linux/drivers/usb/storage/sddr09.c
<<
>>
Prefs
   1/* Driver for SanDisk SDDR-09 SmartMedia reader
   2 *
   3 *   (c) 2000, 2001 Robert Baruch (autophile@starband.net)
   4 *   (c) 2002 Andries Brouwer (aeb@cwi.nl)
   5 * Developed with the assistance of:
   6 *   (c) 2002 Alan Stern <stern@rowland.org>
   7 *
   8 * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
   9 * This chip is a programmable USB controller. In the SDDR-09, it has
  10 * been programmed to obey a certain limited set of SCSI commands.
  11 * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
  12 * commands.
  13 *
  14 * This program is free software; you can redistribute it and/or modify it
  15 * under the terms of the GNU General Public License as published by the
  16 * Free Software Foundation; either version 2, or (at your option) any
  17 * later version.
  18 *
  19 * This program is distributed in the hope that it will be useful, but
  20 * WITHOUT ANY WARRANTY; without even the implied warranty of
  21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  22 * General Public License for more details.
  23 *
  24 * You should have received a copy of the GNU General Public License along
  25 * with this program; if not, write to the Free Software Foundation, Inc.,
  26 * 675 Mass Ave, Cambridge, MA 02139, USA.
  27 */
  28
  29/*
  30 * Known vendor commands: 12 bytes, first byte is opcode
  31 *
  32 * E7: read scatter gather
  33 * E8: read
  34 * E9: write
  35 * EA: erase
  36 * EB: reset
  37 * EC: read status
  38 * ED: read ID
  39 * EE: write CIS (?)
  40 * EF: compute checksum (?)
  41 */
  42
  43#include <linux/errno.h>
  44#include <linux/module.h>
  45#include <linux/slab.h>
  46
  47#include <scsi/scsi.h>
  48#include <scsi/scsi_cmnd.h>
  49#include <scsi/scsi_device.h>
  50
  51#include "usb.h"
  52#include "transport.h"
  53#include "protocol.h"
  54#include "debug.h"
  55
  56MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader");
  57MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>");
  58MODULE_LICENSE("GPL");
  59
  60static int usb_stor_sddr09_dpcm_init(struct us_data *us);
  61static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us);
  62static int usb_stor_sddr09_init(struct us_data *us);
  63
  64
  65/*
  66 * The table of devices
  67 */
  68#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
  69                    vendorName, productName, useProtocol, useTransport, \
  70                    initFunction, flags) \
  71{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
  72  .driver_info = (flags)|(USB_US_TYPE_STOR<<24) }
  73
  74struct usb_device_id sddr09_usb_ids[] = {
  75#       include "unusual_sddr09.h"
  76        { }             /* Terminating entry */
  77};
  78MODULE_DEVICE_TABLE(usb, sddr09_usb_ids);
  79
  80#undef UNUSUAL_DEV
  81
  82/*
  83 * The flags table
  84 */
  85#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
  86                    vendor_name, product_name, use_protocol, use_transport, \
  87                    init_function, Flags) \
  88{ \
  89        .vendorName = vendor_name,      \
  90        .productName = product_name,    \
  91        .useProtocol = use_protocol,    \
  92        .useTransport = use_transport,  \
  93        .initFunction = init_function,  \
  94}
  95
  96static struct us_unusual_dev sddr09_unusual_dev_list[] = {
  97#       include "unusual_sddr09.h"
  98        { }             /* Terminating entry */
  99};
 100
 101#undef UNUSUAL_DEV
 102
 103
 104#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
 105#define LSB_of(s) ((s)&0xFF)
 106#define MSB_of(s) ((s)>>8)
 107
 108/* #define US_DEBUGP printk */
 109
 110/*
 111 * First some stuff that does not belong here:
 112 * data on SmartMedia and other cards, completely
 113 * unrelated to this driver.
 114 * Similar stuff occurs in <linux/mtd/nand_ids.h>.
 115 */
 116
 117struct nand_flash_dev {
 118        int model_id;
 119        int chipshift;          /* 1<<cs bytes total capacity */
 120        char pageshift;         /* 1<<ps bytes in a page */
 121        char blockshift;        /* 1<<bs pages in an erase block */
 122        char zoneshift;         /* 1<<zs blocks in a zone */
 123                                /* # of logical blocks is 125/128 of this */
 124        char pageadrlen;        /* length of an address in bytes - 1 */
 125};
 126
 127/*
 128 * NAND Flash Manufacturer ID Codes
 129 */
 130#define NAND_MFR_AMD            0x01
 131#define NAND_MFR_NATSEMI        0x8f
 132#define NAND_MFR_TOSHIBA        0x98
 133#define NAND_MFR_SAMSUNG        0xec
 134
 135static inline char *nand_flash_manufacturer(int manuf_id) {
 136        switch(manuf_id) {
 137        case NAND_MFR_AMD:
 138                return "AMD";
 139        case NAND_MFR_NATSEMI:
 140                return "NATSEMI";
 141        case NAND_MFR_TOSHIBA:
 142                return "Toshiba";
 143        case NAND_MFR_SAMSUNG:
 144                return "Samsung";
 145        default:
 146                return "unknown";
 147        }
 148}
 149
 150/*
 151 * It looks like it is unnecessary to attach manufacturer to the
 152 * remaining data: SSFDC prescribes manufacturer-independent id codes.
 153 *
 154 * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
 155 */
 156
 157static struct nand_flash_dev nand_flash_ids[] = {
 158        /* NAND flash */
 159        { 0x6e, 20, 8, 4, 8, 2},        /* 1 MB */
 160        { 0xe8, 20, 8, 4, 8, 2},        /* 1 MB */
 161        { 0xec, 20, 8, 4, 8, 2},        /* 1 MB */
 162        { 0x64, 21, 8, 4, 9, 2},        /* 2 MB */
 163        { 0xea, 21, 8, 4, 9, 2},        /* 2 MB */
 164        { 0x6b, 22, 9, 4, 9, 2},        /* 4 MB */
 165        { 0xe3, 22, 9, 4, 9, 2},        /* 4 MB */
 166        { 0xe5, 22, 9, 4, 9, 2},        /* 4 MB */
 167        { 0xe6, 23, 9, 4, 10, 2},       /* 8 MB */
 168        { 0x73, 24, 9, 5, 10, 2},       /* 16 MB */
 169        { 0x75, 25, 9, 5, 10, 2},       /* 32 MB */
 170        { 0x76, 26, 9, 5, 10, 3},       /* 64 MB */
 171        { 0x79, 27, 9, 5, 10, 3},       /* 128 MB */
 172
 173        /* MASK ROM */
 174        { 0x5d, 21, 9, 4, 8, 2},        /* 2 MB */
 175        { 0xd5, 22, 9, 4, 9, 2},        /* 4 MB */
 176        { 0xd6, 23, 9, 4, 10, 2},       /* 8 MB */
 177        { 0x57, 24, 9, 4, 11, 2},       /* 16 MB */
 178        { 0x58, 25, 9, 4, 12, 2},       /* 32 MB */
 179        { 0,}
 180};
 181
 182static struct nand_flash_dev *
 183nand_find_id(unsigned char id) {
 184        int i;
 185
 186        for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
 187                if (nand_flash_ids[i].model_id == id)
 188                        return &(nand_flash_ids[i]);
 189        return NULL;
 190}
 191
 192/*
 193 * ECC computation.
