linux/drivers/usb/core/message.c
<<
>>
Prefs
   1/*
   2 * message.c - synchronous message handling
   3 */
   4
   5#include <linux/pci.h>  /* for scatterlist macros */
   6#include <linux/usb.h>
   7#include <linux/module.h>
   8#include <linux/slab.h>
   9#include <linux/init.h>
  10#include <linux/mm.h>
  11#include <linux/timer.h>
  12#include <linux/ctype.h>
  13#include <linux/nls.h>
  14#include <linux/device.h>
  15#include <linux/scatterlist.h>
  16#include <linux/usb/quirks.h>
  17#include <asm/byteorder.h>
  18
  19#include "hcd.h"        /* for usbcore internals */
  20#include "usb.h"
  21
  22static void cancel_async_set_config(struct usb_device *udev);
  23
  24struct api_context {
  25        struct completion       done;
  26        int                     status;
  27};
  28
  29static void usb_api_blocking_completion(struct urb *urb)
  30{
  31        struct api_context *ctx = urb->context;
  32
  33        ctx->status = urb->status;
  34        complete(&ctx->done);
  35}
  36
  37
  38/*
  39 * Starts urb and waits for completion or timeout. Note that this call
  40 * is NOT interruptible. Many device driver i/o requests should be
  41 * interruptible and therefore these drivers should implement their
  42 * own interruptible routines.
  43 */
  44static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
  45{
  46        struct api_context ctx;
  47        unsigned long expire;
  48        int retval;
  49
  50        init_completion(&ctx.done);
  51        urb->context = &ctx;
  52        urb->actual_length = 0;
  53        retval = usb_submit_urb(urb, GFP_NOIO);
  54        if (unlikely(retval))
  55                goto out;
  56
  57        expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
  58        if (!wait_for_completion_timeout(&ctx.done, expire)) {
  59                usb_kill_urb(urb);
  60                retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
  61
  62                dev_dbg(&urb->dev->dev,
  63                        "%s timed out on ep%d%s len=%u/%u\n",
  64                        current->comm,
  65                        usb_endpoint_num(&urb->ep->desc),
  66                        usb_urb_dir_in(urb) ? "in" : "out",
  67                        urb->actual_length,
  68                        urb->transfer_buffer_length);
  69        } else
  70                retval = ctx.status;
  71out:
  72        if (actual_length)
  73                *actual_length = urb->actual_length;
  74
  75        usb_free_urb(urb);
  76        return retval;
  77}
  78
  79/*-------------------------------------------------------------------*/
  80/* returns status (negative) or length (positive) */
  81static int usb_internal_control_msg(struct usb_device *usb_dev,
  82                                    unsigned int pipe,
  83                                    struct usb_ctrlrequest *cmd,
  84                                    void *data, int len, int timeout)
  85{
  86        struct urb *urb;
  87        int retv;
  88        int length;
  89
  90        urb = usb_alloc_urb(0, GFP_NOIO);
  91        if (!urb)
  92                return -ENOMEM;
  93
  94        usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
  95                             len, usb_api_blocking_completion, NULL);
  96
  97        retv = usb_start_wait_urb(urb, timeout, &length);
  98        if (retv < 0)
  99                return retv;
 100        else
 101                return length;
 102}
 103
 104/**
 105 * usb_control_msg - Builds a control urb, sends it off and waits for completion
 106 * @dev: pointer to the usb device to send the message to
 107 * @pipe: endpoint "pipe" to send the message to
 108 * @request: USB message request value
 109 * @requesttype: USB message request type value
 110 * @value: USB message value
 111 * @index: USB message index value
 112 * @data: pointer to the data to send
 113 * @size: length in bytes of the data to send
 114 * @timeout: time in msecs to wait for the message to complete before timing
 115 *      out (if 0 the wait is forever)
 116 *
 117 * Context: !in_interrupt ()
 118 *
 119 * This function sends a simple control message to a specified endpoint and
 120 * waits for the message to complete, or timeout.
 121 *
 122 * If successful, it returns the number of bytes transferred, otherwise a
 123 * negative error number.
 124 *
 125 * Don't use this function from within an interrupt context, like a bottom half
 126 * handler.  If you need an asynchronous message, or need to send a message
 127 * from within interrupt context, use usb_submit_urb().
 128 * If a thread in your driver uses this call, make sure your disconnect()
 129 * method can wait for it to complete.  Since you don't have a handle on the
 130 * URB used, you can't cancel the request.
 131 */
 132int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
 133                    __u8 requesttype, __u16 value, __u16 index, void *data,
 134                    __u16 size, int timeout)
 135{
 136        struct usb_ctrlrequest *dr;
 137        int ret;
 138
 139        dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
 140        if (!dr)
 141                return -ENOMEM;
 142
 143        dr->bRequestType = requesttype;
 144        dr->bRequest = request;
 145        dr->wValue = cpu_to_le16(value);
 146        dr->wIndex = cpu_to_le16(index);
 147        dr->wLength = cpu_to_le16(size);
 148
 149        /* dbg("usb_control_msg"); */
 150
 151        ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
 152
 153        kfree(dr);
 154
 155        return ret;
 156}
 157EXPORT_SYMBOL_GPL(usb_control_msg);
 158
 159/**
 160 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
 161 * @usb_dev: pointer to the usb device to send the message to
 162 * @pipe: endpoint "pipe" to send the message to
 163 * @data: pointer to the data to send
 164 * @len: length in bytes of the data to send
 165 * @actual_length: pointer to a location to put the actual length transferred
 166 *      in bytes
 167 * @timeout: time in msecs to wait for the message to complete before
 168 *      timing out (if 0 the wait is forever)
 169 *
 170 * Context: !in_interrupt ()
 171 *
 172 * This function sends a simple interrupt message to a specified endpoint and
 173 * waits for the message to complete, or timeout.
 174 *
 175 * If successful, it returns 0, otherwise a negative error number.  The number
 176 * of actual bytes transferred will be stored in the actual_length paramater.
 177 *
 178 * Don't use this function from within an interrupt context, like a bottom half
 179 * handler.  If you need an asynchronous message, or need to send a message
 180 * from within interrupt context, use usb_submit_urb() If a thread in your
 181 * driver uses this call, make sure your disconnect() method can wait for it to
 182 * complete.  Since you don't have a handle on the URB used, you can't cancel
 183 * the request.
 184 */
 185int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
 186                      void *data, int len, int *actual_length, int timeout)
 187{
 188        return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
 189}
 190EXPORT_SYMBOL_GPL(usb_interrupt_msg);
 191
 192/**
 193 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
 194 * @usb_dev: pointer to the usb device to send the message to
 195 * @pipe: endpoint "pipe" to send the message to
 196 * @data: pointer to the data to send
 197 * @len: length in bytes of the data to send
 198 * @actual_length: pointer to a location to put the actual length transferred
 199 *      in bytes
 200 * @timeout: time in msecs to wait for the message to complete before
 201 *      timing out (if 0 the wait is forever)
 202 *
 203 * Context: !in_interrupt ()
 204 *
 205 * This function sends a simple bulk message to a specified endpoint
 206 * and waits for the message to complete, or timeout.
 207 *
 208 * If successful, it returns 0, otherwise a negative error number.  The number
 209 * of actual bytes transferred will be stored in the actual_length paramater.
 210 *
 211 * Don't use this function from within an interrupt context, like a bottom half
 212 * handler.  If you need an asynchronous message, or need to send a message
 213 * from within interrupt context, use usb_submit_urb() If a thread in your
 214 * driver uses this call, make sure your disconnect() method can wait for it to
 215 * complete.  Since you don't have a handle on the URB used, you can't cancel
 216 * the request.
 217 *
 218 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
 219 * users are forced to abuse this routine by using it to submit URBs for
 220 * interrupt endpoints.  We will take the liberty of creating an interrupt URB
 221 * (with the default interval) if the target is an interrupt endpoint.
