linux/fs/bio.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License version 2 as
   6 * published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  11 * GNU General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public Licens
  14 * along with this program; if not, write to the Free Software
  15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
  16 *
  17 */
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/bio.h>
  21#include <linux/blkdev.h>
  22#include <linux/slab.h>
  23#include <linux/init.h>
  24#include <linux/kernel.h>
  25#include <linux/module.h>
  26#include <linux/mempool.h>
  27#include <linux/workqueue.h>
  28#include <scsi/sg.h>            /* for struct sg_iovec */
  29
  30#include <trace/events/block.h>
  31
  32/*
  33 * Test patch to inline a certain number of bi_io_vec's inside the bio
  34 * itself, to shrink a bio data allocation from two mempool calls to one
  35 */
  36#define BIO_INLINE_VECS         4
  37
  38static mempool_t *bio_split_pool __read_mostly;
  39
  40/*
  41 * if you change this list, also change bvec_alloc or things will
  42 * break badly! cannot be bigger than what you can fit into an
  43 * unsigned short
  44 */
  45#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
  46struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
  47        BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
  48};
  49#undef BV
  50
  51/*
  52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
  53 * IO code that does not need private memory pools.
  54 */
  55struct bio_set *fs_bio_set;
  56
  57/*
  58 * Our slab pool management
  59 */
  60struct bio_slab {
  61        struct kmem_cache *slab;
  62        unsigned int slab_ref;
  63        unsigned int slab_size;
  64        char name[8];
  65};
  66static DEFINE_MUTEX(bio_slab_lock);
  67static struct bio_slab *bio_slabs;
  68static unsigned int bio_slab_nr, bio_slab_max;
  69
  70static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
  71{
  72        unsigned int sz = sizeof(struct bio) + extra_size;
  73        struct kmem_cache *slab = NULL;
  74        struct bio_slab *bslab;
  75        unsigned int i, entry = -1;
  76
  77        mutex_lock(&bio_slab_lock);
  78
  79        i = 0;
  80        while (i < bio_slab_nr) {
  81                struct bio_slab *bslab = &bio_slabs[i];
  82
  83                if (!bslab->slab && entry == -1)
  84                        entry = i;
  85                else if (bslab->slab_size == sz) {
  86                        slab = bslab->slab;
  87                        bslab->slab_ref++;
  88                        break;
  89                }
  90                i++;
  91        }
  92
  93        if (slab)
  94                goto out_unlock;
  95
  96        if (bio_slab_nr == bio_slab_max && entry == -1) {
  97                bio_slab_max <<= 1;
  98                bio_slabs = krealloc(bio_slabs,
  99                                     bio_slab_max * sizeof(struct bio_slab),
 100                                     GFP_KERNEL);
 101                if (!bio_slabs)
 102                        goto out_unlock;
 103        }
 104        if (entry == -1)
 105                entry = bio_slab_nr++;
 106
 107        bslab = &bio_slabs[entry];
 108
 109        snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
 110        slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
 111        if (!slab)
 112                goto out_unlock;
 113
 114        printk("bio: create slab <%s> at %d\n", bslab->name, entry);
 115        bslab->slab = slab;
 116        bslab->slab_ref = 1;
 117        bslab->slab_size = sz;
 118out_unlock:
 119        mutex_unlock(&bio_slab_lock);
 120        return slab;
 121}
 122
 123static void bio_put_slab(struct bio_set *bs)
 124{
 125        struct bio_slab *bslab = NULL;
 126        unsigned int i;
 127
 128        mutex_lock(&bio_slab_lock);
 129
 130        for (i = 0; i < bio_slab_nr; i++) {
 131                if (bs->bio_slab == bio_slabs[i].slab) {
 132                        bslab = &bio_slabs[i];
 133                        break;
 134                }
 135        }
 136
 137        if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
 138                goto out;
 139
 140        WARN_ON(!bslab->slab_ref);
 141
 142        if (--bslab->slab_ref)
 143                goto out;
 144
 145        kmem_cache_destroy(bslab->slab);
 146        bslab->slab = NULL;
 147
 148out:
 149        mutex_unlock(&bio_slab_lock);
 150}
 151
 152unsigned int bvec_nr_vecs(unsigned short idx)
 153{
 154        return bvec_slabs[idx].nr_vecs;
 155}
 156
 157void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
 158{
 159        BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
 160
 161        if (idx == BIOVEC_MAX_IDX)
 162                mempool_free(bv, bs->bvec_pool);
 163        else {
 164                struct biovec_slab *bvs = bvec_slabs + idx;
 165
 166                kmem_cache_free(bvs->slab, bv);
 167        }
 168}
 169
 170struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
 171                              struct bio_set *bs)
 172{
 173        struct bio_vec *bvl;
 174
 175        /*
 176         * see comment near bvec_array define!
