linux/drivers/spi/spi.c
<<
>>
Prefs
   1/*
   2 * spi.c - SPI init/core code
   3 *
   4 * Copyright (C) 2005 David Brownell
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20
  21#include <linux/kernel.h>
  22#include <linux/device.h>
  23#include <linux/init.h>
  24#include <linux/cache.h>
  25#include <linux/mutex.h>
  26#include <linux/mod_devicetable.h>
  27#include <linux/spi/spi.h>
  28
  29
  30/* SPI bustype and spi_master class are registered after board init code
  31 * provides the SPI device tables, ensuring that both are present by the
  32 * time controller driver registration causes spi_devices to "enumerate".
  33 */
  34static void spidev_release(struct device *dev)
  35{
  36        struct spi_device       *spi = to_spi_device(dev);
  37
  38        /* spi masters may cleanup for released devices */
  39        if (spi->master->cleanup)
  40                spi->master->cleanup(spi);
  41
  42        spi_master_put(spi->master);
  43        kfree(dev);
  44}
  45
  46static ssize_t
  47modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  48{
  49        const struct spi_device *spi = to_spi_device(dev);
  50
  51        return sprintf(buf, "%s\n", spi->modalias);
  52}
  53
  54static struct device_attribute spi_dev_attrs[] = {
  55        __ATTR_RO(modalias),
  56        __ATTR_NULL,
  57};
  58
  59/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
  60 * and the sysfs version makes coldplug work too.
  61 */
  62
  63static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
  64                                                const struct spi_device *sdev)
  65{
  66        while (id->name[0]) {
  67                if (!strcmp(sdev->modalias, id->name))
  68                        return id;
  69                id++;
  70        }
  71        return NULL;
  72}
  73
  74const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
  75{
  76        const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
  77
  78        return spi_match_id(sdrv->id_table, sdev);
  79}
  80EXPORT_SYMBOL_GPL(spi_get_device_id);
  81
  82static int spi_match_device(struct device *dev, struct device_driver *drv)
  83{
  84        const struct spi_device *spi = to_spi_device(dev);
  85        const struct spi_driver *sdrv = to_spi_driver(drv);
  86
  87        if (sdrv->id_table)
  88                return !!spi_match_id(sdrv->id_table, spi);
  89
  90        return strcmp(spi->modalias, drv->name) == 0;
  91}
  92
  93static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
  94{
  95        const struct spi_device         *spi = to_spi_device(dev);
  96
  97        add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
  98        return 0;
  99}
 100
 101#ifdef  CONFIG_PM
 102
 103static int spi_suspend(struct device *dev, pm_message_t message)
 104{
 105        int                     value = 0;
 106        struct spi_driver       *drv = to_spi_driver(dev->driver);
 107
 108        /* suspend will stop irqs and dma; no more i/o */
 109        if (drv) {
 110                if (drv->suspend)
 111                        value = drv->suspend(to_spi_device(dev), message);
 112                else
 113                        dev_dbg(dev, "... can't suspend\n");
 114        }
 115        return value;
 116}
 117
 118static int spi_resume(struct device *dev)
 119{
 120        int                     value = 0;
 121        struct spi_driver       *drv = to_spi_driver(dev->driver);
 122
 123        /* resume may restart the i/o queue */
 124        if (drv) {
 125                if (drv->resume)
 126                        value = drv->resume(to_spi_device(dev));
 127                else
 128                        dev_dbg(dev, "... can't resume\n");
 129        }
 130        return value;
 131}
 132
 133#else
 134#define spi_suspend     NULL
 135#define spi_resume      NULL
 136#endif
 137
 138struct bus_type spi_bus_type = {
 139        .name           = "spi",
 140        .dev_attrs      = spi_dev_attrs,
 141        .match          = spi_match_device,
 142        .uevent         = spi_uevent,
 143        .suspend        = spi_suspend,
 144        .resume         = spi_resume,
 145};
 146EXPORT_SYMBOL_GPL(spi_bus_type);
 147
 148
 149static int spi_drv_probe(struct device *dev)
 150{
 151        const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
 152
 153        return sdrv->probe(to_spi_device(dev));
 154}
 155
 156static int spi_drv_remove(struct device *dev)
 157{
 158        const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
 159
 160        return sdrv->remove(to_spi_device(dev));
 161}
 162
 163static void spi_drv_shutdown(struct device *dev)
 164{
 165        const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
 166
 167        sdrv->shutdown(to_spi_device(dev));
 168}
 169
 170/**
 171 * spi_register_driver - register a SPI driver
 172 * @sdrv: the driver to register
 173 * Context: can sleep
 174 */
 175int spi_register_driver(struct spi_driver *sdrv)
 176{
 177        sdrv->driver.bus = &spi_bus_type;
 178        if (sdrv->probe)
 179                sdrv->driver.probe = spi_drv_probe;
 180        if (sdrv->remove)
 181                sdrv->driver.remove = spi_drv_remove;
 182        if (sdrv->shutdown)
 183                sdrv->driver.shutdown = spi_drv_shutdown;
 184        return driver_register(&sdrv->driver);
 185}
 186EXPORT_SYMBOL_GPL(spi_register_driver);
 187
 188/*-------------------------------------------------------------------------*/
 189
 190/* SPI devices should normally not be created by SPI device drivers; that
 191 * would make them board-specific.  Similarly with SPI master drivers.
