linux/drivers/spi/atmel_spi.c
<<
>>
Prefs
   1/*
   2 * Driver for Atmel AT32 and AT91 SPI Controllers
   3 *
   4 * Copyright (C) 2006 Atmel Corporation
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11#include <linux/kernel.h>
  12#include <linux/init.h>
  13#include <linux/clk.h>
  14#include <linux/module.h>
  15#include <linux/platform_device.h>
  16#include <linux/delay.h>
  17#include <linux/dma-mapping.h>
  18#include <linux/err.h>
  19#include <linux/interrupt.h>
  20#include <linux/spi/spi.h>
  21
  22#include <asm/io.h>
  23#include <mach/board.h>
  24#include <mach/gpio.h>
  25#include <mach/cpu.h>
  26
  27#include "atmel_spi.h"
  28
  29/*
  30 * The core SPI transfer engine just talks to a register bank to set up
  31 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
  32 * framework provides the base clock, subdivided for each spi_device.
  33 */
  34struct atmel_spi {
  35        spinlock_t              lock;
  36
  37        void __iomem            *regs;
  38        int                     irq;
  39        struct clk              *clk;
  40        struct platform_device  *pdev;
  41        struct spi_device       *stay;
  42
  43        u8                      stopping;
  44        struct list_head        queue;
  45        struct spi_transfer     *current_transfer;
  46        unsigned long           current_remaining_bytes;
  47        struct spi_transfer     *next_transfer;
  48        unsigned long           next_remaining_bytes;
  49
  50        void                    *buffer;
  51        dma_addr_t              buffer_dma;
  52};
  53
  54/* Controller-specific per-slave state */
  55struct atmel_spi_device {
  56        unsigned int            npcs_pin;
  57        u32                     csr;
  58};
  59
  60#define BUFFER_SIZE             PAGE_SIZE
  61#define INVALID_DMA_ADDRESS     0xffffffff
  62
  63/*
  64 * Version 2 of the SPI controller has
  65 *  - CR.LASTXFER
  66 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
  67 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
  68 *  - SPI_CSRx.CSAAT
  69 *  - SPI_CSRx.SBCR allows faster clocking
  70 *
  71 * We can determine the controller version by reading the VERSION
  72 * register, but I haven't checked that it exists on all chips, and
  73 * this is cheaper anyway.
  74 */
  75static bool atmel_spi_is_v2(void)
  76{
  77        return !cpu_is_at91rm9200();
  78}
  79
  80/*
  81 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
  82 * they assume that spi slave device state will not change on deselect, so
  83 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
  84 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
  85 * controllers have CSAAT and friends.
  86 *
  87 * Since the CSAAT functionality is a bit weird on newer controllers as
  88 * well, we use GPIO to control nCSx pins on all controllers, updating
  89 * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
  90 * support active-high chipselects despite the controller's belief that
  91 * only active-low devices/systems exists.
  92 *
  93 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
  94 * right when driven with GPIO.  ("Mode Fault does not allow more than one
  95 * Master on Chip Select 0.")  No workaround exists for that ... so for
  96 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
  97 * and (c) will trigger that first erratum in some cases.
  98 *
  99 * TODO: Test if the atmel_spi_is_v2() branch below works on
 100 * AT91RM9200 if we use some other register than CSR0. However, don't
 101 * do this unconditionally since AP7000 has an errata where the BITS
 102 * field in CSR0 overrides all other CSRs.
 103 */
 104
 105static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
 106{
 107        struct atmel_spi_device *asd = spi->controller_state;
 108        unsigned active = spi->mode & SPI_CS_HIGH;
 109        u32 mr;
 110
 111        if (atmel_spi_is_v2()) {
 112                /*
 113                 * Always use CSR0. This ensures that the clock
 114                 * switches to the correct idle polarity before we
 115                 * toggle the CS.
