linux/drivers/spi/pxa2xx_spi.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17 */
  18
  19#include <linux/init.h>
  20#include <linux/module.h>
  21#include <linux/device.h>
  22#include <linux/ioport.h>
  23#include <linux/errno.h>
  24#include <linux/interrupt.h>
  25#include <linux/platform_device.h>
  26#include <linux/dma-mapping.h>
  27#include <linux/spi/spi.h>
  28#include <linux/workqueue.h>
  29#include <linux/delay.h>
  30#include <linux/clk.h>
  31#include <linux/gpio.h>
  32
  33#include <asm/io.h>
  34#include <asm/irq.h>
  35#include <asm/delay.h>
  36
  37#include <mach/dma.h>
  38#include <mach/regs-ssp.h>
  39#include <mach/ssp.h>
  40#include <mach/pxa2xx_spi.h>
  41
  42MODULE_AUTHOR("Stephen Street");
  43MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  44MODULE_LICENSE("GPL");
  45MODULE_ALIAS("platform:pxa2xx-spi");
  46
  47#define MAX_BUSES 3
  48
  49#define RX_THRESH_DFLT  8
  50#define TX_THRESH_DFLT  8
  51#define TIMOUT_DFLT             1000
  52
  53#define DMA_INT_MASK            (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
  54#define RESET_DMA_CHANNEL       (DCSR_NODESC | DMA_INT_MASK)
  55#define IS_DMA_ALIGNED(x)       ((((u32)(x)) & 0x07) == 0)
  56#define MAX_DMA_LEN             8191
  57#define DMA_ALIGNMENT           8
  58
  59/*
  60 * for testing SSCR1 changes that require SSP restart, basically
  61 * everything except the service and interrupt enables, the pxa270 developer
  62 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  63 * list, but the PXA255 dev man says all bits without really meaning the
  64 * service and interrupt enables
  65 */
  66#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  67                                | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  68                                | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  69                                | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  70                                | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  71                                | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  72
  73#define DEFINE_SSP_REG(reg, off) \
  74static inline u32 read_##reg(void const __iomem *p) \
  75{ return __raw_readl(p + (off)); } \
  76\
  77static inline void write_##reg(u32 v, void __iomem *p) \
  78{ __raw_writel(v, p + (off)); }
  79
  80DEFINE_SSP_REG(SSCR0, 0x00)
  81DEFINE_SSP_REG(SSCR1, 0x04)
  82DEFINE_SSP_REG(SSSR, 0x08)
  83DEFINE_SSP_REG(SSITR, 0x0c)
  84DEFINE_SSP_REG(SSDR, 0x10)
  85DEFINE_SSP_REG(SSTO, 0x28)
  86DEFINE_SSP_REG(SSPSP, 0x2c)
  87
  88#define START_STATE ((void*)0)
  89#define RUNNING_STATE ((void*)1)
  90#define DONE_STATE ((void*)2)
  91#define ERROR_STATE ((void*)-1)
  92
  93#define QUEUE_RUNNING 0
  94#define QUEUE_STOPPED 1
  95
  96struct driver_data {
  97        /* Driver model hookup */
  98        struct platform_device *pdev;
  99
 100        /* SSP Info */
 101        struct ssp_device *ssp;
 102
 103        /* SPI framework hookup */
 104        enum pxa_ssp_type ssp_type;
 105        struct spi_master *master;
 106
 107        /* PXA hookup */
 108        struct pxa2xx_spi_master *master_info;
 109
 110        /* DMA setup stuff */
 111        int rx_channel;
 112        int tx_channel;
 113        u32 *null_dma_buf;
 114
 115        /* SSP register addresses */
 116        void __iomem *ioaddr;
 117        u32 ssdr_physical;
 118
 119        /* SSP masks*/
 120        u32 dma_cr1;
 121        u32 int_cr1;
 122        u32 clear_sr;
 123        u32 mask_sr;
 124
 125        /* Driver message queue */
 126        struct workqueue_struct *workqueue;
 127        struct work_struct pump_messages;
 128        spinlock_t lock;
 129        struct list_head queue;
 130        int busy;
 131        int run;
 132
 133        /* Message Transfer pump */
 134        struct tasklet_struct pump_transfers;
 135
 136        /* Current message transfer state info */
 137        struct spi_message* cur_msg;
 138        struct spi_transfer* cur_transfer;
 139        struct chip_data *cur_chip;
 140        size_t len;
 141        void *tx;
 142        void *tx_end;
 143        void *rx;
 144        void *rx_end;
 145        int dma_mapped;
 146        dma_addr_t rx_dma;
 147        dma_addr_t tx_dma;
 148        size_t rx_map_len;
 149        size_t tx_map_len;
 150        u8 n_bytes;
 151        u32 dma_width;
 152        int (*write)(struct driver_data *drv_data);
 153        int (*read)(struct driver_data *drv_data);
 154        irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
 155        void (*cs_control)(u32 command);
 156};
 157
 158struct chip_data {
 159        u32 cr0;
 160        u32 cr1;
 161        u32 psp;
 162        u32 timeout;
 163        u8 n_bytes;
 164        u32 dma_width;
 165        u32 dma_burst_size;
 166        u32 threshold;
 167        u32 dma_threshold;
 168        u8 enable_dma;
 169        u8 bits_per_word;
 170        u32 speed_hz;
 171        int gpio_cs;
 172        int gpio_cs_inverted;
 173        int (*write)(struct driver_data *drv_data);
 174        int (*read)(struct driver_data *drv_data);
 175        void (*cs_control)(u32 command);
 176};
 177
 178static void pump_messages(struct work_struct *work);
 179
 180static void cs_assert(struct driver_data *drv_data)
 181{
 182        struct chip_data *chip = drv_data->cur_chip;
 183
 184        if (chip->cs_control) {
 185                chip->cs_control(PXA2XX_CS_ASSERT);
 186                return;
 187        }
 188
 189        if (gpio_is_valid(chip->gpio_cs))
 190                gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
 191}
 192
 193static void cs_deassert(struct driver_data *drv_data)
 194{
 195        struct chip_data *chip = drv_data->cur_chip;
 196
 197        if (chip->cs_control) {
 198                chip->cs_control(PXA2XX_CS_DEASSERT);
 199                return;
 200        }
 201
 202        if (gpio_is_valid(chip->gpio_cs))
 203                gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
 204}
 205
 206static int flush(struct driver_data *drv_data)
 207{
 208        unsigned long limit = loops_per_jiffy << 1;
 209
 210        void __iomem *reg = drv_data->ioaddr;
 211
 212        do {
 213                while (read_SSSR(reg) & SSSR_RNE) {
 214                        read_SSDR(reg);
 215                }
 216        } while ((read_SSSR(reg) & SSSR_BSY) && --limit);
 217        write_SSSR(SSSR_ROR, reg);
 218
 219        return limit;
 220}
 221
 222static int null_writer(struct driver_data *drv_data)
 223{
 224        void __iomem *reg = drv_data->ioaddr;
 225        u8 n_bytes = drv_data->n_bytes;
 226
 227        if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
 228                || (drv_data->tx == drv_data->tx_end))
 229                return 0;
 230
 231        write_SSDR(0, reg);
 232        drv_data->tx += n_bytes;
 233
 234        return 1;
 235}
 236
 237static int null_reader(struct driver_data *drv_data)
 238{
 239        void __iomem *reg = drv_data->ioaddr;
 240        u8 n_bytes = drv_data->n_bytes;
 241
 242        while ((read_SSSR(reg) & SSSR_RNE)
 243                && (drv_data->rx < drv_data->rx_end)) {
 244                read_SSDR(reg);
 245                drv_data->rx += n_bytes;
 246        }
 247
 248        return drv_data->rx == drv_data->rx_end;
 249}
 250
 251static int u8_writer(struct driver_data *drv_data)
 252{