 192 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 193 * with other readonly (flashable) information about mainboard devices.
 194 */
 195
 196struct boardinfo {
 197        struct list_head        list;
 198        unsigned                n_board_info;
 199        struct spi_board_info   board_info[0];
 200};
 201
 202static LIST_HEAD(board_list);
 203static DEFINE_MUTEX(board_lock);
 204
 205/**
 206 * spi_alloc_device - Allocate a new SPI device
 207 * @master: Controller to which device is connected
 208 * Context: can sleep
 209 *
 210 * Allows a driver to allocate and initialize a spi_device without
 211 * registering it immediately.  This allows a driver to directly
 212 * fill the spi_device with device parameters before calling
 213 * spi_add_device() on it.
 214 *
 215 * Caller is responsible to call spi_add_device() on the returned
 216 * spi_device structure to add it to the SPI master.  If the caller
 217 * needs to discard the spi_device without adding it, then it should
 218 * call spi_dev_put() on it.
 219 *
 220 * Returns a pointer to the new device, or NULL.
 221 */
 222struct spi_device *spi_alloc_device(struct spi_master *master)
 223{
 224        struct spi_device       *spi;
 225        struct device           *dev = master->dev.parent;
 226
 227        if (!spi_master_get(master))
 228                return NULL;
 229
 230        spi = kzalloc(sizeof *spi, GFP_KERNEL);
 231        if (!spi) {
 232                dev_err(dev, "cannot alloc spi_device\n");
 233                spi_master_put(master);
 234                return NULL;
 235        }
 236
 237        spi->master = master;
 238        spi->dev.parent = dev;
 239        spi->dev.bus = &spi_bus_type;
 240        spi->dev.release = spidev_release;
 241        device_initialize(&spi->dev);
 242        return spi;
 243}
 244EXPORT_SYMBOL_GPL(spi_alloc_device);
 245
 246/**
 247 * spi_add_device - Add spi_device allocated with spi_alloc_device
 248 * @spi: spi_device to register
 249 *
 250 * Companion function to spi_alloc_device.  Devices allocated with
 251 * spi_alloc_device can be added onto the spi bus with this function.
 252 *
 253 * Returns 0 on success; negative errno on failure
 254 */
 255int spi_add_device(struct spi_device *spi)
 256{
 257        static DEFINE_MUTEX(spi_add_lock);
 258        struct device *dev = spi->master->dev.parent;
 259        int status;
 260
 261        /* Chipselects are numbered 0..max; validate. */
 262        if (spi->chip_select >= spi->master->num_chipselect) {
 263                dev_err(dev, "cs%d >= max %d\n",
 264                        spi->chip_select,
 265                        spi->master->num_chipselect);
 266                return -EINVAL;
 267        }
 268
 269        /* Set the bus ID string */
 270        dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
 271                        spi->chip_select);
 272
 273
 274        /* We need to make sure there's no other device with this
 275         * chipselect **BEFORE** we call setup(), else we'll trash
 276         * its configuration.  Lock against concurrent add() calls.
 277         */
 278        mutex_lock(&spi_add_lock);
 279
 280        if (bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev))
 281                        != NULL) {
 282                dev_err(dev, "chipselect %d already in use\n",
 283                                spi->chip_select);
 284                status = -EBUSY;
 285                goto done;
 286        }
 287
 288        /* Drivers may modify this initial i/o setup, but will
 289         * normally rely on the device being setup.  Devices
 290         * using SPI_CS_HIGH can't coexist well otherwise...
