
 920        pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
 921        if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
 922                /* Error path */
 923                pl022->cur_msg->state = STATE_ERROR;
 924                pl022->cur_msg->status = -EIO;
 925                giveback(pl022);
 926                return;
 927        }
 928        /* Enable SSP */
 929        writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
 930               SSP_CR1(pl022->virtbase));
 931
 932        /* TODO: Enable the DMA transfer here */
 933        return;
 934
 935 err_config_dma:
 936        pl022->cur_msg->state = STATE_ERROR;
 937        pl022->cur_msg->status = -EIO;
 938        giveback(pl022);
 939        return;
 940}
 941
 942static void do_interrupt_transfer(void *data)
 943{
 944        struct pl022 *pl022 = data;
 945
 946        /* Enable target chip */
 947        pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
 948        if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
 949                /* Error path */
 950                pl022->cur_msg->state = STATE_ERROR;
 951                pl022->cur_msg->status = -EIO;
 952                giveback(pl022);
 953                return;
 954        }
 955        /* Enable SSP, turn on interrupts */
 956        writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
 957               SSP_CR1(pl022->virtbase));
 958        writew(ENABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
 959}
 960
 961static void do_polling_transfer(void *data)
 962{
 963        struct pl022 *pl022 = data;
 964        struct spi_message *message = NULL;
 965        struct spi_transfer *transfer = NULL;
 966        struct spi_transfer *previous = NULL;
 967        struct chip_data *chip;
 968
 969        chip = pl022->cur_chip;
 970        message = pl022->cur_msg;
 971
 972        while (message->state != STATE_DONE) {
 973                /* Handle for abort */
 974                if (message->state == STATE_ERROR)
 975                        break;
 976                transfer = pl022->cur_transfer;
 977
 978                /* Delay if requested at end of transfer */
 979                if (message->state == STATE_RUNNING) {
 980                        previous =
 981                            list_entry(transfer->transfer_list.prev,
 982                                       struct spi_transfer, transfer_list);
 983                        if (previous->delay_usecs)
 984                                udelay(previous->delay_usecs);
 985                        if (previous->cs_change)
 986                                pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
 987                } else {
 988                        /* STATE_START */
 989                        message->state = STATE_RUNNING;
 990                        pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
 991                }
 992
 993                /* Configuration Changing Per Transfer */
 994                if (set_up_next_transfer(pl022, transfer)) {
 995                        /* Error path */
 996                        message->state = STATE_ERROR;
 997                        break;
 998                }
 999                /* Flush FIFOs and enable SSP */
1000                flush(pl022);
1001                writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1002                       SSP_CR1(pl022->virtbase));
1003
1004                dev_dbg(&pl022->adev->dev, "POLLING TRANSFER ONGOING ... \n");
1005                /* FIXME: insert a timeout so we don't hang here indefinately */
1006                while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end)
1007                        readwriter(pl022);
1008
1009                /* Update total byte transfered */
1010                message->actual_length += pl022->cur_transfer->len;
1011                if (pl022->cur_transfer->cs_change)
1012                        pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
1013                /* Move to next transfer */
1014                message->state = next_transfer(pl022);
1015        }
1016
1017        /* Handle end of message */
1018        if (message->state == STATE_DONE)
1019                message->status = 0;
1020        else
1021                message->status = -EIO;
1022
1023        giveback(pl022);
1024        return;
1025}
1026
1027/**
1028 * pump_messages - Workqueue function which processes spi message queue
1029 * @data: pointer to private data of SSP driver
1030 *
1031 * This function checks if there is any spi message in the queue that
1032 * needs processing and delegate control to appropriate function
1033 * do_polling_transfer()/do_interrupt_transfer()/do_dma_transfer()
1034 * based on the kind of the transfer
