linux/drivers/video/intelfb/intelfbhw.c
<<
>>
Prefs
   1/*
   2 * intelfb
   3 *
   4 * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
   5 *
   6 * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
   7 *                   2004 Sylvain Meyer
   8 *
   9 * This driver consists of two parts.  The first part (intelfbdrv.c) provides
  10 * the basic fbdev interfaces, is derived in part from the radeonfb and
  11 * vesafb drivers, and is covered by the GPL.  The second part (intelfbhw.c)
  12 * provides the code to program the hardware.  Most of it is derived from
  13 * the i810/i830 XFree86 driver.  The HW-specific code is covered here
  14 * under a dual license (GPL and MIT/XFree86 license).
  15 *
  16 * Author: David Dawes
  17 *
  18 */
  19
  20/* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
  21
  22#include <linux/module.h>
  23#include <linux/kernel.h>
  24#include <linux/errno.h>
  25#include <linux/string.h>
  26#include <linux/mm.h>
  27#include <linux/slab.h>
  28#include <linux/delay.h>
  29#include <linux/fb.h>
  30#include <linux/ioport.h>
  31#include <linux/init.h>
  32#include <linux/pci.h>
  33#include <linux/vmalloc.h>
  34#include <linux/pagemap.h>
  35#include <linux/interrupt.h>
  36
  37#include <asm/io.h>
  38
  39#include "intelfb.h"
  40#include "intelfbhw.h"
  41
  42struct pll_min_max {
  43        int min_m, max_m, min_m1, max_m1;
  44        int min_m2, max_m2, min_n, max_n;
  45        int min_p, max_p, min_p1, max_p1;
  46        int min_vco, max_vco, p_transition_clk, ref_clk;
  47        int p_inc_lo, p_inc_hi;
  48};
  49
  50#define PLLS_I8xx 0
  51#define PLLS_I9xx 1
  52#define PLLS_MAX 2
  53
  54static struct pll_min_max plls[PLLS_MAX] = {
  55        { 108, 140, 18, 26,
  56          6, 16, 3, 16,
  57          4, 128, 0, 31,
  58          930000, 1400000, 165000, 48000,
  59          4, 2 },               /* I8xx */
  60
  61        { 75, 120, 10, 20,
  62          5, 9, 4, 7,
  63          5, 80, 1, 8,
  64          1400000, 2800000, 200000, 96000,
  65          10, 5 }               /* I9xx */
  66};
  67
  68int intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
  69{
  70        u32 tmp;
  71        if (!pdev || !dinfo)
  72                return 1;
  73
  74        switch (pdev->device) {
  75        case PCI_DEVICE_ID_INTEL_830M:
  76                dinfo->name = "Intel(R) 830M";
  77                dinfo->chipset = INTEL_830M;
  78                dinfo->mobile = 1;
  79                dinfo->pll_index = PLLS_I8xx;
  80                return 0;
  81        case PCI_DEVICE_ID_INTEL_845G:
  82                dinfo->name = "Intel(R) 845G";
  83                dinfo->chipset = INTEL_845G;
  84                dinfo->mobile = 0;
  85                dinfo->pll_index = PLLS_I8xx;
  86                return 0;
  87        case PCI_DEVICE_ID_INTEL_854:
  88                dinfo->mobile = 1;
  89                dinfo->name = "Intel(R) 854";
  90                dinfo->chipset = INTEL_854;
  91                return 0;
  92        case PCI_DEVICE_ID_INTEL_85XGM:
  93                tmp = 0;
  94                dinfo->mobile = 1;
  95                dinfo->pll_index = PLLS_I8xx;
  96                pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
  97                switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
  98                        INTEL_85X_VARIANT_MASK) {
  99                case INTEL_VAR_855GME:
 100                        dinfo->name = "Intel(R) 855GME";
 101                        dinfo->chipset = INTEL_855GME;
 102                        return 0;
 103                case INTEL_VAR_855GM:
 104                        dinfo->name = "Intel(R) 855GM";
 105                        dinfo->chipset = INTEL_855GM;
 106                        return 0;
 107                case INTEL_VAR_852GME:
 108                        dinfo->name = "Intel(R) 852GME";
 109                        dinfo->chipset = INTEL_852GME;
 110                        return 0;
 111                case INTEL_VAR_852GM:
 112                        dinfo->name = "Intel(R) 852GM";
 113                        dinfo->chipset = INTEL_852GM;
 114                        return 0;
 115                default:
 116                        dinfo->name = "Intel(R) 852GM/855GM";
 117                        dinfo->chipset = INTEL_85XGM;
 118                        return 0;
 119                }
 120                break;
 121        case PCI_DEVICE_ID_INTEL_865G:
 122                dinfo->name = "Intel(R) 865G";
 123                dinfo->chipset = INTEL_865G;
 124                dinfo->mobile = 0;
 125                dinfo->pll_index = PLLS_I8xx;
 126                return 0;
 127        case PCI_DEVICE_ID_INTEL_915G:
 128                dinfo->name = "Intel(R) 915G";
 129                dinfo->chipset = INTEL_915G;
 130                dinfo->mobile = 0;
 131                dinfo->pll_index = PLLS_I9xx;
 132                return 0;
 133        case PCI_DEVICE_ID_INTEL_915GM:
 134                dinfo->name = "Intel(R) 915GM";
 135                dinfo->chipset = INTEL_915GM;
 136                dinfo->mobile = 1;
 137                dinfo->pll_index = PLLS_I9xx;
 138                return 0;
 139        case PCI_DEVICE_ID_INTEL_945G:
 140                dinfo->name = "Intel(R) 945G";
 141                dinfo->chipset = INTEL_945G;
 142                dinfo->mobile = 0;
 143                dinfo->pll_index = PLLS_I9xx;
 144                return 0;
 145        case PCI_DEVICE_ID_INTEL_945GM:
 146                dinfo->name = "Intel(R) 945GM";
 147                dinfo->chipset = INTEL_945GM;
 148                dinfo->mobile = 1;
 149                dinfo->pll_index = PLLS_I9xx;
 150                return 0;
 151        case PCI_DEVICE_ID_INTEL_945GME:
 152                dinfo->name = "Intel(R) 945GME";
 153                dinfo->chipset = INTEL_945GME;
 154                dinfo->mobile = 1;
 155                dinfo->pll_index = PLLS_I9xx;
 156                return 0;
 157        case PCI_DEVICE_ID_INTEL_965G:
 158                dinfo->name = "Intel(R) 965G";
 159                dinfo->chipset = INTEL_965G;
 160                dinfo->mobile = 0;
 161                dinfo->pll_index = PLLS_I9xx;
 162                return 0;
 163        case PCI_DEVICE_ID_INTEL_965GM:
 164                dinfo->name = "Intel(R) 965GM";
 165                dinfo->chipset = INTEL_965GM;
 166                dinfo->mobile = 1;
 167                dinfo->pll_index = PLLS_I9xx;
 168                return 0;
 169        default:
 170                return 1;
 171        }
 172}
 173
 174int intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
 175                         int *stolen_size)
 176{
 177        struct pci_dev *bridge_dev;
 178        u16 tmp;
 179        int stolen_overhead;
 180
 181        if (!pdev || !aperture_size || !stolen_size)
 182                return 1;
 183
 184        /* Find the bridge device.  It is always 0:0.0 */
 185        if (!(bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0)))) {
 186                ERR_MSG("cannot find bridge device\n");
 187                return 1;
 188        }
 189
 190        /* Get the fb aperture size and "stolen" memory amount. */
 191        tmp = 0;
 192        pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
 193        pci_dev_put(bridge_dev);
 194
 195        switch (pdev->device) {
 196        case PCI_DEVICE_ID_INTEL_915G:
 197        case PCI_DEVICE_ID_INTEL_915GM:
 198        case PCI_DEVICE_ID_INTEL_945G:
 199        case PCI_DEVICE_ID_INTEL_945GM:
 200        case PCI_DEVICE_ID_INTEL_945GME:
 201        case PCI_DEVICE_ID_INTEL_965G:
 202        case PCI_DEVICE_ID_INTEL_965GM:
 203                /* 915, 945 and 965 chipsets support a 256MB aperture.
 204                   Aperture size is determined by inspected the
 205                   base address of the aperture. */
 206                if (pci_resource_start(pdev, 2) & 0x08000000)
 207                        *aperture_size = MB(128);
 208                else
 209                        *aperture_size = MB(256);
 210                break;
 211        default:
 212                if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
 213                        *aperture_size = MB(64);
 214                else
 215                        *aperture_size = MB(128);
 216                break;
 217        }
 218
 219        /* Stolen memory size is reduced by the GTT and the popup.