 291         */
 292        status = spi_setup(spi);
 293        if (status < 0) {
 294                dev_err(dev, "can't %s %s, status %d\n",
 295                                "setup", dev_name(&spi->dev), status);
 296                goto done;
 297        }
 298
 299        /* Device may be bound to an active driver when this returns */
 300        status = device_add(&spi->dev);
 301        if (status < 0)
 302                dev_err(dev, "can't %s %s, status %d\n",
 303                                "add", dev_name(&spi->dev), status);
 304        else
 305                dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 306
 307done:
 308        mutex_unlock(&spi_add_lock);
 309        return status;
 310}
 311EXPORT_SYMBOL_GPL(spi_add_device);
 312
 313/**
 314 * spi_new_device - instantiate one new SPI device
 315 * @master: Controller to which device is connected
 316 * @chip: Describes the SPI device
 317 * Context: can sleep
 318 *
 319 * On typical mainboards, this is purely internal; and it's not needed
 320 * after board init creates the hard-wired devices.  Some development
 321 * platforms may not be able to use spi_register_board_info though, and
 322 * this is exported so that for example a USB or parport based adapter
 323 * driver could add devices (which it would learn about out-of-band).
 324 *
 325 * Returns the new device, or NULL.
 326 */
 327struct spi_device *spi_new_device(struct spi_master *master,
 328                                  struct spi_board_info *chip)
 329{
 330        struct spi_device       *proxy;
 331        int                     status;
 332
 333        /* NOTE:  caller did any chip->bus_num checks necessary.
 334         *
 335         * Also, unless we change the return value convention to use
 336         * error-or-pointer (not NULL-or-pointer), troubleshootability
 337         * suggests syslogged diagnostics are best here (ugh).
 338         */
 339
 340        proxy = spi_alloc_device(master);
 341        if (!proxy)
 342                return NULL;
 343
 344        WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 345
 346        proxy->chip_select = chip->chip_select;
 347        proxy->max_speed_hz = chip->max_speed_hz;
 348        proxy->mode = chip->mode;
 349        proxy->irq = chip->irq;
 350        strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 351        proxy->dev.platform_data = (void *) chip->platform_data;
 352        proxy->controller_data = chip->controller_data;
 353        proxy->controller_state = NULL;
 354
 355        status = spi_add_device(proxy);
 356        if (status < 0) {
 357                spi_dev_put(proxy);
 358                return NULL;
 359        }
 360
 361        return proxy;
 362}
 363EXPORT_SYMBOL_GPL(spi_new_device);
 364
 365/**
 366 * spi_register_board_info - register SPI devices for a given board
 367 * @info: array of chip descriptors
 368 * @n: how many descriptors are provided
 369 * Context: can sleep
 370 *
 371 * Board-specific early init code calls this (probably during arch_initcall)
 372 * with segments of the SPI device table.  Any device nodes are created later,
 373 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 374 * this table of devices forever, so that reloading a controller driver will
 375 * not make Linux forget about these hard-wired devices.
 376 *
 377 * Other code can also call this, e.g. a particular add-on board might provide
 378 * SPI devices through its expansion connector, so code initializing that board
 379 * would naturally declare its SPI devices.
 380 *
 381 * The board info passed can safely be __initdata ... but be careful of
 382 * any embedded pointers (platform_data, etc), they're copied as-is.