 222 */
 223int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
 224                 void *data, int len, int *actual_length, int timeout)
 225{
 226        struct urb *urb;
 227        struct usb_host_endpoint *ep;
 228
 229        ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out)
 230                        [usb_pipeendpoint(pipe)];
 231        if (!ep || len < 0)
 232                return -EINVAL;
 233
 234        urb = usb_alloc_urb(0, GFP_KERNEL);
 235        if (!urb)
 236                return -ENOMEM;
 237
 238        if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
 239                        USB_ENDPOINT_XFER_INT) {
 240                pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
 241                usb_fill_int_urb(urb, usb_dev, pipe, data, len,
 242                                usb_api_blocking_completion, NULL,
 243                                ep->desc.bInterval);
 244        } else
 245                usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
 246                                usb_api_blocking_completion, NULL);
 247
 248        return usb_start_wait_urb(urb, timeout, actual_length);
 249}
 250EXPORT_SYMBOL_GPL(usb_bulk_msg);
 251
 252/*-------------------------------------------------------------------*/
 253
 254static void sg_clean(struct usb_sg_request *io)
 255{
 256        if (io->urbs) {
 257                while (io->entries--)
 258                        usb_free_urb(io->urbs [io->entries]);
 259                kfree(io->urbs);
 260                io->urbs = NULL;
 261        }
 262        if (io->dev->dev.dma_mask != NULL)
 263                usb_buffer_unmap_sg(io->dev, usb_pipein(io->pipe),
 264                                    io->sg, io->nents);
 265        io->dev = NULL;
 266}
 267
 268static void sg_complete(struct urb *urb)
 269{
 270        struct usb_sg_request *io = urb->context;
 271        int status = urb->status;
 272
 273        spin_lock(&io->lock);
 274
 275        /* In 2.5 we require hcds' endpoint queues not to progress after fault
 276         * reports, until the completion callback (this!) returns.  That lets
 277         * device driver code (like this routine) unlink queued urbs first,
 278         * if it needs to, since the HC won't work on them at all.  So it's
 279         * not possible for page N+1 to overwrite page N, and so on.
 280         *
 281         * That's only for "hard" faults; "soft" faults (unlinks) sometimes
 282         * complete before the HCD can get requests away from hardware,
 283         * though never during cleanup after a hard fault.
 284         */
 285        if (io->status
 286                        && (io->status != -ECONNRESET
 287                                || status != -ECONNRESET)
 288                        && urb->actual_length) {
 289                dev_err(io->dev->bus->controller,
 290                        "dev %s ep%d%s scatterlist error %d/%d\n",
 291                        io->dev->devpath,
 292                        usb_endpoint_num(&urb->ep->desc),
 293                        usb_urb_dir_in(urb) ? "in" : "out",
 294                        status, io->status);
 295                /* BUG (); */
 296        }
 297
 298        if (io->status == 0 && status && status != -ECONNRESET) {
 299                int i, found, retval;
 300
 301                io->status = status;
 302
 303                /* the previous urbs, and this one, completed already.
 304                 * unlink pending urbs so they won't rx/tx bad data.
 305                 * careful: unlink can sometimes be synchronous...
 306                 */
 307                spin_unlock(&io->lock);
 308                for (i = 0, found = 0; i < io->entries; i++) {
 309                        if (!io->urbs [i] || !io->urbs [i]->dev)
 310                                continue;
 311                        if (found) {
 312                                retval = usb_unlink_urb(io->urbs [i]);
 313                                if (retval != -EINPROGRESS &&
 314                                    retval != -ENODEV &&
 315                                    retval != -EBUSY)
 316                                        dev_err(&io->dev->dev,
 317                                                "%s, unlink --> %d\n",
 318                                                __func__, retval);
 319                        } else if (urb == io->urbs [i])
 320                                found = 1;
 321                }
 322                spin_lock(&io->lock);
 323        }
 324        urb->dev = NULL;
 325
 326        /* on the last completion, signal usb_sg_wait() */
 327        io->bytes += urb->actual_length;
 328        io->count--;
 329        if (!io->count)
 330                complete(&io->complete);
 331
 332        spin_unlock(&io->lock);
 333}
 334
 335
 336/**
 337 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
 338 * @io: request block being initialized.  until usb_sg_wait() returns,
 339 *      treat this as a pointer to an opaque block of memory,
 340 * @dev: the usb device that will send or receive the data
 341 * @pipe: endpoint "pipe" used to transfer the data
 342 * @period: polling rate for interrupt endpoints, in frames or
 343 *      (for high speed endpoints) microframes; ignored for bulk
 344 * @sg: scatterlist entries
 345 * @nents: how many entries in the scatterlist
 346 * @length: how many bytes to send from the scatterlist, or zero to
 347 *      send every byte identified in the list.
 348 * @mem_flags: SLAB_* flags affecting memory allocations in this call
 349 *
 350 * Returns zero for success, else a negative errno value.  This initializes a
 351 * scatter/gather request, allocating resources such as I/O mappings and urb
 352 * memory (except maybe memory used by USB controller drivers).
 353 *
 354 * The request must be issued using usb_sg_wait(), which waits for the I/O to
 355 * complete (or to be canceled) and then cleans up all resources allocated by
 356 * usb_sg_init().
 357 *
 358 * The request may be canceled with usb_sg_cancel(), either before or after
 359 * usb_sg_wait() is called.
 360 */
 361int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
 362                unsigned pipe, unsigned period, struct scatterlist *sg,
 363                int nents, size_t length, gfp_t mem_flags)
 364{
 365        int i;
 366        int urb_flags;
 367        int dma;
 368        int use_sg;
 369
 370        if (!io || !dev || !sg
 371                        || usb_pipecontrol(pipe)
 372                        || usb_pipeisoc(pipe)
 373                        || nents <= 0)
 374                return -EINVAL;
 375
 376        spin_lock_init(&io->lock);
 377        io->dev = dev;
 378        io->pipe = pipe;
 379        io->sg = sg;
 380        io->nents = nents;
 381
 382        /* not all host controllers use DMA (like the mainstream pci ones);
 383         * they can use PIO (sl811) or be software over another transport.
 384         */
 385        dma = (dev->dev.dma_mask != NULL);
 386        if (dma)
 387                io->entries = usb_buffer_map_sg(dev, usb_pipein(pipe),
 388                                                sg, nents);
 389        else
 390                io->entries = nents;
 391
 392        /* initialize all the urbs we'll use */
 393        if (io->entries <= 0)
 394                return io->entries;
 395
 396        /* If we're running on an xHCI host controller, queue the whole scatter
 397         * gather list with one call to urb_enqueue().  This is only for bulk,
 398         * as that endpoint type does not care how the data gets broken up
 399         * across frames.
 400         */
 401        if (usb_pipebulk(pipe) &&
 402                        bus_to_hcd(dev->bus)->driver->flags & HCD_USB3) {
 403                io->urbs = kmalloc(sizeof *io->urbs, mem_flags);
 404                use_sg = true;
 405        } else {
 406                io->urbs = kmalloc(io->entries * sizeof *io->urbs, mem_flags);
 407                use_sg = false;
 408        }
 409        if (!io->urbs)
 410                goto nomem;
 411
 412        urb_flags = URB_NO_INTERRUPT;
 413        if (dma)
 414                urb_flags |= URB_NO_TRANSFER_DMA_MAP;
 415        if (usb_pipein(pipe))
 416                urb_flags |= URB_SHORT_NOT_OK;
 417
 418        if (use_sg) {
 419                io->urbs[0] = usb_alloc_urb(0, mem_flags);
 420                if (!io->urbs[0]) {
 421                        io->entries = 0;
 422                        goto nomem;
 423                }
 424
 425                io->urbs[0]->dev = NULL;
 426                io->urbs[0]->pipe = pipe;
 427                io->urbs[0]->interval = period;
 428                io->urbs[0]->transfer_flags = urb_flags;
 429
 430                io->urbs[0]->complete = sg_complete;
 431                io->urbs[0]->context = io;
 432                /* A length of zero means transfer the whole sg list */
 433                io->urbs[0]->transfer_buffer_length = length;
 434                if (length == 0) {
 435                        for_each_sg(sg, sg, io->entries, i) {
 436                                io->urbs[0]->transfer_buffer_length +=
 437                                        sg_dma_len(sg);
 438                        }
 439                }
 440                io->urbs[0]->sg = io;
 441                io->urbs[0]->num_sgs = io->entries;
 442                io->entries = 1;
 443        } else {
 444                for_each_sg(sg, sg, io->entries, i) {
 445                        unsigned len;
 446
 447                        io->urbs[i] = usb_alloc_urb(0, mem_flags);
 448                        if (!io->urbs[i]) {
 449                                io->entries = i;
 450                                goto nomem;
 451                        }
 452
 453                        io->urbs[i]->dev = NULL;
 454                        io->urbs[i]->pipe = pipe;
 455                        io->urbs[i]->interval = period;
 456                        io->urbs[i]->transfer_flags = urb_flags;
 457
 458                        io->urbs[i]->complete = sg_complete;
 459                        io->urbs[i]->context = io;
 460
 461                        /*
 462                         * Some systems need to revert to PIO when DMA is temporarily
 463                         * unavailable.  For their sakes, both transfer_buffer and
 464                         * transfer_dma are set when possible.
 465                         *
 466                         * Note that if IOMMU coalescing occurred, we cannot
 467                         * trust sg_page anymore, so check if S/G list shrunk.