 194 */
 195static unsigned char parity[256];
 196static unsigned char ecc2[256];
 197
 198static void nand_init_ecc(void) {
 199        int i, j, a;
 200
 201        parity[0] = 0;
 202        for (i = 1; i < 256; i++)
 203                parity[i] = (parity[i&(i-1)] ^ 1);
 204
 205        for (i = 0; i < 256; i++) {
 206                a = 0;
 207                for (j = 0; j < 8; j++) {
 208                        if (i & (1<<j)) {
 209                                if ((j & 1) == 0)
 210                                        a ^= 0x04;
 211                                if ((j & 2) == 0)
 212                                        a ^= 0x10;
 213                                if ((j & 4) == 0)
 214                                        a ^= 0x40;
 215                        }
 216                }
 217                ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
 218        }
 219}
 220
 221/* compute 3-byte ecc on 256 bytes */
 222static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
 223        int i, j, a;
 224        unsigned char par, bit, bits[8];
 225
 226        par = 0;
 227        for (j = 0; j < 8; j++)
 228                bits[j] = 0;
 229
 230        /* collect 16 checksum bits */
 231        for (i = 0; i < 256; i++) {
 232                par ^= data[i];
 233                bit = parity[data[i]];
 234                for (j = 0; j < 8; j++)
 235                        if ((i & (1<<j)) == 0)
 236                                bits[j] ^= bit;
 237        }
 238
 239        /* put 4+4+4 = 12 bits in the ecc */
 240        a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
 241        ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 242
 243        a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
 244        ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 245
 246        ecc[2] = ecc2[par];
 247}
 248
 249static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
 250        return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
 251}
 252
 253static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
 254        memcpy(data, ecc, 3);
 255}
 256
 257/*
 258 * The actual driver starts here.
 259 */
 260
 261struct sddr09_card_info {
 262        unsigned long   capacity;       /* Size of card in bytes */
 263        int             pagesize;       /* Size of page in bytes */
 264        int             pageshift;      /* log2 of pagesize */
 265        int             blocksize;      /* Size of block in pages */
 266        int             blockshift;     /* log2 of blocksize */
 267        int             blockmask;      /* 2^blockshift - 1 */
 268        int             *lba_to_pba;    /* logical to physical map */
 269        int             *pba_to_lba;    /* physical to logical map */
 270        int             lbact;          /* number of available pages */
 271        int             flags;
 272#define SDDR09_WP       1               /* write protected */
 273};
 274
 275/*
 276 * On my 16MB card, control blocks have size 64 (16 real control bytes,
 277 * and 48 junk bytes). In reality of course the card uses 16 control bytes,
 278 * so the reader makes up the remaining 48. Don't know whether these numbers
 279 * depend on the card. For now a constant.
 280 */
 281#define CONTROL_SHIFT 6
 282
 283/*
 284 * On my Combo CF/SM reader, the SM reader has LUN 1.
 285 * (and things fail with LUN 0).
 286 * It seems LUN is irrelevant for others.
 287 */
 288#define LUN     1
 289#define LUNBITS (LUN << 5)
 290
 291/*
 292 * LBA and PBA are unsigned ints. Special values.
 293 */
 294#define UNDEF    0xffffffff
 295#define SPARE    0xfffffffe
 296#define UNUSABLE 0xfffffffd
 297
 298static const int erase_bad_lba_entries = 0;
 299
 300/* send vendor interface command (0x41) */
 301/* called for requests 0, 1, 8 */
 302static int
 303sddr09_send_command(struct us_data *us,
 304                    unsigned char request,
 305                    unsigned char direction,
 306                    unsigned char *xfer_data,
 307                    unsigned int xfer_len) {
 308        unsigned int pipe;
 309        unsigned char requesttype = (0x41 | direction);
 310        int rc;
 311
 312        // Get the receive or send control pipe number
 313
 314        if (direction == USB_DIR_IN)
 315                pipe = us->recv_ctrl_pipe;
 316        else
 317                pipe = us->send_ctrl_pipe;
 318
 319        rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
 320                                   0, 0, xfer_data, xfer_len);
 321        switch (rc) {
 322                case USB_STOR_XFER_GOOD:        return 0;
 323                case USB_STOR_XFER_STALLED:     return -EPIPE;
 324                default:                        return -EIO;
 325        }
 326}
 327
 328static int
 329sddr09_send_scsi_command(struct us_data *us,
 330                         unsigned char *command,
 331                         unsigned int command_len) {
 332        return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
 333}
 334
 335#if 0
 336/*
 337 * Test Unit Ready Command: 12 bytes.
 338 * byte 0: opcode: 00
 339 */
 340static int
 341sddr09_test_unit_ready(struct us_data *us) {
 342        unsigned char *command = us->iobuf;
 343        int result;
 344
 345        memset(command, 0, 6);
 346        command[1] = LUNBITS;
 347
 348        result = sddr09_send_scsi_command(us, command, 6);
 349
 350        US_DEBUGP("sddr09_test_unit_ready returns %d\n", result);
 351
 352        return result;
 353}
 354#endif
 355
 356/*
 357 * Request Sense Command: 12 bytes.
 358 * byte 0: opcode: 03
 359 * byte 4: data length
 360 */
 361static int
 362sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
 363        unsigned char *command = us->iobuf;
 364        int result;
 365
 366        memset(command, 0, 12);
 367        command[0] = 0x03;
 368        command[1] = LUNBITS;
 369        command[4] = buflen;
 370
 371        result = sddr09_send_scsi_command(us, command, 12);
 372        if (result)
 373                return result;
 374
 375        result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 376                        sensebuf, buflen, NULL);
 377        return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
 378}
 379
 380/*
 381 * Read Command: 12 bytes.
 382 * byte 0: opcode: E8
 383 * byte 1: last two bits: 00: read data, 01: read blockwise control,
 384 *                      10: read both, 11: read pagewise control.
 385 *       It turns out we need values 20, 21, 22, 23 here (LUN 1).
 386 * bytes 2-5: address (interpretation depends on byte 1, see below)
 387 * bytes 10-11: count (idem)
 388 *
 389 * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
 390 * A read data command gets data in 512-byte pages.
 391 * A read control command gets control in 64-byte chunks.
 392 * A read both command gets data+control in 576-byte chunks.
 393 *
 394 * Blocks are groups of 32 pages, and read blockwise control jumps to the
 395 * next block, while read pagewise control jumps to the next page after
 396 * reading a group of 64 control bytes.
 397 * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
 398 *
 399 * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
 400 */
 401
 402static int
 403sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
 404             int nr_of_pages, int bulklen, unsigned char *buf,
 405             int use_sg) {
 406
 407        unsigned char *command = us->iobuf;
 408        int result;
 409
 410        command[0] = 0xE8;
 411        command[1] = LUNBITS | x;
 412        command[2] = MSB_of(fromaddress>>16);
 413        command[3] = LSB_of(fromaddress>>16); 
 414        command[4] = MSB_of(fromaddress & 0xFFFF);
 415        command[5] = LSB_of(fromaddress & 0xFFFF); 
 416        command[6] = 0;
 417        command[7] = 0;
 418        command[8] = 0;
 419        command[9] = 0;
 420        command[10] = MSB_of(nr_of_pages);
 421        command[11] = LSB_of(nr_of_pages);
 422
 423        result = sddr09_send_scsi_command(us, command, 12);
 424
 425        if (result) {
 426                US_DEBUGP("Result for send_control in sddr09_read2%d %d\n",
 427                          x, result);
 428                return result;
 429        }
 430
 431        result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
 432                                       buf, bulklen, use_sg, NULL);
 433
 434        if (result != USB_STOR_XFER_GOOD) {
 435                US_DEBUGP("Result for bulk_transfer in sddr09_read2%d %d\n",
 436                          x, result);
 437                return -EIO;
 438        }
 439        return 0;
 440}
 441
 442/*
 443 * Read Data
 444 *
 445 * fromaddress counts data shorts:
 446 * increasing it by 256 shifts the bytestream by 512 bytes;
 447 * the last 8 bits are ignored.