 253        void __iomem *reg = drv_data->ioaddr;
 254
 255        if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
 256                || (drv_data->tx == drv_data->tx_end))
 257                return 0;
 258
 259        write_SSDR(*(u8 *)(drv_data->tx), reg);
 260        ++drv_data->tx;
 261
 262        return 1;
 263}
 264
 265static int u8_reader(struct driver_data *drv_data)
 266{
 267        void __iomem *reg = drv_data->ioaddr;
 268
 269        while ((read_SSSR(reg) & SSSR_RNE)
 270                && (drv_data->rx < drv_data->rx_end)) {
 271                *(u8 *)(drv_data->rx) = read_SSDR(reg);
 272                ++drv_data->rx;
 273        }
 274
 275        return drv_data->rx == drv_data->rx_end;
 276}
 277
 278static int u16_writer(struct driver_data *drv_data)
 279{
 280        void __iomem *reg = drv_data->ioaddr;
 281
 282        if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
 283                || (drv_data->tx == drv_data->tx_end))
 284                return 0;
 285
 286        write_SSDR(*(u16 *)(drv_data->tx), reg);
 287        drv_data->tx += 2;
 288
 289        return 1;
 290}
 291
 292static int u16_reader(struct driver_data *drv_data)
 293{
 294        void __iomem *reg = drv_data->ioaddr;
 295
 296        while ((read_SSSR(reg) & SSSR_RNE)
 297                && (drv_data->rx < drv_data->rx_end)) {
 298                *(u16 *)(drv_data->rx) = read_SSDR(reg);
 299                drv_data->rx += 2;
 300        }
 301
 302        return drv_data->rx == drv_data->rx_end;
 303}
 304
 305static int u32_writer(struct driver_data *drv_data)
 306{
 307        void __iomem *reg = drv_data->ioaddr;
 308
 309        if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
 310                || (drv_data->tx == drv_data->tx_end))
 311                return 0;
 312
 313        write_SSDR(*(u32 *)(drv_data->tx), reg);
 314        drv_data->tx += 4;
 315
 316        return 1;
 317}
 318
 319static int u32_reader(struct driver_data *drv_data)
 320{
 321        void __iomem *reg = drv_data->ioaddr;
 322
 323        while ((read_SSSR(reg) & SSSR_RNE)
 324                && (drv_data->rx < drv_data->rx_end)) {
 325                *(u32 *)(drv_data->rx) = read_SSDR(reg);
 326                drv_data->rx += 4;
 327        }
 328
 329        return drv_data->rx == drv_data->rx_end;
 330}
 331
 332static void *next_transfer(struct driver_data *drv_data)
 333{
 334        struct spi_message *msg = drv_data->cur_msg;
 335        struct spi_transfer *trans = drv_data->cur_transfer;
 336
 337        /* Move to next transfer */
 338        if (trans->transfer_list.next != &msg->transfers) {
 339                drv_data->cur_transfer =
 340                        list_entry(trans->transfer_list.next,
 341                                        struct spi_transfer,
 342                                        transfer_list);
 343                return RUNNING_STATE;
 344        } else
 345                return DONE_STATE;
 346}
 347
 348static int map_dma_buffers(struct driver_data *drv_data)
 349{
 350        struct spi_message *msg = drv_data->cur_msg;
 351        struct device *dev = &msg->spi->dev;
 352
 353        if (!drv_data->cur_chip->enable_dma)
 354                return 0;
 355
 356        if (msg->is_dma_mapped)
 357                return  drv_data->rx_dma && drv_data->tx_dma;
 358
 359        if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
 360                return 0;
 361
 362        /* Modify setup if rx buffer is null */
 363        if (drv_data->rx == NULL) {
 364                *drv_data->null_dma_buf = 0;
 365                drv_data->rx = drv_data->null_dma_buf;
 366                drv_data->rx_map_len = 4;
 367        } else
 368                drv_data->rx_map_len = drv_data->len;
 369
 370
 371        /* Modify setup if tx buffer is null */
 372        if (drv_data->tx == NULL) {
 373                *drv_data->null_dma_buf = 0;
 374                drv_data->tx = drv_data->null_dma_buf;
 375                drv_data->tx_map_len = 4;
 376        } else
 377                drv_data->tx_map_len = drv_data->len;
 378
 379        /* Stream map the tx buffer. Always do DMA_TO_DEVICE first
 380         * so we flush the cache *before* invalidating it, in case
 381         * the tx and rx buffers overlap.
 382         */
 383        drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
 384                                        drv_data->tx_map_len, DMA_TO_DEVICE);
 385        if (dma_mapping_error(dev, drv_data->tx_dma))
 386                return 0;
 387
 388        /* Stream map the rx buffer */
 389        drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
 390                                        drv_data->rx_map_len, DMA_FROM_DEVICE);
 391        if (dma_mapping_error(dev, drv_data->rx_dma)) {
 392                dma_unmap_single(dev, drv_data->tx_dma,
 393                                        drv_data->tx_map_len, DMA_TO_DEVICE);
 394                return 0;
 395        }
 396
 397        return 1;
 398}
 399
 400static void unmap_dma_buffers(struct driver_data *drv_data)
 401{
 402        struct device *dev;
 403
 404        if (!drv_data->dma_mapped)
 405                return;
 406
 407        if (!drv_data->cur_msg->is_dma_mapped) {
 408                dev = &drv_data->cur_msg->spi->dev;
 409                dma_unmap_single(dev, drv_data->rx_dma,
 410                                        drv_data->rx_map_len, DMA_FROM_DEVICE);
 411                dma_unmap_single(dev, drv_data->tx_dma,
 412                                        drv_data->tx_map_len, DMA_TO_DEVICE);
 413        }
 414
 415        drv_data->dma_mapped = 0;
 416}
 417
 418/* caller already set message->status; dma and pio irqs are blocked */
 419static void giveback(struct driver_data *drv_data)
 420{
 421        struct spi_transfer* last_transfer;
 422        unsigned long flags;
 423        struct spi_message *msg;
 424
 425        spin_lock_irqsave(&drv_data->lock, flags);
 426        msg = drv_data->cur_msg;
 427        drv_data->cur_msg = NULL;
 428        drv_data->cur_transfer = NULL;
 429        queue_work(drv_data->workqueue, &drv_data->pump_messages);
 430        spin_unlock_irqrestore(&drv_data->lock, flags);
 431
 432        last_transfer = list_entry(msg->transfers.prev,
 433                                        struct spi_transfer,
 434                                        transfer_list);
 435
 436        /* Delay if requested before any change in chip select */
 437        if (last_transfer->delay_usecs)
 438                udelay(last_transfer->delay_usecs);
 439
 440        /* Drop chip select UNLESS cs_change is true or we are returning
 441         * a message with an error, or next message is for another chip
 442         */
 443        if (!last_transfer->cs_change)
 444                cs_deassert(drv_data);
 445        else {
 446                struct spi_message *next_msg;
 447
 448                /* Holding of cs was hinted, but we need to make sure
 449                 * the next message is for the same chip.  Don't waste
 450                 * time with the following tests unless this was hinted.
 451                 *
 452                 * We cannot postpone this until pump_messages, because
 453                 * after calling msg->complete (below) the driver that
 454                 * sent the current message could be unloaded, which
 455                 * could invalidate the cs_control() callback...