 468                         */
 469                        if (io->nents == io->entries && !PageHighMem(sg_page(sg)))
 470                                io->urbs[i]->transfer_buffer = sg_virt(sg);
 471                        else
 472                                io->urbs[i]->transfer_buffer = NULL;
 473
 474                        if (dma) {
 475                                io->urbs[i]->transfer_dma = sg_dma_address(sg);
 476                                len = sg_dma_len(sg);
 477                        } else {
 478                                /* hc may use _only_ transfer_buffer */
 479                                len = sg->length;
 480                        }
 481
 482                        if (length) {
 483                                len = min_t(unsigned, len, length);
 484                                length -= len;
 485                                if (length == 0)
 486                                        io->entries = i + 1;
 487                        }
 488                        io->urbs[i]->transfer_buffer_length = len;
 489                }
 490                io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
 491        }
 492
 493        /* transaction state */
 494        io->count = io->entries;
 495        io->status = 0;
 496        io->bytes = 0;
 497        init_completion(&io->complete);
 498        return 0;
 499
 500nomem:
 501        sg_clean(io);
 502        return -ENOMEM;
 503}
 504EXPORT_SYMBOL_GPL(usb_sg_init);
 505
 506/**
 507 * usb_sg_wait - synchronously execute scatter/gather request
 508 * @io: request block handle, as initialized with usb_sg_init().
 509 *      some fields become accessible when this call returns.
 510 * Context: !in_interrupt ()
 511 *
 512 * This function blocks until the specified I/O operation completes.  It
 513 * leverages the grouping of the related I/O requests to get good transfer
 514 * rates, by queueing the requests.  At higher speeds, such queuing can
 515 * significantly improve USB throughput.
 516 *
 517 * There are three kinds of completion for this function.
 518 * (1) success, where io->status is zero.  The number of io->bytes
 519 *     transferred is as requested.
 520 * (2) error, where io->status is a negative errno value.  The number
 521 *     of io->bytes transferred before the error is usually less
 522 *     than requested, and can be nonzero.
 523 * (3) cancellation, a type of error with status -ECONNRESET that
 524 *     is initiated by usb_sg_cancel().
 525 *
 526 * When this function returns, all memory allocated through usb_sg_init() or
 527 * this call will have been freed.  The request block parameter may still be
 528 * passed to usb_sg_cancel(), or it may be freed.  It could also be
 529 * reinitialized and then reused.
 530 *
 531 * Data Transfer Rates:
 532 *
 533 * Bulk transfers are valid for full or high speed endpoints.
 534 * The best full speed data rate is 19 packets of 64 bytes each
 535 * per frame, or 1216 bytes per millisecond.
 536 * The best high speed data rate is 13 packets of 512 bytes each
 537 * per microframe, or 52 KBytes per millisecond.
 538 *
 539 * The reason to use interrupt transfers through this API would most likely
 540 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
 541 * could be transferred.  That capability is less useful for low or full
 542 * speed interrupt endpoints, which allow at most one packet per millisecond,
 543 * of at most 8 or 64 bytes (respectively).
 544 *
 545 * It is not necessary to call this function to reserve bandwidth for devices
 546 * under an xHCI host controller, as the bandwidth is reserved when the
 547 * configuration or interface alt setting is selected.
 548 */
 549void usb_sg_wait(struct usb_sg_request *io)
 550{
 551        int i;
 552        int entries = io->entries;
 553
 554        /* queue the urbs.  */
 555        spin_lock_irq(&io->lock);
 556        i = 0;
 557        while (i < entries && !io->status) {
 558                int retval;
 559
 560                io->urbs[i]->dev = io->dev;
 561                retval = usb_submit_urb(io->urbs [i], GFP_ATOMIC);
 562
 563                /* after we submit, let completions or cancelations fire;
 564                 * we handshake using io->status.
 565                 */
 566                spin_unlock_irq(&io->lock);
 567                switch (retval) {
 568                        /* maybe we retrying will recover */
 569                case -ENXIO:    /* hc didn't queue this one */
 570                case -EAGAIN:
 571                case -ENOMEM:
 572                        io->urbs[i]->dev = NULL;
 573                        retval = 0;
 574                        yield();
 575                        break;
 576
 577                        /* no error? continue immediately.
 578                         *
 579                         * NOTE: to work better with UHCI (4K I/O buffer may
 580                         * need 3K of TDs) it may be good to limit how many
 581                         * URBs are queued at once; N milliseconds?
 582                         */
 583                case 0:
 584                        ++i;
 585                        cpu_relax();
 586                        break;
 587
 588                        /* fail any uncompleted urbs */
 589                default:
 590                        io->urbs[i]->dev = NULL;
 591                        io->urbs[i]->status = retval;
 592                        dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
 593                                __func__, retval);
 594                        usb_sg_cancel(io);
 595                }
 596                spin_lock_irq(&io->lock);
 597                if (retval && (io->status == 0 || io->status == -ECONNRESET))
 598                        io->status = retval;
 599        }
 600        io->count -= entries - i;
 601        if (io->count == 0)
 602                complete(&io->complete);
 603        spin_unlock_irq(&io->lock);
 604
 605        /* OK, yes, this could be packaged as non-blocking.
 606         * So could the submit loop above ... but it's easier to
 607         * solve neither problem than to solve both!
 608         */
 609        wait_for_completion(&io->complete);
 610
 611        sg_clean(io);
 612}
 613EXPORT_SYMBOL_GPL(usb_sg_wait);
 614
 615/**
 616 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
 617 * @io: request block, initialized with usb_sg_init()
 618 *
 619 * This stops a request after it has been started by usb_sg_wait().
 620 * It can also prevents one initialized by usb_sg_init() from starting,
 621 * so that call just frees resources allocated to the request.
 622 */
 623void usb_sg_cancel(struct usb_sg_request *io)
 624{
 625        unsigned long flags;
 626
 627        spin_lock_irqsave(&io->lock, flags);
 628
 629        /* shut everything down, if it didn't already */
 630        if (!io->status) {
 631                int i;
 632
 633                io->status = -ECONNRESET;
 634                spin_unlock(&io->lock);
 635                for (i = 0; i < io->entries; i++) {
 636                        int retval;
 637
 638                        if (!io->urbs [i]->dev)
 639                                continue;
 640                        retval = usb_unlink_urb(io->urbs [i]);
 641                        if (retval != -EINPROGRESS && retval != -EBUSY)
 642                                dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
 643                                        __func__, retval);
 644                }
 645                spin_lock(&io->lock);
 646        }
 647        spin_unlock_irqrestore(&io->lock, flags);
 648}
 649EXPORT_SYMBOL_GPL(usb_sg_cancel);
 650
 651/*-------------------------------------------------------------------*/
 652
 653/**
 654 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
 655 * @dev: the device whose descriptor is being retrieved
 656 * @type: the descriptor type (USB_DT_*)
 657 * @index: the number of the descriptor
 658 * @buf: where to put the descriptor
 659 * @size: how big is "buf"?
 660 * Context: !in_interrupt ()
 661 *
 662 * Gets a USB descriptor.  Convenience functions exist to simplify
 663 * getting some types of descriptors.  Use
 664 * usb_get_string() or usb_string() for USB_DT_STRING.
 665 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
 666 * are part of the device structure.
 667 * In addition to a number of USB-standard descriptors, some
 668 * devices also use class-specific or vendor-specific descriptors.
 669 *
 670 * This call is synchronous, and may not be used in an interrupt context.
 671 *
 672 * Returns the number of bytes received on success, or else the status code
 673 * returned by the underlying usb_control_msg() call.
 674 */
 675int usb_get_descriptor(struct usb_device *dev, unsigned char type,
 676                       unsigned char index, void *buf, int size)
 677{
 678        int i;
 679        int result;
 680
 681        memset(buf, 0, size);   /* Make sure we parse really received data */
 682
 683        for (i = 0; i < 3; ++i) {
 684                /* retry on length 0 or error; some devices are flakey */
 685                result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
 686                                USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
 687                                (type << 8) + index, 0, buf, size,
 688                                USB_CTRL_GET_TIMEOUT);
 689                if (result <= 0 && result != -ETIMEDOUT)
 690                        continue;
 691                if (result > 1 && ((u8 *)buf)[1] != type) {
 692                        result = -ENODATA;
 693                        continue;
 694                }
 695                break;
 696        }
 697        return result;
 698}
 699EXPORT_SYMBOL_GPL(usb_get_descriptor);
 700
 701/**
 702 * usb_get_string - gets a string descriptor
 703 * @dev: the device whose string descriptor is being retrieved
 704 * @langid: code for language chosen (from string descriptor zero)
 705 * @index: the number of the descriptor
 706 * @buf: where to put the string
 707 * @size: how big is "buf"?