 116                 */
 117                spi_writel(as, CSR0, asd->csr);
 118                spi_writel(as, MR, SPI_BF(PCS, 0x0e) | SPI_BIT(MODFDIS)
 119                                | SPI_BIT(MSTR));
 120                mr = spi_readl(as, MR);
 121                gpio_set_value(asd->npcs_pin, active);
 122        } else {
 123                u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
 124                int i;
 125                u32 csr;
 126
 127                /* Make sure clock polarity is correct */
 128                for (i = 0; i < spi->master->num_chipselect; i++) {
 129                        csr = spi_readl(as, CSR0 + 4 * i);
 130                        if ((csr ^ cpol) & SPI_BIT(CPOL))
 131                                spi_writel(as, CSR0 + 4 * i,
 132                                                csr ^ SPI_BIT(CPOL));
 133                }
 134
 135                mr = spi_readl(as, MR);
 136                mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
 137                if (spi->chip_select != 0)
 138                        gpio_set_value(asd->npcs_pin, active);
 139                spi_writel(as, MR, mr);
 140        }
 141
 142        dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
 143                        asd->npcs_pin, active ? " (high)" : "",
 144                        mr);
 145}
 146
 147static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
 148{
 149        struct atmel_spi_device *asd = spi->controller_state;
 150        unsigned active = spi->mode & SPI_CS_HIGH;
 151        u32 mr;
 152
 153        /* only deactivate *this* device; sometimes transfers to
 154         * another device may be active when this routine is called.
 155         */
 156        mr = spi_readl(as, MR);
 157        if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
 158                mr = SPI_BFINS(PCS, 0xf, mr);
 159                spi_writel(as, MR, mr);
 160        }
 161
 162        dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
 163                        asd->npcs_pin, active ? " (low)" : "",
 164                        mr);
 165
 166        if (atmel_spi_is_v2() || spi->chip_select != 0)
 167                gpio_set_value(asd->npcs_pin, !active);
 168}
 169
 170static inline int atmel_spi_xfer_is_last(struct spi_message *msg,
 171                                        struct spi_transfer *xfer)
 172{
 173        return msg->transfers.prev == &xfer->transfer_list;
 174}
 175
 176static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer)
 177{
 178        return xfer->delay_usecs == 0 && !xfer->cs_change;
 179}
 180
 181static void atmel_spi_next_xfer_data(struct spi_master *master,
 182                                struct spi_transfer *xfer,
 183                                dma_addr_t *tx_dma,
 184                                dma_addr_t *rx_dma,
 185                                u32 *plen)
 186{
 187        struct atmel_spi        *as = spi_master_get_devdata(master);
 188        u32                     len = *plen;
 189
 190        /* use scratch buffer only when rx or tx data is unspecified */
 191        if (xfer->rx_buf)
 192                *rx_dma = xfer->rx_dma + xfer->len - len;
 193        else {
 194                *rx_dma = as->buffer_dma;
 195                if (len > BUFFER_SIZE)
 196                        len = BUFFER_SIZE;
 197        }
 198        if (xfer->tx_buf)
 199                *tx_dma = xfer->tx_dma + xfer->len - len;
 200        else {
 201                *tx_dma = as->buffer_dma;
 202                if (len > BUFFER_SIZE)
 203                        len = BUFFER_SIZE;
 204                memset(as->buffer, 0, len);
 205                dma_sync_single_for_device(&as->pdev->dev,
 206                                as->buffer_dma, len, DMA_TO_DEVICE);
 207        }
 208
 209        *plen = len;
 210}
 211
 212/*
 213 * Submit next transfer for DMA.