 220           GTT is 1K per MB of aperture size, and popup is 4K. */
 221        stolen_overhead = (*aperture_size / MB(1)) + 4;
 222        switch(pdev->device) {
 223        case PCI_DEVICE_ID_INTEL_830M:
 224        case PCI_DEVICE_ID_INTEL_845G:
 225                switch (tmp & INTEL_830_GMCH_GMS_MASK) {
 226                case INTEL_830_GMCH_GMS_STOLEN_512:
 227                        *stolen_size = KB(512) - KB(stolen_overhead);
 228                        return 0;
 229                case INTEL_830_GMCH_GMS_STOLEN_1024:
 230                        *stolen_size = MB(1) - KB(stolen_overhead);
 231                        return 0;
 232                case INTEL_830_GMCH_GMS_STOLEN_8192:
 233                        *stolen_size = MB(8) - KB(stolen_overhead);
 234                        return 0;
 235                case INTEL_830_GMCH_GMS_LOCAL:
 236                        ERR_MSG("only local memory found\n");
 237                        return 1;
 238                case INTEL_830_GMCH_GMS_DISABLED:
 239                        ERR_MSG("video memory is disabled\n");
 240                        return 1;
 241                default:
 242                        ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
 243                                tmp & INTEL_830_GMCH_GMS_MASK);
 244                        return 1;
 245                }
 246                break;
 247        default:
 248                switch (tmp & INTEL_855_GMCH_GMS_MASK) {
 249                case INTEL_855_GMCH_GMS_STOLEN_1M:
 250                        *stolen_size = MB(1) - KB(stolen_overhead);
 251                        return 0;
 252                case INTEL_855_GMCH_GMS_STOLEN_4M:
 253                        *stolen_size = MB(4) - KB(stolen_overhead);
 254                        return 0;
 255                case INTEL_855_GMCH_GMS_STOLEN_8M:
 256                        *stolen_size = MB(8) - KB(stolen_overhead);
 257                        return 0;
 258                case INTEL_855_GMCH_GMS_STOLEN_16M:
 259                        *stolen_size = MB(16) - KB(stolen_overhead);
 260                        return 0;
 261                case INTEL_855_GMCH_GMS_STOLEN_32M:
 262                        *stolen_size = MB(32) - KB(stolen_overhead);
 263                        return 0;
 264                case INTEL_915G_GMCH_GMS_STOLEN_48M:
 265                        *stolen_size = MB(48) - KB(stolen_overhead);
 266                        return 0;
 267                case INTEL_915G_GMCH_GMS_STOLEN_64M:
 268                        *stolen_size = MB(64) - KB(stolen_overhead);
 269                        return 0;
 270                case INTEL_855_GMCH_GMS_DISABLED:
 271                        ERR_MSG("video memory is disabled\n");
 272                        return 0;
 273                default:
 274                        ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
 275                                tmp & INTEL_855_GMCH_GMS_MASK);
 276                        return 1;
 277                }
 278        }
 279}
 280
 281int intelfbhw_check_non_crt(struct intelfb_info *dinfo)
 282{
 283        int dvo = 0;
 284
 285        if (INREG(LVDS) & PORT_ENABLE)
 286                dvo |= LVDS_PORT;
 287        if (INREG(DVOA) & PORT_ENABLE)
 288                dvo |= DVOA_PORT;
 289        if (INREG(DVOB) & PORT_ENABLE)
 290                dvo |= DVOB_PORT;
 291        if (INREG(DVOC) & PORT_ENABLE)
 292                dvo |= DVOC_PORT;
 293
 294        return dvo;
 295}
 296
 297const char * intelfbhw_dvo_to_string(int dvo)
 298{
 299        if (dvo & DVOA_PORT)
 300                return "DVO port A";
 301        else if (dvo & DVOB_PORT)
 302                return "DVO port B";
 303        else if (dvo & DVOC_PORT)
 304                return "DVO port C";
 305        else if (dvo & LVDS_PORT)
 306                return "LVDS port";
 307        else
 308                return NULL;
 309}
 310
 311
 312int intelfbhw_validate_mode(struct intelfb_info *dinfo,
 313                            struct fb_var_screeninfo *var)
 314{
 315        int bytes_per_pixel;
 316        int tmp;
 317
 318#if VERBOSE > 0
 319        DBG_MSG("intelfbhw_validate_mode\n");
 320#endif
 321
 322        bytes_per_pixel = var->bits_per_pixel / 8;
 323        if (bytes_per_pixel == 3)
 324                bytes_per_pixel = 4;
 325
 326        /* Check if enough video memory. */
 327        tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
 328        if (tmp > dinfo->fb.size) {
 329                WRN_MSG("Not enough video ram for mode "
 330                        "(%d KByte vs %d KByte).\n",
 331                        BtoKB(tmp), BtoKB(dinfo->fb.size));
 332                return 1;
 333        }
 334
 335        /* Check if x/y limits are OK. */
 336        if (var->xres - 1 > HACTIVE_MASK) {
 337                WRN_MSG("X resolution too large (%d vs %d).\n",
 338                        var->xres, HACTIVE_MASK + 1);
 339                return 1;
 340        }
 341        if (var->yres - 1 > VACTIVE_MASK) {
 342                WRN_MSG("Y resolution too large (%d vs %d).\n",
 343                        var->yres, VACTIVE_MASK + 1);
 344                return 1;
 345        }
 346        if (var->xres < 4) {
 347                WRN_MSG("X resolution too small (%d vs 4).\n", var->xres);
 348                return 1;
 349        }
 350        if (var->yres < 4) {
 351                WRN_MSG("Y resolution too small (%d vs 4).\n", var->yres);
 352                return 1;
 353        }
 354
 355        /* Check for doublescan modes. */
 356        if (var->vmode & FB_VMODE_DOUBLE) {
 357                WRN_MSG("Mode is double-scan.\n");
 358                return 1;
 359        }
 360
 361        if ((var->vmode & FB_VMODE_INTERLACED) && (var->yres & 1)) {
 362                WRN_MSG("Odd number of lines in interlaced mode\n");
 363                return 1;
 364        }
 365
 366        /* Check if clock is OK. */
 367        tmp = 1000000000 / var->pixclock;
 368        if (tmp < MIN_CLOCK) {
 369                WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
 370                        (tmp + 500) / 1000, MIN_CLOCK / 1000);
 371                return 1;
 372        }
 373        if (tmp > MAX_CLOCK) {
 374                WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
 375                        (tmp + 500) / 1000, MAX_CLOCK / 1000);
 376                return 1;
 377        }
 378
 379        return 0;
 380}
 381
 382int intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
 383{
 384        struct intelfb_info *dinfo = GET_DINFO(info);
 385        u32 offset, xoffset, yoffset;
 386
 387#if VERBOSE > 0
 388        DBG_MSG("intelfbhw_pan_display\n");
 389#endif
 390
 391        xoffset = ROUND_DOWN_TO(var->xoffset, 8);
 392        yoffset = var->yoffset;
 393
 394        if ((xoffset + var->xres > var->xres_virtual) ||
 395            (yoffset + var->yres > var->yres_virtual))
 396                return -EINVAL;
 397
 398        offset = (yoffset * dinfo->pitch) +
 399                 (xoffset * var->bits_per_pixel) / 8;
 400
 401        offset += dinfo->fb.offset << 12;
 402
 403        dinfo->vsync.pan_offset = offset;
 404        if ((var->activate & FB_ACTIVATE_VBL) &&
 405            !intelfbhw_enable_irq(dinfo))
 406                dinfo->vsync.pan_display = 1;
 407        else {
 408                dinfo->vsync.pan_display = 0;
 409                OUTREG(DSPABASE, offset);
 410        }
 411
 412        return 0;
 413}
 414
 415/* Blank the screen. */
 416void intelfbhw_do_blank(int blank, struct fb_info *info)
 417{
 418        struct intelfb_info *dinfo = GET_DINFO(info);
 419        u32 tmp;
 420
 421#if VERBOSE > 0
 422        DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
 423#endif
 424
 425        /* Turn plane A on or off */
 426        tmp = INREG(DSPACNTR);
 427        if (blank)
 428                tmp &= ~DISPPLANE_PLANE_ENABLE;
 429        else
 430                tmp |= DISPPLANE_PLANE_ENABLE;
 431        OUTREG(DSPACNTR, tmp);
 432        /* Flush */
 433        tmp = INREG(DSPABASE);
 434        OUTREG(DSPABASE, tmp);
 435
 436        /* Turn off/on the HW cursor */
 437#if VERBOSE > 0
 438        DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
 439#endif
 440        if (dinfo->cursor_on) {
 441                if (blank)
 442                        intelfbhw_cursor_hide(dinfo);
 443                else
 444                        intelfbhw_cursor_show(dinfo);
 445                dinfo->cursor_on = 1;
 446        }
 447        dinfo->cursor_blanked = blank;
 448
 449        /* Set DPMS level */
 450        tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
 451        switch (blank) {
 452        case FB_BLANK_UNBLANK:
 453        case FB_BLANK_NORMAL:
 454                tmp |= ADPA_DPMS_D0;
 455                break;
 456        case FB_BLANK_VSYNC_SUSPEND:
 457                tmp |= ADPA_DPMS_D1;
 458                break;
 459        case FB_BLANK_HSYNC_SUSPEND:
 460                tmp |= ADPA_DPMS_D2;
 461                break;
 462        case FB_BLANK_POWERDOWN:
 463                tmp |= ADPA_DPMS_D3;
 464                break;
 465        }
 466        OUTREG(ADPA, tmp);
 467
 468        return;
 469}
 470
 471
 472void intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
 473                         unsigned red, unsigned green, unsigned blue,
 474                         unsigned transp)
 475{
 476        u32 palette_reg = (dinfo->pipe == PIPE_A) ?