1035 *
1036 */
1037static void pump_messages(struct work_struct *work)
1038{
1039        struct pl022 *pl022 =
1040                container_of(work, struct pl022, pump_messages);
1041        unsigned long flags;
1042
1043        /* Lock queue and check for queue work */
1044        spin_lock_irqsave(&pl022->queue_lock, flags);
1045        if (list_empty(&pl022->queue) || pl022->run == QUEUE_STOPPED) {
1046                pl022->busy = 0;
1047                spin_unlock_irqrestore(&pl022->queue_lock, flags);
1048                return;
1049        }
1050        /* Make sure we are not already running a message */
1051        if (pl022->cur_msg) {
1052                spin_unlock_irqrestore(&pl022->queue_lock, flags);
1053                return;
1054        }
1055        /* Extract head of queue */
1056        pl022->cur_msg =
1057            list_entry(pl022->queue.next, struct spi_message, queue);
1058
1059        list_del_init(&pl022->cur_msg->queue);
1060        pl022->busy = 1;
1061        spin_unlock_irqrestore(&pl022->queue_lock, flags);
1062
1063        /* Initial message state */
1064        pl022->cur_msg->state = STATE_START;
1065        pl022->cur_transfer = list_entry(pl022->cur_msg->transfers.next,
1066                                            struct spi_transfer,
1067                                            transfer_list);
1068
1069        /* Setup the SPI using the per chip configuration */
1070        pl022->cur_chip = spi_get_ctldata(pl022->cur_msg->spi);
1071        /*
1072         * We enable the clock here, then the clock will be disabled when
1073         * giveback() is called in each method (poll/interrupt/DMA)
1074         */
1075        clk_enable(pl022->clk);
1076        restore_state(pl022);
1077        flush(pl022);
1078
1079        if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1080                do_polling_transfer(pl022);
1081        else if (pl022->cur_chip->xfer_type == INTERRUPT_TRANSFER)
1082                do_interrupt_transfer(pl022);
1083        else
1084                do_dma_transfer(pl022);
1085}
1086
1087
1088static int __init init_queue(struct pl022 *pl022)
1089{
1090        INIT_LIST_HEAD(&pl022->queue);
1091        spin_lock_init(&pl022->queue_lock);
1092
1093        pl022->run = QUEUE_STOPPED;
1094        pl022->busy = 0;
1095
1096        tasklet_init(&pl022->pump_transfers,
1097                        pump_transfers, (unsigned long)pl022);
1098
1099        INIT_WORK(&pl022->pump_messages, pump_messages);
1100        pl022->workqueue = create_singlethread_workqueue(
1101                                        dev_name(pl022->master->dev.parent));
1102        if (pl022->workqueue == NULL)
1103                return -EBUSY;
1104
1105        return 0;
1106}
1107
1108
1109static int start_queue(struct pl022 *pl022)
1110{
1111        unsigned long flags;
1112
1113        spin_lock_irqsave(&pl022->queue_lock, flags);
1114
1115        if (pl022->run == QUEUE_RUNNING || pl022->busy) {
1116                spin_unlock_irqrestore(&pl022->queue_lock, flags);
1117                return -EBUSY;
1118        }
1119
1120        pl022->run = QUEUE_RUNNING;
1121        pl022->cur_msg = NULL;
1122        pl022->cur_transfer = NULL;
1123        pl022->cur_chip = NULL;
1124        spin_unlock_irqrestore(&pl022->queue_lock, flags);
1125
1126        queue_work(pl022->workqueue, &pl022->pump_messages);
1127
1128        return 0;
1129}
1130
1131
1132static int stop_queue(struct pl022 *pl022)
1133{
1134        unsigned long flags;
1135        unsigned limit = 500;
1136        int status = 0;
1137
1138        spin_lock_irqsave(&pl022->queue_lock, flags);
1139
1140        /* This is a bit lame, but is optimized for the common execution path.
1141         * A wait_queue on the pl022->busy could be used, but then the common
1142         * execution path (pump_messages) would be required to call wake_up or
1143         * friends on every SPI message. Do this instead */
1144        pl022->run = QUEUE_STOPPED;
1145        while (!list_empty(&pl022->queue) && pl022->busy && limit--) {
1146                spin_unlock_irqrestore(&pl022->queue_lock, flags);
1147                msleep(10);
1148                spin_lock_irqsave(&pl022->queue_lock, flags);
1149        }
1150
1151        if (!list_empty(&pl022->queue) || pl022->busy)
1152                status = -EBUSY;
1153
1154        spin_unlock_irqrestore(&pl022->queue_lock, flags);
1155
1156        return status;
1157}
1158
1159static int destroy_queue(struct pl022 *pl022)
1160{
1161        int status;
1162
1163        status = stop_queue(pl022);
1164        /* we are unloading the module or failing to load (only two calls
1165         * to this routine), and neither call can handle a return value.
