linux/drivers/usb/storage/alauda.c
<<
>>
Prefs
   1/*
   2 * Driver for Alauda-based card readers
   3 *
   4 * Current development and maintenance by:
   5 *   (c) 2005 Daniel Drake <dsd@gentoo.org>
   6 *
   7 * The 'Alauda' is a chip manufacturered by RATOC for OEM use.
   8 *
   9 * Alauda implements a vendor-specific command set to access two media reader
  10 * ports (XD, SmartMedia). This driver converts SCSI commands to the commands
  11 * which are accepted by these devices.
  12 *
  13 * The driver was developed through reverse-engineering, with the help of the
  14 * sddr09 driver which has many similarities, and with some help from the
  15 * (very old) vendor-supplied GPL sma03 driver.
  16 *
  17 * For protocol info, see http://alauda.sourceforge.net
  18 *
  19 * This program is free software; you can redistribute it and/or modify it
  20 * under the terms of the GNU General Public License as published by the
  21 * Free Software Foundation; either version 2, or (at your option) any
  22 * later version.
  23 *
  24 * This program is distributed in the hope that it will be useful, but
  25 * WITHOUT ANY WARRANTY; without even the implied warranty of
  26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  27 * General Public License for more details.
  28 *
  29 * You should have received a copy of the GNU General Public License along
  30 * with this program; if not, write to the Free Software Foundation, Inc.,
  31 * 675 Mass Ave, Cambridge, MA 02139, USA.
  32 */
  33
  34#include <linux/module.h>
  35
  36#include <scsi/scsi.h>
  37#include <scsi/scsi_cmnd.h>
  38#include <scsi/scsi_device.h>
  39
  40#include "usb.h"
  41#include "transport.h"
  42#include "protocol.h"
  43#include "debug.h"
  44
  45MODULE_DESCRIPTION("Driver for Alauda-based card readers");
  46MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>");
  47MODULE_LICENSE("GPL");
  48
  49/*
  50 * Status bytes
  51 */
  52#define ALAUDA_STATUS_ERROR             0x01
  53#define ALAUDA_STATUS_READY             0x40
  54
  55/*
  56 * Control opcodes (for request field)
  57 */
  58#define ALAUDA_GET_XD_MEDIA_STATUS      0x08
  59#define ALAUDA_GET_SM_MEDIA_STATUS      0x98
  60#define ALAUDA_ACK_XD_MEDIA_CHANGE      0x0a
  61#define ALAUDA_ACK_SM_MEDIA_CHANGE      0x9a
  62#define ALAUDA_GET_XD_MEDIA_SIG         0x86
  63#define ALAUDA_GET_SM_MEDIA_SIG         0x96
  64
  65/*
  66 * Bulk command identity (byte 0)
  67 */
  68#define ALAUDA_BULK_CMD                 0x40
  69
  70/*
  71 * Bulk opcodes (byte 1)
  72 */
  73#define ALAUDA_BULK_GET_REDU_DATA       0x85
  74#define ALAUDA_BULK_READ_BLOCK          0x94
  75#define ALAUDA_BULK_ERASE_BLOCK         0xa3
  76#define ALAUDA_BULK_WRITE_BLOCK         0xb4
  77#define ALAUDA_BULK_GET_STATUS2         0xb7
  78#define ALAUDA_BULK_RESET_MEDIA         0xe0
  79
  80/*
  81 * Port to operate on (byte 8)
  82 */
  83#define ALAUDA_PORT_XD                  0x00
  84#define ALAUDA_PORT_SM                  0x01
  85
  86/*
  87 * LBA and PBA are unsigned ints. Special values.
  88 */
  89#define UNDEF    0xffff
  90#define SPARE    0xfffe
  91#define UNUSABLE 0xfffd
  92
  93struct alauda_media_info {
  94        unsigned long capacity;         /* total media size in bytes */
  95        unsigned int pagesize;          /* page size in bytes */
  96        unsigned int blocksize;         /* number of pages per block */
  97        unsigned int uzonesize;         /* number of usable blocks per zone */
  98        unsigned int zonesize;          /* number of blocks per zone */
  99        unsigned int blockmask;         /* mask to get page from address */
 100
 101        unsigned char pageshift;
 102        unsigned char blockshift;
 103        unsigned char zoneshift;
 104
 105        u16 **lba_to_pba;               /* logical to physical block map */
 106        u16 **pba_to_lba;               /* physical to logical block map */
 107};
 108
 109struct alauda_info {
 110        struct alauda_media_info port[2];
 111        int wr_ep;                      /* endpoint to write data out of */
 112
 113        unsigned char sense_key;
 114        unsigned long sense_asc;        /* additional sense code */
 115        unsigned long sense_ascq;       /* additional sense code qualifier */
 116};
 117
 118#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
 119#define LSB_of(s) ((s)&0xFF)
 120#define MSB_of(s) ((s)>>8)
 121
 122#define MEDIA_PORT(us) us->srb->device->lun
 123#define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)]
 124
 125#define PBA_LO(pba) ((pba & 0xF) << 5)
 126#define PBA_HI(pba) (pba >> 3)
 127#define PBA_ZONE(pba) (pba >> 11)
 128
 129static int init_alauda(struct us_data *us);
 130
 131
 132/*
 133 * The table of devices
 134 */
 135#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
 136                    vendorName, productName, useProtocol, useTransport, \
 137                    initFunction, flags) \
 138{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
 139  .driver_info = (flags)|(USB_US_TYPE_STOR<<24) }
 140
 141struct usb_device_id alauda_usb_ids[] = {
 142#       include "unusual_alauda.h"
 143        { }             /* Terminating entry */
 144};
 145MODULE_DEVICE_TABLE(usb, alauda_usb_ids);
 146
 147#undef UNUSUAL_DEV
 148
 149/*
 150 * The flags table
 151 */
 152#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
 153                    vendor_name, product_name, use_protocol, use_transport, \
 154                    init_function, Flags) \
 155{ \
 156        .vendorName = vendor_name,      \
 157        .productName = product_name,    \
 158        .useProtocol = use_protocol,    \
 159        .useTransport = use_transport,  \
 160        .initFunction = init_function,  \
 161}
 162
 163static struct us_unusual_dev alauda_unusual_dev_list[] = {
 164#       include "unusual_alauda.h"