 214 * lock is held, spi irq is blocked
 215 */
 216static void atmel_spi_next_xfer(struct spi_master *master,
 217                                struct spi_message *msg)
 218{
 219        struct atmel_spi        *as = spi_master_get_devdata(master);
 220        struct spi_transfer     *xfer;
 221        u32                     len, remaining;
 222        u32                     ieval;
 223        dma_addr_t              tx_dma, rx_dma;
 224
 225        if (!as->current_transfer)
 226                xfer = list_entry(msg->transfers.next,
 227                                struct spi_transfer, transfer_list);
 228        else if (!as->next_transfer)
 229                xfer = list_entry(as->current_transfer->transfer_list.next,
 230                                struct spi_transfer, transfer_list);
 231        else
 232                xfer = NULL;
 233
 234        if (xfer) {
 235                spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 236
 237                len = xfer->len;
 238                atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 239                remaining = xfer->len - len;
 240
 241                spi_writel(as, RPR, rx_dma);
 242                spi_writel(as, TPR, tx_dma);
 243
 244                if (msg->spi->bits_per_word > 8)
 245                        len >>= 1;
 246                spi_writel(as, RCR, len);
 247                spi_writel(as, TCR, len);
 248
 249                dev_dbg(&msg->spi->dev,
 250                        "  start xfer %p: len %u tx %p/%08x rx %p/%08x\n",
 251                        xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
 252                        xfer->rx_buf, xfer->rx_dma);
 253        } else {
 254                xfer = as->next_transfer;
 255                remaining = as->next_remaining_bytes;
 256        }
 257
 258        as->current_transfer = xfer;
 259        as->current_remaining_bytes = remaining;
 260
 261        if (remaining > 0)
 262                len = remaining;
 263        else if (!atmel_spi_xfer_is_last(msg, xfer)
 264                        && atmel_spi_xfer_can_be_chained(xfer)) {
 265                xfer = list_entry(xfer->transfer_list.next,
 266                                struct spi_transfer, transfer_list);
 267                len = xfer->len;
 268        } else
 269                xfer = NULL;
 270
 271        as->next_transfer = xfer;
 272
 273        if (xfer) {
 274                u32     total;
 275
 276                total = len;
 277                atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 278                as->next_remaining_bytes = total - len;
 279
 280                spi_writel(as, RNPR, rx_dma);
 281                spi_writel(as, TNPR, tx_dma);
 282
 283                if (msg->spi->bits_per_word > 8)
 284                        len >>= 1;
 285                spi_writel(as, RNCR, len);
 286                spi_writel(as, TNCR, len);
 287
 288                dev_dbg(&msg->spi->dev,
 289                        "  next xfer %p: len %u tx %p/%08x rx %p/%08x\n",
 290                        xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
 291                        xfer->rx_buf, xfer->rx_dma);
 292                ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES);
 293        } else {
 294                spi_writel(as, RNCR, 0);
 295                spi_writel(as, TNCR, 0);
 296                ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES);
 297        }
 298
 299        /* REVISIT: We're waiting for ENDRX before we start the next
 300         * transfer because we need to handle some difficult timing
 301         * issues otherwise. If we wait for ENDTX in one transfer and
 302         * then starts waiting for ENDRX in the next, it's difficult
 303         * to tell the difference between the ENDRX interrupt we're
 304         * actually waiting for and the ENDRX interrupt of the
 305         * previous transfer.
 306         *
 307         * It should be doable, though. Just not now...
 308         */
 309        spi_writel(as, IER, ieval);
 310        spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
 311}
 312
 313static void atmel_spi_next_message(struct spi_master *master)
 314{
 315        struct atmel_spi        *as = spi_master_get_devdata(master);
 316        struct spi_message      *msg;
 317        struct spi_device       *spi;
 318
 319        BUG_ON(as->current_transfer);
 320
 321        msg = list_entry(as->queue.next, struct spi_message, queue);
 322        spi = msg->spi;
 323
 324        dev_dbg(master->dev.parent, "start message %p for %s\n",
 325                        msg, dev_name(&spi->dev));
 326
 327        /* select chip if it's not still active */
 328        if (as->stay) {
 329                if (as->stay != spi) {
 330                        cs_deactivate(as, as->stay);
 331                        cs_activate(as, spi);
 332                }
 333                as->stay = NULL;
 334        } else
 335                cs_activate(as, spi);
 336
 337        atmel_spi_next_xfer(master, msg);
 338}
 339
 340/*
 341 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
 342 *  - The buffer is either valid for CPU access, else NULL
 343 *  - If the buffer is valid, so is its DMA addresss
 344 *
 345 * This driver manages the dma addresss unless message->is_dma_mapped.