 456                 */
 457
 458                /* get a pointer to the next message, if any */
 459                spin_lock_irqsave(&drv_data->lock, flags);
 460                if (list_empty(&drv_data->queue))
 461                        next_msg = NULL;
 462                else
 463                        next_msg = list_entry(drv_data->queue.next,
 464                                        struct spi_message, queue);
 465                spin_unlock_irqrestore(&drv_data->lock, flags);
 466
 467                /* see if the next and current messages point
 468                 * to the same chip
 469                 */
 470                if (next_msg && next_msg->spi != msg->spi)
 471                        next_msg = NULL;
 472                if (!next_msg || msg->state == ERROR_STATE)
 473                        cs_deassert(drv_data);
 474        }
 475
 476        msg->state = NULL;
 477        if (msg->complete)
 478                msg->complete(msg->context);
 479
 480        drv_data->cur_chip = NULL;
 481}
 482
 483static int wait_ssp_rx_stall(void const __iomem *ioaddr)
 484{
 485        unsigned long limit = loops_per_jiffy << 1;
 486
 487        while ((read_SSSR(ioaddr) & SSSR_BSY) && --limit)
 488                cpu_relax();
 489
 490        return limit;
 491}
 492
 493static int wait_dma_channel_stop(int channel)
 494{
 495        unsigned long limit = loops_per_jiffy << 1;
 496
 497        while (!(DCSR(channel) & DCSR_STOPSTATE) && --limit)
 498                cpu_relax();
 499
 500        return limit;
 501}
 502
 503static void dma_error_stop(struct driver_data *drv_data, const char *msg)
 504{
 505        void __iomem *reg = drv_data->ioaddr;
 506
 507        /* Stop and reset */
 508        DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
 509        DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
 510        write_SSSR(drv_data->clear_sr, reg);
 511        write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
 512        if (drv_data->ssp_type != PXA25x_SSP)
 513                write_SSTO(0, reg);
 514        flush(drv_data);
 515        write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
 516
 517        unmap_dma_buffers(drv_data);
 518
 519        dev_err(&drv_data->pdev->dev, "%s\n", msg);
 520
 521        drv_data->cur_msg->state = ERROR_STATE;
 522        tasklet_schedule(&drv_data->pump_transfers);
 523}
 524
 525static void dma_transfer_complete(struct driver_data *drv_data)
 526{
 527        void __iomem *reg = drv_data->ioaddr;
 528        struct spi_message *msg = drv_data->cur_msg;
 529
 530        /* Clear and disable interrupts on SSP and DMA channels*/
 531        write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
 532        write_SSSR(drv_data->clear_sr, reg);
 533        DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
 534        DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
 535
 536        if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
 537                dev_err(&drv_data->pdev->dev,
 538                        "dma_handler: dma rx channel stop failed\n");
 539
 540        if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
 541                dev_err(&drv_data->pdev->dev,
 542                        "dma_transfer: ssp rx stall failed\n");
 543
 544        unmap_dma_buffers(drv_data);
 545
 546        /* update the buffer pointer for the amount completed in dma */
 547        drv_data->rx += drv_data->len -
 548                        (DCMD(drv_data->rx_channel) & DCMD_LENGTH);
 549
 550        /* read trailing data from fifo, it does not matter how many
 551         * bytes are in the fifo just read until buffer is full
 552         * or fifo is empty, which ever occurs first */
 553        drv_data->read(drv_data);
 554
 555        /* return count of what was actually read */
 556        msg->actual_length += drv_data->len -
 557                                (drv_data->rx_end - drv_data->rx);
 558
 559        /* Transfer delays and chip select release are
 560         * handled in pump_transfers or giveback
 561         */
 562
 563        /* Move to next transfer */
 564        msg->state = next_transfer(drv_data);
 565
 566        /* Schedule transfer tasklet */
 567        tasklet_schedule(&drv_data->pump_transfers);
 568}
 569
 570static void dma_handler(int channel, void *data)
 571{
 572        struct driver_data *drv_data = data;
 573        u32 irq_status = DCSR(channel) & DMA_INT_MASK;
 574
 575        if (irq_status & DCSR_BUSERR) {
 576
 577                if (channel == drv_data->tx_channel)
 578                        dma_error_stop(drv_data,
 579                                        "dma_handler: "
 580                                        "bad bus address on tx channel");
 581                else
 582                        dma_error_stop(drv_data,
 583                                        "dma_handler: "
 584                                        "bad bus address on rx channel");
 585                return;
 586        }
 587
 588        /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
 589        if ((channel == drv_data->tx_channel)
 590                && (irq_status & DCSR_ENDINTR)
 591                && (drv_data->ssp_type == PXA25x_SSP)) {
 592
 593                /* Wait for rx to stall */
 594                if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
 595                        dev_err(&drv_data->pdev->dev,
 596                                "dma_handler: ssp rx stall failed\n");
 597
 598                /* finish this transfer, start the next */
 599                dma_transfer_complete(drv_data);
 600        }
 601}
 602
 603static irqreturn_t dma_transfer(struct driver_data *drv_data)
 604{
 605        u32 irq_status;
 606        void __iomem *reg = drv_data->ioaddr;
 607
 608        irq_status = read_SSSR(reg) & drv_data->mask_sr;
 609        if (irq_status & SSSR_ROR) {
 610                dma_error_stop(drv_data, "dma_transfer: fifo overrun");
 611                return IRQ_HANDLED;
 612        }
 613
 614        /* Check for false positive timeout */
 615        if ((irq_status & SSSR_TINT)
 616                && (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
 617                write_SSSR(SSSR_TINT, reg);
 618                return IRQ_HANDLED;
 619        }
 620
 621        if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
 622
 623                /* Clear and disable timeout interrupt, do the rest in
 624                 * dma_transfer_complete */
 625                if (drv_data->ssp_type != PXA25x_SSP)
 626                        write_SSTO(0, reg);
 627
 628                /* finish this transfer, start the next */
 629                dma_transfer_complete(drv_data);
 630
 631                return IRQ_HANDLED;
 632        }
 633
 634        /* Opps problem detected */
 635        return IRQ_NONE;
 636}
 637
 638static void int_error_stop(struct driver_data *drv_data, const char* msg)
 639{
 640        void __iomem *reg = drv_data->ioaddr;
 641
 642        /* Stop and reset SSP */
 643        write_SSSR(drv_data->clear_sr, reg);
 644        write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
 645        if (drv_data->ssp_type != PXA25x_SSP)
 646                write_SSTO(0, reg);
 647        flush(drv_data);
 648        write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
 649
 650        dev_err(&drv_data->pdev->dev, "%s\n", msg);
 651
 652        drv_data->cur_msg->state = ERROR_STATE;
 653        tasklet_schedule(&drv_data->pump_transfers);
 654}
 655
 656static void int_transfer_complete(struct driver_data *drv_data)
 657{
 658        void __iomem *reg = drv_data->ioaddr;
 659
 660        /* Stop SSP */
 661        write_SSSR(drv_data->clear_sr, reg);
 662        write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
 663        if (drv_data->ssp_type != PXA25x_SSP)
 664                write_SSTO(0, reg);
 665
 666        /* Update total byte transfered return count actual bytes read */
 667        drv_data->cur_msg->actual_length += drv_data->len -
 668                                (drv_data->rx_end - drv_data->rx);