 177         */
 178        switch (nr) {
 179        case 1:
 180                *idx = 0;
 181                break;
 182        case 2 ... 4:
 183                *idx = 1;
 184                break;
 185        case 5 ... 16:
 186                *idx = 2;
 187                break;
 188        case 17 ... 64:
 189                *idx = 3;
 190                break;
 191        case 65 ... 128:
 192                *idx = 4;
 193                break;
 194        case 129 ... BIO_MAX_PAGES:
 195                *idx = 5;
 196                break;
 197        default:
 198                return NULL;
 199        }
 200
 201        /*
 202         * idx now points to the pool we want to allocate from. only the
 203         * 1-vec entry pool is mempool backed.
 204         */
 205        if (*idx == BIOVEC_MAX_IDX) {
 206fallback:
 207                bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
 208        } else {
 209                struct biovec_slab *bvs = bvec_slabs + *idx;
 210                gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
 211
 212                /*
 213                 * Make this allocation restricted and don't dump info on
 214                 * allocation failures, since we'll fallback to the mempool
 215                 * in case of failure.
 216                 */
 217                __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
 218
 219                /*
 220                 * Try a slab allocation. If this fails and __GFP_WAIT
 221                 * is set, retry with the 1-entry mempool
 222                 */
 223                bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
 224                if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
 225                        *idx = BIOVEC_MAX_IDX;
 226                        goto fallback;
 227                }
 228        }
 229
 230        return bvl;
 231}
 232
 233void bio_free(struct bio *bio, struct bio_set *bs)
 234{
 235        void *p;
 236
 237        if (bio_has_allocated_vec(bio))
 238                bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
 239
 240        if (bio_integrity(bio))
 241                bio_integrity_free(bio, bs);
 242
 243        /*
 244         * If we have front padding, adjust the bio pointer before freeing
 245         */
 246        p = bio;
 247        if (bs->front_pad)
 248                p -= bs->front_pad;
 249
 250        mempool_free(p, bs->bio_pool);
 251}
 252EXPORT_SYMBOL(bio_free);
 253
 254void bio_init(struct bio *bio)
 255{
 256        memset(bio, 0, sizeof(*bio));
 257        bio->bi_flags = 1 << BIO_UPTODATE;
 258        bio->bi_comp_cpu = -1;
 259        atomic_set(&bio->bi_cnt, 1);
 260}
 261EXPORT_SYMBOL(bio_init);
 262
 263/**
 264 * bio_alloc_bioset - allocate a bio for I/O
 265 * @gfp_mask:   the GFP_ mask given to the slab allocator
 266 * @nr_iovecs:  number of iovecs to pre-allocate
 267 * @bs:         the bio_set to allocate from. If %NULL, just use kmalloc
 268 *
 269 * Description:
 270 *   bio_alloc_bioset will first try its own mempool to satisfy the allocation.
 271 *   If %__GFP_WAIT is set then we will block on the internal pool waiting
 272 *   for a &struct bio to become free. If a %NULL @bs is passed in, we will
 273 *   fall back to just using @kmalloc to allocate the required memory.
 274 *
 275 *   Note that the caller must set ->bi_destructor on succesful return
 276 *   of a bio, to do the appropriate freeing of the bio once the reference
 277 *   count drops to zero.