 477                          PALETTE_A : PALETTE_B;
 478
 479#if VERBOSE > 0
 480        DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
 481                regno, red, green, blue);
 482#endif
 483
 484        OUTREG(palette_reg + (regno << 2),
 485               (red << PALETTE_8_RED_SHIFT) |
 486               (green << PALETTE_8_GREEN_SHIFT) |
 487               (blue << PALETTE_8_BLUE_SHIFT));
 488}
 489
 490
 491int intelfbhw_read_hw_state(struct intelfb_info *dinfo,
 492                            struct intelfb_hwstate *hw, int flag)
 493{
 494        int i;
 495
 496#if VERBOSE > 0
 497        DBG_MSG("intelfbhw_read_hw_state\n");
 498#endif
 499
 500        if (!hw || !dinfo)
 501                return -1;
 502
 503        /* Read in as much of the HW state as possible. */
 504        hw->vga0_divisor = INREG(VGA0_DIVISOR);
 505        hw->vga1_divisor = INREG(VGA1_DIVISOR);
 506        hw->vga_pd = INREG(VGAPD);
 507        hw->dpll_a = INREG(DPLL_A);
 508        hw->dpll_b = INREG(DPLL_B);
 509        hw->fpa0 = INREG(FPA0);
 510        hw->fpa1 = INREG(FPA1);
 511        hw->fpb0 = INREG(FPB0);
 512        hw->fpb1 = INREG(FPB1);
 513
 514        if (flag == 1)
 515                return flag;
 516
 517#if 0
 518        /* This seems to be a problem with the 852GM/855GM */
 519        for (i = 0; i < PALETTE_8_ENTRIES; i++) {
 520                hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
 521                hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
 522        }
 523#endif
 524
 525        if (flag == 2)
 526                return flag;
 527
 528        hw->htotal_a = INREG(HTOTAL_A);
 529        hw->hblank_a = INREG(HBLANK_A);
 530        hw->hsync_a = INREG(HSYNC_A);
 531        hw->vtotal_a = INREG(VTOTAL_A);
 532        hw->vblank_a = INREG(VBLANK_A);
 533        hw->vsync_a = INREG(VSYNC_A);
 534        hw->src_size_a = INREG(SRC_SIZE_A);
 535        hw->bclrpat_a = INREG(BCLRPAT_A);
 536        hw->htotal_b = INREG(HTOTAL_B);
 537        hw->hblank_b = INREG(HBLANK_B);
 538        hw->hsync_b = INREG(HSYNC_B);
 539        hw->vtotal_b = INREG(VTOTAL_B);
 540        hw->vblank_b = INREG(VBLANK_B);
 541        hw->vsync_b = INREG(VSYNC_B);
 542        hw->src_size_b = INREG(SRC_SIZE_B);
 543        hw->bclrpat_b = INREG(BCLRPAT_B);
 544
 545        if (flag == 3)
 546                return flag;
 547
 548        hw->adpa = INREG(ADPA);
 549        hw->dvoa = INREG(DVOA);
 550        hw->dvob = INREG(DVOB);
 551        hw->dvoc = INREG(DVOC);
 552        hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
 553        hw->dvob_srcdim = INREG(DVOB_SRCDIM);
 554        hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
 555        hw->lvds = INREG(LVDS);
 556
 557        if (flag == 4)
 558                return flag;
 559
 560        hw->pipe_a_conf = INREG(PIPEACONF);
 561        hw->pipe_b_conf = INREG(PIPEBCONF);
 562        hw->disp_arb = INREG(DISPARB);
 563
 564        if (flag == 5)
 565                return flag;
 566
 567        hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
 568        hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
 569        hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
 570        hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
 571
 572        if (flag == 6)
 573                return flag;
 574
 575        for (i = 0; i < 4; i++) {
 576                hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
 577                hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
 578        }
 579
 580        if (flag == 7)
 581                return flag;
 582
 583        hw->cursor_size = INREG(CURSOR_SIZE);
 584
 585        if (flag == 8)
 586                return flag;
 587
 588        hw->disp_a_ctrl = INREG(DSPACNTR);
 589        hw->disp_b_ctrl = INREG(DSPBCNTR);
 590        hw->disp_a_base = INREG(DSPABASE);
 591        hw->disp_b_base = INREG(DSPBBASE);
 592        hw->disp_a_stride = INREG(DSPASTRIDE);
 593        hw->disp_b_stride = INREG(DSPBSTRIDE);
 594
 595        if (flag == 9)
 596                return flag;
 597
 598        hw->vgacntrl = INREG(VGACNTRL);
 599
 600        if (flag == 10)
 601                return flag;
 602
 603        hw->add_id = INREG(ADD_ID);
 604
 605        if (flag == 11)
 606                return flag;
 607
 608        for (i = 0; i < 7; i++) {
 609                hw->swf0x[i] = INREG(SWF00 + (i << 2));
 610                hw->swf1x[i] = INREG(SWF10 + (i << 2));
 611                if (i < 3)
 612                        hw->swf3x[i] = INREG(SWF30 + (i << 2));
 613        }
 614
 615        for (i = 0; i < 8; i++)
 616                hw->fence[i] = INREG(FENCE + (i << 2));
 617
 618        hw->instpm = INREG(INSTPM);
 619        hw->mem_mode = INREG(MEM_MODE);
 620        hw->fw_blc_0 = INREG(FW_BLC_0);
 621        hw->fw_blc_1 = INREG(FW_BLC_1);
 622
 623        hw->hwstam = INREG16(HWSTAM);
 624        hw->ier = INREG16(IER);
 625        hw->iir = INREG16(IIR);
 626        hw->imr = INREG16(IMR);
 627
 628        return 0;
 629}
 630
 631
 632static int calc_vclock3(int index, int m, int n, int p)
 633{
 634        if (p == 0 || n == 0)
 635                return 0;
 636        return plls[index].ref_clk * m / n / p;
 637}
 638
 639static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2,
 640                       int lvds)
 641{
 642        struct pll_min_max *pll = &plls[index];
 643        u32 m, vco, p;
 644
 645        m = (5 * (m1 + 2)) + (m2 + 2);
 646        n += 2;
 647        vco = pll->ref_clk * m / n;
 648
 649        if (index == PLLS_I8xx)
 650                p = ((p1 + 2) * (1 << (p2 + 1)));
 651        else
 652                p = ((p1) * (p2 ? 5 : 10));
 653        return vco / p;
 654}
 655
 656#if REGDUMP
 657static void intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll,
 658                               int *o_p1, int *o_p2)
 659{
 660        int p1, p2;
 661
 662        if (IS_I9XX(dinfo)) {
 663                if (dpll & DPLL_P1_FORCE_DIV2)
 664                        p1 = 1;
 665                else
 666                        p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
 667
 668                p1 = ffs(p1);
 669
 670                p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
 671        } else {
 672                if (dpll & DPLL_P1_FORCE_DIV2)
 673                        p1 = 0;
 674                else
 675                        p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
 676                p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
 677        }
 678
 679        *o_p1 = p1;
 680        *o_p2 = p2;
 681}
 682#endif
 683
 684
 685void intelfbhw_print_hw_state(struct intelfb_info *dinfo,
 686                              struct intelfb_hwstate *hw)
 687{
 688#if REGDUMP
 689        int i, m1, m2, n, p1, p2;
 690        int index = dinfo->pll_index;
 691        DBG_MSG("intelfbhw_print_hw_state\n");
 692
 693        if (!hw)
 694                return;
 695        /* Read in as much of the HW state as possible. */
 696        printk("hw state dump start\n");
 697        printk("        VGA0_DIVISOR:           0x%08x\n", hw->vga0_divisor);
 698        printk("        VGA1_DIVISOR:           0x%08x\n", hw->vga1_divisor);
 699        printk("        VGAPD:                  0x%08x\n", hw->vga_pd);
 700        n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 701        m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 702        m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 703
 704        intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
 705
 706        printk("        VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
 707               m1, m2, n, p1, p2);
 708        printk("        VGA0: clock is %d\n",
 709               calc_vclock(index, m1, m2, n, p1, p2, 0));
 710
 711        n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 712        m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 713        m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 714
 715        intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
 716        printk("        VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
 717               m1, m2, n, p1, p2);
 718        printk("        VGA1: clock is %d\n",
 719               calc_vclock(index, m1, m2, n, p1, p2, 0));
 720
 721        printk("        DPLL_A:                 0x%08x\n", hw->dpll_a);
 722        printk("        DPLL_B:                 0x%08x\n", hw->dpll_b);
 723        printk("        FPA0:                   0x%08x\n", hw->fpa0);
 724        printk("        FPA1:                   0x%08x\n", hw->fpa1);
 725        printk("        FPB0:                   0x%08x\n", hw->fpb0);
 726        printk("        FPB1:                   0x%08x\n", hw->fpb1);
 727
 728        n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 729        m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 730        m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 731
 732        intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
 733
 734        printk("        PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
 735               m1, m2, n, p1, p2);
 736        printk("        PLLA0: clock is %d\n",
 737               calc_vclock(index, m1, m2, n, p1, p2, 0));
 738
 739        n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 740        m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 741        m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 742
 743        intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
 744
 745        printk("        PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
 746               m1, m2, n, p1, p2);
 747        printk("        PLLA1: clock is %d\n",
 748               calc_vclock(index, m1, m2, n, p1, p2, 0));
 749
 750#if 0
 751        printk("        PALETTE_A:\n");
 752        for (i = 0; i < PALETTE_8_ENTRIES)
 753                printk("        %3d:    0x%08x\n", i, hw->palette_a[i]);
 754        printk("        PALETTE_B:\n");
 755        for (i = 0; i < PALETTE_8_ENTRIES)
 756                printk("        %3d:    0x%08x\n", i, hw->palette_b[i]);
 757#endif
 758
 759        printk("        HTOTAL_A:               0x%08x\n", hw->htotal_a);
 760        printk("        HBLANK_A:               0x%08x\n", hw->hblank_a);
 761        printk("        HSYNC_A:                0x%08x\n", hw->hsync_a);
 762        printk("        VTOTAL_A:               0x%08x\n", hw->vtotal_a);
 763        printk("        VBLANK_A:               0x%08x\n", hw->vblank_a);
 764        printk("        VSYNC_A:                0x%08x\n", hw->vsync_a);