 669
 670        /* Transfer delays and chip select release are
 671         * handled in pump_transfers or giveback
 672         */
 673
 674        /* Move to next transfer */
 675        drv_data->cur_msg->state = next_transfer(drv_data);
 676
 677        /* Schedule transfer tasklet */
 678        tasklet_schedule(&drv_data->pump_transfers);
 679}
 680
 681static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
 682{
 683        void __iomem *reg = drv_data->ioaddr;
 684
 685        u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
 686                        drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
 687
 688        u32 irq_status = read_SSSR(reg) & irq_mask;
 689
 690        if (irq_status & SSSR_ROR) {
 691                int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
 692                return IRQ_HANDLED;
 693        }
 694
 695        if (irq_status & SSSR_TINT) {
 696                write_SSSR(SSSR_TINT, reg);
 697                if (drv_data->read(drv_data)) {
 698                        int_transfer_complete(drv_data);
 699                        return IRQ_HANDLED;
 700                }
 701        }
 702
 703        /* Drain rx fifo, Fill tx fifo and prevent overruns */
 704        do {
 705                if (drv_data->read(drv_data)) {
 706                        int_transfer_complete(drv_data);
 707                        return IRQ_HANDLED;
 708                }
 709        } while (drv_data->write(drv_data));
 710
 711        if (drv_data->read(drv_data)) {
 712                int_transfer_complete(drv_data);
 713                return IRQ_HANDLED;
 714        }
 715
 716        if (drv_data->tx == drv_data->tx_end) {
 717                write_SSCR1(read_SSCR1(reg) & ~SSCR1_TIE, reg);
 718                /* PXA25x_SSP has no timeout, read trailing bytes */
 719                if (drv_data->ssp_type == PXA25x_SSP) {
 720                        if (!wait_ssp_rx_stall(reg))
 721                        {
 722                                int_error_stop(drv_data, "interrupt_transfer: "
 723                                                "rx stall failed");
 724                                return IRQ_HANDLED;
 725                        }
 726                        if (!drv_data->read(drv_data))
 727                        {
 728                                int_error_stop(drv_data,
 729                                                "interrupt_transfer: "
 730                                                "trailing byte read failed");
 731                                return IRQ_HANDLED;
 732                        }
 733                        int_transfer_complete(drv_data);
 734                }
 735        }
 736
 737        /* We did something */
 738        return IRQ_HANDLED;
 739}
 740
 741static irqreturn_t ssp_int(int irq, void *dev_id)
 742{
 743        struct driver_data *drv_data = dev_id;
 744        void __iomem *reg = drv_data->ioaddr;
 745
 746        if (!drv_data->cur_msg) {
 747
 748                write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
 749                write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
 750                if (drv_data->ssp_type != PXA25x_SSP)
 751                        write_SSTO(0, reg);
 752                write_SSSR(drv_data->clear_sr, reg);
 753
 754                dev_err(&drv_data->pdev->dev, "bad message state "
 755                        "in interrupt handler\n");
 756
 757                /* Never fail */
 758                return IRQ_HANDLED;
 759        }
 760
 761        return drv_data->transfer_handler(drv_data);
 762}
 763
 764static int set_dma_burst_and_threshold(struct chip_data *chip,
 765                                struct spi_device *spi,
 766                                u8 bits_per_word, u32 *burst_code,
 767                                u32 *threshold)
 768{
 769        struct pxa2xx_spi_chip *chip_info =
 770                        (struct pxa2xx_spi_chip *)spi->controller_data;
 771        int bytes_per_word;
 772        int burst_bytes;
 773        int thresh_words;
 774        int req_burst_size;
 775        int retval = 0;
 776
 777        /* Set the threshold (in registers) to equal the same amount of data
 778         * as represented by burst size (in bytes).  The computation below
 779         * is (burst_size rounded up to nearest 8 byte, word or long word)
 780         * divided by (bytes/register); the tx threshold is the inverse of
 781         * the rx, so that there will always be enough data in the rx fifo
 782         * to satisfy a burst, and there will always be enough space in the
 783         * tx fifo to accept a burst (a tx burst will overwrite the fifo if
 784         * there is not enough space), there must always remain enough empty
 785         * space in the rx fifo for any data loaded to the tx fifo.
 786         * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
 787         * will be 8, or half the fifo;
 788         * The threshold can only be set to 2, 4 or 8, but not 16, because
 789         * to burst 16 to the tx fifo, the fifo would have to be empty;
 790         * however, the minimum fifo trigger level is 1, and the tx will
 791         * request service when the fifo is at this level, with only 15 spaces.
 792         */
 793
 794        /* find bytes/word */
 795        if (bits_per_word <= 8)
 796                bytes_per_word = 1;
 797        else if (bits_per_word <= 16)
 798                bytes_per_word = 2;
 799        else
 800                bytes_per_word = 4;
 801
 802        /* use struct pxa2xx_spi_chip->dma_burst_size if available */
 803        if (chip_info)
 804                req_burst_size = chip_info->dma_burst_size;
 805        else {
 806                switch (chip->dma_burst_size) {
 807                default:
 808                        /* if the default burst size is not set,
 809                         * do it now */
 810                        chip->dma_burst_size = DCMD_BURST8;
 811                case DCMD_BURST8:
 812                        req_burst_size = 8;
 813                        break;
 814                case DCMD_BURST16:
 815                        req_burst_size = 16;
 816                        break;
 817                case DCMD_BURST32:
 818                        req_burst_size = 32;
 819                        break;
 820                }
 821        }
 822        if (req_burst_size <= 8) {
 823                *burst_code = DCMD_BURST8;
 824                burst_bytes = 8;
 825        } else if (req_burst_size <= 16) {
 826                if (bytes_per_word == 1) {
 827                        /* don't burst more than 1/2 the fifo */
 828                        *burst_code = DCMD_BURST8;
 829                        burst_bytes = 8;
 830                        retval = 1;
 831                } else {
 832                        *burst_code = DCMD_BURST16;
 833                        burst_bytes = 16;
 834                }
 835        } else {
 836                if (bytes_per_word == 1) {
 837                        /* don't burst more than 1/2 the fifo */
 838                        *burst_code = DCMD_BURST8;
 839                        burst_bytes = 8;
 840                        retval = 1;
 841                } else if (bytes_per_word == 2) {
 842                        /* don't burst more than 1/2 the fifo */
 843                        *burst_code = DCMD_BURST16;
 844                        burst_bytes = 16;
 845                        retval = 1;
 846                } else {
 847                        *burst_code = DCMD_BURST32;
 848                        burst_bytes = 32;
 849                }
 850        }
 851
 852        thresh_words = burst_bytes / bytes_per_word;
 853
 854        /* thresh_words will be between 2 and 8 */
 855        *threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
 856                        | (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
 857
 858        return retval;
 859}
 860
 861static unsigned int ssp_get_clk_div(struct ssp_device *ssp, int rate)
 862{