 165        { }             /* Terminating entry */
 166};
 167
 168#undef UNUSUAL_DEV
 169
 170
 171/*
 172 * Media handling
 173 */
 174
 175struct alauda_card_info {
 176        unsigned char id;               /* id byte */
 177        unsigned char chipshift;        /* 1<<cs bytes total capacity */
 178        unsigned char pageshift;        /* 1<<ps bytes in a page */
 179        unsigned char blockshift;       /* 1<<bs pages per block */
 180        unsigned char zoneshift;        /* 1<<zs blocks per zone */
 181};
 182
 183static struct alauda_card_info alauda_card_ids[] = {
 184        /* NAND flash */
 185        { 0x6e, 20, 8, 4, 8},   /* 1 MB */
 186        { 0xe8, 20, 8, 4, 8},   /* 1 MB */
 187        { 0xec, 20, 8, 4, 8},   /* 1 MB */
 188        { 0x64, 21, 8, 4, 9},   /* 2 MB */
 189        { 0xea, 21, 8, 4, 9},   /* 2 MB */
 190        { 0x6b, 22, 9, 4, 9},   /* 4 MB */
 191        { 0xe3, 22, 9, 4, 9},   /* 4 MB */
 192        { 0xe5, 22, 9, 4, 9},   /* 4 MB */
 193        { 0xe6, 23, 9, 4, 10},  /* 8 MB */
 194        { 0x73, 24, 9, 5, 10},  /* 16 MB */
 195        { 0x75, 25, 9, 5, 10},  /* 32 MB */
 196        { 0x76, 26, 9, 5, 10},  /* 64 MB */
 197        { 0x79, 27, 9, 5, 10},  /* 128 MB */
 198        { 0x71, 28, 9, 5, 10},  /* 256 MB */
 199
 200        /* MASK ROM */
 201        { 0x5d, 21, 9, 4, 8},   /* 2 MB */
 202        { 0xd5, 22, 9, 4, 9},   /* 4 MB */
 203        { 0xd6, 23, 9, 4, 10},  /* 8 MB */
 204        { 0x57, 24, 9, 4, 11},  /* 16 MB */
 205        { 0x58, 25, 9, 4, 12},  /* 32 MB */
 206        { 0,}
 207};
 208
 209static struct alauda_card_info *alauda_card_find_id(unsigned char id) {
 210        int i;
 211
 212        for (i = 0; alauda_card_ids[i].id != 0; i++)
 213                if (alauda_card_ids[i].id == id)
 214                        return &(alauda_card_ids[i]);
 215        return NULL;
 216}
 217
 218/*
 219 * ECC computation.
 220 */
 221
 222static unsigned char parity[256];
 223static unsigned char ecc2[256];
 224
 225static void nand_init_ecc(void) {
 226        int i, j, a;
 227
 228        parity[0] = 0;
 229        for (i = 1; i < 256; i++)
 230                parity[i] = (parity[i&(i-1)] ^ 1);
 231
 232        for (i = 0; i < 256; i++) {
 233                a = 0;
 234                for (j = 0; j < 8; j++) {
 235                        if (i & (1<<j)) {
 236                                if ((j & 1) == 0)
 237                                        a ^= 0x04;
 238                                if ((j & 2) == 0)
 239                                        a ^= 0x10;
 240                                if ((j & 4) == 0)
 241                                        a ^= 0x40;
 242                        }
 243                }
 244                ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
 245        }
 246}
 247
 248/* compute 3-byte ecc on 256 bytes */
 249static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
 250        int i, j, a;
 251        unsigned char par, bit, bits[8];
 252
 253        par = 0;
 254        for (j = 0; j < 8; j++)
 255                bits[j] = 0;
 256
 257        /* collect 16 checksum bits */
 258        for (i = 0; i < 256; i++) {
 259                par ^= data[i];
 260                bit = parity[data[i]];
 261                for (j = 0; j < 8; j++)
 262                        if ((i & (1<<j)) == 0)
 263                                bits[j] ^= bit;
 264        }
 265
 266        /* put 4+4+4 = 12 bits in the ecc */
 267        a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
 268        ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 269
 270        a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
 271        ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 272
 273        ecc[2] = ecc2[par];
 274}
 275
 276static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
 277        return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
 278}
 279
 280static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
 281        memcpy(data, ecc, 3);
 282}
 283
 284/*
 285 * Alauda driver
 286 */
 287
 288/*
 289 * Forget our PBA <---> LBA mappings for a particular port
 290 */
 291static void alauda_free_maps (struct alauda_media_info *media_info)
 292{
 293        unsigned int shift = media_info->zoneshift
 294                + media_info->blockshift + media_info->pageshift;
 295        unsigned int num_zones = media_info->capacity >> shift;
 296        unsigned int i;
 297
 298        if (media_info->lba_to_pba != NULL)
 299                for (i = 0; i < num_zones; i++) {
 300                        kfree(media_info->lba_to_pba[i]);
 301                        media_info->lba_to_pba[i] = NULL;
 302                }
 303
 304        if (media_info->pba_to_lba != NULL)
 305                for (i = 0; i < num_zones; i++) {
 306                        kfree(media_info->pba_to_lba[i]);
 307                        media_info->pba_to_lba[i] = NULL;
 308                }
 309}
 310
 311/*
 312 * Returns 2 bytes of status data
 313 * The first byte describes media status, and second byte describes door status
 314 */
 315static int alauda_get_media_status(struct us_data *us, unsigned char *data)
 316{
 317        int rc;
 318        unsigned char command;
 319
 320        if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
 321                command = ALAUDA_GET_XD_MEDIA_STATUS;
 322        else
 323                command = ALAUDA_GET_SM_MEDIA_STATUS;
 324
 325        rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
 326                command, 0xc0, 0, 1, data, 2);
 327
 328        US_DEBUGP("alauda_get_media_status: Media status %02X %02X\n",
 329                data[0], data[1]);
 330
 331        return rc;
 332}
 333
 334/*
 335 * Clears the "media was changed" bit so that we know when it changes again
 336 * in the future.