 708 * Context: !in_interrupt ()
 709 *
 710 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
 711 * in little-endian byte order).
 712 * The usb_string() function will often be a convenient way to turn
 713 * these strings into kernel-printable form.
 714 *
 715 * Strings may be referenced in device, configuration, interface, or other
 716 * descriptors, and could also be used in vendor-specific ways.
 717 *
 718 * This call is synchronous, and may not be used in an interrupt context.
 719 *
 720 * Returns the number of bytes received on success, or else the status code
 721 * returned by the underlying usb_control_msg() call.
 722 */
 723static int usb_get_string(struct usb_device *dev, unsigned short langid,
 724                          unsigned char index, void *buf, int size)
 725{
 726        int i;
 727        int result;
 728
 729        for (i = 0; i < 3; ++i) {
 730                /* retry on length 0 or stall; some devices are flakey */
 731                result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
 732                        USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
 733                        (USB_DT_STRING << 8) + index, langid, buf, size,
 734                        USB_CTRL_GET_TIMEOUT);
 735                if (result == 0 || result == -EPIPE)
 736                        continue;
 737                if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
 738                        result = -ENODATA;
 739                        continue;
 740                }
 741                break;
 742        }
 743        return result;
 744}
 745
 746static void usb_try_string_workarounds(unsigned char *buf, int *length)
 747{
 748        int newlength, oldlength = *length;
 749
 750        for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
 751                if (!isprint(buf[newlength]) || buf[newlength + 1])
 752                        break;
 753
 754        if (newlength > 2) {
 755                buf[0] = newlength;
 756                *length = newlength;
 757        }
 758}
 759
 760static int usb_string_sub(struct usb_device *dev, unsigned int langid,
 761                          unsigned int index, unsigned char *buf)
 762{
 763        int rc;
 764
 765        /* Try to read the string descriptor by asking for the maximum
 766         * possible number of bytes */
 767        if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
 768                rc = -EIO;
 769        else
 770                rc = usb_get_string(dev, langid, index, buf, 255);
 771
 772        /* If that failed try to read the descriptor length, then
 773         * ask for just that many bytes */
 774        if (rc < 2) {
 775                rc = usb_get_string(dev, langid, index, buf, 2);
 776                if (rc == 2)
 777                        rc = usb_get_string(dev, langid, index, buf, buf[0]);
 778        }
 779
 780        if (rc >= 2) {
 781                if (!buf[0] && !buf[1])
 782                        usb_try_string_workarounds(buf, &rc);
 783
 784                /* There might be extra junk at the end of the descriptor */
 785                if (buf[0] < rc)
 786                        rc = buf[0];
 787
 788                rc = rc - (rc & 1); /* force a multiple of two */
 789        }
 790
 791        if (rc < 2)
 792                rc = (rc < 0 ? rc : -EINVAL);
 793
 794        return rc;
 795}
 796
 797static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
 798{
 799        int err;
 800
 801        if (dev->have_langid)
 802                return 0;
 803
 804        if (dev->string_langid < 0)
 805                return -EPIPE;
 806
 807        err = usb_string_sub(dev, 0, 0, tbuf);
 808
 809        /* If the string was reported but is malformed, default to english
 810         * (0x0409) */
 811        if (err == -ENODATA || (err > 0 && err < 4)) {
 812                dev->string_langid = 0x0409;
 813                dev->have_langid = 1;
 814                dev_err(&dev->dev,
 815                        "string descriptor 0 malformed (err = %d), "
 816                        "defaulting to 0x%04x\n",
 817                                err, dev->string_langid);
 818                return 0;
 819        }
 820
 821        /* In case of all other errors, we assume the device is not able to
 822         * deal with strings at all. Set string_langid to -1 in order to
 823         * prevent any string to be retrieved from the device */
 824        if (err < 0) {
 825                dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
 826                                        err);
 827                dev->string_langid = -1;
 828                return -EPIPE;
 829        }
 830
 831        /* always use the first langid listed */
 832        dev->string_langid = tbuf[2] | (tbuf[3] << 8);
 833        dev->have_langid = 1;
 834        dev_dbg(&dev->dev, "default language 0x%04x\n",
 835                                dev->string_langid);
 836        return 0;
 837}
 838
 839/**
 840 * usb_string - returns UTF-8 version of a string descriptor
 841 * @dev: the device whose string descriptor is being retrieved
 842 * @index: the number of the descriptor
 843 * @buf: where to put the string
 844 * @size: how big is "buf"?
 845 * Context: !in_interrupt ()
 846 *
 847 * This converts the UTF-16LE encoded strings returned by devices, from
 848 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
 849 * that are more usable in most kernel contexts.  Note that this function
 850 * chooses strings in the first language supported by the device.
 851 *
 852 * This call is synchronous, and may not be used in an interrupt context.
 853 *
 854 * Returns length of the string (>= 0) or usb_control_msg status (< 0).
 855 */
 856int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
 857{
 858        unsigned char *tbuf;
 859        int err;
 860
 861        if (dev->state == USB_STATE_SUSPENDED)
 862                return -EHOSTUNREACH;
 863        if (size <= 0 || !buf || !index)
 864                return -EINVAL;
 865        buf[0] = 0;
 866        tbuf = kmalloc(256, GFP_NOIO);
 867        if (!tbuf)
 868                return -ENOMEM;
 869
 870        err = usb_get_langid(dev, tbuf);
 871        if (err < 0)
 872                goto errout;
 873
 874        err = usb_string_sub(dev, dev->string_langid, index, tbuf);
 875        if (err < 0)
 876                goto errout;
 877
 878        size--;         /* leave room for trailing NULL char in output buffer */
 879        err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
 880                        UTF16_LITTLE_ENDIAN, buf, size);
 881        buf[err] = 0;
 882
 883        if (tbuf[1] != USB_DT_STRING)
 884                dev_dbg(&dev->dev,
 885                        "wrong descriptor type %02x for string %d (\"%s\")\n",
 886                        tbuf[1], index, buf);
 887
 888 errout:
 889        kfree(tbuf);
 890        return err;
 891}
 892EXPORT_SYMBOL_GPL(usb_string);
 893
 894/* one UTF-8-encoded 16-bit character has at most three bytes */
 895#define MAX_USB_STRING_SIZE (127 * 3 + 1)
 896
 897/**
 898 * usb_cache_string - read a string descriptor and cache it for later use
 899 * @udev: the device whose string descriptor is being read
 900 * @index: the descriptor index
 901 *
 902 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
 903 * or NULL if the index is 0 or the string could not be read.
 904 */
 905char *usb_cache_string(struct usb_device *udev, int index)
 906{
 907        char *buf;
 908        char *smallbuf = NULL;
 909        int len;
 910
 911        if (index <= 0)
 912                return NULL;
 913
 914        buf = kmalloc(MAX_USB_STRING_SIZE, GFP_KERNEL);
 915        if (buf) {
 916                len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
 917                if (len > 0) {
 918                        smallbuf = kmalloc(++len, GFP_KERNEL);
 919                        if (!smallbuf)
 920                                return buf;
 921                        memcpy(smallbuf, buf, len);
 922                }
 923                kfree(buf);
 924        }
 925        return smallbuf;
 926}
 927
 928/*
 929 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
 930 * @dev: the device whose device descriptor is being updated
 931 * @size: how much of the descriptor to read
 932 * Context: !in_interrupt ()
 933 *
 934 * Updates the copy of the device descriptor stored in the device structure,
 935 * which dedicates space for this purpose.
 936 *
 937 * Not exported, only for use by the core.  If drivers really want to read
 938 * the device descriptor directly, they can call usb_get_descriptor() with
 939 * type = USB_DT_DEVICE and index = 0.
 940 *
 941 * This call is synchronous, and may not be used in an interrupt context.
 942 *
 943 * Returns the number of bytes received on success, or else the status code
 944 * returned by the underlying usb_control_msg() call.
 945 */
 946int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
 947{
 948        struct usb_device_descriptor *desc;
 949        int ret;
 950
 951        if (size > sizeof(*desc))
 952                return -EINVAL;
 953        desc = kmalloc(sizeof(*desc), GFP_NOIO);
 954        if (!desc)
 955                return -ENOMEM;
 956
 957        ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
 958        if (ret >= 0)
 959                memcpy(&dev->descriptor, desc, size);
 960        kfree(desc);
 961        return ret;
 962}
 963
 964/**
 965 * usb_get_status - issues a GET_STATUS call
 966 * @dev: the device whose status is being checked
 967 * @type: USB_RECIP_*; for device, interface, or endpoint
 968 * @target: zero (for device), else interface or endpoint number
 969 * @data: pointer to two bytes of bitmap data
 970 * Context: !in_interrupt ()
 971 *
 972 * Returns device, interface, or endpoint status.  Normally only of
 973 * interest to see if the device is self powered, or has enabled the
 974 * remote wakeup facility; or whether a bulk or interrupt endpoint
 975 * is halted ("stalled").