1166         * However, destroy_workqueue calls flush_workqueue, and that will
1167         * block until all work is done.  If the reason that stop_queue
1168         * timed out is that the work will never finish, then it does no
1169         * good to call destroy_workqueue, so return anyway. */
1170        if (status != 0)
1171                return status;
1172
1173        destroy_workqueue(pl022->workqueue);
1174
1175        return 0;
1176}
1177
1178static int verify_controller_parameters(struct pl022 *pl022,
1179                                        struct pl022_config_chip *chip_info)
1180{
1181        if ((chip_info->lbm != LOOPBACK_ENABLED)
1182            && (chip_info->lbm != LOOPBACK_DISABLED)) {
1183                dev_err(chip_info->dev,
1184                        "loopback Mode is configured incorrectly\n");
1185                return -EINVAL;
1186        }
1187        if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1188            || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1189                dev_err(chip_info->dev,
1190                        "interface is configured incorrectly\n");
1191                return -EINVAL;
1192        }
1193        if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1194            (!pl022->vendor->unidir)) {
1195                dev_err(chip_info->dev,
1196                        "unidirectional mode not supported in this "
1197                        "hardware version\n");
1198                return -EINVAL;
1199        }
1200        if ((chip_info->hierarchy != SSP_MASTER)
1201            && (chip_info->hierarchy != SSP_SLAVE)) {
1202                dev_err(chip_info->dev,
1203                        "hierarchy is configured incorrectly\n");
1204                return -EINVAL;
1205        }
1206        if (((chip_info->clk_freq).cpsdvsr < CPSDVR_MIN)
1207            || ((chip_info->clk_freq).cpsdvsr > CPSDVR_MAX)) {
1208                dev_err(chip_info->dev,
1209                        "cpsdvsr is configured incorrectly\n");
1210                return -EINVAL;
1211        }
1212        if ((chip_info->endian_rx != SSP_RX_MSB)
1213            && (chip_info->endian_rx != SSP_RX_LSB)) {
1214                dev_err(chip_info->dev,
1215                        "RX FIFO endianess is configured incorrectly\n");
1216                return -EINVAL;
1217        }
1218        if ((chip_info->endian_tx != SSP_TX_MSB)
1219            && (chip_info->endian_tx != SSP_TX_LSB)) {
1220                dev_err(chip_info->dev,
1221                        "TX FIFO endianess is configured incorrectly\n");
1222                return -EINVAL;
1223        }
1224        if ((chip_info->data_size < SSP_DATA_BITS_4)
1225            || (chip_info->data_size > SSP_DATA_BITS_32)) {
1226                dev_err(chip_info->dev,
1227                        "DATA Size is configured incorrectly\n");
1228                return -EINVAL;
1229        }
1230        if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1231            && (chip_info->com_mode != DMA_TRANSFER)
1232            && (chip_info->com_mode != POLLING_TRANSFER)) {
1233                dev_err(chip_info->dev,
1234                        "Communication mode is configured incorrectly\n");
1235                return -EINVAL;
1236        }
1237        if ((chip_info->rx_lev_trig < SSP_RX_1_OR_MORE_ELEM)
1238            || (chip_info->rx_lev_trig > SSP_RX_32_OR_MORE_ELEM)) {
1239                dev_err(chip_info->dev,
1240                        "RX FIFO Trigger Level is configured incorrectly\n");
1241                return -EINVAL;
1242        }
1243        if ((chip_info->tx_lev_trig < SSP_TX_1_OR_MORE_EMPTY_LOC)
1244            || (chip_info->tx_lev_trig > SSP_TX_32_OR_MORE_EMPTY_LOC)) {
1245                dev_err(chip_info->dev,
1246                        "TX FIFO Trigger Level is configured incorrectly\n");
1247                return -EINVAL;
1248        }
1249        if (chip_info->iface == SSP_INTERFACE_MOTOROLA_SPI) {
1250                if ((chip_info->clk_phase != SSP_CLK_FIRST_EDGE)
1251                    && (chip_info->clk_phase != SSP_CLK_SECOND_EDGE)) {
1252                        dev_err(chip_info->dev,
1253                                "Clock Phase is configured incorrectly\n");
1254                        return -EINVAL;
1255                }
1256                if ((chip_info->clk_pol != SSP_CLK_POL_IDLE_LOW)
1257                    && (chip_info->clk_pol != SSP_CLK_POL_IDLE_HIGH)) {
1258                        dev_err(chip_info->dev,
1259                                "Clock Polarity is configured incorrectly\n");
1260                        return -EINVAL;
1261                }
1262        }
1263        if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1264                if ((chip_info->ctrl_len < SSP_BITS_4)
1265                    || (chip_info->ctrl_len > SSP_BITS_32)) {
1266                        dev_err(chip_info->dev,
1267                                "CTRL LEN is configured incorrectly\n");
1268                        return -EINVAL;
1269                }
1270                if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1271                    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1272                        dev_err(chip_info->dev,
1273                                "Wait State is configured incorrectly\n");
1274                        return -EINVAL;
1275                }
1276                if ((chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1277                    && (chip_info->duplex !=
1278                        SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1279                        dev_err(chip_info->dev,
1280                                "DUPLEX is configured incorrectly\n");
1281                        return -EINVAL;
1282                }
1283        }
1284        if (chip_info->cs_control == NULL) {
1285                dev_warn(chip_info->dev,
1286                        "Chip Select Function is NULL for this chip\n");
1287                chip_info->cs_control = null_cs_control;
1288        }
1289        return 0;
1290}
1291
1292/**
1293 * pl022_transfer - transfer function registered to SPI master framework
1294 * @spi: spi device which is requesting transfer
1295 * @msg: spi message which is to handled is queued to driver queue
1296 *
1297 * This function is registered to the SPI framework for this SPI master
1298 * controller. It will queue the spi_message in the queue of driver if
1299 * the queue is not stopped and return.