 337 */
 338static int alauda_ack_media(struct us_data *us)
 339{
 340        unsigned char command;
 341
 342        if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
 343                command = ALAUDA_ACK_XD_MEDIA_CHANGE;
 344        else
 345                command = ALAUDA_ACK_SM_MEDIA_CHANGE;
 346
 347        return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
 348                command, 0x40, 0, 1, NULL, 0);
 349}
 350
 351/*
 352 * Retrieves a 4-byte media signature, which indicates manufacturer, capacity,
 353 * and some other details.
 354 */
 355static int alauda_get_media_signature(struct us_data *us, unsigned char *data)
 356{
 357        unsigned char command;
 358
 359        if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
 360                command = ALAUDA_GET_XD_MEDIA_SIG;
 361        else
 362                command = ALAUDA_GET_SM_MEDIA_SIG;
 363
 364        return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
 365                command, 0xc0, 0, 0, data, 4);
 366}
 367
 368/*
 369 * Resets the media status (but not the whole device?)
 370 */
 371static int alauda_reset_media(struct us_data *us)
 372{
 373        unsigned char *command = us->iobuf;
 374
 375        memset(command, 0, 9);
 376        command[0] = ALAUDA_BULK_CMD;
 377        command[1] = ALAUDA_BULK_RESET_MEDIA;
 378        command[8] = MEDIA_PORT(us);
 379
 380        return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 381                command, 9, NULL);
 382}
 383
 384/*
 385 * Examines the media and deduces capacity, etc.
 386 */
 387static int alauda_init_media(struct us_data *us)
 388{
 389        unsigned char *data = us->iobuf;
 390        int ready = 0;
 391        struct alauda_card_info *media_info;
 392        unsigned int num_zones;
 393
 394        while (ready == 0) {
 395                msleep(20);
 396
 397                if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
 398                        return USB_STOR_TRANSPORT_ERROR;
 399
 400                if (data[0] & 0x10)
 401                        ready = 1;
 402        }
 403
 404        US_DEBUGP("alauda_init_media: We are ready for action!\n");
 405
 406        if (alauda_ack_media(us) != USB_STOR_XFER_GOOD)
 407                return USB_STOR_TRANSPORT_ERROR;
 408
 409        msleep(10);
 410
 411        if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
 412                return USB_STOR_TRANSPORT_ERROR;
 413
 414        if (data[0] != 0x14) {
 415                US_DEBUGP("alauda_init_media: Media not ready after ack\n");
 416                return USB_STOR_TRANSPORT_ERROR;
 417        }
 418
 419        if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD)
 420                return USB_STOR_TRANSPORT_ERROR;
 421
 422        US_DEBUGP("alauda_init_media: Media signature: %02X %02X %02X %02X\n",
 423                data[0], data[1], data[2], data[3]);
 424        media_info = alauda_card_find_id(data[1]);
 425        if (media_info == NULL) {
 426                printk(KERN_WARNING
 427                        "alauda_init_media: Unrecognised media signature: "
 428                        "%02X %02X %02X %02X\n",
 429                        data[0], data[1], data[2], data[3]);
 430                return USB_STOR_TRANSPORT_ERROR;
 431        }
 432
 433        MEDIA_INFO(us).capacity = 1 << media_info->chipshift;
 434        US_DEBUGP("Found media with capacity: %ldMB\n",
 435                MEDIA_INFO(us).capacity >> 20);
 436
 437        MEDIA_INFO(us).pageshift = media_info->pageshift;
 438        MEDIA_INFO(us).blockshift = media_info->blockshift;
 439        MEDIA_INFO(us).zoneshift = media_info->zoneshift;
 440
 441        MEDIA_INFO(us).pagesize = 1 << media_info->pageshift;
 442        MEDIA_INFO(us).blocksize = 1 << media_info->blockshift;
 443        MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift;
 444
 445        MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125;
 446        MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1;
 447
 448        num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
 449                + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
 450        MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
 451        MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
 452
 453        if (alauda_reset_media(us) != USB_STOR_XFER_GOOD)
 454                return USB_STOR_TRANSPORT_ERROR;
 455
 456        return USB_STOR_TRANSPORT_GOOD;
 457}
 458
 459/*
 460 * Examines the media status and does the right thing when the media has gone,
 461 * appeared, or changed.