 863        unsigned long ssp_clk = clk_get_rate(ssp->clk);
 864
 865        if (ssp->type == PXA25x_SSP)
 866                return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
 867        else
 868                return ((ssp_clk / rate - 1) & 0xfff) << 8;
 869}
 870
 871static void pump_transfers(unsigned long data)
 872{
 873        struct driver_data *drv_data = (struct driver_data *)data;
 874        struct spi_message *message = NULL;
 875        struct spi_transfer *transfer = NULL;
 876        struct spi_transfer *previous = NULL;
 877        struct chip_data *chip = NULL;
 878        struct ssp_device *ssp = drv_data->ssp;
 879        void __iomem *reg = drv_data->ioaddr;
 880        u32 clk_div = 0;
 881        u8 bits = 0;
 882        u32 speed = 0;
 883        u32 cr0;
 884        u32 cr1;
 885        u32 dma_thresh = drv_data->cur_chip->dma_threshold;
 886        u32 dma_burst = drv_data->cur_chip->dma_burst_size;
 887
 888        /* Get current state information */
 889        message = drv_data->cur_msg;
 890        transfer = drv_data->cur_transfer;
 891        chip = drv_data->cur_chip;
 892
 893        /* Handle for abort */
 894        if (message->state == ERROR_STATE) {
 895                message->status = -EIO;
 896                giveback(drv_data);
 897                return;
 898        }
 899
 900        /* Handle end of message */
 901        if (message->state == DONE_STATE) {
 902                message->status = 0;
 903                giveback(drv_data);
 904                return;
 905        }
 906
 907        /* Delay if requested at end of transfer before CS change */
 908        if (message->state == RUNNING_STATE) {
 909                previous = list_entry(transfer->transfer_list.prev,
 910                                        struct spi_transfer,
 911                                        transfer_list);
 912                if (previous->delay_usecs)
 913                        udelay(previous->delay_usecs);
 914
 915                /* Drop chip select only if cs_change is requested */
 916                if (previous->cs_change)
 917                        cs_deassert(drv_data);
 918        }
 919
 920        /* Check for transfers that need multiple DMA segments */
 921        if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
 922
 923                /* reject already-mapped transfers; PIO won't always work */
 924                if (message->is_dma_mapped
 925                                || transfer->rx_dma || transfer->tx_dma) {
 926                        dev_err(&drv_data->pdev->dev,
 927                                "pump_transfers: mapped transfer length "
 928                                "of %u is greater than %d\n",
 929                                transfer->len, MAX_DMA_LEN);
 930                        message->status = -EINVAL;
 931                        giveback(drv_data);
 932                        return;
 933                }
 934
 935                /* warn ... we force this to PIO mode */
 936                if (printk_ratelimit())
 937                        dev_warn(&message->spi->dev, "pump_transfers: "
 938                                "DMA disabled for transfer length %ld "
 939                                "greater than %d\n",
 940                                (long)drv_data->len, MAX_DMA_LEN);
 941        }
 942
 943        /* Setup the transfer state based on the type of transfer */
 944        if (flush(drv_data) == 0) {
 945                dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
 946                message->status = -EIO;
 947                giveback(drv_data);
 948                return;
 949        }
 950        drv_data->n_bytes = chip->n_bytes;
 951        drv_data->dma_width = chip->dma_width;
 952        drv_data->tx = (void *)transfer->tx_buf;
 953        drv_data->tx_end = drv_data->tx + transfer->len;
 954        drv_data->rx = transfer->rx_buf;
 955        drv_data->rx_end = drv_data->rx + transfer->len;
 956        drv_data->rx_dma = transfer->rx_dma;
 957        drv_data->tx_dma = transfer->tx_dma;
 958        drv_data->len = transfer->len & DCMD_LENGTH;
 959        drv_data->write = drv_data->tx ? chip->write : null_writer;
 960        drv_data->read = drv_data->rx ? chip->read : null_reader;
 961
 962        /* Change speed and bit per word on a per transfer */
 963        cr0 = chip->cr0;
 964        if (transfer->speed_hz || transfer->bits_per_word) {
 965
 966                bits = chip->bits_per_word;
 967                speed = chip->speed_hz;
 968
 969                if (transfer->speed_hz)
 970                        speed = transfer->speed_hz;
 971
 972                if (transfer->bits_per_word)
 973                        bits = transfer->bits_per_word;
 974
 975                clk_div = ssp_get_clk_div(ssp, speed);
 976
 977                if (bits <= 8) {
 978                        drv_data->n_bytes = 1;
 979                        drv_data->dma_width = DCMD_WIDTH1;
 980                        drv_data->read = drv_data->read != null_reader ?
 981                                                u8_reader : null_reader;
 982                        drv_data->write = drv_data->write != null_writer ?
 983                                                u8_writer : null_writer;
 984                } else if (bits <= 16) {
 985                        drv_data->n_bytes = 2;
 986                        drv_data->dma_width = DCMD_WIDTH2;
 987                        drv_data->read = drv_data->read != null_reader ?
 988                                                u16_reader : null_reader;
 989                        drv_data->write = drv_data->write != null_writer ?
 990                                                u16_writer : null_writer;
 991                } else if (bits <= 32) {
 992                        drv_data->n_bytes = 4;
 993                        drv_data->dma_width = DCMD_WIDTH4;
 994                        drv_data->read = drv_data->read != null_reader ?
 995                                                u32_reader : null_reader;
 996                        drv_data->write = drv_data->write != null_writer ?
 997                                                u32_writer : null_writer;
 998                }
 999                /* if bits/word is changed in dma mode, then must check the
1000                 * thresholds and burst also */
1001                if (chip->enable_dma) {
1002                        if (set_dma_burst_and_threshold(chip, message->spi,
1003                                                        bits, &dma_burst,
1004                                                        &dma_thresh))
1005                                if (printk_ratelimit())
1006                                        dev_warn(&message->spi->dev,
1007                                                "pump_transfers: "
1008                                                "DMA burst size reduced to "
1009                                                "match bits_per_word\n");
1010                }
1011
1012                cr0 = clk_div
1013                        | SSCR0_Motorola
1014                        | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
1015                        | SSCR0_SSE
1016                        | (bits > 16 ? SSCR0_EDSS : 0);
1017        }
1018
1019        message->state = RUNNING_STATE;
1020
1021        /* Try to map dma buffer and do a dma transfer if successful, but
1022         * only if the length is non-zero and less than MAX_DMA_LEN.
1023         *
1024         * Zero-length non-descriptor DMA is illegal on PXA2xx; force use
1025         * of PIO instead.  Care is needed above because the transfer may
1026         * have have been passed with buffers that are already dma mapped.
1027         * A zero-length transfer in PIO mode will not try to write/read
1028         * to/from the buffers
1029         *
1030         * REVISIT large transfers are exactly where we most want to be
1031         * using DMA.  If this happens much, split those transfers into
1032         * multiple DMA segments rather than forcing PIO.