 346 */
 347static int
 348atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
 349{
 350        struct device   *dev = &as->pdev->dev;
 351
 352        xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
 353        if (xfer->tx_buf) {
 354                xfer->tx_dma = dma_map_single(dev,
 355                                (void *) xfer->tx_buf, xfer->len,
 356                                DMA_TO_DEVICE);
 357                if (dma_mapping_error(dev, xfer->tx_dma))
 358                        return -ENOMEM;
 359        }
 360        if (xfer->rx_buf) {
 361                xfer->rx_dma = dma_map_single(dev,
 362                                xfer->rx_buf, xfer->len,
 363                                DMA_FROM_DEVICE);
 364                if (dma_mapping_error(dev, xfer->rx_dma)) {
 365                        if (xfer->tx_buf)
 366                                dma_unmap_single(dev,
 367                                                xfer->tx_dma, xfer->len,
 368                                                DMA_TO_DEVICE);
 369                        return -ENOMEM;
 370                }
 371        }
 372        return 0;
 373}
 374
 375static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
 376                                     struct spi_transfer *xfer)
 377{
 378        if (xfer->tx_dma != INVALID_DMA_ADDRESS)
 379                dma_unmap_single(master->dev.parent, xfer->tx_dma,
 380                                 xfer->len, DMA_TO_DEVICE);
 381        if (xfer->rx_dma != INVALID_DMA_ADDRESS)
 382                dma_unmap_single(master->dev.parent, xfer->rx_dma,
 383                                 xfer->len, DMA_FROM_DEVICE);
 384}
 385
 386static void
 387atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as,
 388                struct spi_message *msg, int status, int stay)
 389{
 390        if (!stay || status < 0)
 391                cs_deactivate(as, msg->spi);
 392        else
 393                as->stay = msg->spi;
 394
 395        list_del(&msg->queue);
 396        msg->status = status;
 397
 398        dev_dbg(master->dev.parent,
 399                "xfer complete: %u bytes transferred\n",
 400                msg->actual_length);
 401
 402        spin_unlock(&as->lock);
 403        msg->complete(msg->context);
 404        spin_lock(&as->lock);
 405
 406        as->current_transfer = NULL;
 407        as->next_transfer = NULL;
 408
 409        /* continue if needed */
 410        if (list_empty(&as->queue) || as->stopping)
 411                spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 412        else
 413                atmel_spi_next_message(master);
 414}
 415
 416static irqreturn_t
 417atmel_spi_interrupt(int irq, void *dev_id)
 418{
 419        struct spi_master       *master = dev_id;
 420        struct atmel_spi        *as = spi_master_get_devdata(master);
 421        struct spi_message      *msg;
 422        struct spi_transfer     *xfer;
 423        u32                     status, pending, imr;
 424        int                     ret = IRQ_NONE;
 425
 426        spin_lock(&as->lock);
 427
 428        xfer = as->current_transfer;
 429        msg = list_entry(as->queue.next, struct spi_message, queue);
 430
 431        imr = spi_readl(as, IMR);
 432        status = spi_readl(as, SR);
 433        pending = status & imr;
 434
 435        if (pending & SPI_BIT(OVRES)) {
 436                int timeout;
 437
 438                ret = IRQ_HANDLED;
 439
 440                spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
 441                                     | SPI_BIT(OVRES)));
 442
 443                /*
 444                 * When we get an overrun, we disregard the current
 445                 * transfer. Data will not be copied back from any
 446                 * bounce buffer and msg->actual_len will not be
 447                 * updated with the last xfer.
 448                 *
 449                 * We will also not process any remaning transfers in
 450                 * the message.
 451                 *
 452                 * First, stop the transfer and unmap the DMA buffers.