 462 */
 463static int alauda_check_media(struct us_data *us)
 464{
 465        struct alauda_info *info = (struct alauda_info *) us->extra;
 466        unsigned char status[2];
 467        int rc;
 468
 469        rc = alauda_get_media_status(us, status);
 470
 471        /* Check for no media or door open */
 472        if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10)
 473                || ((status[1] & 0x01) == 0)) {
 474                US_DEBUGP("alauda_check_media: No media, or door open\n");
 475                alauda_free_maps(&MEDIA_INFO(us));
 476                info->sense_key = 0x02;
 477                info->sense_asc = 0x3A;
 478                info->sense_ascq = 0x00;
 479                return USB_STOR_TRANSPORT_FAILED;
 480        }
 481
 482        /* Check for media change */
 483        if (status[0] & 0x08) {
 484                US_DEBUGP("alauda_check_media: Media change detected\n");
 485                alauda_free_maps(&MEDIA_INFO(us));
 486                alauda_init_media(us);
 487
 488                info->sense_key = UNIT_ATTENTION;
 489                info->sense_asc = 0x28;
 490                info->sense_ascq = 0x00;
 491                return USB_STOR_TRANSPORT_FAILED;
 492        }
 493
 494        return USB_STOR_TRANSPORT_GOOD;
 495}
 496
 497/*
 498 * Checks the status from the 2nd status register
 499 * Returns 3 bytes of status data, only the first is known
 500 */
 501static int alauda_check_status2(struct us_data *us)
 502{
 503        int rc;
 504        unsigned char command[] = {
 505                ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2,
 506                0, 0, 0, 0, 3, 0, MEDIA_PORT(us)
 507        };
 508        unsigned char data[3];
 509
 510        rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 511                command, 9, NULL);
 512        if (rc != USB_STOR_XFER_GOOD)
 513                return rc;
 514
 515        rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 516                data, 3, NULL);
 517        if (rc != USB_STOR_XFER_GOOD)
 518                return rc;
 519
 520        US_DEBUGP("alauda_check_status2: %02X %02X %02X\n", data[0], data[1], data[2]);
 521        if (data[0] & ALAUDA_STATUS_ERROR)
 522                return USB_STOR_XFER_ERROR;
 523
 524        return USB_STOR_XFER_GOOD;
 525}
 526
 527/*
 528 * Gets the redundancy data for the first page of a PBA
 529 * Returns 16 bytes.
 530 */
 531static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data)
 532{
 533        int rc;
 534        unsigned char command[] = {
 535                ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA,
 536                PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us)
 537        };
 538
 539        rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 540                command, 9, NULL);
 541        if (rc != USB_STOR_XFER_GOOD)
 542                return rc;
 543
 544        return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 545                data, 16, NULL);
 546}
 547
 548/*
 549 * Finds the first unused PBA in a zone
 550 * Returns the absolute PBA of an unused PBA, or 0 if none found.
 551 */
 552static u16 alauda_find_unused_pba(struct alauda_media_info *info,
 553        unsigned int zone)
 554{
 555        u16 *pba_to_lba = info->pba_to_lba[zone];
 556        unsigned int i;
 557
 558        for (i = 0; i < info->zonesize; i++)
 559                if (pba_to_lba[i] == UNDEF)
 560                        return (zone << info->zoneshift) + i;
 561
 562        return 0;
 563}
 564
 565/*
 566 * Reads the redundancy data for all PBA's in a zone
 567 * Produces lba <--> pba mappings
 568 */
 569static int alauda_read_map(struct us_data *us, unsigned int zone)
 570{
 571        unsigned char *data = us->iobuf;
 572        int result;
 573        int i, j;
 574        unsigned int zonesize = MEDIA_INFO(us).zonesize;
 575        unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
 576        unsigned int lba_offset, lba_real, blocknum;
 577        unsigned int zone_base_lba = zone * uzonesize;
 578        unsigned int zone_base_pba = zone * zonesize;
 579        u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
 580        u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
 581        if (lba_to_pba == NULL || pba_to_lba == NULL) {
 582                result = USB_STOR_TRANSPORT_ERROR;
 583                goto error;
 584        }
 585
 586        US_DEBUGP("alauda_read_map: Mapping blocks for zone %d\n", zone);
 587
 588        /* 1024 PBA's per zone */
 589        for (i = 0; i < zonesize; i++)
 590                lba_to_pba[i] = pba_to_lba[i] = UNDEF;
 591
 592        for (i = 0; i < zonesize; i++) {
 593                blocknum = zone_base_pba + i;
 594
 595                result = alauda_get_redu_data(us, blocknum, data);
 596                if (result != USB_STOR_XFER_GOOD) {
 597                        result = USB_STOR_TRANSPORT_ERROR;
 598                        goto error;
 599                }
 600
 601                /* special PBAs have control field 0^16 */
 602                for (j = 0; j < 16; j++)
 603                        if (data[j] != 0)
 604                                goto nonz;
 605                pba_to_lba[i] = UNUSABLE;
 606                US_DEBUGP("alauda_read_map: PBA %d has no logical mapping\n", blocknum);
 607                continue;
 608
 609        nonz:
 610                /* unwritten PBAs have control field FF^16 */
 611                for (j = 0; j < 16; j++)
 612                        if (data[j] != 0xff)
 613                                goto nonff;
 614                continue;
 615
 616        nonff:
 617                /* normal PBAs start with six FFs */
 618                if (j < 6) {
 619                        US_DEBUGP("alauda_read_map: PBA %d has no logical mapping: "
 620                               "reserved area = %02X%02X%02X%02X "
 621                               "data status %02X block status %02X\n",
 622                               blocknum, data[0], data[1], data[2], data[3],
 623                               data[4], data[5]);
 624                        pba_to_lba[i] = UNUSABLE;
 625                        continue;
 626                }
 627
 628                if ((data[6] >> 4) != 0x01) {
 629                        US_DEBUGP("alauda_read_map: PBA %d has invalid address "
 630                               "field %02X%02X/%02X%02X\n",
 631                               blocknum, data[6], data[7], data[11], data[12]);
 632                        pba_to_lba[i] = UNUSABLE;
 633                        continue;
 634                }
 635
 636                /* check even parity */
 637                if (parity[data[6] ^ data[7]]) {
 638                        printk(KERN_WARNING
 639                               "alauda_read_map: Bad parity in LBA for block %d"
 640                               " (%02X %02X)\n", i, data[6], data[7]);
 641                        pba_to_lba[i] = UNUSABLE;
 642                        continue;
 643                }
 644
 645                lba_offset = short_pack(data[7], data[6]);
 646                lba_offset = (lba_offset & 0x07FF) >> 1;
 647                lba_real = lba_offset + zone_base_lba;
 648
 649                /*
 650                 * Every 1024 physical blocks ("zone"), the LBA numbers
 651                 * go back to zero, but are within a higher block of LBA's.