 448 *
 449 * nr_of_pages counts pages of size (1 << pageshift).
 450 */
 451static int
 452sddr09_read20(struct us_data *us, unsigned long fromaddress,
 453              int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
 454        int bulklen = nr_of_pages << pageshift;
 455
 456        /* The last 8 bits of fromaddress are ignored. */
 457        return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
 458                            buf, use_sg);
 459}
 460
 461/*
 462 * Read Blockwise Control
 463 *
 464 * fromaddress gives the starting position (as in read data;
 465 * the last 8 bits are ignored); increasing it by 32*256 shifts
 466 * the output stream by 64 bytes.
 467 *
 468 * count counts control groups of size (1 << controlshift).
 469 * For me, controlshift = 6. Is this constant?
 470 *
 471 * After getting one control group, jump to the next block
 472 * (fromaddress += 8192).
 473 */
 474static int
 475sddr09_read21(struct us_data *us, unsigned long fromaddress,
 476              int count, int controlshift, unsigned char *buf, int use_sg) {
 477
 478        int bulklen = (count << controlshift);
 479        return sddr09_readX(us, 1, fromaddress, count, bulklen,
 480                            buf, use_sg);
 481}
 482
 483/*
 484 * Read both Data and Control
 485 *
 486 * fromaddress counts data shorts, ignoring control:
 487 * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
 488 * the last 8 bits are ignored.
 489 *
 490 * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
 491 */
 492static int
 493sddr09_read22(struct us_data *us, unsigned long fromaddress,
 494              int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
 495
 496        int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
 497        US_DEBUGP("sddr09_read22: reading %d pages, %d bytes\n",
 498                  nr_of_pages, bulklen);
 499        return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
 500                            buf, use_sg);
 501}
 502
 503#if 0
 504/*
 505 * Read Pagewise Control
 506 *
 507 * fromaddress gives the starting position (as in read data;
 508 * the last 8 bits are ignored); increasing it by 256 shifts
 509 * the output stream by 64 bytes.
 510 *
 511 * count counts control groups of size (1 << controlshift).
 512 * For me, controlshift = 6. Is this constant?
 513 *
 514 * After getting one control group, jump to the next page
 515 * (fromaddress += 256).
 516 */
 517static int
 518sddr09_read23(struct us_data *us, unsigned long fromaddress,
 519              int count, int controlshift, unsigned char *buf, int use_sg) {
 520
 521        int bulklen = (count << controlshift);
 522        return sddr09_readX(us, 3, fromaddress, count, bulklen,
 523                            buf, use_sg);
 524}
 525#endif
 526
 527/*
 528 * Erase Command: 12 bytes.
 529 * byte 0: opcode: EA
 530 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
 531 * 
 532 * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
 533 * The byte address being erased is 2*Eaddress.
 534 * The CIS cannot be erased.
 535 */
 536static int
 537sddr09_erase(struct us_data *us, unsigned long Eaddress) {
 538        unsigned char *command = us->iobuf;
 539        int result;
 540
 541        US_DEBUGP("sddr09_erase: erase address %lu\n", Eaddress);
 542
 543        memset(command, 0, 12);
 544        command[0] = 0xEA;
 545        command[1] = LUNBITS;
 546        command[6] = MSB_of(Eaddress>>16);
 547        command[7] = LSB_of(Eaddress>>16);
 548        command[8] = MSB_of(Eaddress & 0xFFFF);
 549        command[9] = LSB_of(Eaddress & 0xFFFF);
 550
 551        result = sddr09_send_scsi_command(us, command, 12);
 552
 553        if (result)
 554                US_DEBUGP("Result for send_control in sddr09_erase %d\n",
 555                          result);
 556
 557        return result;
 558}
 559
 560/*
 561 * Write CIS Command: 12 bytes.
 562 * byte 0: opcode: EE
 563 * bytes 2-5: write address in shorts
 564 * bytes 10-11: sector count
 565 *
 566 * This writes at the indicated address. Don't know how it differs
 567 * from E9. Maybe it does not erase? However, it will also write to
 568 * the CIS.
 569 *
 570 * When two such commands on the same page follow each other directly,
 571 * the second one is not done.
 572 */
 573
 574/*
 575 * Write Command: 12 bytes.
 576 * byte 0: opcode: E9
 577 * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
 578 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
 579 * bytes 10-11: sector count (big-endian, in 512-byte sectors).
 580 *
 581 * If write address equals erase address, the erase is done first,
 582 * otherwise the write is done first. When erase address equals zero
 583 * no erase is done?
 584 */
 585static int
 586sddr09_writeX(struct us_data *us,
 587              unsigned long Waddress, unsigned long Eaddress,
 588              int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
 589
 590        unsigned char *command = us->iobuf;
 591        int result;
 592
 593        command[0] = 0xE9;
 594        command[1] = LUNBITS;
 595
 596        command[2] = MSB_of(Waddress>>16);
 597        command[3] = LSB_of(Waddress>>16);
 598        command[4] = MSB_of(Waddress & 0xFFFF);
 599        command[5] = LSB_of(Waddress & 0xFFFF);
 600
 601        command[6] = MSB_of(Eaddress>>16);
 602        command[7] = LSB_of(Eaddress>>16);
 603        command[8] = MSB_of(Eaddress & 0xFFFF);
 604        command[9] = LSB_of(Eaddress & 0xFFFF);
 605
 606        command[10] = MSB_of(nr_of_pages);
 607        command[11] = LSB_of(nr_of_pages);
 608
 609        result = sddr09_send_scsi_command(us, command, 12);
 610
 611        if (result) {
 612                US_DEBUGP("Result for send_control in sddr09_writeX %d\n",
 613                          result);
 614                return result;
 615        }
 616
 617        result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
 618                                       buf, bulklen, use_sg, NULL);
 619
 620        if (result != USB_STOR_XFER_GOOD) {
 621                US_DEBUGP("Result for bulk_transfer in sddr09_writeX %d\n",
 622                          result);
 623                return -EIO;
 624        }
 625        return 0;
 626}
 627
 628/* erase address, write same address */
 629static int
 630sddr09_write_inplace(struct us_data *us, unsigned long address,
 631                     int nr_of_pages, int pageshift, unsigned char *buf,
 632                     int use_sg) {
 633        int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
 634        return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
 635                             buf, use_sg);
 636}
 637
 638#if 0
 639/*
 640 * Read Scatter Gather Command: 3+4n bytes.
 641 * byte 0: opcode E7
 642 * byte 2: n
 643 * bytes 4i-1,4i,4i+1: page address
 644 * byte 4i+2: page count
 645 * (i=1..n)
 646 *
 647 * This reads several pages from the card to a single memory buffer.
 648 * The last two bits of byte 1 have the same meaning as for E8.