 383 */
 384int __init
 385spi_register_board_info(struct spi_board_info const *info, unsigned n)
 386{
 387        struct boardinfo        *bi;
 388
 389        bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL);
 390        if (!bi)
 391                return -ENOMEM;
 392        bi->n_board_info = n;
 393        memcpy(bi->board_info, info, n * sizeof *info);
 394
 395        mutex_lock(&board_lock);
 396        list_add_tail(&bi->list, &board_list);
 397        mutex_unlock(&board_lock);
 398        return 0;
 399}
 400
 401/* FIXME someone should add support for a __setup("spi", ...) that
 402 * creates board info from kernel command lines
 403 */
 404
 405static void scan_boardinfo(struct spi_master *master)
 406{
 407        struct boardinfo        *bi;
 408
 409        mutex_lock(&board_lock);
 410        list_for_each_entry(bi, &board_list, list) {
 411                struct spi_board_info   *chip = bi->board_info;
 412                unsigned                n;
 413
 414                for (n = bi->n_board_info; n > 0; n--, chip++) {
 415                        if (chip->bus_num != master->bus_num)
 416                                continue;
 417                        /* NOTE: this relies on spi_new_device to
 418                         * issue diagnostics when given bogus inputs
 419                         */
 420                        (void) spi_new_device(master, chip);
 421                }
 422        }
 423        mutex_unlock(&board_lock);
 424}
 425
 426/*-------------------------------------------------------------------------*/
 427
 428static void spi_master_release(struct device *dev)
 429{
 430        struct spi_master *master;
 431
 432        master = container_of(dev, struct spi_master, dev);
 433        kfree(master);
 434}
 435
 436static struct class spi_master_class = {
 437        .name           = "spi_master",
 438        .owner          = THIS_MODULE,
 439        .dev_release    = spi_master_release,
 440};
 441
 442
 443/**
 444 * spi_alloc_master - allocate SPI master controller
 445 * @dev: the controller, possibly using the platform_bus
 446 * @size: how much zeroed driver-private data to allocate; the pointer to this
 447 *      memory is in the driver_data field of the returned device,
 448 *      accessible with spi_master_get_devdata().
 449 * Context: can sleep
 450 *
 451 * This call is used only by SPI master controller drivers, which are the
 452 * only ones directly touching chip registers.  It's how they allocate
 453 * an spi_master structure, prior to calling spi_register_master().
 454 *
 455 * This must be called from context that can sleep.  It returns the SPI
 456 * master structure on success, else NULL.
 457 *
 458 * The caller is responsible for assigning the bus number and initializing
 459 * the master's methods before calling spi_register_master(); and (after errors
 460 * adding the device) calling spi_master_put() to prevent a memory leak.
 461 */
 462struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
 463{
 464        struct spi_master       *master;
 465
 466        if (!dev)
 467                return NULL;
 468
 469        master = kzalloc(size + sizeof *master, GFP_KERNEL);
 470        if (!master)
 471                return NULL;
 472
 473        device_initialize(&master->dev);
 474        master->dev.class = &spi_master_class;
 475        master->dev.parent = get_device(dev);
 476        spi_master_set_devdata(master, &master[1]);
 477
 478        return master;
 479}
 480EXPORT_SYMBOL_GPL(spi_alloc_master);
 481
 482/**
 483 * spi_register_master - register SPI master controller
 484 * @master: initialized master, originally from spi_alloc_master()
 485 * Context: can sleep
 486 *
 487 * SPI master controllers connect to their drivers using some non-SPI bus,
 488 * such as the platform bus.  The final stage of probe() in that code
 489 * includes calling spi_register_master() to hook up to this SPI bus glue.
 490 *
 491 * SPI controllers use board specific (often SOC specific) bus numbers,
 492 * and board-specific addressing for SPI devices combines those numbers
 493 * with chip select numbers.  Since SPI does not directly support dynamic
 494 * device identification, boards need configuration tables telling which
 495 * chip is at which address.
 496 *
 497 * This must be called from context that can sleep.  It returns zero on
 498 * success, else a negative error code (dropping the master's refcount).
 499 * After a successful return, the caller is responsible for calling
 500 * spi_unregister_master().
 501 */
 502int spi_register_master(struct spi_master *master)
 503{
 504        static atomic_t         dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
 505        struct device           *dev = master->dev.parent;
 506        int                     status = -ENODEV;
 507        int                     dynamic = 0;
 508
 509        if (!dev)
 510                return -ENODEV;
 511
 512        /* even if it's just one always-selected device, there must
 513         * be at least one chipselect
 514         */
 515        if (master->num_chipselect == 0)
 516                return -EINVAL;
 517
 518        /* convention:  dynamically assigned bus IDs count down from the max */
 519        if (master->bus_num < 0) {
 520                /* FIXME switch to an IDR based scheme, something like
 521                 * I2C now uses, so we can't run out of "dynamic" IDs
 522                 */
 523                master->bus_num = atomic_dec_return(&dyn_bus_id);
 524                dynamic = 1;
 525        }
 526
 527        /* register the device, then userspace will see it.