 765        printk("        SRC_SIZE_A:             0x%08x\n", hw->src_size_a);
 766        printk("        BCLRPAT_A:              0x%08x\n", hw->bclrpat_a);
 767        printk("        HTOTAL_B:               0x%08x\n", hw->htotal_b);
 768        printk("        HBLANK_B:               0x%08x\n", hw->hblank_b);
 769        printk("        HSYNC_B:                0x%08x\n", hw->hsync_b);
 770        printk("        VTOTAL_B:               0x%08x\n", hw->vtotal_b);
 771        printk("        VBLANK_B:               0x%08x\n", hw->vblank_b);
 772        printk("        VSYNC_B:                0x%08x\n", hw->vsync_b);
 773        printk("        SRC_SIZE_B:             0x%08x\n", hw->src_size_b);
 774        printk("        BCLRPAT_B:              0x%08x\n", hw->bclrpat_b);
 775
 776        printk("        ADPA:                   0x%08x\n", hw->adpa);
 777        printk("        DVOA:                   0x%08x\n", hw->dvoa);
 778        printk("        DVOB:                   0x%08x\n", hw->dvob);
 779        printk("        DVOC:                   0x%08x\n", hw->dvoc);
 780        printk("        DVOA_SRCDIM:            0x%08x\n", hw->dvoa_srcdim);
 781        printk("        DVOB_SRCDIM:            0x%08x\n", hw->dvob_srcdim);
 782        printk("        DVOC_SRCDIM:            0x%08x\n", hw->dvoc_srcdim);
 783        printk("        LVDS:                   0x%08x\n", hw->lvds);
 784
 785        printk("        PIPEACONF:              0x%08x\n", hw->pipe_a_conf);
 786        printk("        PIPEBCONF:              0x%08x\n", hw->pipe_b_conf);
 787        printk("        DISPARB:                0x%08x\n", hw->disp_arb);
 788
 789        printk("        CURSOR_A_CONTROL:       0x%08x\n", hw->cursor_a_control);
 790        printk("        CURSOR_B_CONTROL:       0x%08x\n", hw->cursor_b_control);
 791        printk("        CURSOR_A_BASEADDR:      0x%08x\n", hw->cursor_a_base);
 792        printk("        CURSOR_B_BASEADDR:      0x%08x\n", hw->cursor_b_base);
 793
 794        printk("        CURSOR_A_PALETTE:       ");
 795        for (i = 0; i < 4; i++) {
 796                printk("0x%08x", hw->cursor_a_palette[i]);
 797                if (i < 3)
 798                        printk(", ");
 799        }
 800        printk("\n");
 801        printk("        CURSOR_B_PALETTE:       ");
 802        for (i = 0; i < 4; i++) {
 803                printk("0x%08x", hw->cursor_b_palette[i]);
 804                if (i < 3)
 805                        printk(", ");
 806        }
 807        printk("\n");
 808
 809        printk("        CURSOR_SIZE:            0x%08x\n", hw->cursor_size);
 810
 811        printk("        DSPACNTR:               0x%08x\n", hw->disp_a_ctrl);
 812        printk("        DSPBCNTR:               0x%08x\n", hw->disp_b_ctrl);
 813        printk("        DSPABASE:               0x%08x\n", hw->disp_a_base);
 814        printk("        DSPBBASE:               0x%08x\n", hw->disp_b_base);
 815        printk("        DSPASTRIDE:             0x%08x\n", hw->disp_a_stride);
 816        printk("        DSPBSTRIDE:             0x%08x\n", hw->disp_b_stride);
 817
 818        printk("        VGACNTRL:               0x%08x\n", hw->vgacntrl);
 819        printk("        ADD_ID:                 0x%08x\n", hw->add_id);
 820
 821        for (i = 0; i < 7; i++) {
 822                printk("        SWF0%d                  0x%08x\n", i,
 823                        hw->swf0x[i]);
 824        }
 825        for (i = 0; i < 7; i++) {
 826                printk("        SWF1%d                  0x%08x\n", i,
 827                        hw->swf1x[i]);
 828        }
 829        for (i = 0; i < 3; i++) {
 830                printk("        SWF3%d                  0x%08x\n", i,
 831                       hw->swf3x[i]);
 832        }
 833        for (i = 0; i < 8; i++)
 834                printk("        FENCE%d                 0x%08x\n", i,
 835                       hw->fence[i]);
 836
 837        printk("        INSTPM                  0x%08x\n", hw->instpm);
 838        printk("        MEM_MODE                0x%08x\n", hw->mem_mode);
 839        printk("        FW_BLC_0                0x%08x\n", hw->fw_blc_0);
 840        printk("        FW_BLC_1                0x%08x\n", hw->fw_blc_1);
 841
 842        printk("        HWSTAM                  0x%04x\n", hw->hwstam);
 843        printk("        IER                     0x%04x\n", hw->ier);
 844        printk("        IIR                     0x%04x\n", hw->iir);
 845        printk("        IMR                     0x%04x\n", hw->imr);
 846        printk("hw state dump end\n");
 847#endif
 848}
 849
 850
 851
 852/* Split the M parameter into M1 and M2. */
 853static int splitm(int index, unsigned int m, unsigned int *retm1,
 854                  unsigned int *retm2)
 855{
 856        int m1, m2;
 857        int testm;
 858        struct pll_min_max *pll = &plls[index];
 859
 860        /* no point optimising too much - brute force m */
 861        for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
 862                for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
 863                        testm = (5 * (m1 + 2)) + (m2 + 2);
 864                        if (testm == m) {
 865                                *retm1 = (unsigned int)m1;
 866                                *retm2 = (unsigned int)m2;
 867                                return 0;
 868                        }
 869                }
 870        }
 871        return 1;
 872}
 873
 874/* Split the P parameter into P1 and P2. */
 875static int splitp(int index, unsigned int p, unsigned int *retp1,
 876                  unsigned int *retp2)
 877{
 878        int p1, p2;
 879        struct pll_min_max *pll = &plls[index];
 880
 881        if (index == PLLS_I9xx) {
 882                p2 = (p % 10) ? 1 : 0;
 883
 884                p1 = p / (p2 ? 5 : 10);
 885
 886                *retp1 = (unsigned int)p1;
 887                *retp2 = (unsigned int)p2;
 888                return 0;
 889        }
 890
 891        if (p % 4 == 0)
 892                p2 = 1;
 893        else
 894                p2 = 0;
 895        p1 = (p / (1 << (p2 + 1))) - 2;
 896        if (p % 4 == 0 && p1 < pll->min_p1) {
 897                p2 = 0;
 898                p1 = (p / (1 << (p2 + 1))) - 2;
 899        }
 900        if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
 901            (p1 + 2) * (1 << (p2 + 1)) != p) {
 902                return 1;
 903        } else {
 904                *retp1 = (unsigned int)p1;
 905                *retp2 = (unsigned int)p2;
 906                return 0;
 907        }
 908}
 909
 910static int calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2,
 911                           u32 *retn, u32 *retp1, u32 *retp2, u32 *retclock)
 912{
 913        u32 m1, m2, n, p1, p2, n1, testm;
 914        u32 f_vco, p, p_best = 0, m, f_out = 0;
 915        u32 err_max, err_target, err_best = 10000000;
 916        u32 n_best = 0, m_best = 0, f_best, f_err;
 917        u32 p_min, p_max, p_inc, div_max;
 918        struct pll_min_max *pll = &plls[index];
 919
 920        /* Accept 0.5% difference, but aim for 0.1% */
 921        err_max = 5 * clock / 1000;
 922        err_target = clock / 1000;
 923
 924        DBG_MSG("Clock is %d\n", clock);
 925
 926        div_max = pll->max_vco / clock;
 927
 928        p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
 929        p_min = p_inc;
 930        p_max = ROUND_DOWN_TO(div_max, p_inc);
 931        if (p_min < pll->min_p)
 932                p_min = pll->min_p;
 933        if (p_max > pll->max_p)
 934                p_max = pll->max_p;
 935
 936        DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
 937
 938        p = p_min;
 939        do {
 940                if (splitp(index, p, &p1, &p2)) {
 941                        WRN_MSG("cannot split p = %d\n", p);
 942                        p += p_inc;
 943                        continue;
 944                }
 945                n = pll->min_n;
 946                f_vco = clock * p;
 947
 948                do {
 949                        m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
 950                        if (m < pll->min_m)
 951                                m = pll->min_m + 1;
 952                        if (m > pll->max_m)
 953                                m = pll->max_m - 1;
 954                        for (testm = m - 1; testm <= m; testm++) {
 955                                f_out = calc_vclock3(index, testm, n, p);
 956                                if (splitm(index, testm, &m1, &m2)) {
 957                                        WRN_MSG("cannot split m = %d\n",
 958                                                testm);
 959                                        continue;
 960                                }
 961                                if (clock > f_out)
 962                                        f_err = clock - f_out;
 963                                else/* slightly bias the error for bigger clocks */
 964                                        f_err = f_out - clock + 1;
 965
 966                                if (f_err < err_best) {
 967                                        m_best = testm;
 968                                        n_best = n;
 969                                        p_best = p;
 970                                        f_best = f_out;
 971                                        err_best = f_err;
 972                                }
 973                        }
 974                        n++;
 975                } while ((n <= pll->max_n) && (f_out >= clock));
 976                p += p_inc;
 977        } while ((p <= p_max));
 978
 979        if (!m_best) {
 980                WRN_MSG("cannot find parameters for clock %d\n", clock);
 981                return 1;
 982        }
 983        m = m_best;
 984        n = n_best;
 985        p = p_best;
 986        splitm(index, m, &m1, &m2);
 987        splitp(index, p, &p1, &p2);
 988        n1 = n - 2;
 989
 990        DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
 991                "f: %d (%d), VCO: %d\n",
 992                m, m1, m2, n, n1, p, p1, p2,
 993                calc_vclock3(index, m, n, p),
 994                calc_vclock(index, m1, m2, n1, p1, p2, 0),
 995                calc_vclock3(index, m, n, p) * p);
 996        *retm1 = m1;
 997        *retm2 = m2;
 998        *retn = n1;
 999        *retp1 = p1;
1000        *retp2 = p2;
1001        *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
1002
1003        return 0;
1004}
1005
1006static __inline__ int check_overflow(u32 value, u32 limit,
1007                                     const char *description)
1008{
1009        if (value > limit) {