 453                 */
 454                spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 455                if (!msg->is_dma_mapped)
 456                        atmel_spi_dma_unmap_xfer(master, xfer);
 457
 458                /* REVISIT: udelay in irq is unfriendly */
 459                if (xfer->delay_usecs)
 460                        udelay(xfer->delay_usecs);
 461
 462                dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n",
 463                         spi_readl(as, TCR), spi_readl(as, RCR));
 464
 465                /*
 466                 * Clean up DMA registers and make sure the data
 467                 * registers are empty.
 468                 */
 469                spi_writel(as, RNCR, 0);
 470                spi_writel(as, TNCR, 0);
 471                spi_writel(as, RCR, 0);
 472                spi_writel(as, TCR, 0);
 473                for (timeout = 1000; timeout; timeout--)
 474                        if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
 475                                break;
 476                if (!timeout)
 477                        dev_warn(master->dev.parent,
 478                                 "timeout waiting for TXEMPTY");
 479                while (spi_readl(as, SR) & SPI_BIT(RDRF))
 480                        spi_readl(as, RDR);
 481
 482                /* Clear any overrun happening while cleaning up */
 483                spi_readl(as, SR);
 484
 485                atmel_spi_msg_done(master, as, msg, -EIO, 0);
 486        } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
 487                ret = IRQ_HANDLED;
 488
 489                spi_writel(as, IDR, pending);
 490
 491                if (as->current_remaining_bytes == 0) {
 492                        msg->actual_length += xfer->len;
 493
 494                        if (!msg->is_dma_mapped)
 495                                atmel_spi_dma_unmap_xfer(master, xfer);
 496
 497                        /* REVISIT: udelay in irq is unfriendly */
 498                        if (xfer->delay_usecs)
 499                                udelay(xfer->delay_usecs);
 500
 501                        if (atmel_spi_xfer_is_last(msg, xfer)) {
 502                                /* report completed message */
 503                                atmel_spi_msg_done(master, as, msg, 0,
 504                                                xfer->cs_change);
 505                        } else {
 506                                if (xfer->cs_change) {
 507                                        cs_deactivate(as, msg->spi);
 508                                        udelay(1);
 509                                        cs_activate(as, msg->spi);
 510                                }
 511
 512                                /*
 513                                 * Not done yet. Submit the next transfer.
 514                                 *
 515                                 * FIXME handle protocol options for xfer
 516                                 */
 517                                atmel_spi_next_xfer(master, msg);
 518                        }
 519                } else {
 520                        /*
 521                         * Keep going, we still have data to send in
 522                         * the current transfer.
 523                         */
 524                        atmel_spi_next_xfer(master, msg);
 525                }
 526        }
 527
 528        spin_unlock(&as->lock);
 529
 530        return ret;
 531}
 532
 533static int atmel_spi_setup(struct spi_device *spi)
 534{
 535        struct atmel_spi        *as;
 536        struct atmel_spi_device *asd;
 537        u32                     scbr, csr;
 538        unsigned int            bits = spi->bits_per_word;
 539        unsigned long           bus_hz;
 540        unsigned int            npcs_pin;
 541        int                     ret;
 542
 543        as = spi_master_get_devdata(spi->master);
 544
 545        if (as->stopping)
 546                return -ESHUTDOWN;
 547
 548        if (spi->chip_select > spi->master->num_chipselect) {
 549                dev_dbg(&spi->dev,
 550                                "setup: invalid chipselect %u (%u defined)\n",
 551                                spi->chip_select, spi->master->num_chipselect);
 552                return -EINVAL;
 553        }
 554
 555        if (bits < 8 || bits > 16) {
 556                dev_dbg(&spi->dev,
 557                                "setup: invalid bits_per_word %u (8 to 16)\n",
 558                                bits);
 559                return -EINVAL;
 560        }
 561
 562        /* see notes above re chipselect */
 563        if (!atmel_spi_is_v2()
 564                        && spi->chip_select == 0
 565                        && (spi->mode & SPI_CS_HIGH)) {
 566                dev_dbg(&spi->dev, "setup: can't be active-high\n");
 567                return -EINVAL;
 568        }
 569
 570        /* v1 chips start out at half the peripheral bus speed. */
 571        bus_hz = clk_get_rate(as->clk);
 572        if (!atmel_spi_is_v2())
 573                bus_hz /= 2;
 574
 575        if (spi->max_speed_hz) {
 576                /*
 577                 * Calculate the lowest divider that satisfies the
 578                 * constraint, assuming div32/fdiv/mbz == 0.