 278 **/
 279struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
 280{
 281        unsigned long idx = BIO_POOL_NONE;
 282        struct bio_vec *bvl = NULL;
 283        struct bio *bio;
 284        void *p;
 285
 286        p = mempool_alloc(bs->bio_pool, gfp_mask);
 287        if (unlikely(!p))
 288                return NULL;
 289        bio = p + bs->front_pad;
 290
 291        bio_init(bio);
 292
 293        if (unlikely(!nr_iovecs))
 294                goto out_set;
 295
 296        if (nr_iovecs <= BIO_INLINE_VECS) {
 297                bvl = bio->bi_inline_vecs;
 298                nr_iovecs = BIO_INLINE_VECS;
 299        } else {
 300                bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
 301                if (unlikely(!bvl))
 302                        goto err_free;
 303
 304                nr_iovecs = bvec_nr_vecs(idx);
 305        }
 306out_set:
 307        bio->bi_flags |= idx << BIO_POOL_OFFSET;
 308        bio->bi_max_vecs = nr_iovecs;
 309        bio->bi_io_vec = bvl;
 310        return bio;
 311
 312err_free:
 313        mempool_free(p, bs->bio_pool);
 314        return NULL;
 315}
 316EXPORT_SYMBOL(bio_alloc_bioset);
 317
 318static void bio_fs_destructor(struct bio *bio)
 319{
 320        bio_free(bio, fs_bio_set);
 321}
 322
 323/**
 324 *      bio_alloc - allocate a new bio, memory pool backed
 325 *      @gfp_mask: allocation mask to use
 326 *      @nr_iovecs: number of iovecs
 327 *
 328 *      bio_alloc will allocate a bio and associated bio_vec array that can hold
 329 *      at least @nr_iovecs entries. Allocations will be done from the
 330 *      fs_bio_set. Also see @bio_alloc_bioset and @bio_kmalloc.
 331 *
 332 *      If %__GFP_WAIT is set, then bio_alloc will always be able to allocate
 333 *      a bio. This is due to the mempool guarantees. To make this work, callers
 334 *      must never allocate more than 1 bio at a time from this pool. Callers
 335 *      that need to allocate more than 1 bio must always submit the previously
 336 *      allocated bio for IO before attempting to allocate a new one. Failure to
 337 *      do so can cause livelocks under memory pressure.
 338 *
 339 *      RETURNS:
 340 *      Pointer to new bio on success, NULL on failure.
 341 */
 342struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
 343{
 344        struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
 345
 346        if (bio)
 347                bio->bi_destructor = bio_fs_destructor;
 348
 349        return bio;
 350}
 351EXPORT_SYMBOL(bio_alloc);
 352
 353static void bio_kmalloc_destructor(struct bio *bio)
 354{
 355        if (bio_integrity(bio))
 356                bio_integrity_free(bio, fs_bio_set);
 357        kfree(bio);
 358}
 359
 360/**
 361 * bio_kmalloc - allocate a bio for I/O using kmalloc()
 362 * @gfp_mask:   the GFP_ mask given to the slab allocator
 363 * @nr_iovecs:  number of iovecs to pre-allocate
 364 *
 365 * Description:
 366 *   Allocate a new bio with @nr_iovecs bvecs.  If @gfp_mask contains
 367 *   %__GFP_WAIT, the allocation is guaranteed to succeed.