1010                WRN_MSG("%s value %d exceeds limit %d\n",
1011                        description, value, limit);
1012                return 1;
1013        }
1014        return 0;
1015}
1016
1017/* It is assumed that hw is filled in with the initial state information. */
1018int intelfbhw_mode_to_hw(struct intelfb_info *dinfo,
1019                         struct intelfb_hwstate *hw,
1020                         struct fb_var_screeninfo *var)
1021{
1022        int pipe = PIPE_A;
1023        u32 *dpll, *fp0, *fp1;
1024        u32 m1, m2, n, p1, p2, clock_target, clock;
1025        u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
1026        u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
1027        u32 vsync_pol, hsync_pol;
1028        u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
1029        u32 stride_alignment;
1030
1031        DBG_MSG("intelfbhw_mode_to_hw\n");
1032
1033        /* Disable VGA */
1034        hw->vgacntrl |= VGA_DISABLE;
1035
1036        /* Check whether pipe A or pipe B is enabled. */
1037        if (hw->pipe_a_conf & PIPECONF_ENABLE)
1038                pipe = PIPE_A;
1039        else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1040                pipe = PIPE_B;
1041
1042        /* Set which pipe's registers will be set. */
1043        if (pipe == PIPE_B) {
1044                dpll = &hw->dpll_b;
1045                fp0 = &hw->fpb0;
1046                fp1 = &hw->fpb1;
1047                hs = &hw->hsync_b;
1048                hb = &hw->hblank_b;
1049                ht = &hw->htotal_b;
1050                vs = &hw->vsync_b;
1051                vb = &hw->vblank_b;
1052                vt = &hw->vtotal_b;
1053                ss = &hw->src_size_b;
1054                pipe_conf = &hw->pipe_b_conf;
1055        } else {
1056                dpll = &hw->dpll_a;
1057                fp0 = &hw->fpa0;
1058                fp1 = &hw->fpa1;
1059                hs = &hw->hsync_a;
1060                hb = &hw->hblank_a;
1061                ht = &hw->htotal_a;
1062                vs = &hw->vsync_a;
1063                vb = &hw->vblank_a;
1064                vt = &hw->vtotal_a;
1065                ss = &hw->src_size_a;
1066                pipe_conf = &hw->pipe_a_conf;
1067        }
1068
1069        /* Use ADPA register for sync control. */
1070        hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
1071
1072        /* sync polarity */
1073        hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
1074                        ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1075        vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
1076                        ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1077        hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
1078                      (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
1079        hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
1080                    (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
1081
1082        /* Connect correct pipe to the analog port DAC */
1083        hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
1084        hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
1085
1086        /* Set DPMS state to D0 (on) */
1087        hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
1088        hw->adpa |= ADPA_DPMS_D0;
1089
1090        hw->adpa |= ADPA_DAC_ENABLE;
1091
1092        *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
1093        *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
1094        *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
1095
1096        /* Desired clock in kHz */
1097        clock_target = 1000000000 / var->pixclock;
1098
1099        if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
1100                            &n, &p1, &p2, &clock)) {
1101                WRN_MSG("calc_pll_params failed\n");
1102                return 1;
1103        }
1104
1105        /* Check for overflow. */
1106        if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
1107                return 1;
1108        if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
1109                return 1;
1110        if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
1111                return 1;
1112        if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
1113                return 1;
1114        if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
1115                return 1;
1116
1117        *dpll &= ~DPLL_P1_FORCE_DIV2;
1118        *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
1119                   (DPLL_P1_MASK << DPLL_P1_SHIFT));
1120
1121        if (IS_I9XX(dinfo)) {
1122                *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
1123                *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
1124        } else
1125                *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
1126
1127        *fp0 = (n << FP_N_DIVISOR_SHIFT) |
1128               (m1 << FP_M1_DIVISOR_SHIFT) |
1129               (m2 << FP_M2_DIVISOR_SHIFT);
1130        *fp1 = *fp0;
1131
1132        hw->dvob &= ~PORT_ENABLE;
1133        hw->dvoc &= ~PORT_ENABLE;
1134
1135        /* Use display plane A. */
1136        hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
1137        hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
1138        hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
1139        switch (intelfb_var_to_depth(var)) {
1140        case 8:
1141                hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
1142                break;
1143        case 15:
1144                hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
1145                break;
1146        case 16:
1147                hw->disp_a_ctrl |= DISPPLANE_16BPP;
1148                break;
1149        case 24:
1150                hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
1151                break;
1152        }
1153        hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
1154        hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
1155
1156        /* Set CRTC registers. */
1157        hactive = var->xres;
1158        hsync_start = hactive + var->right_margin;
1159        hsync_end = hsync_start + var->hsync_len;
1160        htotal = hsync_end + var->left_margin;
1161        hblank_start = hactive;
1162        hblank_end = htotal;
1163
1164        DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1165                hactive, hsync_start, hsync_end, htotal, hblank_start,
1166                hblank_end);
1167
1168        vactive = var->yres;
1169        if (var->vmode & FB_VMODE_INTERLACED)
1170                vactive--; /* the chip adds 2 halflines automatically */
1171        vsync_start = vactive + var->lower_margin;
1172        vsync_end = vsync_start + var->vsync_len;
1173        vtotal = vsync_end + var->upper_margin;
1174        vblank_start = vactive;
1175        vblank_end = vtotal;
1176        vblank_end = vsync_end + 1;
1177
1178        DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1179                vactive, vsync_start, vsync_end, vtotal, vblank_start,
1180                vblank_end);
1181
1182        /* Adjust for register values, and check for overflow. */
1183        hactive--;
1184        if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1185                return 1;
1186        hsync_start--;
1187        if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1188                return 1;
1189        hsync_end--;
1190        if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1191                return 1;
1192        htotal--;
1193        if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1194                return 1;
1195        hblank_start--;
1196        if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1197                return 1;
1198        hblank_end--;
1199        if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1200                return 1;
1201
1202        vactive--;
1203        if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1204                return 1;
1205        vsync_start--;
1206        if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1207                return 1;
1208        vsync_end--;
1209        if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1210                return 1;
1211        vtotal--;
1212        if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1213                return 1;
1214        vblank_start--;
1215        if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1216                return 1;
1217        vblank_end--;
1218        if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1219                return 1;
1220
1221        *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1222        *hb = (hblank_start << HBLANKSTART_SHIFT) |
1223              (hblank_end << HSYNCEND_SHIFT);
1224        *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1225
1226        *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1227        *vb = (vblank_start << VBLANKSTART_SHIFT) |
1228              (vblank_end << VSYNCEND_SHIFT);
1229        *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1230        *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1231              (vactive << SRC_SIZE_VERT_SHIFT);
1232
1233        hw->disp_a_stride = dinfo->pitch;
1234        DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1235
1236        hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1237                          var->xoffset * var->bits_per_pixel / 8;
1238
1239        hw->disp_a_base += dinfo->fb.offset << 12;
1240
1241        /* Check stride alignment. */
1242        stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
1243                                            STRIDE_ALIGNMENT;
1244        if (hw->disp_a_stride % stride_alignment != 0) {
1245                WRN_MSG("display stride %d has bad alignment %d\n",
1246                        hw->disp_a_stride, stride_alignment);
1247                return 1;
1248        }
1249
1250        /* Set the palette to 8-bit mode. */
1251        *pipe_conf &= ~PIPECONF_GAMMA;
1252
1253        if (var->vmode & FB_VMODE_INTERLACED)
1254                *pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
1255        else
1256                *pipe_conf &= ~PIPECONF_INTERLACE_MASK;
1257
1258        return 0;
1259}
1260
1261/* Program a (non-VGA) video mode. */
1262int intelfbhw_program_mode(struct intelfb_info *dinfo,
1263                           const struct intelfb_hwstate *hw, int blank)
1264{
1265        int pipe = PIPE_A;
1266        u32 tmp;
1267        const u32 *dpll, *fp0, *fp1, *pipe_conf;