 649 */
 650static int
 651sddr09_read_sg_test_only(struct us_data *us) {
 652        unsigned char *command = us->iobuf;
 653        int result, bulklen, nsg, ct;
 654        unsigned char *buf;
 655        unsigned long address;
 656
 657        nsg = bulklen = 0;
 658        command[0] = 0xE7;
 659        command[1] = LUNBITS;
 660        command[2] = 0;
 661        address = 040000; ct = 1;
 662        nsg++;
 663        bulklen += (ct << 9);
 664        command[4*nsg+2] = ct;
 665        command[4*nsg+1] = ((address >> 9) & 0xFF);
 666        command[4*nsg+0] = ((address >> 17) & 0xFF);
 667        command[4*nsg-1] = ((address >> 25) & 0xFF);
 668
 669        address = 0340000; ct = 1;
 670        nsg++;
 671        bulklen += (ct << 9);
 672        command[4*nsg+2] = ct;
 673        command[4*nsg+1] = ((address >> 9) & 0xFF);
 674        command[4*nsg+0] = ((address >> 17) & 0xFF);
 675        command[4*nsg-1] = ((address >> 25) & 0xFF);
 676
 677        address = 01000000; ct = 2;
 678        nsg++;
 679        bulklen += (ct << 9);
 680        command[4*nsg+2] = ct;
 681        command[4*nsg+1] = ((address >> 9) & 0xFF);
 682        command[4*nsg+0] = ((address >> 17) & 0xFF);
 683        command[4*nsg-1] = ((address >> 25) & 0xFF);
 684
 685        command[2] = nsg;
 686
 687        result = sddr09_send_scsi_command(us, command, 4*nsg+3);
 688
 689        if (result) {
 690                US_DEBUGP("Result for send_control in sddr09_read_sg %d\n",
 691                          result);
 692                return result;
 693        }
 694
 695        buf = kmalloc(bulklen, GFP_NOIO);
 696        if (!buf)
 697                return -ENOMEM;
 698
 699        result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 700                                       buf, bulklen, NULL);
 701        kfree(buf);
 702        if (result != USB_STOR_XFER_GOOD) {
 703                US_DEBUGP("Result for bulk_transfer in sddr09_read_sg %d\n",
 704                          result);
 705                return -EIO;
 706        }
 707
 708        return 0;
 709}
 710#endif
 711
 712/*
 713 * Read Status Command: 12 bytes.
 714 * byte 0: opcode: EC
 715 *
 716 * Returns 64 bytes, all zero except for the first.
 717 * bit 0: 1: Error
 718 * bit 5: 1: Suspended
 719 * bit 6: 1: Ready
 720 * bit 7: 1: Not write-protected
 721 */
 722
 723static int
 724sddr09_read_status(struct us_data *us, unsigned char *status) {
 725
 726        unsigned char *command = us->iobuf;
 727        unsigned char *data = us->iobuf;
 728        int result;
 729
 730        US_DEBUGP("Reading status...\n");
 731
 732        memset(command, 0, 12);
 733        command[0] = 0xEC;
 734        command[1] = LUNBITS;
 735
 736        result = sddr09_send_scsi_command(us, command, 12);
 737        if (result)
 738                return result;
 739
 740        result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 741                                       data, 64, NULL);
 742        *status = data[0];
 743        return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
 744}
 745
 746static int
 747sddr09_read_data(struct us_data *us,
 748                 unsigned long address,
 749                 unsigned int sectors) {
 750
 751        struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 752        unsigned char *buffer;
 753        unsigned int lba, maxlba, pba;
 754        unsigned int page, pages;
 755        unsigned int len, offset;
 756        struct scatterlist *sg;
 757        int result;
 758
 759        // Figure out the initial LBA and page
 760        lba = address >> info->blockshift;
 761        page = (address & info->blockmask);
 762        maxlba = info->capacity >> (info->pageshift + info->blockshift);
 763        if (lba >= maxlba)
 764                return -EIO;
 765
 766        // Since we only read in one block at a time, we have to create
 767        // a bounce buffer and move the data a piece at a time between the
 768        // bounce buffer and the actual transfer buffer.
 769
 770        len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
 771        buffer = kmalloc(len, GFP_NOIO);
 772        if (buffer == NULL) {
 773                printk(KERN_WARNING "sddr09_read_data: Out of memory\n");
 774                return -ENOMEM;
 775        }
 776
 777        // This could be made much more efficient by checking for
 778        // contiguous LBA's. Another exercise left to the student.
 779
 780        result = 0;
 781        offset = 0;
 782        sg = NULL;
 783
 784        while (sectors > 0) {
 785
 786                /* Find number of pages we can read in this block */
 787                pages = min(sectors, info->blocksize - page);
 788                len = pages << info->pageshift;
 789
 790                /* Not overflowing capacity? */
 791                if (lba >= maxlba) {
 792                        US_DEBUGP("Error: Requested lba %u exceeds "
 793                                  "maximum %u\n", lba, maxlba);
 794                        result = -EIO;
 795                        break;
 796                }
 797
 798                /* Find where this lba lives on disk */
 799                pba = info->lba_to_pba[lba];
 800
 801                if (pba == UNDEF) {     /* this lba was never written */
 802
 803                        US_DEBUGP("Read %d zero pages (LBA %d) page %d\n",
 804                                  pages, lba, page);
 805
 806                        /* This is not really an error. It just means
 807                           that the block has never been written.
 808                           Instead of returning an error
 809                           it is better to return all zero data. */
 810
 811                        memset(buffer, 0, len);
 812
 813                } else {
 814                        US_DEBUGP("Read %d pages, from PBA %d"
 815                                  " (LBA %d) page %d\n",
 816                                  pages, pba, lba, page);
 817
 818                        address = ((pba << info->blockshift) + page) << 
 819                                info->pageshift;
 820
 821                        result = sddr09_read20(us, address>>1,
 822                                        pages, info->pageshift, buffer, 0);
 823                        if (result)
 824                                break;
 825                }
 826
 827                // Store the data in the transfer buffer
 828                usb_stor_access_xfer_buf(buffer, len, us->srb,
 829                                &sg, &offset, TO_XFER_BUF);
 830
 831                page = 0;
 832                lba++;
 833                sectors -= pages;
 834        }
 835
 836        kfree(buffer);
 837        return result;
 838}
 839
 840static unsigned int
 841sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
 842        static unsigned int lastpba = 1;
 843        int zonestart, end, i;
 844
 845        zonestart = (lba/1000) << 10;
 846        end = info->capacity >> (info->blockshift + info->pageshift);
 847        end -= zonestart;
 848        if (end > 1024)
 849                end = 1024;
 850
 851        for (i = lastpba+1; i < end; i++) {
 852                if (info->pba_to_lba[zonestart+i] == UNDEF) {
 853                        lastpba = i;
 854                        return zonestart+i;
 855                }
 856        }
 857        for (i = 0; i <= lastpba; i++) {
 858                if (info->pba_to_lba[zonestart+i] == UNDEF) {
 859                        lastpba = i;
 860                        return zonestart+i;
 861                }
 862        }
 863        return 0;
 864}
 865
 866static int
 867sddr09_write_lba(struct us_data *us, unsigned int lba,
 868                 unsigned int page, unsigned int pages,
 869                 unsigned char *ptr, unsigned char *blockbuffer) {
 870
 871        struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 872        unsigned long address;
 873        unsigned int pba, lbap;
 874        unsigned int pagelen;
 875        unsigned char *bptr, *cptr, *xptr;
 876        unsigned char ecc[3];
 877        int i, result, isnew;
 878
 879        lbap = ((lba % 1000) << 1) | 0x1000;
 880        if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
 881                lbap ^= 1;
 882        pba = info->lba_to_pba[lba];
 883        isnew = 0;
 884
 885        if (pba == UNDEF) {
 886                pba = sddr09_find_unused_pba(info, lba);
 887                if (!pba) {
 888                        printk(KERN_WARNING
 889                               "sddr09_write_lba: Out of unused blocks\n");
 890                        return -ENOSPC;
 891                }
 892                info->pba_to_lba[pba] = lba;
 893                info->lba_to_pba[lba] = pba;
 894                isnew = 1;
 895        }
 896
 897        if (pba == 1) {
 898                /* Maybe it is impossible to write to PBA 1.