1300 */
1301static int pl022_transfer(struct spi_device *spi, struct spi_message *msg)
1302{
1303        struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1304        unsigned long flags;
1305
1306        spin_lock_irqsave(&pl022->queue_lock, flags);
1307
1308        if (pl022->run == QUEUE_STOPPED) {
1309                spin_unlock_irqrestore(&pl022->queue_lock, flags);
1310                return -ESHUTDOWN;
1311        }
1312        msg->actual_length = 0;
1313        msg->status = -EINPROGRESS;
1314        msg->state = STATE_START;
1315
1316        list_add_tail(&msg->queue, &pl022->queue);
1317        if (pl022->run == QUEUE_RUNNING && !pl022->busy)
1318                queue_work(pl022->workqueue, &pl022->pump_messages);
1319
1320        spin_unlock_irqrestore(&pl022->queue_lock, flags);
1321        return 0;
1322}
1323
1324static int calculate_effective_freq(struct pl022 *pl022,
1325                                    int freq,
1326                                    struct ssp_clock_params *clk_freq)
1327{
1328        /* Lets calculate the frequency parameters */
1329        u16 cpsdvsr = 2;
1330        u16 scr = 0;
1331        bool freq_found = false;
1332        u32 rate;
1333        u32 max_tclk;
1334        u32 min_tclk;
1335
1336        rate = clk_get_rate(pl022->clk);
1337        /* cpsdvscr = 2 & scr 0 */
1338        max_tclk = (rate / (CPSDVR_MIN * (1 + SCR_MIN)));
1339        /* cpsdvsr = 254 & scr = 255 */
1340        min_tclk = (rate / (CPSDVR_MAX * (1 + SCR_MAX)));
1341
1342        if ((freq <= max_tclk) && (freq >= min_tclk)) {
1343                while (cpsdvsr <= CPSDVR_MAX && !freq_found) {
1344                        while (scr <= SCR_MAX && !freq_found) {
1345                                if ((rate /
1346                                     (cpsdvsr * (1 + scr))) > freq)
1347                                        scr += 1;
1348                                else {
1349                                        /*
1350                                         * This bool is made true when
1351                                         * effective frequency >=
1352                                         * target frequency is found
1353                                         */
1354                                        freq_found = true;
1355                                        if ((rate /
1356                                             (cpsdvsr * (1 + scr))) != freq) {
1357                                                if (scr == SCR_MIN) {
1358                                                        cpsdvsr -= 2;
1359                                                        scr = SCR_MAX;
1360                                                } else
1361                                                        scr -= 1;
1362                                        }
1363                                }
1364                        }
1365                        if (!freq_found) {
1366                                cpsdvsr += 2;
1367                                scr = SCR_MIN;
1368                        }
1369                }
1370                if (cpsdvsr != 0) {
1371                        dev_dbg(&pl022->adev->dev,
1372                                "SSP Effective Frequency is %u\n",
1373                                (rate / (cpsdvsr * (1 + scr))));
1374                        clk_freq->cpsdvsr = (u8) (cpsdvsr & 0xFF);
1375                        clk_freq->scr = (u8) (scr & 0xFF);
1376                        dev_dbg(&pl022->adev->dev,
1377                                "SSP cpsdvsr = %d, scr = %d\n",
1378                                clk_freq->cpsdvsr, clk_freq->scr);
1379                }
1380        } else {
1381                dev_err(&pl022->adev->dev,
1382                        "controller data is incorrect: out of range frequency");
1383                return -EINVAL;
1384        }
1385        return 0;
1386}
1387
1388/**
1389 * NOT IMPLEMENTED
1390 * process_dma_info - Processes the DMA info provided by client drivers
1391 * @chip_info: chip info provided by client device
1392 * @chip: Runtime state maintained by the SSP controller for each spi device
1393 *
1394 * This function processes and stores DMA config provided by client driver
1395 * into the runtime state maintained by the SSP controller driver
1396 */
1397static int process_dma_info(struct pl022_config_chip *chip_info,
1398                            struct chip_data *chip)
1399{
1400        dev_err(chip_info->dev,
1401                "cannot process DMA info, DMA not implemented!\n");
1402        return -ENOTSUPP;
1403}
1404
1405/**
1406 * pl022_setup - setup function registered to SPI master framework
1407 * @spi: spi device which is requesting setup
1408 *
1409 * This function is registered to the SPI framework for this SPI master
1410 * controller. If it is the first time when setup is called by this device,
1411 * this function will initialize the runtime state for this chip and save
1412 * the same in the device structure. Else it will update the runtime info
1413 * with the updated chip info. Nothing is really being written to the
1414 * controller hardware here, that is not done until the actual transfer
1415 * commence.