 579                 */
 580                scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz);
 581
 582                /*
 583                 * If the resulting divider doesn't fit into the
 584                 * register bitfield, we can't satisfy the constraint.
 585                 */
 586                if (scbr >= (1 << SPI_SCBR_SIZE)) {
 587                        dev_dbg(&spi->dev,
 588                                "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
 589                                spi->max_speed_hz, scbr, bus_hz/255);
 590                        return -EINVAL;
 591                }
 592        } else
 593                /* speed zero means "as slow as possible" */
 594                scbr = 0xff;
 595
 596        csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8);
 597        if (spi->mode & SPI_CPOL)
 598                csr |= SPI_BIT(CPOL);
 599        if (!(spi->mode & SPI_CPHA))
 600                csr |= SPI_BIT(NCPHA);
 601
 602        /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
 603         *
 604         * DLYBCT would add delays between words, slowing down transfers.
 605         * It could potentially be useful to cope with DMA bottlenecks, but
 606         * in those cases it's probably best to just use a lower bitrate.
 607         */
 608        csr |= SPI_BF(DLYBS, 0);
 609        csr |= SPI_BF(DLYBCT, 0);
 610
 611        /* chipselect must have been muxed as GPIO (e.g. in board setup) */
 612        npcs_pin = (unsigned int)spi->controller_data;
 613        asd = spi->controller_state;
 614        if (!asd) {
 615                asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
 616                if (!asd)
 617                        return -ENOMEM;
 618
 619                ret = gpio_request(npcs_pin, dev_name(&spi->dev));
 620                if (ret) {
 621                        kfree(asd);
 622                        return ret;
 623                }
 624
 625                asd->npcs_pin = npcs_pin;
 626                spi->controller_state = asd;
 627                gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
 628        } else {
 629                unsigned long           flags;
 630
 631                spin_lock_irqsave(&as->lock, flags);
 632                if (as->stay == spi)
 633                        as->stay = NULL;
 634                cs_deactivate(as, spi);
 635                spin_unlock_irqrestore(&as->lock, flags);
 636        }
 637
 638        asd->csr = csr;
 639
 640        dev_dbg(&spi->dev,
 641                "setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n",
 642                bus_hz / scbr, bits, spi->mode, spi->chip_select, csr);
 643
 644        if (!atmel_spi_is_v2())
 645                spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
 646
 647        return 0;
 648}
 649
 650static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg)
 651{
 652        struct atmel_spi        *as;
 653        struct spi_transfer     *xfer;
 654        unsigned long           flags;
 655        struct device           *controller = spi->master->dev.parent;
 656
 657        as = spi_master_get_devdata(spi->master);
 658
 659        dev_dbg(controller, "new message %p submitted for %s\n",
 660                        msg, dev_name(&spi->dev));
 661
 662        if (unlikely(list_empty(&msg->transfers)))
 663                return -EINVAL;
 664
 665        if (as->stopping)
 666                return -ESHUTDOWN;
 667
 668        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 669                if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
 670                        dev_dbg(&spi->dev, "missing rx or tx buf\n");
 671                        return -EINVAL;
 672                }
 673
 674                /* FIXME implement these protocol options!! */
 675                if (xfer->bits_per_word || xfer->speed_hz) {
 676                        dev_dbg(&spi->dev, "no protocol options yet\n");
 677                        return -ENOPROTOOPT;
 678                }
 679
 680                /*
 681                 * DMA map early, for performance (empties dcache ASAP) and
 682                 * better fault reporting.  This is a DMA-only driver.
 683                 *
 684                 * NOTE that if dma_unmap_single() ever starts to do work on
 685                 * platforms supported by this driver, we would need to clean
 686                 * up mappings for previously-mapped transfers.