 976 *
 977 * Bits in these status bitmaps are set using the SET_FEATURE request,
 978 * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
 979 * function should be used to clear halt ("stall") status.
 980 *
 981 * This call is synchronous, and may not be used in an interrupt context.
 982 *
 983 * Returns the number of bytes received on success, or else the status code
 984 * returned by the underlying usb_control_msg() call.
 985 */
 986int usb_get_status(struct usb_device *dev, int type, int target, void *data)
 987{
 988        int ret;
 989        u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
 990
 991        if (!status)
 992                return -ENOMEM;
 993
 994        ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
 995                USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
 996                sizeof(*status), USB_CTRL_GET_TIMEOUT);
 997
 998        *(u16 *)data = *status;
 999        kfree(status);
1000        return ret;
1001}
1002EXPORT_SYMBOL_GPL(usb_get_status);
1003
1004/**
1005 * usb_clear_halt - tells device to clear endpoint halt/stall condition
1006 * @dev: device whose endpoint is halted
1007 * @pipe: endpoint "pipe" being cleared
1008 * Context: !in_interrupt ()
1009 *
1010 * This is used to clear halt conditions for bulk and interrupt endpoints,
1011 * as reported by URB completion status.  Endpoints that are halted are
1012 * sometimes referred to as being "stalled".  Such endpoints are unable
1013 * to transmit or receive data until the halt status is cleared.  Any URBs
1014 * queued for such an endpoint should normally be unlinked by the driver
1015 * before clearing the halt condition, as described in sections 5.7.5
1016 * and 5.8.5 of the USB 2.0 spec.
1017 *
1018 * Note that control and isochronous endpoints don't halt, although control
1019 * endpoints report "protocol stall" (for unsupported requests) using the
1020 * same status code used to report a true stall.
1021 *
1022 * This call is synchronous, and may not be used in an interrupt context.
1023 *
1024 * Returns zero on success, or else the status code returned by the
1025 * underlying usb_control_msg() call.
1026 */
1027int usb_clear_halt(struct usb_device *dev, int pipe)
1028{
1029        int result;
1030        int endp = usb_pipeendpoint(pipe);
1031
1032        if (usb_pipein(pipe))
1033                endp |= USB_DIR_IN;
1034
1035        /* we don't care if it wasn't halted first. in fact some devices
1036         * (like some ibmcam model 1 units) seem to expect hosts to make
1037         * this request for iso endpoints, which can't halt!
1038         */
1039        result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1040                USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1041                USB_ENDPOINT_HALT, endp, NULL, 0,
1042                USB_CTRL_SET_TIMEOUT);
1043
1044        /* don't un-halt or force to DATA0 except on success */
1045        if (result < 0)
1046                return result;
1047
1048        /* NOTE:  seems like Microsoft and Apple don't bother verifying
1049         * the clear "took", so some devices could lock up if you check...
1050         * such as the Hagiwara FlashGate DUAL.  So we won't bother.
1051         *
1052         * NOTE:  make sure the logic here doesn't diverge much from
1053         * the copy in usb-storage, for as long as we need two copies.
1054         */
1055
1056        usb_reset_endpoint(dev, endp);
1057
1058        return 0;
1059}
1060EXPORT_SYMBOL_GPL(usb_clear_halt);
1061
1062static int create_intf_ep_devs(struct usb_interface *intf)
1063{
1064        struct usb_device *udev = interface_to_usbdev(intf);
1065        struct usb_host_interface *alt = intf->cur_altsetting;
1066        int i;
1067
1068        if (intf->ep_devs_created || intf->unregistering)
1069                return 0;
1070
1071        for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1072                (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1073        intf->ep_devs_created = 1;
1074        return 0;
1075}
1076
1077static void remove_intf_ep_devs(struct usb_interface *intf)
1078{
1079        struct usb_host_interface *alt = intf->cur_altsetting;
1080        int i;
1081
1082        if (!intf->ep_devs_created)
1083                return;
1084
1085        for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1086                usb_remove_ep_devs(&alt->endpoint[i]);
1087        intf->ep_devs_created = 0;
1088}
1089
1090/**
1091 * usb_disable_endpoint -- Disable an endpoint by address
1092 * @dev: the device whose endpoint is being disabled
1093 * @epaddr: the endpoint's address.  Endpoint number for output,
1094 *      endpoint number + USB_DIR_IN for input
1095 * @reset_hardware: flag to erase any endpoint state stored in the
1096 *      controller hardware
1097 *
1098 * Disables the endpoint for URB submission and nukes all pending URBs.
1099 * If @reset_hardware is set then also deallocates hcd/hardware state
1100 * for the endpoint.
1101 */
1102void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1103                bool reset_hardware)
1104{
1105        unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1106        struct usb_host_endpoint *ep;
1107
1108        if (!dev)
1109                return;
1110
1111        if (usb_endpoint_out(epaddr)) {
1112                ep = dev->ep_out[epnum];
1113                if (reset_hardware)
1114                        dev->ep_out[epnum] = NULL;
1115        } else {
1116                ep = dev->ep_in[epnum];
1117                if (reset_hardware)
1118                        dev->ep_in[epnum] = NULL;
1119        }
1120        if (ep) {
1121                ep->enabled = 0;
1122                usb_hcd_flush_endpoint(dev, ep);
1123                if (reset_hardware)
1124                        usb_hcd_disable_endpoint(dev, ep);
1125        }
1126}
1127
1128/**
1129 * usb_reset_endpoint - Reset an endpoint's state.
1130 * @dev: the device whose endpoint is to be reset
1131 * @epaddr: the endpoint's address.  Endpoint number for output,
1132 *      endpoint number + USB_DIR_IN for input
1133 *
1134 * Resets any host-side endpoint state such as the toggle bit,
1135 * sequence number or current window.
1136 */
1137void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1138{
1139        unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1140        struct usb_host_endpoint *ep;
1141
1142        if (usb_endpoint_out(epaddr))
1143                ep = dev->ep_out[epnum];
1144        else
1145                ep = dev->ep_in[epnum];
1146        if (ep)
1147                usb_hcd_reset_endpoint(dev, ep);
1148}
1149EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1150
1151
1152/**
1153 * usb_disable_interface -- Disable all endpoints for an interface
1154 * @dev: the device whose interface is being disabled
1155 * @intf: pointer to the interface descriptor
1156 * @reset_hardware: flag to erase any endpoint state stored in the
1157 *      controller hardware
1158 *
1159 * Disables all the endpoints for the interface's current altsetting.
1160 */
1161void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1162                bool reset_hardware)
1163{
1164        struct usb_host_interface *alt = intf->cur_altsetting;
1165        int i;
1166
1167        for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1168                usb_disable_endpoint(dev,
1169                                alt->endpoint[i].desc.bEndpointAddress,
1170                                reset_hardware);
1171        }
1172}
1173
1174/**
1175 * usb_disable_device - Disable all the endpoints for a USB device
1176 * @dev: the device whose endpoints are being disabled
1177 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1178 *
1179 * Disables all the device's endpoints, potentially including endpoint 0.
1180 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1181 * pending urbs) and usbcore state for the interfaces, so that usbcore
1182 * must usb_set_configuration() before any interfaces could be used.
1183 */
1184void usb_disable_device(struct usb_device *dev, int skip_ep0)
1185{
1186        int i;
1187
1188        dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1189                skip_ep0 ? "non-ep0" : "all");
1190        for (i = skip_ep0; i < 16; ++i) {
1191                usb_disable_endpoint(dev, i, true);
1192                usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1193        }
1194
1195        /* getting rid of interfaces will disconnect
1196         * any drivers bound to them (a key side effect)
1197         */
1198        if (dev->actconfig) {
1199                for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1200                        struct usb_interface    *interface;
1201
1202                        /* remove this interface if it has been registered */
1203                        interface = dev->actconfig->interface[i];
1204                        if (!device_is_registered(&interface->dev))
1205                                continue;
1206                        dev_dbg(&dev->dev, "unregistering interface %s\n",
1207                                dev_name(&interface->dev));
1208                        interface->unregistering = 1;
1209                        remove_intf_ep_devs(interface);
1210                        device_del(&interface->dev);
1211                }
1212
1213                /* Now that the interfaces are unbound, nobody should
1214                 * try to access them.