 899                   Fake success, but don't do anything. */
 900                printk(KERN_WARNING "sddr09: avoid writing to pba 1\n");
 901                return 0;
 902        }
 903
 904        pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
 905
 906        /* read old contents */
 907        address = (pba << (info->pageshift + info->blockshift));
 908        result = sddr09_read22(us, address>>1, info->blocksize,
 909                               info->pageshift, blockbuffer, 0);
 910        if (result)
 911                return result;
 912
 913        /* check old contents and fill lba */
 914        for (i = 0; i < info->blocksize; i++) {
 915                bptr = blockbuffer + i*pagelen;
 916                cptr = bptr + info->pagesize;
 917                nand_compute_ecc(bptr, ecc);
 918                if (!nand_compare_ecc(cptr+13, ecc)) {
 919                        US_DEBUGP("Warning: bad ecc in page %d- of pba %d\n",
 920                                  i, pba);
 921                        nand_store_ecc(cptr+13, ecc);
 922                }
 923                nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
 924                if (!nand_compare_ecc(cptr+8, ecc)) {
 925                        US_DEBUGP("Warning: bad ecc in page %d+ of pba %d\n",
 926                                  i, pba);
 927                        nand_store_ecc(cptr+8, ecc);
 928                }
 929                cptr[6] = cptr[11] = MSB_of(lbap);
 930                cptr[7] = cptr[12] = LSB_of(lbap);
 931        }
 932
 933        /* copy in new stuff and compute ECC */
 934        xptr = ptr;
 935        for (i = page; i < page+pages; i++) {
 936                bptr = blockbuffer + i*pagelen;
 937                cptr = bptr + info->pagesize;
 938                memcpy(bptr, xptr, info->pagesize);
 939                xptr += info->pagesize;
 940                nand_compute_ecc(bptr, ecc);
 941                nand_store_ecc(cptr+13, ecc);
 942                nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
 943                nand_store_ecc(cptr+8, ecc);
 944        }
 945
 946        US_DEBUGP("Rewrite PBA %d (LBA %d)\n", pba, lba);
 947
 948        result = sddr09_write_inplace(us, address>>1, info->blocksize,
 949                                      info->pageshift, blockbuffer, 0);
 950
 951        US_DEBUGP("sddr09_write_inplace returns %d\n", result);
 952
 953#if 0
 954        {
 955                unsigned char status = 0;
 956                int result2 = sddr09_read_status(us, &status);
 957                if (result2)
 958                        US_DEBUGP("sddr09_write_inplace: cannot read status\n");
 959                else if (status != 0xc0)
 960                        US_DEBUGP("sddr09_write_inplace: status after write: 0x%x\n",
 961                                  status);
 962        }
 963#endif
 964
 965#if 0
 966        {
 967                int result2 = sddr09_test_unit_ready(us);
 968        }
 969#endif
 970
 971        return result;
 972}
 973
 974static int
 975sddr09_write_data(struct us_data *us,
 976                  unsigned long address,
 977                  unsigned int sectors) {
 978
 979        struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 980        unsigned int lba, maxlba, page, pages;
 981        unsigned int pagelen, blocklen;
 982        unsigned char *blockbuffer;
 983        unsigned char *buffer;
 984        unsigned int len, offset;
 985        struct scatterlist *sg;
 986        int result;
 987
 988        // Figure out the initial LBA and page
 989        lba = address >> info->blockshift;
 990        page = (address & info->blockmask);
 991        maxlba = info->capacity >> (info->pageshift + info->blockshift);
 992        if (lba >= maxlba)
 993                return -EIO;
 994
 995        // blockbuffer is used for reading in the old data, overwriting
 996        // with the new data, and performing ECC calculations
 997
 998        /* TODO: instead of doing kmalloc/kfree for each write,
 999           add a bufferpointer to the info structure */
1000
1001        pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
1002        blocklen = (pagelen << info->blockshift);
1003        blockbuffer = kmalloc(blocklen, GFP_NOIO);
1004        if (!blockbuffer) {
1005                printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
1006                return -ENOMEM;
1007        }
1008
1009        // Since we don't write the user data directly to the device,
1010        // we have to create a bounce buffer and move the data a piece
1011        // at a time between the bounce buffer and the actual transfer buffer.
1012
1013        len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
1014        buffer = kmalloc(len, GFP_NOIO);
1015        if (buffer == NULL) {
1016                printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
1017                kfree(blockbuffer);
1018                return -ENOMEM;
1019        }
1020
1021        result = 0;
1022        offset = 0;
1023        sg = NULL;
1024
1025        while (sectors > 0) {
1026
1027                // Write as many sectors as possible in this block
1028
1029                pages = min(sectors, info->blocksize - page);
1030                len = (pages << info->pageshift);
1031
1032                /* Not overflowing capacity? */
1033                if (lba >= maxlba) {
1034                        US_DEBUGP("Error: Requested lba %u exceeds "
1035                                  "maximum %u\n", lba, maxlba);
1036                        result = -EIO;
1037                        break;
1038                }
1039
1040                // Get the data from the transfer buffer
1041                usb_stor_access_xfer_buf(buffer, len, us->srb,
1042                                &sg, &offset, FROM_XFER_BUF);
1043
1044                result = sddr09_write_lba(us, lba, page, pages,
1045                                buffer, blockbuffer);
1046                if (result)
1047                        break;
1048
1049                page = 0;
1050                lba++;
1051                sectors -= pages;
1052        }
1053
1054        kfree(buffer);
1055        kfree(blockbuffer);
1056
1057        return result;
1058}
1059
1060static int
1061sddr09_read_control(struct us_data *us,
1062                unsigned long address,
1063                unsigned int blocks,
1064                unsigned char *content,
1065                int use_sg) {
1066
1067        US_DEBUGP("Read control address %lu, blocks %d\n",
1068                address, blocks);
1069
1070        return sddr09_read21(us, address, blocks,
1071                             CONTROL_SHIFT, content, use_sg);
1072}
1073
1074/*
1075 * Read Device ID Command: 12 bytes.
1076 * byte 0: opcode: ED
1077 *
1078 * Returns 2 bytes: Manufacturer ID and Device ID.
1079 * On more recent cards 3 bytes: the third byte is an option code A5
1080 * signifying that the secret command to read an 128-bit ID is available.
1081 * On still more recent cards 4 bytes: the fourth byte C0 means that
1082 * a second read ID cmd is available.
1083 */
1084static int
1085sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
1086        unsigned char *command = us->iobuf;
1087        unsigned char *content = us->iobuf;
1088        int result, i;
1089
1090        memset(command, 0, 12);
1091        command[0] = 0xED;
1092        command[1] = LUNBITS;
1093
1094        result = sddr09_send_scsi_command(us, command, 12);
1095        if (result)
1096                return result;
1097
1098        result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1099                        content, 64, NULL);
1100
1101        for (i = 0; i < 4; i++)
1102                deviceID[i] = content[i];
1103
1104        return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1105}
1106
1107static int
1108sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
1109        int result;
1110        unsigned char status;
1111
1112        result = sddr09_read_status(us, &status);
1113        if (result) {
1114                US_DEBUGP("sddr09_get_wp: read_status fails\n");
1115                return result;
1116        }
1117        US_DEBUGP("sddr09_get_wp: status 0x%02X", status);
1118        if ((status & 0x80) == 0) {
1119                info->flags |= SDDR09_WP;       /* write protected */
1120                US_DEBUGP(" WP");
1121        }
1122        if (status & 0x40)
1123                US_DEBUGP(" Ready");
1124        if (status & LUNBITS)
1125                US_DEBUGP(" Suspended");
1126        if (status & 0x1)
1127                US_DEBUGP(" Error");
1128        US_DEBUGP("\n");
1129        return 0;
1130}
1131
1132#if 0
1133/*
1134 * Reset Command: 12 bytes.