1416 */
1417
1418/* FIXME: JUST GUESSING the spi->mode bits understood by this driver */
1419#define MODEBITS        (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
1420                        | SPI_LSB_FIRST | SPI_LOOP)
1421
1422static int pl022_setup(struct spi_device *spi)
1423{
1424        struct pl022_config_chip *chip_info;
1425        struct chip_data *chip;
1426        int status = 0;
1427        struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1428
1429        if (spi->mode & ~MODEBITS) {
1430                dev_dbg(&spi->dev, "unsupported mode bits %x\n",
1431                        spi->mode & ~MODEBITS);
1432                return -EINVAL;
1433        }
1434
1435        if (!spi->max_speed_hz)
1436                return -EINVAL;
1437
1438        /* Get controller_state if one is supplied */
1439        chip = spi_get_ctldata(spi);
1440
1441        if (chip == NULL) {
1442                chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1443                if (!chip) {
1444                        dev_err(&spi->dev,
1445                                "cannot allocate controller state\n");
1446                        return -ENOMEM;
1447                }
1448                dev_dbg(&spi->dev,
1449                        "allocated memory for controller's runtime state\n");
1450        }
1451
1452        /* Get controller data if one is supplied */
1453        chip_info = spi->controller_data;
1454
1455        if (chip_info == NULL) {
1456                /* spi_board_info.controller_data not is supplied */
1457                dev_dbg(&spi->dev,
1458                        "using default controller_data settings\n");
1459
1460                chip_info =
1461                        kzalloc(sizeof(struct pl022_config_chip), GFP_KERNEL);
1462
1463                if (!chip_info) {
1464                        dev_err(&spi->dev,
1465                                "cannot allocate controller data\n");
1466                        status = -ENOMEM;
1467                        goto err_first_setup;
1468                }
1469
1470                dev_dbg(&spi->dev, "allocated memory for controller data\n");
1471
1472                /* Pointer back to the SPI device */
1473                chip_info->dev = &spi->dev;
1474                /*
1475                 * Set controller data default values:
1476                 * Polling is supported by default
1477                 */
1478                chip_info->lbm = LOOPBACK_DISABLED;
1479                chip_info->com_mode = POLLING_TRANSFER;
1480                chip_info->iface = SSP_INTERFACE_MOTOROLA_SPI;
1481                chip_info->hierarchy = SSP_SLAVE;
1482                chip_info->slave_tx_disable = DO_NOT_DRIVE_TX;
1483                chip_info->endian_tx = SSP_TX_LSB;
1484                chip_info->endian_rx = SSP_RX_LSB;
1485                chip_info->data_size = SSP_DATA_BITS_12;
1486                chip_info->rx_lev_trig = SSP_RX_1_OR_MORE_ELEM;
1487                chip_info->tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC;
1488                chip_info->clk_phase = SSP_CLK_SECOND_EDGE;
1489                chip_info->clk_pol = SSP_CLK_POL_IDLE_LOW;
1490                chip_info->ctrl_len = SSP_BITS_8;
1491                chip_info->wait_state = SSP_MWIRE_WAIT_ZERO;
1492                chip_info->duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX;
1493                chip_info->cs_control = null_cs_control;
1494        } else {
1495                dev_dbg(&spi->dev,
1496                        "using user supplied controller_data settings\n");
1497        }
1498
1499        /*
1500         * We can override with custom divisors, else we use the board
1501         * frequency setting
1502         */
1503        if ((0 == chip_info->clk_freq.cpsdvsr)
1504            && (0 == chip_info->clk_freq.scr)) {
1505                status = calculate_effective_freq(pl022,
1506                                                  spi->max_speed_hz,
1507                                                  &chip_info->clk_freq);
1508                if (status < 0)
1509                        goto err_config_params;
1510        } else {
1511                if ((chip_info->clk_freq.cpsdvsr % 2) != 0)
1512                        chip_info->clk_freq.cpsdvsr =
1513                                chip_info->clk_freq.cpsdvsr - 1;
1514        }
1515        status = verify_controller_parameters(pl022, chip_info);
1516        if (status) {
1517                dev_err(&spi->dev, "controller data is incorrect");
1518                goto err_config_params;