1215                 */
1216                for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1217                        put_device(&dev->actconfig->interface[i]->dev);
1218                        dev->actconfig->interface[i] = NULL;
1219                }
1220                dev->actconfig = NULL;
1221                if (dev->state == USB_STATE_CONFIGURED)
1222                        usb_set_device_state(dev, USB_STATE_ADDRESS);
1223        }
1224}
1225
1226/**
1227 * usb_enable_endpoint - Enable an endpoint for USB communications
1228 * @dev: the device whose interface is being enabled
1229 * @ep: the endpoint
1230 * @reset_ep: flag to reset the endpoint state
1231 *
1232 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1233 * For control endpoints, both the input and output sides are handled.
1234 */
1235void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1236                bool reset_ep)
1237{
1238        int epnum = usb_endpoint_num(&ep->desc);
1239        int is_out = usb_endpoint_dir_out(&ep->desc);
1240        int is_control = usb_endpoint_xfer_control(&ep->desc);
1241
1242        if (reset_ep)
1243                usb_hcd_reset_endpoint(dev, ep);
1244        if (is_out || is_control)
1245                dev->ep_out[epnum] = ep;
1246        if (!is_out || is_control)
1247                dev->ep_in[epnum] = ep;
1248        ep->enabled = 1;
1249}
1250
1251/**
1252 * usb_enable_interface - Enable all the endpoints for an interface
1253 * @dev: the device whose interface is being enabled
1254 * @intf: pointer to the interface descriptor
1255 * @reset_eps: flag to reset the endpoints' state
1256 *
1257 * Enables all the endpoints for the interface's current altsetting.
1258 */
1259void usb_enable_interface(struct usb_device *dev,
1260                struct usb_interface *intf, bool reset_eps)
1261{
1262        struct usb_host_interface *alt = intf->cur_altsetting;
1263        int i;
1264
1265        for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1266                usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1267}
1268
1269/**
1270 * usb_set_interface - Makes a particular alternate setting be current
1271 * @dev: the device whose interface is being updated
1272 * @interface: the interface being updated
1273 * @alternate: the setting being chosen.
1274 * Context: !in_interrupt ()
1275 *
1276 * This is used to enable data transfers on interfaces that may not
1277 * be enabled by default.  Not all devices support such configurability.
1278 * Only the driver bound to an interface may change its setting.
1279 *
1280 * Within any given configuration, each interface may have several
1281 * alternative settings.  These are often used to control levels of
1282 * bandwidth consumption.  For example, the default setting for a high
1283 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1284 * while interrupt transfers of up to 3KBytes per microframe are legal.
1285 * Also, isochronous endpoints may never be part of an
1286 * interface's default setting.  To access such bandwidth, alternate
1287 * interface settings must be made current.
1288 *
1289 * Note that in the Linux USB subsystem, bandwidth associated with
1290 * an endpoint in a given alternate setting is not reserved until an URB
1291 * is submitted that needs that bandwidth.  Some other operating systems
1292 * allocate bandwidth early, when a configuration is chosen.
1293 *
1294 * This call is synchronous, and may not be used in an interrupt context.
1295 * Also, drivers must not change altsettings while urbs are scheduled for
1296 * endpoints in that interface; all such urbs must first be completed
1297 * (perhaps forced by unlinking).
1298 *
1299 * Returns zero on success, or else the status code returned by the
1300 * underlying usb_control_msg() call.
1301 */
1302int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1303{
1304        struct usb_interface *iface;
1305        struct usb_host_interface *alt;
1306        int ret;
1307        int manual = 0;
1308        unsigned int epaddr;
1309        unsigned int pipe;
1310
1311        if (dev->state == USB_STATE_SUSPENDED)
1312                return -EHOSTUNREACH;
1313
1314        iface = usb_ifnum_to_if(dev, interface);
1315        if (!iface) {
1316                dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1317                        interface);
1318                return -EINVAL;
1319        }
1320
1321        alt = usb_altnum_to_altsetting(iface, alternate);
1322        if (!alt) {
1323                dev_warn(&dev->dev, "selecting invalid altsetting %d",
1324                         alternate);
1325                return -EINVAL;
1326        }
1327
1328        if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1329                ret = -EPIPE;
1330        else
1331                ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1332                                   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1333                                   alternate, interface, NULL, 0, 5000);
1334
1335        /* 9.4.10 says devices don't need this and are free to STALL the
1336         * request if the interface only has one alternate setting.
1337         */
1338        if (ret == -EPIPE && iface->num_altsetting == 1) {
1339                dev_dbg(&dev->dev,
1340                        "manual set_interface for iface %d, alt %d\n",
1341                        interface, alternate);
1342                manual = 1;
1343        } else if (ret < 0)
1344                return ret;
1345
1346        /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1347         * when they implement async or easily-killable versions of this or
1348         * other "should-be-internal" functions (like clear_halt).
1349         * should hcd+usbcore postprocess control requests?
1350         */
1351
1352        /* prevent submissions using previous endpoint settings */
1353        if (iface->cur_altsetting != alt) {
1354                remove_intf_ep_devs(iface);
1355                usb_remove_sysfs_intf_files(iface);
1356        }
1357        usb_disable_interface(dev, iface, true);
1358
1359        iface->cur_altsetting = alt;
1360
1361        /* If the interface only has one altsetting and the device didn't
1362         * accept the request, we attempt to carry out the equivalent action
1363         * by manually clearing the HALT feature for each endpoint in the
1364         * new altsetting.
1365         */
1366        if (manual) {
1367                int i;
1368
1369                for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1370                        epaddr = alt->endpoint[i].desc.bEndpointAddress;
1371                        pipe = __create_pipe(dev,
1372                                        USB_ENDPOINT_NUMBER_MASK & epaddr) |
1373                                        (usb_endpoint_out(epaddr) ?
1374                                        USB_DIR_OUT : USB_DIR_IN);
1375
1376                        usb_clear_halt(dev, pipe);
1377                }
1378        }
1379
1380        /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1381         *
1382         * Note:
1383         * Despite EP0 is always present in all interfaces/AS, the list of
1384         * endpoints from the descriptor does not contain EP0. Due to its
1385         * omnipresence one might expect EP0 being considered "affected" by
1386         * any SetInterface request and hence assume toggles need to be reset.
1387         * However, EP0 toggles are re-synced for every individual transfer
1388         * during the SETUP stage - hence EP0 toggles are "don't care" here.
1389         * (Likewise, EP0 never "halts" on well designed devices.)
1390         */
1391        usb_enable_interface(dev, iface, true);
1392        if (device_is_registered(&iface->dev)) {
1393                usb_create_sysfs_intf_files(iface);
1394                create_intf_ep_devs(iface);
1395        }
1396        return 0;
1397}
1398EXPORT_SYMBOL_GPL(usb_set_interface);
1399
1400/**
1401 * usb_reset_configuration - lightweight device reset
1402 * @dev: the device whose configuration is being reset
1403 *
1404 * This issues a standard SET_CONFIGURATION request to the device using
1405 * the current configuration.  The effect is to reset most USB-related
1406 * state in the device, including interface altsettings (reset to zero),
1407 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1408 * endpoints).  Other usbcore state is unchanged, including bindings of
1409 * usb device drivers to interfaces.
1410 *
1411 * Because this affects multiple interfaces, avoid using this with composite
1412 * (multi-interface) devices.  Instead, the driver for each interface may
1413 * use usb_set_interface() on the interfaces it claims.  Be careful though;
1414 * some devices don't support the SET_INTERFACE request, and others won't
1415 * reset all the interface state (notably endpoint state).  Resetting the whole
1416 * configuration would affect other drivers' interfaces.
1417 *
1418 * The caller must own the device lock.
1419 *
1420 * Returns zero on success, else a negative error code.
1421 */
1422int usb_reset_configuration(struct usb_device *dev)
1423{
1424        int                     i, retval;
1425        struct usb_host_config  *config;
1426
1427        if (dev->state == USB_STATE_SUSPENDED)
1428                return -EHOSTUNREACH;
1429
1430        /* caller must have locked the device and must own
1431         * the usb bus readlock (so driver bindings are stable);
1432         * calls during probe() are fine
1433         */
1434
1435        for (i = 1; i < 16; ++i) {
1436                usb_disable_endpoint(dev, i, true);
1437                usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1438        }
1439
1440        config = dev->actconfig;
1441        retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1442                        USB_REQ_SET_CONFIGURATION, 0,
1443                        config->desc.bConfigurationValue, 0,
1444                        NULL, 0, USB_CTRL_SET_TIMEOUT);
1445        if (retval < 0)
1446                return retval;
1447
1448        /* re-init hc/hcd interface/endpoint state */
1449        for (i = 0; i < config->desc.bNumInterfaces; i++) {
1450                struct usb_interface *intf = config->interface[i];
1451                struct usb_host_interface *alt;
1452
1453                alt = usb_altnum_to_altsetting(intf, 0);
1454
1455                /* No altsetting 0?  We'll assume the first altsetting.