1268        const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1269        u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg, pipe_stat_reg;
1270        u32 hsync_reg, htotal_reg, hblank_reg;
1271        u32 vsync_reg, vtotal_reg, vblank_reg;
1272        u32 src_size_reg;
1273        u32 count, tmp_val[3];
1274
1275        /* Assume single pipe, display plane A, analog CRT. */
1276
1277#if VERBOSE > 0
1278        DBG_MSG("intelfbhw_program_mode\n");
1279#endif
1280
1281        /* Disable VGA */
1282        tmp = INREG(VGACNTRL);
1283        tmp |= VGA_DISABLE;
1284        OUTREG(VGACNTRL, tmp);
1285
1286        /* Check whether pipe A or pipe B is enabled. */
1287        if (hw->pipe_a_conf & PIPECONF_ENABLE)
1288                pipe = PIPE_A;
1289        else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1290                pipe = PIPE_B;
1291
1292        dinfo->pipe = pipe;
1293
1294        if (pipe == PIPE_B) {
1295                dpll = &hw->dpll_b;
1296                fp0 = &hw->fpb0;
1297                fp1 = &hw->fpb1;
1298                pipe_conf = &hw->pipe_b_conf;
1299                hs = &hw->hsync_b;
1300                hb = &hw->hblank_b;
1301                ht = &hw->htotal_b;
1302                vs = &hw->vsync_b;
1303                vb = &hw->vblank_b;
1304                vt = &hw->vtotal_b;
1305                ss = &hw->src_size_b;
1306                dpll_reg = DPLL_B;
1307                fp0_reg = FPB0;
1308                fp1_reg = FPB1;
1309                pipe_conf_reg = PIPEBCONF;
1310                pipe_stat_reg = PIPEBSTAT;
1311                hsync_reg = HSYNC_B;
1312                htotal_reg = HTOTAL_B;
1313                hblank_reg = HBLANK_B;
1314                vsync_reg = VSYNC_B;
1315                vtotal_reg = VTOTAL_B;
1316                vblank_reg = VBLANK_B;
1317                src_size_reg = SRC_SIZE_B;
1318        } else {
1319                dpll = &hw->dpll_a;
1320                fp0 = &hw->fpa0;
1321                fp1 = &hw->fpa1;
1322                pipe_conf = &hw->pipe_a_conf;
1323                hs = &hw->hsync_a;
1324                hb = &hw->hblank_a;
1325                ht = &hw->htotal_a;
1326                vs = &hw->vsync_a;
1327                vb = &hw->vblank_a;
1328                vt = &hw->vtotal_a;
1329                ss = &hw->src_size_a;
1330                dpll_reg = DPLL_A;
1331                fp0_reg = FPA0;
1332                fp1_reg = FPA1;
1333                pipe_conf_reg = PIPEACONF;
1334                pipe_stat_reg = PIPEASTAT;
1335                hsync_reg = HSYNC_A;
1336                htotal_reg = HTOTAL_A;
1337                hblank_reg = HBLANK_A;
1338                vsync_reg = VSYNC_A;
1339                vtotal_reg = VTOTAL_A;
1340                vblank_reg = VBLANK_A;
1341                src_size_reg = SRC_SIZE_A;
1342        }
1343
1344        /* turn off pipe */
1345        tmp = INREG(pipe_conf_reg);
1346        tmp &= ~PIPECONF_ENABLE;
1347        OUTREG(pipe_conf_reg, tmp);
1348
1349        count = 0;
1350        do {
1351                tmp_val[count % 3] = INREG(PIPEA_DSL);
1352                if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1] == tmp_val[2]))
1353                        break;
1354                count++;
1355                udelay(1);
1356                if (count % 200 == 0) {
1357                        tmp = INREG(pipe_conf_reg);
1358                        tmp &= ~PIPECONF_ENABLE;
1359                        OUTREG(pipe_conf_reg, tmp);
1360                }
1361        } while (count < 2000);
1362
1363        OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1364
1365        /* Disable planes A and B. */
1366        tmp = INREG(DSPACNTR);
1367        tmp &= ~DISPPLANE_PLANE_ENABLE;
1368        OUTREG(DSPACNTR, tmp);
1369        tmp = INREG(DSPBCNTR);
1370        tmp &= ~DISPPLANE_PLANE_ENABLE;
1371        OUTREG(DSPBCNTR, tmp);
1372
1373        /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
1374        mdelay(20);
1375
1376        OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
1377        OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
1378        OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1379
1380        /* Disable Sync */
1381        tmp = INREG(ADPA);
1382        tmp &= ~ADPA_DPMS_CONTROL_MASK;
1383        tmp |= ADPA_DPMS_D3;
1384        OUTREG(ADPA, tmp);
1385
1386        /* do some funky magic - xyzzy */
1387        OUTREG(0x61204, 0xabcd0000);
1388
1389        /* turn off PLL */
1390        tmp = INREG(dpll_reg);
1391        tmp &= ~DPLL_VCO_ENABLE;
1392        OUTREG(dpll_reg, tmp);
1393
1394        /* Set PLL parameters */
1395        OUTREG(fp0_reg, *fp0);
1396        OUTREG(fp1_reg, *fp1);
1397
1398        /* Enable PLL */
1399        OUTREG(dpll_reg, *dpll);
1400
1401        /* Set DVOs B/C */
1402        OUTREG(DVOB, hw->dvob);
1403        OUTREG(DVOC, hw->dvoc);
1404
1405        /* undo funky magic */
1406        OUTREG(0x61204, 0x00000000);
1407
1408        /* Set ADPA */
1409        OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
1410        OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1411
1412        /* Set pipe parameters */
1413        OUTREG(hsync_reg, *hs);
1414        OUTREG(hblank_reg, *hb);
1415        OUTREG(htotal_reg, *ht);
1416        OUTREG(vsync_reg, *vs);
1417        OUTREG(vblank_reg, *vb);
1418        OUTREG(vtotal_reg, *vt);
1419        OUTREG(src_size_reg, *ss);
1420
1421        switch (dinfo->info->var.vmode & (FB_VMODE_INTERLACED |
1422                                          FB_VMODE_ODD_FLD_FIRST)) {
1423        case FB_VMODE_INTERLACED | FB_VMODE_ODD_FLD_FIRST:
1424                OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_ODD_EN);
1425                break;
1426        case FB_VMODE_INTERLACED: /* even lines first */
1427                OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_EVEN_EN);
1428                break;
1429        default:                /* non-interlaced */
1430                OUTREG(pipe_stat_reg, 0xFFFF); /* clear all status bits only */
1431        }
1432        /* Enable pipe */
1433        OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1434
1435        /* Enable sync */
1436        tmp = INREG(ADPA);
1437        tmp &= ~ADPA_DPMS_CONTROL_MASK;
1438        tmp |= ADPA_DPMS_D0;
1439        OUTREG(ADPA, tmp);
1440
1441        /* setup display plane */
1442        if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1443                /*
1444                 *      i830M errata: the display plane must be enabled
1445                 *      to allow writes to the other bits in the plane
1446                 *      control register.
1447                 */
1448                tmp = INREG(DSPACNTR);
1449                if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1450                        tmp |= DISPPLANE_PLANE_ENABLE;
1451                        OUTREG(DSPACNTR, tmp);
1452                        OUTREG(DSPACNTR,
1453                               hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1454                        mdelay(1);
1455                }
1456        }
1457
1458        OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1459        OUTREG(DSPASTRIDE, hw->disp_a_stride);
1460        OUTREG(DSPABASE, hw->disp_a_base);
1461
1462        /* Enable plane */
1463        if (!blank) {
1464                tmp = INREG(DSPACNTR);
1465                tmp |= DISPPLANE_PLANE_ENABLE;
1466                OUTREG(DSPACNTR, tmp);
1467                OUTREG(DSPABASE, hw->disp_a_base);
1468        }
1469
1470        return 0;
1471}
1472
1473/* forward declarations */
1474static void refresh_ring(struct intelfb_info *dinfo);
1475static void reset_state(struct intelfb_info *dinfo);
1476static void do_flush(struct intelfb_info *dinfo);
1477
1478static  u32 get_ring_space(struct intelfb_info *dinfo)
1479{
1480        u32 ring_space;
1481
1482        if (dinfo->ring_tail >= dinfo->ring_head)
1483                ring_space = dinfo->ring.size -
1484                        (dinfo->ring_tail - dinfo->ring_head);
1485        else
1486                ring_space = dinfo->ring_head - dinfo->ring_tail;
1487
1488        if (ring_space > RING_MIN_FREE)
1489                ring_space -= RING_MIN_FREE;
1490        else
1491                ring_space = 0;
1492
1493        return ring_space;
1494}
1495
1496static int wait_ring(struct intelfb_info *dinfo, int n)
1497{
1498        int i = 0;
1499        unsigned long end;
1500        u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1501
1502#if VERBOSE > 0
1503        DBG_MSG("wait_ring: %d\n", n);
1504#endif
1505
1506        end = jiffies + (HZ * 3);
1507        while (dinfo->ring_space < n) {
1508                dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1509                dinfo->ring_space = get_ring_space(dinfo);
1510
1511                if (dinfo->ring_head != last_head) {
1512                        end = jiffies + (HZ * 3);
1513                        last_head = dinfo->ring_head;
1514                }
1515                i++;
1516                if (time_before(end, jiffies)) {
1517                        if (!i) {
1518                                /* Try again */
1519                                reset_state(dinfo);
1520                                refresh_ring(dinfo);
1521                                do_flush(dinfo);
1522                                end = jiffies + (HZ * 3);
1523                                i = 1;
1524                        } else {
1525                                WRN_MSG("ring buffer : space: %d wanted %d\n",
1526                                        dinfo->ring_space, n);
1527                                WRN_MSG("lockup - turning off hardware "
1528                                        "acceleration\n");
1529                                dinfo->ring_lockup = 1;
1530                                break;
1531                        }
1532                }
1533                udelay(1);
1534        }
1535        return i;
1536}
1537
1538static void do_flush(struct intelfb_info *dinfo)
1539{
1540        START_RING(2);
1541        OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1542        OUT_RING(MI_NOOP);
1543        ADVANCE_RING();
1544}
1545
1546void intelfbhw_do_sync(struct intelfb_info *dinfo)
1547{
1548#if VERBOSE > 0
1549        DBG_MSG("intelfbhw_do_sync\n");
1550#endif
1551
1552        if (!dinfo->accel)
1553                return;
1554
1555        /*
1556         * Send a flush, then wait until the ring is empty.  This is what
1557         * the XFree86 driver does, and actually it doesn't seem a lot worse
1558         * than the recommended method (both have problems).