1519        }
1520        /* Now set controller state based on controller data */
1521        chip->xfer_type = chip_info->com_mode;
1522        chip->cs_control = chip_info->cs_control;
1523
1524        if (chip_info->data_size <= 8) {
1525                dev_dbg(&spi->dev, "1 <= n <=8 bits per word\n");
1526                chip->n_bytes = 1;
1527                chip->read = READING_U8;
1528                chip->write = WRITING_U8;
1529        } else if (chip_info->data_size <= 16) {
1530                dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1531                chip->n_bytes = 2;
1532                chip->read = READING_U16;
1533                chip->write = WRITING_U16;
1534        } else {
1535                if (pl022->vendor->max_bpw >= 32) {
1536                        dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1537                        chip->n_bytes = 4;
1538                        chip->read = READING_U32;
1539                        chip->write = WRITING_U32;
1540                } else {
1541                        dev_err(&spi->dev,
1542                                "illegal data size for this controller!\n");
1543                        dev_err(&spi->dev,
1544                                "a standard pl022 can only handle "
1545                                "1 <= n <= 16 bit words\n");
1546                        goto err_config_params;
1547                }
1548        }
1549
1550        /* Now Initialize all register settings required for this chip */
1551        chip->cr0 = 0;
1552        chip->cr1 = 0;
1553        chip->dmacr = 0;
1554        chip->cpsr = 0;
1555        if ((chip_info->com_mode == DMA_TRANSFER)
1556            && ((pl022->master_info)->enable_dma)) {
1557                chip->enable_dma = 1;
1558                dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1559                status = process_dma_info(chip_info, chip);
1560                if (status < 0)
1561                        goto err_config_params;
1562                SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1563                               SSP_DMACR_MASK_RXDMAE, 0);
1564                SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1565                               SSP_DMACR_MASK_TXDMAE, 1);
1566        } else {
1567                chip->enable_dma = 0;
1568                dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1569                SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1570                               SSP_DMACR_MASK_RXDMAE, 0);
1571                SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1572                               SSP_DMACR_MASK_TXDMAE, 1);
1573        }
1574
1575        chip->cpsr = chip_info->clk_freq.cpsdvsr;
1576
1577        SSP_WRITE_BITS(chip->cr0, chip_info->data_size, SSP_CR0_MASK_DSS, 0);
1578        SSP_WRITE_BITS(chip->cr0, chip_info->duplex, SSP_CR0_MASK_HALFDUP, 5);
1579        SSP_WRITE_BITS(chip->cr0, chip_info->clk_pol, SSP_CR0_MASK_SPO, 6);
1580        SSP_WRITE_BITS(chip->cr0, chip_info->clk_phase, SSP_CR0_MASK_SPH, 7);
1581        SSP_WRITE_BITS(chip->cr0, chip_info->clk_freq.scr, SSP_CR0_MASK_SCR, 8);
1582        SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len, SSP_CR0_MASK_CSS, 16);
1583        SSP_WRITE_BITS(chip->cr0, chip_info->iface, SSP_CR0_MASK_FRF, 21);
1584        SSP_WRITE_BITS(chip->cr1, chip_info->lbm, SSP_CR1_MASK_LBM, 0);
1585        SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
1586        SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
1587        SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD, 3);
1588        SSP_WRITE_BITS(chip->cr1, chip_info->endian_rx, SSP_CR1_MASK_RENDN, 4);
1589        SSP_WRITE_BITS(chip->cr1, chip_info->endian_tx, SSP_CR1_MASK_TENDN, 5);
1590        SSP_WRITE_BITS(chip->cr1, chip_info->wait_state, SSP_CR1_MASK_MWAIT, 6);
1591        SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig, SSP_CR1_MASK_RXIFLSEL, 7);
1592        SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig, SSP_CR1_MASK_TXIFLSEL, 10);
1593
1594        /* Save controller_state */
1595        spi_set_ctldata(spi, chip);
1596        return status;
1597 err_config_params:
1598 err_first_setup:
1599        kfree(chip);
1600        return status;
1601}
1602
1603/**
1604 * pl022_cleanup - cleanup function registered to SPI master framework
1605 * @spi: spi device which is requesting cleanup
1606 *
1607 * This function is registered to the SPI framework for this SPI master
1608 * controller. It will free the runtime state of chip.