 652                 * Also, there is a maximum of 1000 LBA's per zone.
 653                 * In other words, in PBA 1024-2047 you will find LBA 0-999
 654                 * which are really LBA 1000-1999. This allows for 24 bad
 655                 * or special physical blocks per zone.
 656                 */
 657
 658                if (lba_offset >= uzonesize) {
 659                        printk(KERN_WARNING
 660                               "alauda_read_map: Bad low LBA %d for block %d\n",
 661                               lba_real, blocknum);
 662                        continue;
 663                }
 664
 665                if (lba_to_pba[lba_offset] != UNDEF) {
 666                        printk(KERN_WARNING
 667                               "alauda_read_map: "
 668                               "LBA %d seen for PBA %d and %d\n",
 669                               lba_real, lba_to_pba[lba_offset], blocknum);
 670                        continue;
 671                }
 672
 673                pba_to_lba[i] = lba_real;
 674                lba_to_pba[lba_offset] = blocknum;
 675                continue;
 676        }
 677
 678        MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba;
 679        MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba;
 680        result = 0;
 681        goto out;
 682
 683error:
 684        kfree(lba_to_pba);
 685        kfree(pba_to_lba);
 686out:
 687        return result;
 688}
 689
 690/*
 691 * Checks to see whether we have already mapped a certain zone
 692 * If we haven't, the map is generated
 693 */
 694static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone)
 695{
 696        if (MEDIA_INFO(us).lba_to_pba[zone] == NULL
 697                || MEDIA_INFO(us).pba_to_lba[zone] == NULL)
 698                alauda_read_map(us, zone);
 699}
 700
 701/*
 702 * Erases an entire block
 703 */
 704static int alauda_erase_block(struct us_data *us, u16 pba)
 705{
 706        int rc;
 707        unsigned char command[] = {
 708                ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba),
 709                PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us)
 710        };
 711        unsigned char buf[2];
 712
 713        US_DEBUGP("alauda_erase_block: Erasing PBA %d\n", pba);
 714
 715        rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 716                command, 9, NULL);
 717        if (rc != USB_STOR_XFER_GOOD)
 718                return rc;
 719
 720        rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 721                buf, 2, NULL);
 722        if (rc != USB_STOR_XFER_GOOD)
 723                return rc;
 724
 725        US_DEBUGP("alauda_erase_block: Erase result: %02X %02X\n",
 726                buf[0], buf[1]);
 727        return rc;
 728}
 729
 730/*
 731 * Reads data from a certain offset page inside a PBA, including interleaved
 732 * redundancy data. Returns (pagesize+64)*pages bytes in data.
 733 */
 734static int alauda_read_block_raw(struct us_data *us, u16 pba,
 735                unsigned int page, unsigned int pages, unsigned char *data)
 736{
 737        int rc;
 738        unsigned char command[] = {
 739                ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba),
 740                PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us)
 741        };
 742
 743        US_DEBUGP("alauda_read_block: pba %d page %d count %d\n",
 744                pba, page, pages);
 745
 746        rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 747                command, 9, NULL);
 748        if (rc != USB_STOR_XFER_GOOD)
 749                return rc;
 750
 751        return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 752                data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL);
 753}
 754
 755/*
 756 * Reads data from a certain offset page inside a PBA, excluding redundancy
 757 * data. Returns pagesize*pages bytes in data. Note that data must be big enough
 758 * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra'
 759 * trailing bytes outside this function.
 760 */
 761static int alauda_read_block(struct us_data *us, u16 pba,
 762                unsigned int page, unsigned int pages, unsigned char *data)
 763{
 764        int i, rc;
 765        unsigned int pagesize = MEDIA_INFO(us).pagesize;
 766
 767        rc = alauda_read_block_raw(us, pba, page, pages, data);
 768        if (rc != USB_STOR_XFER_GOOD)
 769                return rc;
 770
 771        /* Cut out the redundancy data */
 772        for (i = 0; i < pages; i++) {
 773                int dest_offset = i * pagesize;
 774                int src_offset = i * (pagesize + 64);
 775                memmove(data + dest_offset, data + src_offset, pagesize);
 776        }
 777
 778        return rc;
 779}
 780
 781/*
 782 * Writes an entire block of data and checks status after write.
 783 * Redundancy data must be already included in data. Data should be
 784 * (pagesize+64)*blocksize bytes in length.
 785 */
 786static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data)
 787{
 788        int rc;
 789        struct alauda_info *info = (struct alauda_info *) us->extra;
 790        unsigned char command[] = {
 791                ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba),
 792                PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us)
 793        };
 794
 795        US_DEBUGP("alauda_write_block: pba %d\n", pba);
 796
 797        rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 798                command, 9, NULL);
 799        if (rc != USB_STOR_XFER_GOOD)
 800                return rc;
 801
 802        rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data,
 803                (MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize,
 804                NULL);
 805        if (rc != USB_STOR_XFER_GOOD)
 806                return rc;
 807
 808        return alauda_check_status2(us);
 809}
 810
 811/*
 812 * Write some data to a specific LBA.