1033         */
1034        drv_data->dma_mapped = 0;
1035        if (drv_data->len > 0 && drv_data->len <= MAX_DMA_LEN)
1036                drv_data->dma_mapped = map_dma_buffers(drv_data);
1037        if (drv_data->dma_mapped) {
1038
1039                /* Ensure we have the correct interrupt handler */
1040                drv_data->transfer_handler = dma_transfer;
1041
1042                /* Setup rx DMA Channel */
1043                DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
1044                DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
1045                DTADR(drv_data->rx_channel) = drv_data->rx_dma;
1046                if (drv_data->rx == drv_data->null_dma_buf)
1047                        /* No target address increment */
1048                        DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
1049                                                        | drv_data->dma_width
1050                                                        | dma_burst
1051                                                        | drv_data->len;
1052                else
1053                        DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
1054                                                        | DCMD_FLOWSRC
1055                                                        | drv_data->dma_width
1056                                                        | dma_burst
1057                                                        | drv_data->len;
1058
1059                /* Setup tx DMA Channel */
1060                DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
1061                DSADR(drv_data->tx_channel) = drv_data->tx_dma;
1062                DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
1063                if (drv_data->tx == drv_data->null_dma_buf)
1064                        /* No source address increment */
1065                        DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
1066                                                        | drv_data->dma_width
1067                                                        | dma_burst
1068                                                        | drv_data->len;
1069                else
1070                        DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
1071                                                        | DCMD_FLOWTRG
1072                                                        | drv_data->dma_width
1073                                                        | dma_burst
1074                                                        | drv_data->len;
1075
1076                /* Enable dma end irqs on SSP to detect end of transfer */
1077                if (drv_data->ssp_type == PXA25x_SSP)
1078                        DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
1079
1080                /* Clear status and start DMA engine */
1081                cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1082                write_SSSR(drv_data->clear_sr, reg);
1083                DCSR(drv_data->rx_channel) |= DCSR_RUN;
1084                DCSR(drv_data->tx_channel) |= DCSR_RUN;
1085        } else {
1086                /* Ensure we have the correct interrupt handler */
1087                drv_data->transfer_handler = interrupt_transfer;
1088
1089                /* Clear status  */
1090                cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1091                write_SSSR(drv_data->clear_sr, reg);
1092        }
1093
1094        /* see if we need to reload the config registers */
1095        if ((read_SSCR0(reg) != cr0)
1096                || (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
1097                        (cr1 & SSCR1_CHANGE_MASK)) {
1098
1099                /* stop the SSP, and update the other bits */
1100                write_SSCR0(cr0 & ~SSCR0_SSE, reg);
1101                if (drv_data->ssp_type != PXA25x_SSP)
1102                        write_SSTO(chip->timeout, reg);
1103                /* first set CR1 without interrupt and service enables */
1104                write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg);
1105                /* restart the SSP */
1106                write_SSCR0(cr0, reg);
1107
1108        } else {
1109                if (drv_data->ssp_type != PXA25x_SSP)
1110                        write_SSTO(chip->timeout, reg);
1111        }
1112
1113        cs_assert(drv_data);
1114
1115        /* after chip select, release the data by enabling service
1116         * requests and interrupts, without changing any mode bits */
1117        write_SSCR1(cr1, reg);
1118}
1119
1120static void pump_messages(struct work_struct *work)
1121{
1122        struct driver_data *drv_data =
1123                container_of(work, struct driver_data, pump_messages);
1124        unsigned long flags;
1125
1126        /* Lock queue and check for queue work */
1127        spin_lock_irqsave(&drv_data->lock, flags);
1128        if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
1129                drv_data->busy = 0;
1130                spin_unlock_irqrestore(&drv_data->lock, flags);
1131                return;
1132        }
1133
1134        /* Make sure we are not already running a message */
1135        if (drv_data->cur_msg) {
1136                spin_unlock_irqrestore(&drv_data->lock, flags);
1137                return;
1138        }
1139
1140        /* Extract head of queue */
1141        drv_data->cur_msg = list_entry(drv_data->queue.next,
1142                                        struct spi_message, queue);
1143        list_del_init(&drv_data->cur_msg->queue);
1144
1145        /* Initial message state*/
1146        drv_data->cur_msg->state = START_STATE;
1147        drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
1148                                                struct spi_transfer,
1149                                                transfer_list);
1150
1151        /* prepare to setup the SSP, in pump_transfers, using the per
1152         * chip configuration */
1153        drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
1154
1155        /* Mark as busy and launch transfers */
1156        tasklet_schedule(&drv_data->pump_transfers);
1157
1158        drv_data->busy = 1;
1159        spin_unlock_irqrestore(&drv_data->lock, flags);
1160}
1161
1162static int transfer(struct spi_device *spi, struct spi_message *msg)
1163{
1164        struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1165        unsigned long flags;
1166
1167        spin_lock_irqsave(&drv_data->lock, flags);
1168
1169        if (drv_data->run == QUEUE_STOPPED) {
1170                spin_unlock_irqrestore(&drv_data->lock, flags);
1171                return -ESHUTDOWN;
1172        }
1173
1174        msg->actual_length = 0;
1175        msg->status = -EINPROGRESS;
1176        msg->state = START_STATE;
1177
1178        list_add_tail(&msg->queue, &drv_data->queue);
1179
1180        if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
1181                queue_work(drv_data->workqueue, &drv_data->pump_messages);
1182
1183        spin_unlock_irqrestore(&drv_data->lock, flags);
1184
1185        return 0;
1186}
1187
1188static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1189                    struct pxa2xx_spi_chip *chip_info)
1190{
1191        int err = 0;
1192
1193        if (chip == NULL || chip_info == NULL)
1194                return 0;
1195
1196        /* NOTE: setup() can be called multiple times, possibly with
1197         * different chip_info, release previously requested GPIO
1198         */
1199        if (gpio_is_valid(chip->gpio_cs))
1200                gpio_free(chip->gpio_cs);
1201
1202        /* If (*cs_control) is provided, ignore GPIO chip select */
1203        if (chip_info->cs_control) {
1204                chip->cs_control = chip_info->cs_control;
1205                return 0;
1206        }
1207
1208        if (gpio_is_valid(chip_info->gpio_cs)) {
1209                err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1210                if (err) {
1211                        dev_err(&spi->dev, "failed to request chip select "
1212                                        "GPIO%d\n", chip_info->gpio_cs);
1213                        return err;
1214                }
1215
1216                chip->gpio_cs = chip_info->gpio_cs;
1217                chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1218
1219                err = gpio_direction_output(chip->gpio_cs,
1220                                        !chip->gpio_cs_inverted);
1221        }
1222
1223        return err;
1224}
1225
1226static int setup(struct spi_device *spi)
1227{
1228        struct pxa2xx_spi_chip *chip_info = NULL;
1229        struct chip_data *chip;
1230        struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1231        struct ssp_device *ssp = drv_data->ssp;
1232        unsigned int clk_div;
1233        uint tx_thres = TX_THRESH_DFLT;
1234        uint rx_thres = RX_THRESH_DFLT;
1235
1236        if (drv_data->ssp_type != PXA25x_SSP
1237                && (spi->bits_per_word < 4 || spi->bits_per_word > 32)) {
1238                dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
1239                                "b/w not 4-32 for type non-PXA25x_SSP\n",
1240                                drv_data->ssp_type, spi->bits_per_word);
1241                return -EINVAL;
1242        }
1243        else if (drv_data->ssp_type == PXA25x_SSP
1244                        && (spi->bits_per_word < 4
1245                                || spi->bits_per_word > 16)) {
1246                dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
1247                                "b/w not 4-16 for type PXA25x_SSP\n",
1248                                drv_data->ssp_type, spi->bits_per_word);
1249                return -EINVAL;
1250        }
1251
1252        /* Only alloc on first setup */
1253        chip = spi_get_ctldata(spi);
1254        if (!chip) {
1255                chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1256                if (!chip) {
1257                        dev_err(&spi->dev,
1258                                "failed setup: can't allocate chip data\n");
1259                        return -ENOMEM;
1260                }
1261
1262                chip->gpio_cs = -1;
1263                chip->enable_dma = 0;
1264                chip->timeout = TIMOUT_DFLT;
1265                chip->dma_burst_size = drv_data->master_info->enable_dma ?
1266                                        DCMD_BURST8 : 0;
1267        }
1268
1269        /* protocol drivers may change the chip settings, so...
1270         * if chip_info exists, use it */
1271        chip_info = spi->controller_data;
1272
1273        /* chip_info isn't always needed */
1274        chip->cr1 = 0;
1275        if (chip_info) {
1276                if (chip_info->timeout)
1277                        chip->timeout = chip_info->timeout;
1278                if (chip_info->tx_threshold)
1279                        tx_thres = chip_info->tx_threshold;
1280                if (chip_info->rx_threshold)
1281                        rx_thres = chip_info->rx_threshold;
1282                chip->enable_dma = drv_data->master_info->enable_dma;
1283                chip->dma_threshold = 0;
1284                if (chip_info->enable_loopback)
1285                        chip->cr1 = SSCR1_LBM;
1286        }
1287
1288        chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1289                        (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1290
1291        /* set dma burst and threshold outside of chip_info path so that if
1292         * chip_info goes away after setting chip->enable_dma, the
1293         * burst and threshold can still respond to changes in bits_per_word */
1294        if (chip->enable_dma) {
1295                /* set up legal burst and threshold for dma */
1296                if (set_dma_burst_and_threshold(chip, spi, spi->bits_per_word,
1297                                                &chip->dma_burst_size,
1298                                                &chip->dma_threshold)) {
1299                        dev_warn(&spi->dev, "in setup: DMA burst size reduced "
1300                                        "to match bits_per_word\n");
1301                }
1302        }
1303
1304        clk_div = ssp_get_clk_div(ssp, spi->max_speed_hz);
1305        chip->speed_hz = spi->max_speed_hz;
1306
1307        chip->cr0 = clk_div
1308                        | SSCR0_Motorola
1309                        | SSCR0_DataSize(spi->bits_per_word > 16 ?