1135 * byte 0: opcode: EB
1136 */
1137static int
1138sddr09_reset(struct us_data *us) {
1139
1140        unsigned char *command = us->iobuf;
1141
1142        memset(command, 0, 12);
1143        command[0] = 0xEB;
1144        command[1] = LUNBITS;
1145
1146        return sddr09_send_scsi_command(us, command, 12);
1147}
1148#endif
1149
1150static struct nand_flash_dev *
1151sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
1152        struct nand_flash_dev *cardinfo;
1153        unsigned char deviceID[4];
1154        char blurbtxt[256];
1155        int result;
1156
1157        US_DEBUGP("Reading capacity...\n");
1158
1159        result = sddr09_read_deviceID(us, deviceID);
1160
1161        if (result) {
1162                US_DEBUGP("Result of read_deviceID is %d\n", result);
1163                printk(KERN_WARNING "sddr09: could not read card info\n");
1164                return NULL;
1165        }
1166
1167        sprintf(blurbtxt, "sddr09: Found Flash card, ID = %02X %02X %02X %02X",
1168                deviceID[0], deviceID[1], deviceID[2], deviceID[3]);
1169
1170        /* Byte 0 is the manufacturer */
1171        sprintf(blurbtxt + strlen(blurbtxt),
1172                ": Manuf. %s",
1173                nand_flash_manufacturer(deviceID[0]));
1174
1175        /* Byte 1 is the device type */
1176        cardinfo = nand_find_id(deviceID[1]);
1177        if (cardinfo) {
1178                /* MB or MiB? It is neither. A 16 MB card has
1179                   17301504 raw bytes, of which 16384000 are
1180                   usable for user data. */
1181                sprintf(blurbtxt + strlen(blurbtxt),
1182                        ", %d MB", 1<<(cardinfo->chipshift - 20));
1183        } else {
1184                sprintf(blurbtxt + strlen(blurbtxt),
1185                        ", type unrecognized");
1186        }
1187
1188        /* Byte 2 is code to signal availability of 128-bit ID */
1189        if (deviceID[2] == 0xa5) {
1190                sprintf(blurbtxt + strlen(blurbtxt),
1191                        ", 128-bit ID");
1192        }
1193
1194        /* Byte 3 announces the availability of another read ID command */
1195        if (deviceID[3] == 0xc0) {
1196                sprintf(blurbtxt + strlen(blurbtxt),
1197                        ", extra cmd");
1198        }
1199
1200        if (flags & SDDR09_WP)
1201                sprintf(blurbtxt + strlen(blurbtxt),
1202                        ", WP");
1203
1204        printk(KERN_WARNING "%s\n", blurbtxt);
1205
1206        return cardinfo;
1207}
1208
1209static int
1210sddr09_read_map(struct us_data *us) {
1211
1212        struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
1213        int numblocks, alloc_len, alloc_blocks;
1214        int i, j, result;
1215        unsigned char *buffer, *buffer_end, *ptr;
1216        unsigned int lba, lbact;
1217
1218        if (!info->capacity)
1219                return -1;
1220
1221        // size of a block is 1 << (blockshift + pageshift) bytes
1222        // divide into the total capacity to get the number of blocks
1223
1224        numblocks = info->capacity >> (info->blockshift + info->pageshift);
1225
1226        // read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
1227        // but only use a 64 KB buffer
1228        // buffer size used must be a multiple of (1 << CONTROL_SHIFT)
1229#define SDDR09_READ_MAP_BUFSZ 65536
1230
1231        alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
1232        alloc_len = (alloc_blocks << CONTROL_SHIFT);
1233        buffer = kmalloc(alloc_len, GFP_NOIO);
1234        if (buffer == NULL) {
1235                printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1236                result = -1;
1237                goto done;
1238        }
1239        buffer_end = buffer + alloc_len;
1240
1241#undef SDDR09_READ_MAP_BUFSZ
1242
1243        kfree(info->lba_to_pba);
1244        kfree(info->pba_to_lba);
1245        info->lba_to_pba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1246        info->pba_to_lba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1247
1248        if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
1249                printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1250                result = -1;
1251                goto done;
1252        }
1253
1254        for (i = 0; i < numblocks; i++)
1255                info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
1256
1257        /*
1258         * Define lba-pba translation table
1259         */
1260
1261        ptr = buffer_end;
1262        for (i = 0; i < numblocks; i++) {
1263                ptr += (1 << CONTROL_SHIFT);
1264                if (ptr >= buffer_end) {
1265                        unsigned long address;
1266
1267                        address = i << (info->pageshift + info->blockshift);
1268                        result = sddr09_read_control(
1269                                us, address>>1,
1270                                min(alloc_blocks, numblocks - i),
1271                                buffer, 0);
1272                        if (result) {
1273                                result = -1;
1274                                goto done;
1275                        }
1276                        ptr = buffer;
1277                }
1278
1279                if (i == 0 || i == 1) {
1280                        info->pba_to_lba[i] = UNUSABLE;
1281                        continue;
1282                }
1283
1284                /* special PBAs have control field 0^16 */
1285                for (j = 0; j < 16; j++)
1286                        if (ptr[j] != 0)
1287                                goto nonz;
1288                info->pba_to_lba[i] = UNUSABLE;
1289                printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n",
1290                       i);
1291                continue;
1292
1293        nonz:
1294                /* unwritten PBAs have control field FF^16 */
1295                for (j = 0; j < 16; j++)
1296                        if (ptr[j] != 0xff)
1297                                goto nonff;
1298                continue;
1299
1300        nonff:
1301                /* normal PBAs start with six FFs */
1302                if (j < 6) {
1303                        printk(KERN_WARNING
1304                               "sddr09: PBA %d has no logical mapping: "
1305                               "reserved area = %02X%02X%02X%02X "
1306                               "data status %02X block status %02X\n",
1307                               i, ptr[0], ptr[1], ptr[2], ptr[3],
1308                               ptr[4], ptr[5]);
1309                        info->pba_to_lba[i] = UNUSABLE;
1310                        continue;
1311                }
1312
1313                if ((ptr[6] >> 4) != 0x01) {
1314                        printk(KERN_WARNING
1315                               "sddr09: PBA %d has invalid address field "
1316                               "%02X%02X/%02X%02X\n",
1317                               i, ptr[6], ptr[7], ptr[11], ptr[12]);
1318                        info->pba_to_lba[i] = UNUSABLE;
1319                        continue;
1320                }
1321
1322                /* check even parity */
1323                if (parity[ptr[6] ^ ptr[7]]) {
1324                        printk(KERN_WARNING
1325                               "sddr09: Bad parity in LBA for block %d"
1326                               " (%02X %02X)\n", i, ptr[6], ptr[7]);
1327                        info->pba_to_lba[i] = UNUSABLE;
1328                        continue;
1329                }
1330
1331                lba = short_pack(ptr[7], ptr[6]);
1332                lba = (lba & 0x07FF) >> 1;
1333
1334                /*
1335                 * Every 1024 physical blocks ("zone"), the LBA numbers
1336                 * go back to zero, but are within a higher block of LBA's.
1337                 * Also, there is a maximum of 1000 LBA's per zone.
1338                 * In other words, in PBA 1024-2047 you will find LBA 0-999
1339                 * which are really LBA 1000-1999. This allows for 24 bad
1340                 * or special physical blocks per zone.