1456                 * We could use a GetInterface call, but if a device is
1457                 * so non-compliant that it doesn't have altsetting 0
1458                 * then I wouldn't trust its reply anyway.
1459                 */
1460                if (!alt)
1461                        alt = &intf->altsetting[0];
1462
1463                if (alt != intf->cur_altsetting) {
1464                        remove_intf_ep_devs(intf);
1465                        usb_remove_sysfs_intf_files(intf);
1466                }
1467                intf->cur_altsetting = alt;
1468                usb_enable_interface(dev, intf, true);
1469                if (device_is_registered(&intf->dev)) {
1470                        usb_create_sysfs_intf_files(intf);
1471                        create_intf_ep_devs(intf);
1472                }
1473        }
1474        return 0;
1475}
1476EXPORT_SYMBOL_GPL(usb_reset_configuration);
1477
1478static void usb_release_interface(struct device *dev)
1479{
1480        struct usb_interface *intf = to_usb_interface(dev);
1481        struct usb_interface_cache *intfc =
1482                        altsetting_to_usb_interface_cache(intf->altsetting);
1483
1484        kref_put(&intfc->ref, usb_release_interface_cache);
1485        kfree(intf);
1486}
1487
1488#ifdef  CONFIG_HOTPLUG
1489static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1490{
1491        struct usb_device *usb_dev;
1492        struct usb_interface *intf;
1493        struct usb_host_interface *alt;
1494
1495        intf = to_usb_interface(dev);
1496        usb_dev = interface_to_usbdev(intf);
1497        alt = intf->cur_altsetting;
1498
1499        if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1500                   alt->desc.bInterfaceClass,
1501                   alt->desc.bInterfaceSubClass,
1502                   alt->desc.bInterfaceProtocol))
1503                return -ENOMEM;
1504
1505        if (add_uevent_var(env,
1506                   "MODALIAS=usb:"
1507                   "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
1508                   le16_to_cpu(usb_dev->descriptor.idVendor),
1509                   le16_to_cpu(usb_dev->descriptor.idProduct),
1510                   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1511                   usb_dev->descriptor.bDeviceClass,
1512                   usb_dev->descriptor.bDeviceSubClass,
1513                   usb_dev->descriptor.bDeviceProtocol,
1514                   alt->desc.bInterfaceClass,
1515                   alt->desc.bInterfaceSubClass,
1516                   alt->desc.bInterfaceProtocol))
1517                return -ENOMEM;
1518
1519        return 0;
1520}
1521
1522#else
1523
1524static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1525{
1526        return -ENODEV;
1527}
1528#endif  /* CONFIG_HOTPLUG */
1529
1530struct device_type usb_if_device_type = {
1531        .name =         "usb_interface",
1532        .release =      usb_release_interface,
1533        .uevent =       usb_if_uevent,
1534};
1535
1536static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1537                                                struct usb_host_config *config,
1538                                                u8 inum)
1539{
1540        struct usb_interface_assoc_descriptor *retval = NULL;
1541        struct usb_interface_assoc_descriptor *intf_assoc;
1542        int first_intf;
1543        int last_intf;
1544        int i;
1545
1546        for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1547                intf_assoc = config->intf_assoc[i];
1548                if (intf_assoc->bInterfaceCount == 0)
1549                        continue;
1550
1551                first_intf = intf_assoc->bFirstInterface;
1552                last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1553                if (inum >= first_intf && inum <= last_intf) {
1554                        if (!retval)
1555                                retval = intf_assoc;
1556                        else
1557                                dev_err(&dev->dev, "Interface #%d referenced"
1558                                        " by multiple IADs\n", inum);
1559                }
1560        }
1561
1562        return retval;
1563}
1564
1565
1566/*
1567 * Internal function to queue a device reset
1568 *
1569 * This is initialized into the workstruct in 'struct
1570 * usb_device->reset_ws' that is launched by
1571 * message.c:usb_set_configuration() when initializing each 'struct
1572 * usb_interface'.
1573 *
1574 * It is safe to get the USB device without reference counts because
1575 * the life cycle of @iface is bound to the life cycle of @udev. Then,
1576 * this function will be ran only if @iface is alive (and before
1577 * freeing it any scheduled instances of it will have been cancelled).
1578 *
1579 * We need to set a flag (usb_dev->reset_running) because when we call
1580 * the reset, the interfaces might be unbound. The current interface
1581 * cannot try to remove the queued work as it would cause a deadlock
1582 * (you cannot remove your work from within your executing
1583 * workqueue). This flag lets it know, so that
1584 * usb_cancel_queued_reset() doesn't try to do it.
1585 *
1586 * See usb_queue_reset_device() for more details
1587 */
1588void __usb_queue_reset_device(struct work_struct *ws)
1589{
1590        int rc;
1591        struct usb_interface *iface =
1592                container_of(ws, struct usb_interface, reset_ws);
1593        struct usb_device *udev = interface_to_usbdev(iface);
1594
1595        rc = usb_lock_device_for_reset(udev, iface);
1596        if (rc >= 0) {
1597                iface->reset_running = 1;
1598                usb_reset_device(udev);
1599                iface->reset_running = 0;
1600                usb_unlock_device(udev);
1601        }
1602}
1603
1604
1605/*
1606 * usb_set_configuration - Makes a particular device setting be current
1607 * @dev: the device whose configuration is being updated
1608 * @configuration: the configuration being chosen.
1609 * Context: !in_interrupt(), caller owns the device lock
1610 *
1611 * This is used to enable non-default device modes.  Not all devices
1612 * use this kind of configurability; many devices only have one
1613 * configuration.
1614 *
1615 * @configuration is the value of the configuration to be installed.
1616 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1617 * must be non-zero; a value of zero indicates that the device in
1618 * unconfigured.  However some devices erroneously use 0 as one of their
1619 * configuration values.  To help manage such devices, this routine will
1620 * accept @configuration = -1 as indicating the device should be put in
1621 * an unconfigured state.
1622 *
1623 * USB device configurations may affect Linux interoperability,
1624 * power consumption and the functionality available.  For example,
1625 * the default configuration is limited to using 100mA of bus power,
1626 * so that when certain device functionality requires more power,
1627 * and the device is bus powered, that functionality should be in some
1628 * non-default device configuration.  Other device modes may also be
1629 * reflected as configuration options, such as whether two ISDN
1630 * channels are available independently; and choosing between open
1631 * standard device protocols (like CDC) or proprietary ones.
1632 *
1633 * Note that a non-authorized device (dev->authorized == 0) will only
1634 * be put in unconfigured mode.
1635 *
1636 * Note that USB has an additional level of device configurability,
1637 * associated with interfaces.  That configurability is accessed using
1638 * usb_set_interface().
1639 *
1640 * This call is synchronous. The calling context must be able to sleep,
1641 * must own the device lock, and must not hold the driver model's USB
1642 * bus mutex; usb interface driver probe() methods cannot use this routine.
1643 *
1644 * Returns zero on success, or else the status code returned by the
1645 * underlying call that failed.  On successful completion, each interface
1646 * in the original device configuration has been destroyed, and each one
1647 * in the new configuration has been probed by all relevant usb device
1648 * drivers currently known to the kernel.
1649 */
1650int usb_set_configuration(struct usb_device *dev, int configuration)
1651{
1652        int i, ret;
1653        struct usb_host_config *cp = NULL;
1654        struct usb_interface **new_interfaces = NULL;
1655        int n, nintf;
1656
1657        if (dev->authorized == 0 || configuration == -1)
1658                configuration = 0;
1659        else {
1660                for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1661                        if (dev->config[i].desc.bConfigurationValue ==
1662                                        configuration) {
1663                                cp = &dev->config[i];
1664                                break;
1665                        }
1666                }
1667        }
1668        if ((!cp && configuration != 0))
1669                return -EINVAL;
1670
1671        /* The USB spec says configuration 0 means unconfigured.
1672         * But if a device includes a configuration numbered 0,
1673         * we will accept it as a correctly configured state.
1674         * Use -1 if you really want to unconfigure the device.