 368 *
 369 **/
 370struct bio *bio_kmalloc(gfp_t gfp_mask, int nr_iovecs)
 371{
 372        struct bio *bio;
 373
 374        bio = kmalloc(sizeof(struct bio) + nr_iovecs * sizeof(struct bio_vec),
 375                      gfp_mask);
 376        if (unlikely(!bio))
 377                return NULL;
 378
 379        bio_init(bio);
 380        bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET;
 381        bio->bi_max_vecs = nr_iovecs;
 382        bio->bi_io_vec = bio->bi_inline_vecs;
 383        bio->bi_destructor = bio_kmalloc_destructor;
 384
 385        return bio;
 386}
 387EXPORT_SYMBOL(bio_kmalloc);
 388
 389void zero_fill_bio(struct bio *bio)
 390{
 391        unsigned long flags;
 392        struct bio_vec *bv;
 393        int i;
 394
 395        bio_for_each_segment(bv, bio, i) {
 396                char *data = bvec_kmap_irq(bv, &flags);
 397                memset(data, 0, bv->bv_len);
 398                flush_dcache_page(bv->bv_page);
 399                bvec_kunmap_irq(data, &flags);
 400        }
 401}
 402EXPORT_SYMBOL(zero_fill_bio);
 403
 404/**
 405 * bio_put - release a reference to a bio
 406 * @bio:   bio to release reference to
 407 *
 408 * Description:
 409 *   Put a reference to a &struct bio, either one you have gotten with
 410 *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
 411 **/
 412void bio_put(struct bio *bio)
 413{
 414        BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
 415
 416        /*
 417         * last put frees it
 418         */
 419        if (atomic_dec_and_test(&bio->bi_cnt)) {
 420                bio->bi_next = NULL;
 421                bio->bi_destructor(bio);
 422        }
 423}
 424EXPORT_SYMBOL(bio_put);
 425
 426inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
 427{
 428        if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
 429                blk_recount_segments(q, bio);
 430
 431        return bio->bi_phys_segments;
 432}
 433EXPORT_SYMBOL(bio_phys_segments);
 434
 435/**
 436 *      __bio_clone     -       clone a bio
 437 *      @bio: destination bio
 438 *      @bio_src: bio to clone
 439 *
 440 *      Clone a &bio. Caller will own the returned bio, but not
 441 *      the actual data it points to. Reference count of returned
 442 *      bio will be one.
 443 */
 444void __bio_clone(struct bio *bio, struct bio *bio_src)
 445{
 446        memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
 447                bio_src->bi_max_vecs * sizeof(struct bio_vec));
 448
 449        /*
 450         * most users will be overriding ->bi_bdev with a new target,
 451         * so we don't set nor calculate new physical/hw segment counts here
 452         */
 453        bio->bi_sector = bio_src->bi_sector;
 454        bio->bi_bdev = bio_src->bi_bdev;
 455        bio->bi_flags |= 1 << BIO_CLONED;
 456        bio->bi_rw = bio_src->bi_rw;
 457        bio->bi_vcnt = bio_src->bi_vcnt;
 458        bio->bi_size = bio_src->bi_size;
 459        bio->bi_idx = bio_src->bi_idx;
 460}
 461EXPORT_SYMBOL(__bio_clone);
 462
 463/**
 464 *      bio_clone       -       clone a bio
 465 *      @bio: bio to clone
 466 *      @gfp_mask: allocation priority
 467 *
 468 *      Like __bio_clone, only also allocates the returned bio
 469 */
 470struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
 471{
 472        struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
 473
 474        if (!b)
 475                return NULL;
 476
 477        b->bi_destructor = bio_fs_destructor;
 478        __bio_clone(b, bio);
 479
 480        if (bio_integrity(bio)) {
 481                int ret;
 482
 483                ret = bio_integrity_clone(b, bio, gfp_mask, fs_bio_set);
 484
 485                if (ret < 0) {
 486                        bio_put(b);
 487                        return NULL;
 488                }
 489        }
 490
 491        return b;
 492}
 493EXPORT_SYMBOL(bio_clone);
 494
 495/**
 496 *      bio_get_nr_vecs         - return approx number of vecs
 497 *      @bdev:  I/O target
 498 *
 499 *      Return the approximate number of pages we can send to this target.
 500 *      There's no guarantee that you will be able to fit this number of pages
 501 *      into a bio, it does not account for dynamic restrictions that vary
 502 *      on offset.