1310                                spi->bits_per_word - 16 : spi->bits_per_word)
1311                        | SSCR0_SSE
1312                        | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
1313        chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1314        chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1315                        | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1316
1317        /* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1318        if (drv_data->ssp_type != PXA25x_SSP)
1319                dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
1320                                clk_get_rate(ssp->clk)
1321                                        / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
1322                                chip->enable_dma ? "DMA" : "PIO");
1323        else
1324                dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
1325                                clk_get_rate(ssp->clk) / 2
1326                                        / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
1327                                chip->enable_dma ? "DMA" : "PIO");
1328
1329        if (spi->bits_per_word <= 8) {
1330                chip->n_bytes = 1;
1331                chip->dma_width = DCMD_WIDTH1;
1332                chip->read = u8_reader;
1333                chip->write = u8_writer;
1334        } else if (spi->bits_per_word <= 16) {
1335                chip->n_bytes = 2;
1336                chip->dma_width = DCMD_WIDTH2;
1337                chip->read = u16_reader;
1338                chip->write = u16_writer;
1339        } else if (spi->bits_per_word <= 32) {
1340                chip->cr0 |= SSCR0_EDSS;
1341                chip->n_bytes = 4;
1342                chip->dma_width = DCMD_WIDTH4;
1343                chip->read = u32_reader;
1344                chip->write = u32_writer;
1345        } else {
1346                dev_err(&spi->dev, "invalid wordsize\n");
1347                return -ENODEV;
1348        }
1349        chip->bits_per_word = spi->bits_per_word;
1350
1351        spi_set_ctldata(spi, chip);
1352
1353        return setup_cs(spi, chip, chip_info);
1354}
1355
1356static void cleanup(struct spi_device *spi)
1357{
1358        struct chip_data *chip = spi_get_ctldata(spi);
1359
1360        if (!chip)
1361                return;
1362
1363        if (gpio_is_valid(chip->gpio_cs))
1364                gpio_free(chip->gpio_cs);
1365
1366        kfree(chip);
1367}
1368
1369static int __init init_queue(struct driver_data *drv_data)
1370{
1371        INIT_LIST_HEAD(&drv_data->queue);
1372        spin_lock_init(&drv_data->lock);
1373
1374        drv_data->run = QUEUE_STOPPED;
1375        drv_data->busy = 0;
1376
1377        tasklet_init(&drv_data->pump_transfers,
1378                        pump_transfers, (unsigned long)drv_data);
1379
1380        INIT_WORK(&drv_data->pump_messages, pump_messages);
1381        drv_data->workqueue = create_singlethread_workqueue(
1382                                dev_name(drv_data->master->dev.parent));
1383        if (drv_data->workqueue == NULL)
1384                return -EBUSY;
1385
1386        return 0;
1387}
1388
1389static int start_queue(struct driver_data *drv_data)
1390{
1391        unsigned long flags;
1392
1393        spin_lock_irqsave(&drv_data->lock, flags);
1394
1395        if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
1396                spin_unlock_irqrestore(&drv_data->lock, flags);
1397                return -EBUSY;
1398        }
1399
1400        drv_data->run = QUEUE_RUNNING;
1401        drv_data->cur_msg = NULL;
1402        drv_data->cur_transfer = NULL;
1403        drv_data->cur_chip = NULL;
1404        spin_unlock_irqrestore(&drv_data->lock, flags);
1405
1406        queue_work(drv_data->workqueue, &drv_data->pump_messages);
1407
1408        return 0;
1409}
1410
1411static int stop_queue(struct driver_data *drv_data)
1412{
1413        unsigned long flags;
1414        unsigned limit = 500;
1415        int status = 0;
1416
1417        spin_lock_irqsave(&drv_data->lock, flags);
1418
1419        /* This is a bit lame, but is optimized for the common execution path.
1420         * A wait_queue on the drv_data->busy could be used, but then the common
1421         * execution path (pump_messages) would be required to call wake_up or
1422         * friends on every SPI message. Do this instead */
1423        drv_data->run = QUEUE_STOPPED;
1424        while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
1425                spin_unlock_irqrestore(&drv_data->lock, flags);
1426                msleep(10);
1427                spin_lock_irqsave(&drv_data->lock, flags);
1428        }
1429
1430        if (!list_empty(&drv_data->queue) || drv_data->busy)
1431                status = -EBUSY;
1432
1433        spin_unlock_irqrestore(&drv_data->lock, flags);
1434
1435        return status;
1436}
1437
1438static int destroy_queue(struct driver_data *drv_data)
1439{
1440        int status;
1441
1442        status = stop_queue(drv_data);
1443        /* we are unloading the module or failing to load (only two calls
1444         * to this routine), and neither call can handle a return value.
1445         * However, destroy_workqueue calls flush_workqueue, and that will
1446         * block until all work is done.  If the reason that stop_queue
1447         * timed out is that the work will never finish, then it does no
1448         * good to call destroy_workqueue, so return anyway. */
1449        if (status != 0)
1450                return status;
1451
1452        destroy_workqueue(drv_data->workqueue);
1453
1454        return 0;
1455}
1456
1457static int __init pxa2xx_spi_probe(struct platform_device *pdev)
1458{
1459        struct device *dev = &pdev->dev;
1460        struct pxa2xx_spi_master *platform_info;
1461        struct spi_master *master;
1462        struct driver_data *drv_data;
1463        struct ssp_device *ssp;
1464        int status;
1465
1466        platform_info = dev->platform_data;
1467
1468        ssp = ssp_request(pdev->id, pdev->name);
1469        if (ssp == NULL) {
1470                dev_err(&pdev->dev, "failed to request SSP%d\n", pdev->id);
1471                return -ENODEV;
1472        }
1473
1474        /* Allocate master with space for drv_data and null dma buffer */
1475        master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
1476        if (!master) {
1477                dev_err(&pdev->dev, "cannot alloc spi_master\n");
1478                ssp_free(ssp);
1479                return -ENOMEM;
1480        }
1481        drv_data = spi_master_get_devdata(master);
1482        drv_data->master = master;
1483        drv_data->master_info = platform_info;
1484        drv_data->pdev = pdev;
1485        drv_data->ssp = ssp;
1486
1487        /* the spi->mode bits understood by this driver: */
1488        master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1489
1490        master->bus_num = pdev->id;
1491        master->num_chipselect = platform_info->num_chipselect;
1492        master->dma_alignment = DMA_ALIGNMENT;
1493        master->cleanup = cleanup;
1494        master->setup = setup;
1495        master->transfer = transfer;
1496
1497        drv_data->ssp_type = ssp->type;
1498        drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data +
1499                                                sizeof(struct driver_data)), 8);
1500
1501        drv_data->ioaddr = ssp->mmio_base;
1502        drv_data->ssdr_physical = ssp->phys_base + SSDR;
1503        if (ssp->type == PXA25x_SSP) {
1504                drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1505                drv_data->dma_cr1 = 0;
1506                drv_data->clear_sr = SSSR_ROR;
1507                drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1508        } else {
1509                drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1510                drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
1511                drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1512                drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1513        }
1514
1515        status = request_irq(ssp->irq, ssp_int, 0, dev_name(dev), drv_data);
1516        if (status < 0) {