1675         */
1676        if (cp && configuration == 0)
1677                dev_warn(&dev->dev, "config 0 descriptor??\n");
1678
1679        /* Allocate memory for new interfaces before doing anything else,
1680         * so that if we run out then nothing will have changed. */
1681        n = nintf = 0;
1682        if (cp) {
1683                nintf = cp->desc.bNumInterfaces;
1684                new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1685                                GFP_KERNEL);
1686                if (!new_interfaces) {
1687                        dev_err(&dev->dev, "Out of memory\n");
1688                        return -ENOMEM;
1689                }
1690
1691                for (; n < nintf; ++n) {
1692                        new_interfaces[n] = kzalloc(
1693                                        sizeof(struct usb_interface),
1694                                        GFP_KERNEL);
1695                        if (!new_interfaces[n]) {
1696                                dev_err(&dev->dev, "Out of memory\n");
1697                                ret = -ENOMEM;
1698free_interfaces:
1699                                while (--n >= 0)
1700                                        kfree(new_interfaces[n]);
1701                                kfree(new_interfaces);
1702                                return ret;
1703                        }
1704                }
1705
1706                i = dev->bus_mA - cp->desc.bMaxPower * 2;
1707                if (i < 0)
1708                        dev_warn(&dev->dev, "new config #%d exceeds power "
1709                                        "limit by %dmA\n",
1710                                        configuration, -i);
1711        }
1712
1713        /* Wake up the device so we can send it the Set-Config request */
1714        ret = usb_autoresume_device(dev);
1715        if (ret)
1716                goto free_interfaces;
1717
1718        /* Make sure we have bandwidth (and available HCD resources) for this
1719         * configuration.  Remove endpoints from the schedule if we're dropping
1720         * this configuration to set configuration 0.  After this point, the
1721         * host controller will not allow submissions to dropped endpoints.  If
1722         * this call fails, the device state is unchanged.
1723         */
1724        if (cp)
1725                ret = usb_hcd_check_bandwidth(dev, cp, NULL);
1726        else
1727                ret = usb_hcd_check_bandwidth(dev, NULL, NULL);
1728        if (ret < 0) {
1729                usb_autosuspend_device(dev);
1730                goto free_interfaces;
1731        }
1732
1733        /* if it's already configured, clear out old state first.
1734         * getting rid of old interfaces means unbinding their drivers.
1735         */
1736        if (dev->state != USB_STATE_ADDRESS)
1737                usb_disable_device(dev, 1);     /* Skip ep0 */
1738
1739        /* Get rid of pending async Set-Config requests for this device */
1740        cancel_async_set_config(dev);
1741
1742        ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1743                              USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1744                              NULL, 0, USB_CTRL_SET_TIMEOUT);
1745        if (ret < 0) {
1746                /* All the old state is gone, so what else can we do?
1747                 * The device is probably useless now anyway.
1748                 */
1749                cp = NULL;
1750        }
1751
1752        dev->actconfig = cp;
1753        if (!cp) {
1754                usb_set_device_state(dev, USB_STATE_ADDRESS);
1755                usb_hcd_check_bandwidth(dev, NULL, NULL);
1756                usb_autosuspend_device(dev);
1757                goto free_interfaces;
1758        }
1759        usb_set_device_state(dev, USB_STATE_CONFIGURED);
1760
1761        /* Initialize the new interface structures and the
1762         * hc/hcd/usbcore interface/endpoint state.
1763         */
1764        for (i = 0; i < nintf; ++i) {
1765                struct usb_interface_cache *intfc;
1766                struct usb_interface *intf;
1767                struct usb_host_interface *alt;
1768
1769                cp->interface[i] = intf = new_interfaces[i];
1770                intfc = cp->intf_cache[i];
1771                intf->altsetting = intfc->altsetting;
1772                intf->num_altsetting = intfc->num_altsetting;
1773                intf->intf_assoc = find_iad(dev, cp, i);
1774                kref_get(&intfc->ref);
1775
1776                alt = usb_altnum_to_altsetting(intf, 0);
1777
1778                /* No altsetting 0?  We'll assume the first altsetting.
1779                 * We could use a GetInterface call, but if a device is
1780                 * so non-compliant that it doesn't have altsetting 0
1781                 * then I wouldn't trust its reply anyway.
1782                 */
1783                if (!alt)
1784                        alt = &intf->altsetting[0];
1785
1786                intf->cur_altsetting = alt;
1787                usb_enable_interface(dev, intf, true);
1788                intf->dev.parent = &dev->dev;
1789                intf->dev.driver = NULL;
1790                intf->dev.bus = &usb_bus_type;
1791                intf->dev.type = &usb_if_device_type;
1792                intf->dev.groups = usb_interface_groups;
1793                intf->dev.dma_mask = dev->dev.dma_mask;
1794                INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1795                device_initialize(&intf->dev);
1796                mark_quiesced(intf);
1797                dev_set_name(&intf->dev, "%d-%s:%d.%d",
1798                        dev->bus->busnum, dev->devpath,
1799                        configuration, alt->desc.bInterfaceNumber);
1800        }
1801        kfree(new_interfaces);
1802
1803        if (cp->string == NULL &&
1804                        !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1805                cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1806
1807        /* Now that all the interfaces are set up, register them
1808         * to trigger binding of drivers to interfaces.  probe()
1809         * routines may install different altsettings and may
1810         * claim() any interfaces not yet bound.  Many class drivers
1811         * need that: CDC, audio, video, etc.
1812         */
1813        for (i = 0; i < nintf; ++i) {
1814                struct usb_interface *intf = cp->interface[i];
1815
1816                dev_dbg(&dev->dev,
1817                        "adding %s (config #%d, interface %d)\n",
1818                        dev_name(&intf->dev), configuration,
1819                        intf->cur_altsetting->desc.bInterfaceNumber);
1820                ret = device_add(&intf->dev);
1821                if (ret != 0) {
1822                        dev_err(&dev->dev, "device_add(%s) --> %d\n",
1823                                dev_name(&intf->dev), ret);
1824                        continue;
1825                }
1826                create_intf_ep_devs(intf);
1827        }
1828
1829        usb_autosuspend_device(dev);
1830        return 0;
1831}
1832
1833static LIST_HEAD(set_config_list);
1834static DEFINE_SPINLOCK(set_config_lock);
1835
1836struct set_config_request {
1837        struct usb_device       *udev;
1838        int                     config;
1839        struct work_struct      work;
1840        struct list_head        node;
1841};
1842
1843/* Worker routine for usb_driver_set_configuration() */
1844static void driver_set_config_work(struct work_struct *work)
1845{
1846        struct set_config_request *req =
1847                container_of(work, struct set_config_request, work);
1848        struct usb_device *udev = req->udev;
1849
1850        usb_lock_device(udev);
1851        spin_lock(&set_config_lock);
1852        list_del(&req->node);
1853        spin_unlock(&set_config_lock);
1854
1855        if (req->config >= -1)          /* Is req still valid? */
1856                usb_set_configuration(udev, req->config);
1857        usb_unlock_device(udev);
1858        usb_put_dev(udev);
1859        kfree(req);
1860}
1861
1862/* Cancel pending Set-Config requests for a device whose configuration
1863 * was just changed
1864 */
1865static void cancel_async_set_config(struct usb_device *udev)
1866{
1867        struct set_config_request *req;
1868
1869        spin_lock(&set_config_lock);
1870        list_for_each_entry(req, &set_config_list, node) {
1871                if (req->udev == udev)
1872                        req->config = -999;     /* Mark as cancelled */
1873        }
1874        spin_unlock(&set_config_lock);
1875}
1876
1877/**
1878 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1879 * @udev: the device whose configuration is being updated
1880 * @config: the configuration being chosen.
1881 * Context: In process context, must be able to sleep
1882 *
1883 * Device interface drivers are not allowed to change device configurations.
1884 * This is because changing configurations will destroy the interface the
1885 * driver is bound to and create new ones; it would be like a floppy-disk
1886 * driver telling the computer to replace the floppy-disk drive with a
1887 * tape drive!
1888 *
1889 * Still, in certain specialized circumstances the need may arise.  This
1890 * routine gets around the normal restrictions by using a work thread to
1891 * submit the change-config request.
1892 *
1893 * Returns 0 if the request was succesfully queued, error code otherwise.
1894 * The caller has no way to know whether the queued request will eventually
1895 * succeed.
1896 */
1897int usb_driver_set_configuration(struct usb_device *udev, int config)
1898{
1899        struct set_config_request *req;
1900
1901        req = kmalloc(sizeof(*req), GFP_KERNEL);
1902        if (!req)
1903                return -ENOMEM;
1904        req->udev = udev;
1905        req->config = config;
1906        INIT_WORK(&req->work, driver_set_config_work);
1907
1908        spin_lock(&set_config_lock);
1909        list_add(&req->node, &set_config_list);
1910        spin_unlock(&set_config_lock);
1911
1912        usb_get_dev(udev);
1913        schedule_work(&req->work);
1914        return 0;
1915}
1916EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
1917