 503 */
 504int bio_get_nr_vecs(struct block_device *bdev)
 505{
 506        struct request_queue *q = bdev_get_queue(bdev);
 507        int nr_pages;
 508
 509        nr_pages = ((queue_max_sectors(q) << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
 510        if (nr_pages > queue_max_phys_segments(q))
 511                nr_pages = queue_max_phys_segments(q);
 512        if (nr_pages > queue_max_hw_segments(q))
 513                nr_pages = queue_max_hw_segments(q);
 514
 515        return nr_pages;
 516}
 517EXPORT_SYMBOL(bio_get_nr_vecs);
 518
 519static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
 520                          *page, unsigned int len, unsigned int offset,
 521                          unsigned short max_sectors)
 522{
 523        int retried_segments = 0;
 524        struct bio_vec *bvec;
 525
 526        /*
 527         * cloned bio must not modify vec list
 528         */
 529        if (unlikely(bio_flagged(bio, BIO_CLONED)))
 530                return 0;
 531
 532        if (((bio->bi_size + len) >> 9) > max_sectors)
 533                return 0;
 534
 535        /*
 536         * For filesystems with a blocksize smaller than the pagesize
 537         * we will often be called with the same page as last time and
 538         * a consecutive offset.  Optimize this special case.
 539         */
 540        if (bio->bi_vcnt > 0) {
 541                struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
 542
 543                if (page == prev->bv_page &&
 544                    offset == prev->bv_offset + prev->bv_len) {
 545                        prev->bv_len += len;
 546
 547                        if (q->merge_bvec_fn) {
 548                                struct bvec_merge_data bvm = {
 549                                        .bi_bdev = bio->bi_bdev,
 550                                        .bi_sector = bio->bi_sector,
 551                                        .bi_size = bio->bi_size,
 552                                        .bi_rw = bio->bi_rw,
 553                                };
 554
 555                                if (q->merge_bvec_fn(q, &bvm, prev) < len) {
 556                                        prev->bv_len -= len;
 557                                        return 0;
 558                                }
 559                        }
 560
 561                        goto done;
 562                }
 563        }
 564
 565        if (bio->bi_vcnt >= bio->bi_max_vecs)
 566                return 0;
 567
 568        /*
 569         * we might lose a segment or two here, but rather that than
 570         * make this too complex.
 571         */
 572
 573        while (bio->bi_phys_segments >= queue_max_phys_segments(q)
 574               || bio->bi_phys_segments >= queue_max_hw_segments(q)) {
 575
 576                if (retried_segments)
 577                        return 0;
 578
 579                retried_segments = 1;
 580                blk_recount_segments(q, bio);
 581        }
 582
 583        /*
 584         * setup the new entry, we might clear it again later if we
 585         * cannot add the page
 586         */
 587        bvec = &bio->bi_io_vec[bio->bi_vcnt];
 588        bvec->bv_page = page;
 589        bvec->bv_len = len;
 590        bvec->bv_offset = offset;
 591
 592        /*
 593         * if queue has other restrictions (eg varying max sector size
 594         * depending on offset), it can specify a merge_bvec_fn in the
 595         * queue to get further control
 596         */
 597        if (q->merge_bvec_fn) {
 598                struct bvec_merge_data bvm = {
 599                        .bi_bdev = bio->bi_bdev,
 600                        .bi_sector = bio->bi_sector,
 601                        .bi_size = bio->bi_size,
 602                        .bi_rw = bio->bi_rw,
 603                };
 604
 605                /*
 606                 * merge_bvec_fn() returns number of bytes it can accept
 607                 * at this offset
 608                 */
 609                if (q->merge_bvec_fn(q, &bvm, bvec) < len) {
 610                        bvec->bv_page = NULL;
 611                        bvec->bv_len = 0;
 612                        bvec->bv_offset = 0;
 613                        return 0;
 614                }
 615        }
 616
 617        /* If we may be able to merge these biovecs, force a recount */
 618        if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
 619                bio->bi_flags &= ~(1 << BIO_SEG_VALID);
 620
 621        bio->bi_vcnt++;
 622        bio->bi_phys_segments++;
 623 done:
 624        bio->bi_size += len;
 625        return len;
 626}
 627
 628/**
 629 *      bio_add_pc_page -       attempt to add page to bio
 630 *      @q: the target queue
 631 *      @bio: destination bio
 632 *      @page: page to add
 633 *      @len: vec entry length
 634 *      @offset: vec entry offset
 635 *
 636 *      Attempt to add a page to the bio_vec maplist. This can fail for a
 637 *      number of reasons, such as the bio being full or target block
 638 *      device limitations. The target block device must allow bio's
 639 *      smaller than PAGE_SIZE, so it is always possible to add a single
 640 *      page to an empty bio. This should only be used by REQ_PC bios.