 528         * registration fails if the bus ID is in use.
 529         */
 530        dev_set_name(&master->dev, "spi%u", master->bus_num);
 531        status = device_add(&master->dev);
 532        if (status < 0)
 533                goto done;
 534        dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
 535                        dynamic ? " (dynamic)" : "");
 536
 537        /* populate children from any spi device tables */
 538        scan_boardinfo(master);
 539        status = 0;
 540done:
 541        return status;
 542}
 543EXPORT_SYMBOL_GPL(spi_register_master);
 544
 545
 546static int __unregister(struct device *dev, void *master_dev)
 547{
 548        /* note: before about 2.6.14-rc1 this would corrupt memory: */
 549        if (dev != master_dev)
 550                spi_unregister_device(to_spi_device(dev));
 551        return 0;
 552}
 553
 554/**
 555 * spi_unregister_master - unregister SPI master controller
 556 * @master: the master being unregistered
 557 * Context: can sleep
 558 *
 559 * This call is used only by SPI master controller drivers, which are the
 560 * only ones directly touching chip registers.
 561 *
 562 * This must be called from context that can sleep.
 563 */
 564void spi_unregister_master(struct spi_master *master)
 565{
 566        int dummy;
 567
 568        dummy = device_for_each_child(master->dev.parent, &master->dev,
 569                                        __unregister);
 570        device_unregister(&master->dev);
 571}
 572EXPORT_SYMBOL_GPL(spi_unregister_master);
 573
 574static int __spi_master_match(struct device *dev, void *data)
 575{
 576        struct spi_master *m;
 577        u16 *bus_num = data;
 578
 579        m = container_of(dev, struct spi_master, dev);
 580        return m->bus_num == *bus_num;
 581}
 582
 583/**
 584 * spi_busnum_to_master - look up master associated with bus_num
 585 * @bus_num: the master's bus number
 586 * Context: can sleep
 587 *
 588 * This call may be used with devices that are registered after
 589 * arch init time.  It returns a refcounted pointer to the relevant
 590 * spi_master (which the caller must release), or NULL if there is
 591 * no such master registered.
 592 */
 593struct spi_master *spi_busnum_to_master(u16 bus_num)
 594{
 595        struct device           *dev;
 596        struct spi_master       *master = NULL;
 597
 598        dev = class_find_device(&spi_master_class, NULL, &bus_num,
 599                                __spi_master_match);
 600        if (dev)
 601                master = container_of(dev, struct spi_master, dev);
 602        /* reference got in class_find_device */
 603        return master;
 604}
 605EXPORT_SYMBOL_GPL(spi_busnum_to_master);
 606
 607
 608/*-------------------------------------------------------------------------*/
 609
 610/* Core methods for SPI master protocol drivers.  Some of the
 611 * other core methods are currently defined as inline functions.
 612 */
 613
 614/**
 615 * spi_setup - setup SPI mode and clock rate
 616 * @spi: the device whose settings are being modified
 617 * Context: can sleep, and no requests are queued to the device
 618 *
 619 * SPI protocol drivers may need to update the transfer mode if the
 620 * device doesn't work with its default.  They may likewise need
 621 * to update clock rates or word sizes from initial values.  This function
 622 * changes those settings, and must be called from a context that can sleep.
 623 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
 624 * effect the next time the device is selected and data is transferred to
 625 * or from it.  When this function returns, the spi device is deselected.
 626 *
 627 * Note that this call will fail if the protocol driver specifies an option
 628 * that the underlying controller or its driver does not support.  For
 629 * example, not all hardware supports wire transfers using nine bit words,
 630 * LSB-first wire encoding, or active-high chipselects.