1341                 */
1342
1343                if (lba >= 1000) {
1344                        printk(KERN_WARNING
1345                               "sddr09: Bad low LBA %d for block %d\n",
1346                               lba, i);
1347                        goto possibly_erase;
1348                }
1349
1350                lba += 1000*(i/0x400);
1351
1352                if (info->lba_to_pba[lba] != UNDEF) {
1353                        printk(KERN_WARNING
1354                               "sddr09: LBA %d seen for PBA %d and %d\n",
1355                               lba, info->lba_to_pba[lba], i);
1356                        goto possibly_erase;
1357                }
1358
1359                info->pba_to_lba[i] = lba;
1360                info->lba_to_pba[lba] = i;
1361                continue;
1362
1363        possibly_erase:
1364                if (erase_bad_lba_entries) {
1365                        unsigned long address;
1366
1367                        address = (i << (info->pageshift + info->blockshift));
1368                        sddr09_erase(us, address>>1);
1369                        info->pba_to_lba[i] = UNDEF;
1370                } else
1371                        info->pba_to_lba[i] = UNUSABLE;
1372        }
1373
1374        /*
1375         * Approximate capacity. This is not entirely correct yet,
1376         * since a zone with less than 1000 usable pages leads to
1377         * missing LBAs. Especially if it is the last zone, some
1378         * LBAs can be past capacity.
1379         */
1380        lbact = 0;
1381        for (i = 0; i < numblocks; i += 1024) {
1382                int ct = 0;
1383
1384                for (j = 0; j < 1024 && i+j < numblocks; j++) {
1385                        if (info->pba_to_lba[i+j] != UNUSABLE) {
1386                                if (ct >= 1000)
1387                                        info->pba_to_lba[i+j] = SPARE;
1388                                else
1389                                        ct++;
1390                        }
1391                }
1392                lbact += ct;
1393        }
1394        info->lbact = lbact;
1395        US_DEBUGP("Found %d LBA's\n", lbact);
1396        result = 0;
1397
1398 done:
1399        if (result != 0) {
1400                kfree(info->lba_to_pba);
1401                kfree(info->pba_to_lba);
1402                info->lba_to_pba = NULL;
1403                info->pba_to_lba = NULL;
1404        }
1405        kfree(buffer);
1406        return result;
1407}
1408
1409static void
1410sddr09_card_info_destructor(void *extra) {
1411        struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
1412
1413        if (!info)
1414                return;
1415
1416        kfree(info->lba_to_pba);
1417        kfree(info->pba_to_lba);
1418}
1419
1420static int
1421sddr09_common_init(struct us_data *us) {
1422        int result;
1423
1424        /* set the configuration -- STALL is an acceptable response here */
1425        if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
1426                US_DEBUGP("active config #%d != 1 ??\n", us->pusb_dev
1427                                ->actconfig->desc.bConfigurationValue);
1428                return -EINVAL;
1429        }
1430
1431        result = usb_reset_configuration(us->pusb_dev);
1432        US_DEBUGP("Result of usb_reset_configuration is %d\n", result);
1433        if (result == -EPIPE) {
1434                US_DEBUGP("-- stall on control interface\n");
1435        } else if (result != 0) {
1436                /* it's not a stall, but another error -- time to bail */
1437                US_DEBUGP("-- Unknown error.  Rejecting device\n");
1438                return -EINVAL;
1439        }
1440
1441        us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
1442        if (!us->extra)
1443                return -ENOMEM;
1444        us->extra_destructor = sddr09_card_info_destructor;
1445
1446        nand_init_ecc();
1447        return 0;
1448}
1449
1450
1451/*
1452 * This is needed at a very early stage. If this is not listed in the
1453 * unusual devices list but called from here then LUN 0 of the combo reader
1454 * is not recognized. But I do not know what precisely these calls do.
1455 */
1456static int
1457usb_stor_sddr09_dpcm_init(struct us_data *us) {
1458        int result;
1459        unsigned char *data = us->iobuf;
1460
1461        result = sddr09_common_init(us);
1462        if (result)
1463                return result;
1464
1465        result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
1466        if (result) {
1467                US_DEBUGP("sddr09_init: send_command fails\n");
1468                return result;
1469        }
1470
1471        US_DEBUGP("SDDR09init: %02X %02X\n", data[0], data[1]);
1472        // get 07 02
1473
1474        result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
1475        if (result) {
1476                US_DEBUGP("sddr09_init: 2nd send_command fails\n");
1477                return result;
1478        }
1479
1480        US_DEBUGP("SDDR09init: %02X %02X\n", data[0], data[1]);
1481        // get 07 00
1482
1483        result = sddr09_request_sense(us, data, 18);
1484        if (result == 0 && data[2] != 0) {
1485                int j;
1486                for (j=0; j<18; j++)
1487                        printk(" %02X", data[j]);
1488                printk("\n");
1489                // get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
1490                // 70: current command
1491                // sense key 0, sense code 0, extd sense code 0
1492                // additional transfer length * = sizeof(data) - 7
1493                // Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
1494                // sense key 06, sense code 28: unit attention,
1495                // not ready to ready transition
1496        }
1497
1498        // test unit ready
1499
1500        return 0;               /* not result */
1501}
1502
1503/*
1504 * Transport for the Microtech DPCM-USB
1505 */
1506static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us)
1507{
1508        int ret;
1509
1510        US_DEBUGP("dpcm_transport: LUN=%d\n", srb->device->lun);
1511
1512        switch (srb->device->lun) {
1513        case 0:
1514
1515                /*
1516                 * LUN 0 corresponds to the CompactFlash card reader.
1517                 */
1518                ret = usb_stor_CB_transport(srb, us);
1519                break;
1520
1521        case 1:
1522
1523                /*
1524                 * LUN 1 corresponds to the SmartMedia card reader.
1525                 */
1526
1527                /*
1528                 * Set the LUN to 0 (just in case).