 687                 */
 688                if (!msg->is_dma_mapped) {
 689                        if (atmel_spi_dma_map_xfer(as, xfer) < 0)
 690                                return -ENOMEM;
 691                }
 692        }
 693
 694#ifdef VERBOSE
 695        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 696                dev_dbg(controller,
 697                        "  xfer %p: len %u tx %p/%08x rx %p/%08x\n",
 698                        xfer, xfer->len,
 699                        xfer->tx_buf, xfer->tx_dma,
 700                        xfer->rx_buf, xfer->rx_dma);
 701        }
 702#endif
 703
 704        msg->status = -EINPROGRESS;
 705        msg->actual_length = 0;
 706
 707        spin_lock_irqsave(&as->lock, flags);
 708        list_add_tail(&msg->queue, &as->queue);
 709        if (!as->current_transfer)
 710                atmel_spi_next_message(spi->master);
 711        spin_unlock_irqrestore(&as->lock, flags);
 712
 713        return 0;
 714}
 715
 716static void atmel_spi_cleanup(struct spi_device *spi)
 717{
 718        struct atmel_spi        *as = spi_master_get_devdata(spi->master);
 719        struct atmel_spi_device *asd = spi->controller_state;
 720        unsigned                gpio = (unsigned) spi->controller_data;
 721        unsigned long           flags;
 722
 723        if (!asd)
 724                return;
 725
 726        spin_lock_irqsave(&as->lock, flags);
 727        if (as->stay == spi) {
 728                as->stay = NULL;
 729                cs_deactivate(as, spi);
 730        }
 731        spin_unlock_irqrestore(&as->lock, flags);
 732
 733        spi->controller_state = NULL;
 734        gpio_free(gpio);
 735        kfree(asd);
 736}
 737
 738/*-------------------------------------------------------------------------*/
 739
 740static int __init atmel_spi_probe(struct platform_device *pdev)
 741{
 742        struct resource         *regs;
 743        int                     irq;
 744        struct clk              *clk;
 745        int                     ret;
 746        struct spi_master       *master;
 747        struct atmel_spi        *as;
 748
 749        regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 750        if (!regs)
 751                return -ENXIO;
 752
 753        irq = platform_get_irq(pdev, 0);
 754        if (irq < 0)
 755                return irq;
 756
 757        clk = clk_get(&pdev->dev, "spi_clk");
 758        if (IS_ERR(clk))
 759                return PTR_ERR(clk);
 760
 761        /* setup spi core then atmel-specific driver state */
 762        ret = -ENOMEM;
 763        master = spi_alloc_master(&pdev->dev, sizeof *as);
 764        if (!master)
 765                goto out_free;
 766
 767        /* the spi->mode bits understood by this driver: */
 768        master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
 769
 770        master->bus_num = pdev->id;
 771        master->num_chipselect = 4;
 772        master->setup = atmel_spi_setup;
 773        master->transfer = atmel_spi_transfer;
 774        master->cleanup = atmel_spi_cleanup;
 775        platform_set_drvdata(pdev, master);
 776
 777        as = spi_master_get_devdata(master);
 778
 779        /*
 780         * Scratch buffer is used for throwaway rx and tx data.
 781         * It's coherent to minimize dcache pollution.