1609 */
1610static void pl022_cleanup(struct spi_device *spi)
1611{
1612        struct chip_data *chip = spi_get_ctldata(spi);
1613
1614        spi_set_ctldata(spi, NULL);
1615        kfree(chip);
1616}
1617
1618
1619static int __init
1620pl022_probe(struct amba_device *adev, struct amba_id *id)
1621{
1622        struct device *dev = &adev->dev;
1623        struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
1624        struct spi_master *master;
1625        struct pl022 *pl022 = NULL;     /*Data for this driver */
1626        int status = 0;
1627
1628        dev_info(&adev->dev,
1629                 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
1630        if (platform_info == NULL) {
1631                dev_err(&adev->dev, "probe - no platform data supplied\n");
1632                status = -ENODEV;
1633                goto err_no_pdata;
1634        }
1635
1636        /* Allocate master with space for data */
1637        master = spi_alloc_master(dev, sizeof(struct pl022));
1638        if (master == NULL) {
1639                dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
1640                status = -ENOMEM;
1641                goto err_no_master;
1642        }
1643
1644        pl022 = spi_master_get_devdata(master);
1645        pl022->master = master;
1646        pl022->master_info = platform_info;
1647        pl022->adev = adev;
1648        pl022->vendor = id->data;
1649
1650        /*
1651         * Bus Number Which has been Assigned to this SSP controller
1652         * on this board
1653         */
1654        master->bus_num = platform_info->bus_id;
1655        master->num_chipselect = platform_info->num_chipselect;
1656        master->cleanup = pl022_cleanup;
1657        master->setup = pl022_setup;
1658        master->transfer = pl022_transfer;
1659
1660        dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
1661
1662        status = amba_request_regions(adev, NULL);
1663        if (status)
1664                goto err_no_ioregion;
1665
1666        pl022->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
1667        if (pl022->virtbase == NULL) {
1668                status = -ENOMEM;
1669                goto err_no_ioremap;
1670        }
1671        printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
1672               adev->res.start, pl022->virtbase);
1673
1674        pl022->clk = clk_get(&adev->dev, NULL);
1675        if (IS_ERR(pl022->clk)) {
1676                status = PTR_ERR(pl022->clk);
1677                dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
1678                goto err_no_clk;
1679        }
1680
1681        /* Disable SSP */
1682        clk_enable(pl022->clk);
1683        writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
1684               SSP_CR1(pl022->virtbase));
1685        load_ssp_default_config(pl022);
1686        clk_disable(pl022->clk);
1687
1688        status = request_irq(adev->irq[0], pl022_interrupt_handler, 0, "pl022",
1689                             pl022);
1690        if (status < 0) {
1691                dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
1692                goto err_no_irq;
1693        }
1694        /* Initialize and start queue */
1695        status = init_queue(pl022);
1696        if (status != 0) {
1697                dev_err(&adev->dev, "probe - problem initializing queue\n");
1698                goto err_init_queue;
1699        }
1700        status = start_queue(pl022);
1701        if (status != 0) {
1702                dev_err(&adev->dev, "probe - problem starting queue\n");
1703                goto err_start_queue;
1704        }
1705        /* Register with the SPI framework */
1706        amba_set_drvdata(adev, pl022);
1707        status = spi_register_master(master);
1708        if (status != 0) {
1709                dev_err(&adev->dev,
1710                        "probe - problem registering spi master\n");
1711                goto err_spi_register;
1712        }
1713        dev_dbg(dev, "probe succeded\n");
1714        return 0;
1715
1716 err_spi_register:
1717 err_start_queue:
1718 err_init_queue:
1719        destroy_queue(pl022);
1720        free_irq(adev->irq[0], pl022);
1721 err_no_irq:
1722        clk_put(pl022->clk);
1723 err_no_clk:
1724        iounmap(pl022->virtbase);
1725 err_no_ioremap:
1726        amba_release_regions(adev);
1727 err_no_ioregion:
1728        spi_master_put(master);
1729 err_no_master:
1730 err_no_pdata:
1731        return status;
1732}
1733
1734static int __exit
1735pl022_remove(struct amba_device *adev)
1736{
1737        struct pl022 *pl022 = amba_get_drvdata(adev);
1738        int status = 0;
1739        if (!pl022)
1740                return 0;
1741
1742        /* Remove the queue */
1743        status = destroy_queue(pl022);
1744        if (status != 0) {
1745                dev_err(&adev->dev,
1746                        "queue remove failed (%d)\n", status);
1747                return status;
1748        }
1749        load_ssp_default_config(pl022);
1750        free_irq(adev->irq[0], pl022);
1751        clk_disable(pl022->clk);
1752        clk_put(pl022->clk);
1753        iounmap(pl022->virtbase);
1754        amba_release_regions(adev);
1755        tasklet_disable(&pl022->pump_transfers);
1756        spi_unregister_master(pl022->master);
1757        spi_master_put(pl022->master);
1758        amba_set_drvdata(adev, NULL);
1759        dev_dbg(&adev->dev, "remove succeded\n");
1760        return 0;
1761}
1762
1763#ifdef CONFIG_PM
1764static int pl022_suspend(struct amba_device *adev, pm_message_t state)
1765{
1766        struct pl022 *pl022 = amba_get_drvdata(adev);
1767        int status = 0;
1768
1769        status = stop_queue(pl022);
1770        if (status) {
1771                dev_warn(&adev->dev, "suspend cannot stop queue\n");
1772                return status;
1773        }
1774
1775        clk_enable(pl022->clk);
1776        load_ssp_default_config(pl022);
1777        clk_disable(pl022->clk);
1778        dev_dbg(&adev->dev, "suspended\n");
1779        return 0;
1780}
1781
1782static int pl022_resume(struct amba_device *adev)
1783{
1784        struct pl022 *pl022 = amba_get_drvdata(adev);
1785        int status = 0;
1786
1787        /* Start the queue running */
1788        status = start_queue(pl022);
1789        if (status)
1790                dev_err(&adev->dev, "problem starting queue (%d)\n", status);
1791        else
1792                dev_dbg(&adev->dev, "resumed\n");
1793
1794        return status;
1795}
1796#else
1797#define pl022_suspend NULL
1798#define pl022_resume NULL
1799#endif  /* CONFIG_PM */
1800
1801static struct vendor_data vendor_arm = {
1802        .fifodepth = 8,
1803        .max_bpw = 16,
1804        .unidir = false,
1805};
1806
1807
1808static struct vendor_data vendor_st = {
1809        .fifodepth = 32,
1810        .max_bpw = 32,
1811        .unidir = false,
1812};
1813
1814static struct amba_id pl022_ids[] = {
1815        {
1816                /*
1817                 * ARM PL022 variant, this has a 16bit wide
1818                 * and 8 locations deep TX/RX FIFO
1819                 */
1820                .id     = 0x00041022,
1821                .mask   = 0x000fffff,
1822                .data   = &vendor_arm,
1823        },
1824        {
1825                /*
1826                 * ST Micro derivative, this has 32bit wide
1827                 * and 32 locations deep TX/RX FIFO
1828                 */
1829                .id     = 0x01080022,
1830                .mask   = 0xffffffff,
1831                .data   = &vendor_st,
1832        },
1833        { 0, 0 },
1834};
1835
1836static struct amba_driver pl022_driver = {
1837        .drv = {
1838                .name   = "ssp-pl022",
1839        },
1840        .id_table       = pl022_ids,
1841        .probe          = pl022_probe,
1842        .remove         = __exit_p(pl022_remove),
1843        .suspend        = pl022_suspend,
1844        .resume         = pl022_resume,
1845};
1846
1847
1848static int __init pl022_init(void)
1849{
1850        return amba_driver_register(&pl022_driver);
1851}
1852
1853module_init(pl022_init);
1854
1855static void __exit pl022_exit(void)
1856{
1857        amba_driver_unregister(&pl022_driver);
1858}
1859
1860module_exit(pl022_exit);
1861
1862MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
1863MODULE_DESCRIPTION("PL022 SSP Controller Driver");
1864MODULE_LICENSE("GPL");
1865