 631 */
 632int spi_setup(struct spi_device *spi)
 633{
 634        unsigned        bad_bits;
 635        int             status;
 636
 637        /* help drivers fail *cleanly* when they need options
 638         * that aren't supported with their current master
 639         */
 640        bad_bits = spi->mode & ~spi->master->mode_bits;
 641        if (bad_bits) {
 642                dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
 643                        bad_bits);
 644                return -EINVAL;
 645        }
 646
 647        if (!spi->bits_per_word)
 648                spi->bits_per_word = 8;
 649
 650        status = spi->master->setup(spi);
 651
 652        dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
 653                                "%u bits/w, %u Hz max --> %d\n",
 654                        (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
 655                        (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
 656                        (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
 657                        (spi->mode & SPI_3WIRE) ? "3wire, " : "",
 658                        (spi->mode & SPI_LOOP) ? "loopback, " : "",
 659                        spi->bits_per_word, spi->max_speed_hz,
 660                        status);
 661
 662        return status;
 663}
 664EXPORT_SYMBOL_GPL(spi_setup);
 665
 666/**
 667 * spi_async - asynchronous SPI transfer
 668 * @spi: device with which data will be exchanged
 669 * @message: describes the data transfers, including completion callback
 670 * Context: any (irqs may be blocked, etc)
 671 *
 672 * This call may be used in_irq and other contexts which can't sleep,
 673 * as well as from task contexts which can sleep.
 674 *
 675 * The completion callback is invoked in a context which can't sleep.
 676 * Before that invocation, the value of message->status is undefined.
 677 * When the callback is issued, message->status holds either zero (to
 678 * indicate complete success) or a negative error code.  After that
 679 * callback returns, the driver which issued the transfer request may
 680 * deallocate the associated memory; it's no longer in use by any SPI
 681 * core or controller driver code.
 682 *
 683 * Note that although all messages to a spi_device are handled in
 684 * FIFO order, messages may go to different devices in other orders.
 685 * Some device might be higher priority, or have various "hard" access
 686 * time requirements, for example.
 687 *
 688 * On detection of any fault during the transfer, processing of
 689 * the entire message is aborted, and the device is deselected.
 690 * Until returning from the associated message completion callback,
 691 * no other spi_message queued to that device will be processed.
 692 * (This rule applies equally to all the synchronous transfer calls,
 693 * which are wrappers around this core asynchronous primitive.)
 694 */
 695int spi_async(struct spi_device *spi, struct spi_message *message)
 696{
 697        struct spi_master *master = spi->master;
 698
 699        /* Half-duplex links include original MicroWire, and ones with
 700         * only one data pin like SPI_3WIRE (switches direction) or where
 701         * either MOSI or MISO is missing.  They can also be caused by
 702         * software limitations.
 703         */
 704        if ((master->flags & SPI_MASTER_HALF_DUPLEX)
 705                        || (spi->mode & SPI_3WIRE)) {
 706                struct spi_transfer *xfer;
 707                unsigned flags = master->flags;
 708
 709                list_for_each_entry(xfer, &message->transfers, transfer_list) {
 710                        if (xfer->rx_buf && xfer->tx_buf)
 711                                return -EINVAL;
 712                        if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
 713                                return -EINVAL;
 714                        if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
 715                                return -EINVAL;
 716                }
 717        }
 718
 719        message->spi = spi;
 720        message->status = -EINPROGRESS;
 721        return master->transfer(spi, message);
 722}
 723EXPORT_SYMBOL_GPL(spi_async);
 724
 725
 726/*-------------------------------------------------------------------------*/
 727
 728/* Utility methods for SPI master protocol drivers, layered on
 729 * top of the core.  Some other utility methods are defined as
 730 * inline functions.
 731 */
 732
 733static void spi_complete(void *arg)
 734{
 735        complete(arg);
 736}
 737
 738/**
 739 * spi_sync - blocking/synchronous SPI data transfers
 740 * @spi: device with which data will be exchanged
 741 * @message: describes the data transfers
 742 * Context: can sleep
 743 *
 744 * This call may only be used from a context that may sleep.  The sleep
 745 * is non-interruptible, and has no timeout.  Low-overhead controller
 746 * drivers may DMA directly into and out of the message buffers.
 747 *
 748 * Note that the SPI device's chip select is active during the message,
 749 * and then is normally disabled between messages.  Drivers for some
 750 * frequently-used devices may want to minimize costs of selecting a chip,
 751 * by leaving it selected in anticipation that the next message will go
 752 * to the same chip.  (That may increase power usage.)
 753 *
 754 * Also, the caller is guaranteeing that the memory associated with the
 755 * message will not be freed before this call returns.
 756 *
 757 * It returns zero on success, else a negative error code.