 813 */
 814static int alauda_write_lba(struct us_data *us, u16 lba,
 815                 unsigned int page, unsigned int pages,
 816                 unsigned char *ptr, unsigned char *blockbuffer)
 817{
 818        u16 pba, lbap, new_pba;
 819        unsigned char *bptr, *cptr, *xptr;
 820        unsigned char ecc[3];
 821        int i, result;
 822        unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
 823        unsigned int zonesize = MEDIA_INFO(us).zonesize;
 824        unsigned int pagesize = MEDIA_INFO(us).pagesize;
 825        unsigned int blocksize = MEDIA_INFO(us).blocksize;
 826        unsigned int lba_offset = lba % uzonesize;
 827        unsigned int new_pba_offset;
 828        unsigned int zone = lba / uzonesize;
 829
 830        alauda_ensure_map_for_zone(us, zone);
 831
 832        pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
 833        if (pba == 1) {
 834                /* Maybe it is impossible to write to PBA 1.
 835                   Fake success, but don't do anything. */
 836                printk(KERN_WARNING
 837                       "alauda_write_lba: avoid writing to pba 1\n");
 838                return USB_STOR_TRANSPORT_GOOD;
 839        }
 840
 841        new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone);
 842        if (!new_pba) {
 843                printk(KERN_WARNING
 844                       "alauda_write_lba: Out of unused blocks\n");
 845                return USB_STOR_TRANSPORT_ERROR;
 846        }
 847
 848        /* read old contents */
 849        if (pba != UNDEF) {
 850                result = alauda_read_block_raw(us, pba, 0,
 851                        blocksize, blockbuffer);
 852                if (result != USB_STOR_XFER_GOOD)
 853                        return result;
 854        } else {
 855                memset(blockbuffer, 0, blocksize * (pagesize + 64));
 856        }
 857
 858        lbap = (lba_offset << 1) | 0x1000;
 859        if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
 860                lbap ^= 1;
 861
 862        /* check old contents and fill lba */
 863        for (i = 0; i < blocksize; i++) {
 864                bptr = blockbuffer + (i * (pagesize + 64));
 865                cptr = bptr + pagesize;
 866                nand_compute_ecc(bptr, ecc);
 867                if (!nand_compare_ecc(cptr+13, ecc)) {
 868                        US_DEBUGP("Warning: bad ecc in page %d- of pba %d\n",
 869                                  i, pba);
 870                        nand_store_ecc(cptr+13, ecc);
 871                }
 872                nand_compute_ecc(bptr + (pagesize / 2), ecc);
 873                if (!nand_compare_ecc(cptr+8, ecc)) {
 874                        US_DEBUGP("Warning: bad ecc in page %d+ of pba %d\n",
 875                                  i, pba);
 876                        nand_store_ecc(cptr+8, ecc);
 877                }
 878                cptr[6] = cptr[11] = MSB_of(lbap);
 879                cptr[7] = cptr[12] = LSB_of(lbap);
 880        }
 881
 882        /* copy in new stuff and compute ECC */
 883        xptr = ptr;
 884        for (i = page; i < page+pages; i++) {
 885                bptr = blockbuffer + (i * (pagesize + 64));
 886                cptr = bptr + pagesize;
 887                memcpy(bptr, xptr, pagesize);
 888                xptr += pagesize;
 889                nand_compute_ecc(bptr, ecc);
 890                nand_store_ecc(cptr+13, ecc);
 891                nand_compute_ecc(bptr + (pagesize / 2), ecc);
 892                nand_store_ecc(cptr+8, ecc);
 893        }
 894
 895        result = alauda_write_block(us, new_pba, blockbuffer);
 896        if (result != USB_STOR_XFER_GOOD)
 897                return result;
 898
 899        new_pba_offset = new_pba - (zone * zonesize);
 900        MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba;
 901        MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba;
 902        US_DEBUGP("alauda_write_lba: Remapped LBA %d to PBA %d\n",
 903                lba, new_pba);
 904
 905        if (pba != UNDEF) {
 906                unsigned int pba_offset = pba - (zone * zonesize);
 907                result = alauda_erase_block(us, pba);
 908                if (result != USB_STOR_XFER_GOOD)
 909                        return result;
 910                MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF;
 911        }
 912
 913        return USB_STOR_TRANSPORT_GOOD;
 914}
 915
 916/*
 917 * Read data from a specific sector address
 918 */
 919static int alauda_read_data(struct us_data *us, unsigned long address,
 920                unsigned int sectors)
 921{
 922        unsigned char *buffer;
 923        u16 lba, max_lba;
 924        unsigned int page, len, offset;
 925        unsigned int blockshift = MEDIA_INFO(us).blockshift;
 926        unsigned int pageshift = MEDIA_INFO(us).pageshift;
 927        unsigned int blocksize = MEDIA_INFO(us).blocksize;
 928        unsigned int pagesize = MEDIA_INFO(us).pagesize;
 929        unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
 930        struct scatterlist *sg;
 931        int result;
 932
 933        /*
 934         * Since we only read in one block at a time, we have to create
 935         * a bounce buffer and move the data a piece at a time between the
 936         * bounce buffer and the actual transfer buffer.
 937         * We make this buffer big enough to hold temporary redundancy data,
 938         * which we use when reading the data blocks.
 939         */
 940
 941        len = min(sectors, blocksize) * (pagesize + 64);
 942        buffer = kmalloc(len, GFP_NOIO);
 943        if (buffer == NULL) {
 944                printk(KERN_WARNING "alauda_read_data: Out of memory\n");
 945                return USB_STOR_TRANSPORT_ERROR;
 946        }
 947
 948        /* Figure out the initial LBA and page */
 949        lba = address >> blockshift;
 950        page = (address & MEDIA_INFO(us).blockmask);
 951        max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift);
 952
 953        result = USB_STOR_TRANSPORT_GOOD;
 954        offset = 0;
 955        sg = NULL;
 956
 957        while (sectors > 0) {
 958                unsigned int zone = lba / uzonesize; /* integer division */
 959                unsigned int lba_offset = lba - (zone * uzonesize);
 960                unsigned int pages;
 961                u16 pba;
 962                alauda_ensure_map_for_zone(us, zone);
 963
 964                /* Not overflowing capacity? */
 965                if (lba >= max_lba) {
 966                        US_DEBUGP("Error: Requested lba %u exceeds "
 967                                  "maximum %u\n", lba, max_lba);
 968                        result = USB_STOR_TRANSPORT_ERROR;
 969                        break;
 970                }
 971
 972                /* Find number of pages we can read in this block */
 973                pages = min(sectors, blocksize - page);
 974                len = pages << pageshift;
 975
 976                /* Find where this lba lives on disk */
 977                pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
 978
 979                if (pba == UNDEF) {     /* this lba was never written */
 980                        US_DEBUGP("Read %d zero pages (LBA %d) page %d\n",
 981                                  pages, lba, page);
 982
 983                        /* This is not really an error. It just means
 984                           that the block has never been written.