1559         */
1560        do_flush(dinfo);
1561        wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1562        dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1563}
1564
1565static void refresh_ring(struct intelfb_info *dinfo)
1566{
1567#if VERBOSE > 0
1568        DBG_MSG("refresh_ring\n");
1569#endif
1570
1571        dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1572        dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1573        dinfo->ring_space = get_ring_space(dinfo);
1574}
1575
1576static void reset_state(struct intelfb_info *dinfo)
1577{
1578        int i;
1579        u32 tmp;
1580
1581#if VERBOSE > 0
1582        DBG_MSG("reset_state\n");
1583#endif
1584
1585        for (i = 0; i < FENCE_NUM; i++)
1586                OUTREG(FENCE + (i << 2), 0);
1587
1588        /* Flush the ring buffer if it's enabled. */
1589        tmp = INREG(PRI_RING_LENGTH);
1590        if (tmp & RING_ENABLE) {
1591#if VERBOSE > 0
1592                DBG_MSG("reset_state: ring was enabled\n");
1593#endif
1594                refresh_ring(dinfo);
1595                intelfbhw_do_sync(dinfo);
1596                DO_RING_IDLE();
1597        }
1598
1599        OUTREG(PRI_RING_LENGTH, 0);
1600        OUTREG(PRI_RING_HEAD, 0);
1601        OUTREG(PRI_RING_TAIL, 0);
1602        OUTREG(PRI_RING_START, 0);
1603}
1604
1605/* Stop the 2D engine, and turn off the ring buffer. */
1606void intelfbhw_2d_stop(struct intelfb_info *dinfo)
1607{
1608#if VERBOSE > 0
1609        DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n",
1610                dinfo->accel, dinfo->ring_active);
1611#endif
1612
1613        if (!dinfo->accel)
1614                return;
1615
1616        dinfo->ring_active = 0;
1617        reset_state(dinfo);
1618}
1619
1620/*
1621 * Enable the ring buffer, and initialise the 2D engine.
1622 * It is assumed that the graphics engine has been stopped by previously
1623 * calling intelfb_2d_stop().
1624 */
1625void intelfbhw_2d_start(struct intelfb_info *dinfo)
1626{
1627#if VERBOSE > 0
1628        DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1629                dinfo->accel, dinfo->ring_active);
1630#endif
1631
1632        if (!dinfo->accel)
1633                return;
1634
1635        /* Initialise the primary ring buffer. */
1636        OUTREG(PRI_RING_LENGTH, 0);
1637        OUTREG(PRI_RING_TAIL, 0);
1638        OUTREG(PRI_RING_HEAD, 0);
1639
1640        OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1641        OUTREG(PRI_RING_LENGTH,
1642                ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1643                RING_NO_REPORT | RING_ENABLE);
1644        refresh_ring(dinfo);
1645        dinfo->ring_active = 1;
1646}
1647
1648/* 2D fillrect (solid fill or invert) */
1649void intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w,
1650                           u32 h, u32 color, u32 pitch, u32 bpp, u32 rop)
1651{
1652        u32 br00, br09, br13, br14, br16;
1653
1654#if VERBOSE > 0
1655        DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1656                "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1657#endif
1658
1659        br00 = COLOR_BLT_CMD;
1660        br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1661        br13 = (rop << ROP_SHIFT) | pitch;
1662        br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1663        br16 = color;
1664
1665        switch (bpp) {
1666        case 8:
1667                br13 |= COLOR_DEPTH_8;
1668                break;
1669        case 16:
1670                br13 |= COLOR_DEPTH_16;
1671                break;
1672        case 32:
1673                br13 |= COLOR_DEPTH_32;
1674                br00 |= WRITE_ALPHA | WRITE_RGB;
1675                break;
1676        }
1677
1678        START_RING(6);
1679        OUT_RING(br00);
1680        OUT_RING(br13);
1681        OUT_RING(br14);
1682        OUT_RING(br09);
1683        OUT_RING(br16);
1684        OUT_RING(MI_NOOP);
1685        ADVANCE_RING();
1686
1687#if VERBOSE > 0
1688        DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1689                dinfo->ring_tail, dinfo->ring_space);
1690#endif
1691}
1692
1693void
1694intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1695                    u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1696{
1697        u32 br00, br09, br11, br12, br13, br22, br23, br26;
1698
1699#if VERBOSE > 0
1700        DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1701                curx, cury, dstx, dsty, w, h, pitch, bpp);
1702#endif
1703
1704        br00 = XY_SRC_COPY_BLT_CMD;
1705        br09 = dinfo->fb_start;
1706        br11 = (pitch << PITCH_SHIFT);
1707        br12 = dinfo->fb_start;
1708        br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1709        br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1710        br23 = ((dstx + w) << WIDTH_SHIFT) |
1711               ((dsty + h) << HEIGHT_SHIFT);
1712        br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1713
1714        switch (bpp) {
1715        case 8:
1716                br13 |= COLOR_DEPTH_8;
1717                break;
1718        case 16:
1719                br13 |= COLOR_DEPTH_16;
1720                break;
1721        case 32:
1722                br13 |= COLOR_DEPTH_32;
1723                br00 |= WRITE_ALPHA | WRITE_RGB;
1724                break;
1725        }
1726
1727        START_RING(8);
1728        OUT_RING(br00);
1729        OUT_RING(br13);
1730        OUT_RING(br22);
1731        OUT_RING(br23);
1732        OUT_RING(br09);
1733        OUT_RING(br26);
1734        OUT_RING(br11);
1735        OUT_RING(br12);
1736        ADVANCE_RING();
1737}
1738
1739int intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1740                           u32 h, const u8* cdat, u32 x, u32 y, u32 pitch,
1741                           u32 bpp)
1742{
1743        int nbytes, ndwords, pad, tmp;
1744        u32 br00, br09, br13, br18, br19, br22, br23;
1745        int dat, ix, iy, iw;
1746        int i, j;
1747
1748#if VERBOSE > 0
1749        DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1750#endif
1751
1752        /* size in bytes of a padded scanline */
1753        nbytes = ROUND_UP_TO(w, 16) / 8;
1754
1755        /* Total bytes of padded scanline data to write out. */
1756        nbytes = nbytes * h;
1757
1758        /*
1759         * Check if the glyph data exceeds the immediate mode limit.
1760         * It would take a large font (1K pixels) to hit this limit.