 782         */
 783        as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
 784                                        &as->buffer_dma, GFP_KERNEL);
 785        if (!as->buffer)
 786                goto out_free;
 787
 788        spin_lock_init(&as->lock);
 789        INIT_LIST_HEAD(&as->queue);
 790        as->pdev = pdev;
 791        as->regs = ioremap(regs->start, (regs->end - regs->start) + 1);
 792        if (!as->regs)
 793                goto out_free_buffer;
 794        as->irq = irq;
 795        as->clk = clk;
 796
 797        ret = request_irq(irq, atmel_spi_interrupt, 0,
 798                        dev_name(&pdev->dev), master);
 799        if (ret)
 800                goto out_unmap_regs;
 801
 802        /* Initialize the hardware */
 803        clk_enable(clk);
 804        spi_writel(as, CR, SPI_BIT(SWRST));
 805        spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
 806        spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
 807        spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 808        spi_writel(as, CR, SPI_BIT(SPIEN));
 809
 810        /* go! */
 811        dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
 812                        (unsigned long)regs->start, irq);
 813
 814        ret = spi_register_master(master);
 815        if (ret)
 816                goto out_reset_hw;
 817
 818        return 0;
 819
 820out_reset_hw:
 821        spi_writel(as, CR, SPI_BIT(SWRST));
 822        spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
 823        clk_disable(clk);
 824        free_irq(irq, master);
 825out_unmap_regs:
 826        iounmap(as->regs);
 827out_free_buffer:
 828        dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
 829                        as->buffer_dma);
 830out_free:
 831        clk_put(clk);
 832        spi_master_put(master);
 833        return ret;
 834}
 835
 836static int __exit atmel_spi_remove(struct platform_device *pdev)
 837{
 838        struct spi_master       *master = platform_get_drvdata(pdev);
 839        struct atmel_spi        *as = spi_master_get_devdata(master);
 840        struct spi_message      *msg;
 841
 842        /* reset the hardware and block queue progress */
 843        spin_lock_irq(&as->lock);
 844        as->stopping = 1;
 845        spi_writel(as, CR, SPI_BIT(SWRST));
 846        spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
 847        spi_readl(as, SR);
 848        spin_unlock_irq(&as->lock);
 849
 850        /* Terminate remaining queued transfers */
 851        list_for_each_entry(msg, &as->queue, queue) {
 852                /* REVISIT unmapping the dma is a NOP on ARM and AVR32
 853                 * but we shouldn't depend on that...
 854                 */
 855                msg->status = -ESHUTDOWN;
 856                msg->complete(msg->context);
 857        }
 858
 859        dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
 860                        as->buffer_dma);
 861
 862        clk_disable(as->clk);
 863        clk_put(as->clk);
 864        free_irq(as->irq, master);
 865        iounmap(as->regs);
 866
 867        spi_unregister_master(master);
 868
 869        return 0;
 870}
 871
 872#ifdef  CONFIG_PM
 873
 874static int atmel_spi_suspend(struct platform_device *pdev, pm_message_t mesg)
 875{
 876        struct spi_master       *master = platform_get_drvdata(pdev);
 877        struct atmel_spi        *as = spi_master_get_devdata(master);
 878
 879        clk_disable(as->clk);
 880        return 0;
 881}
 882
 883static int atmel_spi_resume(struct platform_device *pdev)
 884{
 885        struct spi_master       *master = platform_get_drvdata(pdev);
 886        struct atmel_spi        *as = spi_master_get_devdata(master);
 887
 888        clk_enable(as->clk);
 889        return 0;
 890}
 891
 892#else
 893#define atmel_spi_suspend       NULL
 894#define atmel_spi_resume        NULL
 895#endif
 896
 897
 898static struct platform_driver atmel_spi_driver = {
 899        .driver         = {
 900                .name   = "atmel_spi",
 901                .owner  = THIS_MODULE,
 902        },
 903        .suspend        = atmel_spi_suspend,
 904        .resume         = atmel_spi_resume,
 905        .remove         = __exit_p(atmel_spi_remove),
 906};
 907
 908static int __init atmel_spi_init(void)
 909{
 910        return platform_driver_probe(&atmel_spi_driver, atmel_spi_probe);
 911}
 912module_init(atmel_spi_init);
 913
 914static void __exit atmel_spi_exit(void)
 915{
 916        platform_driver_unregister(&atmel_spi_driver);
 917}
 918module_exit(atmel_spi_exit);
 919
 920MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
 921MODULE_AUTHOR("Haavard Skinnemoen <hskinnemoen@atmel.com>");
 922MODULE_LICENSE("GPL");
 923MODULE_ALIAS("platform:atmel_spi");
 924