 985                           Instead of returning USB_STOR_TRANSPORT_ERROR
 986                           it is better to return all zero data. */
 987
 988                        memset(buffer, 0, len);
 989                } else {
 990                        US_DEBUGP("Read %d pages, from PBA %d"
 991                                  " (LBA %d) page %d\n",
 992                                  pages, pba, lba, page);
 993
 994                        result = alauda_read_block(us, pba, page, pages, buffer);
 995                        if (result != USB_STOR_TRANSPORT_GOOD)
 996                                break;
 997                }
 998
 999                /* Store the data in the transfer buffer */
1000                usb_stor_access_xfer_buf(buffer, len, us->srb,
1001                                &sg, &offset, TO_XFER_BUF);
1002
1003                page = 0;
1004                lba++;
1005                sectors -= pages;
1006        }
1007
1008        kfree(buffer);
1009        return result;
1010}
1011
1012/*
1013 * Write data to a specific sector address
1014 */
1015static int alauda_write_data(struct us_data *us, unsigned long address,
1016                unsigned int sectors)
1017{
1018        unsigned char *buffer, *blockbuffer;
1019        unsigned int page, len, offset;
1020        unsigned int blockshift = MEDIA_INFO(us).blockshift;
1021        unsigned int pageshift = MEDIA_INFO(us).pageshift;
1022        unsigned int blocksize = MEDIA_INFO(us).blocksize;
1023        unsigned int pagesize = MEDIA_INFO(us).pagesize;
1024        struct scatterlist *sg;
1025        u16 lba, max_lba;
1026        int result;
1027
1028        /*
1029         * Since we don't write the user data directly to the device,
1030         * we have to create a bounce buffer and move the data a piece
1031         * at a time between the bounce buffer and the actual transfer buffer.
1032         */
1033
1034        len = min(sectors, blocksize) * pagesize;
1035        buffer = kmalloc(len, GFP_NOIO);
1036        if (buffer == NULL) {
1037                printk(KERN_WARNING "alauda_write_data: Out of memory\n");
1038                return USB_STOR_TRANSPORT_ERROR;
1039        }
1040
1041        /*
1042         * We also need a temporary block buffer, where we read in the old data,
1043         * overwrite parts with the new data, and manipulate the redundancy data
1044         */
1045        blockbuffer = kmalloc((pagesize + 64) * blocksize, GFP_NOIO);
1046        if (blockbuffer == NULL) {
1047                printk(KERN_WARNING "alauda_write_data: Out of memory\n");
1048                kfree(buffer);
1049                return USB_STOR_TRANSPORT_ERROR;
1050        }
1051
1052        /* Figure out the initial LBA and page */
1053        lba = address >> blockshift;
1054        page = (address & MEDIA_INFO(us).blockmask);
1055        max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift);
1056
1057        result = USB_STOR_TRANSPORT_GOOD;
1058        offset = 0;
1059        sg = NULL;
1060
1061        while (sectors > 0) {
1062                /* Write as many sectors as possible in this block */
1063                unsigned int pages = min(sectors, blocksize - page);
1064                len = pages << pageshift;
1065
1066                /* Not overflowing capacity? */
1067                if (lba >= max_lba) {
1068                        US_DEBUGP("alauda_write_data: Requested lba %u exceeds "
1069                                  "maximum %u\n", lba, max_lba);
1070                        result = USB_STOR_TRANSPORT_ERROR;
1071                        break;
1072                }
1073
1074                /* Get the data from the transfer buffer */
1075                usb_stor_access_xfer_buf(buffer, len, us->srb,
1076                                &sg, &offset, FROM_XFER_BUF);
1077
1078                result = alauda_write_lba(us, lba, page, pages, buffer,
1079                        blockbuffer);
1080                if (result != USB_STOR_TRANSPORT_GOOD)
1081                        break;
1082
1083                page = 0;
1084                lba++;
1085                sectors -= pages;
1086        }
1087
1088        kfree(buffer);
1089        kfree(blockbuffer);
1090        return result;
1091}
1092
1093/*
1094 * Our interface with the rest of the world
1095 */
1096
1097static void alauda_info_destructor(void *extra)
1098{
1099        struct alauda_info *info = (struct alauda_info *) extra;
1100        int port;
1101
1102        if (!info)
1103                return;
1104
1105        for (port = 0; port < 2; port++) {
1106                struct alauda_media_info *media_info = &info->port[port];
1107
1108                alauda_free_maps(media_info);
1109                kfree(media_info->lba_to_pba);
1110                kfree(media_info->pba_to_lba);
1111        }
1112}
1113
1114/*
1115 * Initialize alauda_info struct and find the data-write endpoint
1116 */
1117static int init_alauda(struct us_data *us)
1118{
1119        struct alauda_info *info;
1120        struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting;
1121        nand_init_ecc();
1122
1123        us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO);
1124        if (!us->extra) {
1125                US_DEBUGP("init_alauda: Gah! Can't allocate storage for"
1126                        "alauda info struct!\n");
1127                return USB_STOR_TRANSPORT_ERROR;
1128        }
1129        info = (struct alauda_info *) us->extra;
1130        us->extra_destructor = alauda_info_destructor;
1131
1132        info->wr_ep = usb_sndbulkpipe(us->pusb_dev,
1133                altsetting->endpoint[0].desc.bEndpointAddress
1134                & USB_ENDPOINT_NUMBER_MASK);
1135
1136        return USB_STOR_TRANSPORT_GOOD;
1137}
1138