1761         */
1762        if (nbytes > MAX_MONO_IMM_SIZE)
1763                return 0;
1764
1765        /* Src data is packaged a dword (32-bit) at a time. */
1766        ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1767
1768        /*
1769         * Ring has to be padded to a quad word. But because the command starts
1770           with 7 bytes, pad only if there is an even number of ndwords
1771         */
1772        pad = !(ndwords % 2);
1773
1774        tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1775        br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1776        br09 = dinfo->fb_start;
1777        br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1778        br18 = bg;
1779        br19 = fg;
1780        br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1781        br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1782
1783        switch (bpp) {
1784        case 8:
1785                br13 |= COLOR_DEPTH_8;
1786                break;
1787        case 16:
1788                br13 |= COLOR_DEPTH_16;
1789                break;
1790        case 32:
1791                br13 |= COLOR_DEPTH_32;
1792                br00 |= WRITE_ALPHA | WRITE_RGB;
1793                break;
1794        }
1795
1796        START_RING(8 + ndwords);
1797        OUT_RING(br00);
1798        OUT_RING(br13);
1799        OUT_RING(br22);
1800        OUT_RING(br23);
1801        OUT_RING(br09);
1802        OUT_RING(br18);
1803        OUT_RING(br19);
1804        ix = iy = 0;
1805        iw = ROUND_UP_TO(w, 8) / 8;
1806        while (ndwords--) {
1807                dat = 0;
1808                for (j = 0; j < 2; ++j) {
1809                        for (i = 0; i < 2; ++i) {
1810                                if (ix != iw || i == 0)
1811                                        dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1812                        }
1813                        if (ix == iw && iy != (h-1)) {
1814                                ix = 0;
1815                                ++iy;
1816                        }
1817                }
1818                OUT_RING(dat);
1819        }
1820        if (pad)
1821                OUT_RING(MI_NOOP);
1822        ADVANCE_RING();
1823
1824        return 1;
1825}
1826
1827/* HW cursor functions. */
1828void intelfbhw_cursor_init(struct intelfb_info *dinfo)
1829{
1830        u32 tmp;
1831
1832#if VERBOSE > 0
1833        DBG_MSG("intelfbhw_cursor_init\n");
1834#endif
1835
1836        if (dinfo->mobile || IS_I9XX(dinfo)) {
1837                if (!dinfo->cursor.physical)
1838                        return;
1839                tmp = INREG(CURSOR_A_CONTROL);
1840                tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1841                         CURSOR_MEM_TYPE_LOCAL |
1842                         (1 << CURSOR_PIPE_SELECT_SHIFT));
1843                tmp |= CURSOR_MODE_DISABLE;
1844                OUTREG(CURSOR_A_CONTROL, tmp);
1845                OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1846        } else {
1847                tmp = INREG(CURSOR_CONTROL);
1848                tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1849                         CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1850                tmp = CURSOR_FORMAT_3C;
1851                OUTREG(CURSOR_CONTROL, tmp);
1852                OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1853                tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1854                      (64 << CURSOR_SIZE_V_SHIFT);
1855                OUTREG(CURSOR_SIZE, tmp);
1856        }
1857}
1858
1859void intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1860{
1861        u32 tmp;
1862
1863#if VERBOSE > 0
1864        DBG_MSG("intelfbhw_cursor_hide\n");
1865#endif
1866
1867        dinfo->cursor_on = 0;
1868        if (dinfo->mobile || IS_I9XX(dinfo)) {
1869                if (!dinfo->cursor.physical)
1870                        return;
1871                tmp = INREG(CURSOR_A_CONTROL);
1872                tmp &= ~CURSOR_MODE_MASK;
1873                tmp |= CURSOR_MODE_DISABLE;
1874                OUTREG(CURSOR_A_CONTROL, tmp);
1875                /* Flush changes */
1876                OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1877        } else {
1878                tmp = INREG(CURSOR_CONTROL);
1879                tmp &= ~CURSOR_ENABLE;
1880                OUTREG(CURSOR_CONTROL, tmp);
1881        }
1882}
1883
1884void intelfbhw_cursor_show(struct intelfb_info *dinfo)
1885{
1886        u32 tmp;
1887
1888#if VERBOSE > 0
1889        DBG_MSG("intelfbhw_cursor_show\n");
1890#endif
1891
1892        dinfo->cursor_on = 1;
1893
1894        if (dinfo->cursor_blanked)
1895                return;
1896
1897        if (dinfo->mobile || IS_I9XX(dinfo)) {
1898                if (!dinfo->cursor.physical)
1899                        return;
1900                tmp = INREG(CURSOR_A_CONTROL);
1901                tmp &= ~CURSOR_MODE_MASK;
1902                tmp |= CURSOR_MODE_64_4C_AX;
1903                OUTREG(CURSOR_A_CONTROL, tmp);
1904                /* Flush changes */
1905                OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1906        } else {
1907                tmp = INREG(CURSOR_CONTROL);
1908                tmp |= CURSOR_ENABLE;
1909                OUTREG(CURSOR_CONTROL, tmp);
1910        }
1911}
1912
1913void intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1914{
1915        u32 tmp;
1916
1917#if VERBOSE > 0
1918        DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1919#endif
1920
1921        /*
1922         * Sets the position. The coordinates are assumed to already
1923         * have any offset adjusted. Assume that the cursor is never
1924         * completely off-screen, and that x, y are always >= 0.
1925         */
1926
1927        tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1928              ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1929        OUTREG(CURSOR_A_POSITION, tmp);
1930
1931        if (IS_I9XX(dinfo))
1932                OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1933}
1934
1935void intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1936{
1937#if VERBOSE > 0
1938        DBG_MSG("intelfbhw_cursor_setcolor\n");
1939#endif
1940
1941        OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1942        OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1943        OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1944        OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1945}
1946
1947void intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1948                           u8 *data)
1949{
1950        u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1951        int i, j, w = width / 8;
1952        int mod = width % 8, t_mask, d_mask;
1953
1954#if VERBOSE > 0
1955        DBG_MSG("intelfbhw_cursor_load\n");
1956#endif
1957
1958        if (!dinfo->cursor.virtual)
1959                return;
1960
1961        t_mask = 0xff >> mod;
1962        d_mask = ~(0xff >> mod);
1963        for (i = height; i--; ) {
1964                for (j = 0; j < w; j++) {
1965                        writeb(0x00, addr + j);
1966                        writeb(*(data++), addr + j+8);
1967                }
1968                if (mod) {
1969                        writeb(t_mask, addr + j);
1970                        writeb(*(data++) & d_mask, addr + j+8);
1971                }
1972                addr += 16;
1973        }
1974}
1975
1976void intelfbhw_cursor_reset(struct intelfb_info *dinfo)
1977{
1978        u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1979        int i, j;
1980
1981#if VERBOSE > 0
1982        DBG_MSG("intelfbhw_cursor_reset\n");
1983#endif
1984
1985        if (!dinfo->cursor.virtual)
1986                return;
1987
1988        for (i = 64; i--; ) {
1989                for (j = 0; j < 8; j++) {
1990                        writeb(0xff, addr + j+0);
1991                        writeb(0x00, addr + j+8);
1992                }
1993                addr += 16;
1994        }
1995}
1996
1997static irqreturn_t intelfbhw_irq(int irq, void *dev_id)
1998{
1999        u16 tmp;
2000        struct intelfb_info *dinfo = dev_id;
2001
2002        spin_lock(&dinfo->int_lock);
2003
2004        tmp = INREG16(IIR);
2005        if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2006                tmp &= PIPE_A_EVENT_INTERRUPT;
2007        else
2008                tmp &= VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2009
2010        if (tmp == 0) {
2011                spin_unlock(&dinfo->int_lock);
2012                return IRQ_RETVAL(0); /* not us */
2013        }
2014
2015        /* clear status bits 0-15 ASAP and don't touch bits 16-31 */
2016        OUTREG(PIPEASTAT, INREG(PIPEASTAT));
2017
2018        OUTREG16(IIR, tmp);
2019        if (dinfo->vsync.pan_display) {
2020                dinfo->vsync.pan_display = 0;
2021                OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2022        }
2023
2024        dinfo->vsync.count++;
2025        wake_up_interruptible(&dinfo->vsync.wait);
2026
2027        spin_unlock(&dinfo->int_lock);
2028
2029        return IRQ_RETVAL(1);
2030}
2031
2032int intelfbhw_enable_irq(struct intelfb_info *dinfo)
2033{
2034        u16 tmp;
2035        if (!test_and_set_bit(0, &dinfo->irq_flags)) {
2036                if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED,
2037                                "intelfb", dinfo)) {
2038                        clear_bit(0, &dinfo->irq_flags);
2039                        return -EINVAL;
2040                }
2041
2042                spin_lock_irq(&dinfo->int_lock);
2043                OUTREG16(HWSTAM, 0xfffe); /* i830 DRM uses ffff */
2044                OUTREG16(IMR, 0);
2045        } else
2046                spin_lock_irq(&dinfo->int_lock);
2047
2048        if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2049                tmp = PIPE_A_EVENT_INTERRUPT;
2050        else
2051                tmp = VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2052        if (tmp != INREG16(IER)) {
2053                DBG_MSG("changing IER to 0x%X\n", tmp);
2054                OUTREG16(IER, tmp);
2055        }
2056
2057        spin_unlock_irq(&dinfo->int_lock);
2058        return 0;
2059}
2060
2061void intelfbhw_disable_irq(struct intelfb_info *dinfo)
2062{
2063        if (test_and_clear_bit(0, &dinfo->irq_flags)) {
2064                if (dinfo->vsync.pan_display) {
2065                        dinfo->vsync.pan_display = 0;
2066                        OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2067                }
2068                spin_lock_irq(&dinfo->int_lock);
2069                OUTREG16(HWSTAM, 0xffff);
2070                OUTREG16(IMR, 0xffff);
2071                OUTREG16(IER, 0x0);
2072
2073                OUTREG16(IIR, INREG16(IIR)); /* clear IRQ requests */
2074                spin_unlock_irq(&dinfo->int_lock);
2075
2076                free_irq(dinfo->pdev->irq, dinfo);
2077        }
2078}
2079
2080int intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe)
2081{
2082        struct intelfb_vsync *vsync;
2083        unsigned int count;
2084        int ret;
2085
2086        switch (pipe) {
2087                case 0:
2088                        vsync = &dinfo->vsync;
2089                        break;
2090                default:
2091                        return -ENODEV;
2092        }
2093
2094        ret = intelfbhw_enable_irq(dinfo);
2095        if (ret)
2096                return ret;
2097
2098        count = vsync->count;
2099        ret = wait_event_interruptible_timeout(vsync->wait,
2100                                               count != vsync->count, HZ / 10);
2101        if (ret < 0)
2102                return ret;
2103        if (ret == 0) {
2104                DBG_MSG("wait_for_vsync timed out!\n");
2105                return -ETIMEDOUT;
2106        }
2107
2108        return 0;
2109}
2110