 758 */
 759int spi_sync(struct spi_device *spi, struct spi_message *message)
 760{
 761        DECLARE_COMPLETION_ONSTACK(done);
 762        int status;
 763
 764        message->complete = spi_complete;
 765        message->context = &done;
 766        status = spi_async(spi, message);
 767        if (status == 0) {
 768                wait_for_completion(&done);
 769                status = message->status;
 770        }
 771        message->context = NULL;
 772        return status;
 773}
 774EXPORT_SYMBOL_GPL(spi_sync);
 775
 776/* portable code must never pass more than 32 bytes */
 777#define SPI_BUFSIZ      max(32,SMP_CACHE_BYTES)
 778
 779static u8       *buf;
 780
 781/**
 782 * spi_write_then_read - SPI synchronous write followed by read
 783 * @spi: device with which data will be exchanged
 784 * @txbuf: data to be written (need not be dma-safe)
 785 * @n_tx: size of txbuf, in bytes
 786 * @rxbuf: buffer into which data will be read (need not be dma-safe)
 787 * @n_rx: size of rxbuf, in bytes
 788 * Context: can sleep
 789 *
 790 * This performs a half duplex MicroWire style transaction with the
 791 * device, sending txbuf and then reading rxbuf.  The return value
 792 * is zero for success, else a negative errno status code.
 793 * This call may only be used from a context that may sleep.
 794 *
 795 * Parameters to this routine are always copied using a small buffer;
 796 * portable code should never use this for more than 32 bytes.
 797 * Performance-sensitive or bulk transfer code should instead use
 798 * spi_{async,sync}() calls with dma-safe buffers.
 799 */
 800int spi_write_then_read(struct spi_device *spi,
 801                const u8 *txbuf, unsigned n_tx,
 802                u8 *rxbuf, unsigned n_rx)
 803{
 804        static DEFINE_MUTEX(lock);
 805
 806        int                     status;
 807        struct spi_message      message;
 808        struct spi_transfer     x[2];
 809        u8                      *local_buf;
 810
 811        /* Use preallocated DMA-safe buffer.  We can't avoid copying here,
 812         * (as a pure convenience thing), but we can keep heap costs
 813         * out of the hot path ...
 814         */
 815        if ((n_tx + n_rx) > SPI_BUFSIZ)
 816                return -EINVAL;
 817
 818        spi_message_init(&message);
 819        memset(x, 0, sizeof x);
 820        if (n_tx) {
 821                x[0].len = n_tx;
 822                spi_message_add_tail(&x[0], &message);
 823        }
 824        if (n_rx) {
 825                x[1].len = n_rx;
 826                spi_message_add_tail(&x[1], &message);
 827        }
 828
 829        /* ... unless someone else is using the pre-allocated buffer */
 830        if (!mutex_trylock(&lock)) {
 831                local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
 832                if (!local_buf)
 833                        return -ENOMEM;
 834        } else
 835                local_buf = buf;
 836
 837        memcpy(local_buf, txbuf, n_tx);
 838        x[0].tx_buf = local_buf;
 839        x[1].rx_buf = local_buf + n_tx;
 840
 841        /* do the i/o */
 842        status = spi_sync(spi, &message);
 843        if (status == 0)
 844                memcpy(rxbuf, x[1].rx_buf, n_rx);
 845
 846        if (x[0].tx_buf == buf)
 847                mutex_unlock(&lock);
 848        else
 849                kfree(local_buf);
 850
 851        return status;
 852}
 853EXPORT_SYMBOL_GPL(spi_write_then_read);
 854
 855/*-------------------------------------------------------------------------*/
 856
 857static int __init spi_init(void)
 858{
 859        int     status;
 860
 861        buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
 862        if (!buf) {
 863                status = -ENOMEM;
 864                goto err0;
 865        }
 866
 867        status = bus_register(&spi_bus_type);
 868        if (status < 0)
 869                goto err1;
 870
 871        status = class_register(&spi_master_class);
 872        if (status < 0)
 873                goto err2;
 874        return 0;
 875
 876err2:
 877        bus_unregister(&spi_bus_type);
 878err1:
 879        kfree(buf);
 880        buf = NULL;
 881err0:
 882        return status;
 883}
 884
 885/* board_info is normally registered in arch_initcall(),
 886 * but even essential drivers wait till later
 887 *
 888 * REVISIT only boardinfo really needs static linking. the rest (device and
 889 * driver registration) _could_ be dynamically linked (modular) ... costs
 890 * include needing to have boardinfo data structures be much more public.
 891 */
 892postcore_initcall(spi_init);
 893
 894