1139static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us)
1140{
1141        int rc;
1142        struct alauda_info *info = (struct alauda_info *) us->extra;
1143        unsigned char *ptr = us->iobuf;
1144        static unsigned char inquiry_response[36] = {
1145                0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
1146        };
1147
1148        if (srb->cmnd[0] == INQUIRY) {
1149                US_DEBUGP("alauda_transport: INQUIRY. "
1150                        "Returning bogus response.\n");
1151                memcpy(ptr, inquiry_response, sizeof(inquiry_response));
1152                fill_inquiry_response(us, ptr, 36);
1153                return USB_STOR_TRANSPORT_GOOD;
1154        }
1155
1156        if (srb->cmnd[0] == TEST_UNIT_READY) {
1157                US_DEBUGP("alauda_transport: TEST_UNIT_READY.\n");
1158                return alauda_check_media(us);
1159        }
1160
1161        if (srb->cmnd[0] == READ_CAPACITY) {
1162                unsigned int num_zones;
1163                unsigned long capacity;
1164
1165                rc = alauda_check_media(us);
1166                if (rc != USB_STOR_TRANSPORT_GOOD)
1167                        return rc;
1168
1169                num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
1170                        + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
1171
1172                capacity = num_zones * MEDIA_INFO(us).uzonesize
1173                        * MEDIA_INFO(us).blocksize;
1174
1175                /* Report capacity and page size */
1176                ((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1);
1177                ((__be32 *) ptr)[1] = cpu_to_be32(512);
1178
1179                usb_stor_set_xfer_buf(ptr, 8, srb);
1180                return USB_STOR_TRANSPORT_GOOD;
1181        }
1182
1183        if (srb->cmnd[0] == READ_10) {
1184                unsigned int page, pages;
1185
1186                rc = alauda_check_media(us);
1187                if (rc != USB_STOR_TRANSPORT_GOOD)
1188                        return rc;
1189
1190                page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1191                page <<= 16;
1192                page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1193                pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1194
1195                US_DEBUGP("alauda_transport: READ_10: page %d pagect %d\n",
1196                          page, pages);
1197
1198                return alauda_read_data(us, page, pages);
1199        }
1200
1201        if (srb->cmnd[0] == WRITE_10) {
1202                unsigned int page, pages;
1203
1204                rc = alauda_check_media(us);
1205                if (rc != USB_STOR_TRANSPORT_GOOD)
1206                        return rc;
1207
1208                page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1209                page <<= 16;
1210                page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1211                pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1212
1213                US_DEBUGP("alauda_transport: WRITE_10: page %d pagect %d\n",
1214                          page, pages);
1215
1216                return alauda_write_data(us, page, pages);
1217        }
1218
1219        if (srb->cmnd[0] == REQUEST_SENSE) {
1220                US_DEBUGP("alauda_transport: REQUEST_SENSE.\n");
1221
1222                memset(ptr, 0, 18);
1223                ptr[0] = 0xF0;
1224                ptr[2] = info->sense_key;
1225                ptr[7] = 11;
1226                ptr[12] = info->sense_asc;
1227                ptr[13] = info->sense_ascq;
1228                usb_stor_set_xfer_buf(ptr, 18, srb);
1229
1230                return USB_STOR_TRANSPORT_GOOD;
1231        }
1232
1233        if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
1234                /* sure.  whatever.  not like we can stop the user from popping
1235                   the media out of the device (no locking doors, etc) */
1236                return USB_STOR_TRANSPORT_GOOD;
1237        }
1238
1239        US_DEBUGP("alauda_transport: Gah! Unknown command: %d (0x%x)\n",
1240                srb->cmnd[0], srb->cmnd[0]);
1241        info->sense_key = 0x05;
1242        info->sense_asc = 0x20;
1243        info->sense_ascq = 0x00;
1244        return USB_STOR_TRANSPORT_FAILED;
1245}
1246
1247static int alauda_probe(struct usb_interface *intf,
1248                         const struct usb_device_id *id)
1249{
1250        struct us_data *us;
1251        int result;
1252
1253        result = usb_stor_probe1(&us, intf, id,
1254                        (id - alauda_usb_ids) + alauda_unusual_dev_list);
1255        if (result)
1256                return result;
1257
1258        us->transport_name  = "Alauda Control/Bulk";
1259        us->transport = alauda_transport;
1260        us->transport_reset = usb_stor_Bulk_reset;
1261        us->max_lun = 1;
1262
1263        result = usb_stor_probe2(us);
1264        return result;
1265}
1266
1267static struct usb_driver alauda_driver = {
1268        .name =         "ums-alauda",
1269        .probe =        alauda_probe,
1270        .disconnect =   usb_stor_disconnect,
1271        .suspend =      usb_stor_suspend,
1272        .resume =       usb_stor_resume,
1273        .reset_resume = usb_stor_reset_resume,
1274        .pre_reset =    usb_stor_pre_reset,
1275        .post_reset =   usb_stor_post_reset,
1276        .id_table =     alauda_usb_ids,
1277        .soft_unbind =  1,
1278};
1279
1280static int __init alauda_init(void)
1281{
1282        return usb_register(&alauda_driver);
1283}
1284
1285static void __exit alauda_exit(void)
1286{
1287        usb_deregister(&alauda_driver);
1288}
1289
1290module_init(alauda_init);
1291module_exit(alauda_exit);
1292