1529                 */
1530                srb->device->lun = 0;
1531                ret = sddr09_transport(srb, us);
1532                srb->device->lun = 1;
1533                break;
1534
1535        default:
1536                US_DEBUGP("dpcm_transport: Invalid LUN %d\n",
1537                                srb->device->lun);
1538                ret = USB_STOR_TRANSPORT_ERROR;
1539                break;
1540        }
1541        return ret;
1542}
1543
1544
1545/*
1546 * Transport for the Sandisk SDDR-09
1547 */
1548static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
1549{
1550        static unsigned char sensekey = 0, sensecode = 0;
1551        static unsigned char havefakesense = 0;
1552        int result, i;
1553        unsigned char *ptr = us->iobuf;
1554        unsigned long capacity;
1555        unsigned int page, pages;
1556
1557        struct sddr09_card_info *info;
1558
1559        static unsigned char inquiry_response[8] = {
1560                0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
1561        };
1562
1563        /* note: no block descriptor support */
1564        static unsigned char mode_page_01[19] = {
1565                0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
1566                0x01, 0x0A,
1567                0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1568        };
1569
1570        info = (struct sddr09_card_info *)us->extra;
1571
1572        if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
1573                /* for a faked command, we have to follow with a faked sense */
1574                memset(ptr, 0, 18);
1575                ptr[0] = 0x70;
1576                ptr[2] = sensekey;
1577                ptr[7] = 11;
1578                ptr[12] = sensecode;
1579                usb_stor_set_xfer_buf(ptr, 18, srb);
1580                sensekey = sensecode = havefakesense = 0;
1581                return USB_STOR_TRANSPORT_GOOD;
1582        }
1583
1584        havefakesense = 1;
1585
1586        /* Dummy up a response for INQUIRY since SDDR09 doesn't
1587           respond to INQUIRY commands */
1588
1589        if (srb->cmnd[0] == INQUIRY) {
1590                memcpy(ptr, inquiry_response, 8);
1591                fill_inquiry_response(us, ptr, 36);
1592                return USB_STOR_TRANSPORT_GOOD;
1593        }
1594
1595        if (srb->cmnd[0] == READ_CAPACITY) {
1596                struct nand_flash_dev *cardinfo;
1597
1598                sddr09_get_wp(us, info);        /* read WP bit */
1599
1600                cardinfo = sddr09_get_cardinfo(us, info->flags);
1601                if (!cardinfo) {
1602                        /* probably no media */
1603                init_error:
1604                        sensekey = 0x02;        /* not ready */
1605                        sensecode = 0x3a;       /* medium not present */
1606                        return USB_STOR_TRANSPORT_FAILED;
1607                }
1608
1609                info->capacity = (1 << cardinfo->chipshift);
1610                info->pageshift = cardinfo->pageshift;
1611                info->pagesize = (1 << info->pageshift);
1612                info->blockshift = cardinfo->blockshift;
1613                info->blocksize = (1 << info->blockshift);
1614                info->blockmask = info->blocksize - 1;
1615
1616                // map initialization, must follow get_cardinfo()
1617                if (sddr09_read_map(us)) {
1618                        /* probably out of memory */
1619                        goto init_error;
1620                }
1621
1622                // Report capacity
1623
1624                capacity = (info->lbact << info->blockshift) - 1;
1625
1626                ((__be32 *) ptr)[0] = cpu_to_be32(capacity);
1627
1628                // Report page size
1629
1630                ((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
1631                usb_stor_set_xfer_buf(ptr, 8, srb);
1632
1633                return USB_STOR_TRANSPORT_GOOD;
1634        }
1635
1636        if (srb->cmnd[0] == MODE_SENSE_10) {
1637                int modepage = (srb->cmnd[2] & 0x3F);
1638
1639                /* They ask for the Read/Write error recovery page,
1640                   or for all pages. */
1641                /* %% We should check DBD %% */
1642                if (modepage == 0x01 || modepage == 0x3F) {
1643                        US_DEBUGP("SDDR09: Dummy up request for "
1644                                  "mode page 0x%x\n", modepage);
1645
1646                        memcpy(ptr, mode_page_01, sizeof(mode_page_01));
1647                        ((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
1648                        ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
1649                        usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
1650                        return USB_STOR_TRANSPORT_GOOD;
1651                }
1652
1653                sensekey = 0x05;        /* illegal request */
1654                sensecode = 0x24;       /* invalid field in CDB */
1655                return USB_STOR_TRANSPORT_FAILED;
1656        }
1657
1658        if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
1659                return USB_STOR_TRANSPORT_GOOD;
1660
1661        havefakesense = 0;
1662
1663        if (srb->cmnd[0] == READ_10) {
1664
1665                page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1666                page <<= 16;
1667                page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1668                pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1669
1670                US_DEBUGP("READ_10: read page %d pagect %d\n",
1671                          page, pages);
1672
1673                result = sddr09_read_data(us, page, pages);
1674                return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1675                                USB_STOR_TRANSPORT_ERROR);
1676        }
1677
1678        if (srb->cmnd[0] == WRITE_10) {
1679
1680                page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1681                page <<= 16;
1682                page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1683                pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1684
1685                US_DEBUGP("WRITE_10: write page %d pagect %d\n",
1686                          page, pages);
1687
1688                result = sddr09_write_data(us, page, pages);
1689                return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1690                                USB_STOR_TRANSPORT_ERROR);
1691        }
1692
1693        /* catch-all for all other commands, except
1694         * pass TEST_UNIT_READY and REQUEST_SENSE through
1695         */
1696        if (srb->cmnd[0] != TEST_UNIT_READY &&
1697            srb->cmnd[0] != REQUEST_SENSE) {
1698                sensekey = 0x05;        /* illegal request */
1699                sensecode = 0x20;       /* invalid command */
1700                havefakesense = 1;
1701                return USB_STOR_TRANSPORT_FAILED;
1702        }
1703
1704        for (; srb->cmd_len<12; srb->cmd_len++)
1705                srb->cmnd[srb->cmd_len] = 0;
1706
1707        srb->cmnd[1] = LUNBITS;
1708
1709        ptr[0] = 0;
1710        for (i=0; i<12; i++)
1711                sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
1712
1713        US_DEBUGP("SDDR09: Send control for command %s\n", ptr);
1714
1715        result = sddr09_send_scsi_command(us, srb->cmnd, 12);
1716        if (result) {
1717                US_DEBUGP("sddr09_transport: sddr09_send_scsi_command "
1718                          "returns %d\n", result);
1719                return USB_STOR_TRANSPORT_ERROR;
1720        }
1721
1722        if (scsi_bufflen(srb) == 0)
1723                return USB_STOR_TRANSPORT_GOOD;
1724
1725        if (srb->sc_data_direction == DMA_TO_DEVICE ||
1726            srb->sc_data_direction == DMA_FROM_DEVICE) {
1727                unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
1728                                ? us->send_bulk_pipe : us->recv_bulk_pipe;
1729
1730                US_DEBUGP("SDDR09: %s %d bytes\n",
1731                          (srb->sc_data_direction == DMA_TO_DEVICE) ?
1732                          "sending" : "receiving",
1733                          scsi_bufflen(srb));
1734
1735                result = usb_stor_bulk_srb(us, pipe, srb);
1736
1737                return (result == USB_STOR_XFER_GOOD ?
1738                        USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
1739        } 
1740
1741        return USB_STOR_TRANSPORT_GOOD;
1742}
1743
1744/*
1745 * Initialization routine for the sddr09 subdriver
1746 */
1747static int
1748usb_stor_sddr09_init(struct us_data *us) {
1749        return sddr09_common_init(us);
1750}
1751
1752static int sddr09_probe(struct usb_interface *intf,
1753                         const struct usb_device_id *id)
1754{
1755        struct us_data *us;
1756        int result;
1757
1758        result = usb_stor_probe1(&us, intf, id,
1759                        (id - sddr09_usb_ids) + sddr09_unusual_dev_list);
1760        if (result)
1761                return result;
1762
1763        if (us->protocol == US_PR_DPCM_USB) {
1764                us->transport_name = "Control/Bulk-EUSB/SDDR09";
1765                us->transport = dpcm_transport;
1766                us->transport_reset = usb_stor_CB_reset;
1767                us->max_lun = 1;
1768        } else {
1769                us->transport_name = "EUSB/SDDR09";
1770                us->transport = sddr09_transport;
1771                us->transport_reset = usb_stor_CB_reset;
1772                us->max_lun = 0;
1773        }
1774
1775        result = usb_stor_probe2(us);
1776        return result;
1777}
1778
1779static struct usb_driver sddr09_driver = {
1780        .name =         "ums-sddr09",
1781        .probe =        sddr09_probe,
1782        .disconnect =   usb_stor_disconnect,
1783        .suspend =      usb_stor_suspend,
1784        .resume =       usb_stor_resume,
1785        .reset_resume = usb_stor_reset_resume,
1786        .pre_reset =    usb_stor_pre_reset,
1787        .post_reset =   usb_stor_post_reset,
1788        .id_table =     sddr09_usb_ids,
1789        .soft_unbind =  1,
1790};
1791
1792static int __init sddr09_init(void)
1793{
1794        return usb_register(&sddr09_driver);
1795}
1796
1797static void __exit sddr09_exit(void)
1798{
1799        usb_deregister(&sddr09_driver);
1800}
1801
1802module_init(sddr09_init);
1803module_exit(sddr09_exit);
1804