1517                dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1518                goto out_error_master_alloc;
1519        }
1520
1521        /* Setup DMA if requested */
1522        drv_data->tx_channel = -1;
1523        drv_data->rx_channel = -1;
1524        if (platform_info->enable_dma) {
1525
1526                /* Get two DMA channels (rx and tx) */
1527                drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
1528                                                        DMA_PRIO_HIGH,
1529                                                        dma_handler,
1530                                                        drv_data);
1531                if (drv_data->rx_channel < 0) {
1532                        dev_err(dev, "problem (%d) requesting rx channel\n",
1533                                drv_data->rx_channel);
1534                        status = -ENODEV;
1535                        goto out_error_irq_alloc;
1536                }
1537                drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
1538                                                        DMA_PRIO_MEDIUM,
1539                                                        dma_handler,
1540                                                        drv_data);
1541                if (drv_data->tx_channel < 0) {
1542                        dev_err(dev, "problem (%d) requesting tx channel\n",
1543                                drv_data->tx_channel);
1544                        status = -ENODEV;
1545                        goto out_error_dma_alloc;
1546                }
1547
1548                DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel;
1549                DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel;
1550        }
1551
1552        /* Enable SOC clock */
1553        clk_enable(ssp->clk);
1554
1555        /* Load default SSP configuration */
1556        write_SSCR0(0, drv_data->ioaddr);
1557        write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT) |
1558                                SSCR1_TxTresh(TX_THRESH_DFLT),
1559                                drv_data->ioaddr);
1560        write_SSCR0(SSCR0_SerClkDiv(2)
1561                        | SSCR0_Motorola
1562                        | SSCR0_DataSize(8),
1563                        drv_data->ioaddr);
1564        if (drv_data->ssp_type != PXA25x_SSP)
1565                write_SSTO(0, drv_data->ioaddr);
1566        write_SSPSP(0, drv_data->ioaddr);
1567
1568        /* Initial and start queue */
1569        status = init_queue(drv_data);
1570        if (status != 0) {
1571                dev_err(&pdev->dev, "problem initializing queue\n");
1572                goto out_error_clock_enabled;
1573        }
1574        status = start_queue(drv_data);
1575        if (status != 0) {
1576                dev_err(&pdev->dev, "problem starting queue\n");
1577                goto out_error_clock_enabled;
1578        }
1579
1580        /* Register with the SPI framework */
1581        platform_set_drvdata(pdev, drv_data);
1582        status = spi_register_master(master);
1583        if (status != 0) {
1584                dev_err(&pdev->dev, "problem registering spi master\n");
1585                goto out_error_queue_alloc;
1586        }
1587
1588        return status;
1589
1590out_error_queue_alloc:
1591        destroy_queue(drv_data);
1592
1593out_error_clock_enabled:
1594        clk_disable(ssp->clk);
1595
1596out_error_dma_alloc:
1597        if (drv_data->tx_channel != -1)
1598                pxa_free_dma(drv_data->tx_channel);
1599        if (drv_data->rx_channel != -1)
1600                pxa_free_dma(drv_data->rx_channel);
1601
1602out_error_irq_alloc:
1603        free_irq(ssp->irq, drv_data);
1604
1605out_error_master_alloc:
1606        spi_master_put(master);
1607        ssp_free(ssp);
1608        return status;
1609}
1610
1611static int pxa2xx_spi_remove(struct platform_device *pdev)
1612{
1613        struct driver_data *drv_data = platform_get_drvdata(pdev);
1614        struct ssp_device *ssp;
1615        int status = 0;
1616
1617        if (!drv_data)
1618                return 0;
1619        ssp = drv_data->ssp;
1620
1621        /* Remove the queue */
1622        status = destroy_queue(drv_data);
1623        if (status != 0)
1624                /* the kernel does not check the return status of this
1625                 * this routine (mod->exit, within the kernel).  Therefore
1626                 * nothing is gained by returning from here, the module is
1627                 * going away regardless, and we should not leave any more
1628                 * resources allocated than necessary.  We cannot free the
1629                 * message memory in drv_data->queue, but we can release the
1630                 * resources below.  I think the kernel should honor -EBUSY
1631                 * returns but... */
1632                dev_err(&pdev->dev, "pxa2xx_spi_remove: workqueue will not "
1633                        "complete, message memory not freed\n");
1634
1635        /* Disable the SSP at the peripheral and SOC level */
1636        write_SSCR0(0, drv_data->ioaddr);
1637        clk_disable(ssp->clk);
1638
1639        /* Release DMA */
1640        if (drv_data->master_info->enable_dma) {
1641                DRCMR(ssp->drcmr_rx) = 0;
1642                DRCMR(ssp->drcmr_tx) = 0;
1643                pxa_free_dma(drv_data->tx_channel);
1644                pxa_free_dma(drv_data->rx_channel);
1645        }
1646
1647        /* Release IRQ */
1648        free_irq(ssp->irq, drv_data);
1649
1650        /* Release SSP */
1651        ssp_free(ssp);
1652
1653        /* Disconnect from the SPI framework */
1654        spi_unregister_master(drv_data->master);
1655
1656        /* Prevent double remove */
1657        platform_set_drvdata(pdev, NULL);
1658
1659        return 0;
1660}
1661
1662static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1663{
1664        int status = 0;
1665
1666        if ((status = pxa2xx_spi_remove(pdev)) != 0)
1667                dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1668}
1669
1670#ifdef CONFIG_PM
1671static int pxa2xx_spi_suspend(struct device *dev)
1672{
1673        struct driver_data *drv_data = dev_get_drvdata(dev);
1674        struct ssp_device *ssp = drv_data->ssp;
1675        int status = 0;
1676
1677        status = stop_queue(drv_data);
1678        if (status != 0)
1679                return status;
1680        write_SSCR0(0, drv_data->ioaddr);
1681        clk_disable(ssp->clk);
1682
1683        return 0;
1684}
1685
1686static int pxa2xx_spi_resume(struct device *dev)
1687{
1688        struct driver_data *drv_data = dev_get_drvdata(dev);
1689        struct ssp_device *ssp = drv_data->ssp;
1690        int status = 0;
1691
1692        if (drv_data->rx_channel != -1)
1693                DRCMR(drv_data->ssp->drcmr_rx) =
1694                        DRCMR_MAPVLD | drv_data->rx_channel;
1695        if (drv_data->tx_channel != -1)
1696                DRCMR(drv_data->ssp->drcmr_tx) =
1697                        DRCMR_MAPVLD | drv_data->tx_channel;
1698
1699        /* Enable the SSP clock */
1700        clk_enable(ssp->clk);
1701
1702        /* Start the queue running */
1703        status = start_queue(drv_data);
1704        if (status != 0) {
1705                dev_err(dev, "problem starting queue (%d)\n", status);
1706                return status;
1707        }
1708
1709        return 0;
1710}
1711
1712static struct dev_pm_ops pxa2xx_spi_pm_ops = {
1713        .suspend        = pxa2xx_spi_suspend,
1714        .resume         = pxa2xx_spi_resume,
1715};
1716#endif
1717
1718static struct platform_driver driver = {
1719        .driver = {
1720                .name   = "pxa2xx-spi",
1721                .owner  = THIS_MODULE,
1722#ifdef CONFIG_PM
1723                .pm     = &pxa2xx_spi_pm_ops,
1724#endif
1725        },
1726        .remove = pxa2xx_spi_remove,
1727        .shutdown = pxa2xx_spi_shutdown,
1728};
1729
1730static int __init pxa2xx_spi_init(void)
1731{
1732        return platform_driver_probe(&driver, pxa2xx_spi_probe);
1733}
1734subsys_initcall(pxa2xx_spi_init);
1735
1736static void __exit pxa2xx_spi_exit(void)
1737{
1738        platform_driver_unregister(&driver);
1739}
1740module_exit(pxa2xx_spi_exit);
1741