 641 */
 642int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
 643                    unsigned int len, unsigned int offset)
 644{
 645        return __bio_add_page(q, bio, page, len, offset,
 646                              queue_max_hw_sectors(q));
 647}
 648EXPORT_SYMBOL(bio_add_pc_page);
 649
 650/**
 651 *      bio_add_page    -       attempt to add page to bio
 652 *      @bio: destination bio
 653 *      @page: page to add
 654 *      @len: vec entry length
 655 *      @offset: vec entry offset
 656 *
 657 *      Attempt to add a page to the bio_vec maplist. This can fail for a
 658 *      number of reasons, such as the bio being full or target block
 659 *      device limitations. The target block device must allow bio's
 660 *      smaller than PAGE_SIZE, so it is always possible to add a single
 661 *      page to an empty bio.
 662 */
 663int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
 664                 unsigned int offset)
 665{
 666        struct request_queue *q = bdev_get_queue(bio->bi_bdev);
 667        return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
 668}
 669EXPORT_SYMBOL(bio_add_page);
 670
 671struct bio_map_data {
 672        struct bio_vec *iovecs;
 673        struct sg_iovec *sgvecs;
 674        int nr_sgvecs;
 675        int is_our_pages;
 676};
 677
 678static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
 679                             struct sg_iovec *iov, int iov_count,
 680                             int is_our_pages)
 681{
 682        memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
 683        memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
 684        bmd->nr_sgvecs = iov_count;
 685        bmd->is_our_pages = is_our_pages;
 686        bio->bi_private = bmd;
 687}
 688
 689static void bio_free_map_data(struct bio_map_data *bmd)
 690{
 691        kfree(bmd->iovecs);
 692        kfree(bmd->sgvecs);
 693        kfree(bmd);
 694}
 695
 696static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count,
 697                                               gfp_t gfp_mask)
 698{
 699        struct bio_map_data *bmd = kmalloc(sizeof(*bmd), gfp_mask);
 700
 701        if (!bmd)
 702                return NULL;
 703
 704        bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
 705        if (!bmd->iovecs) {
 706                kfree(bmd);
 707                return NULL;
 708        }
 709
 710        bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
 711        if (bmd->sgvecs)
 712                return bmd;
 713
 714        kfree(bmd->iovecs);
 715        kfree(bmd);
 716        return NULL;
 717}
 718
 719static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
 720                          struct sg_iovec *iov, int iov_count,
 721                          int to_user, int from_user, int do_free_page)
 722{
 723        int ret = 0, i;
 724        struct bio_vec *bvec;
 725        int iov_idx = 0;
 726        unsigned int iov_off = 0;
 727
 728        __bio_for_each_segment(bvec, bio, i, 0) {
 729                char *bv_addr = page_address(bvec->bv_page);
 730                unsigned int bv_len = iovecs[i].bv_len;
 731
 732                while (bv_len && iov_idx < iov_count) {
 733                        unsigned int bytes;
 734                        char __user *iov_addr;
 735
 736                        bytes = min_t(unsigned int,
 737                                      iov[iov_idx].iov_len - iov_off, bv_len);
 738                        iov_addr = iov[iov_idx].iov_base + iov_off;
 739
 740                        if (!ret) {
 741                                if (to_user)
 742                                        ret = copy_to_user(iov_addr, bv_addr,
 743                                                           bytes);
 744
 745                                if (from_user)
 746                                        ret = copy_from_user(bv_addr, iov_addr,
 747                                                             bytes);
 748
 749                                if (ret)
 750                                        ret = -EFAULT;
 751                        }
 752
 753                        bv_len -= bytes;
 754                        bv_addr += bytes;
 755                        iov_addr += bytes;
 756                        iov_off += bytes;
 757
 758                        if (iov[iov_idx].iov_len == iov_off) {
 759                                iov_idx++;
 760                                iov_off = 0;
 761                        }
 762                }
 763
 764                if (do_free_page)
 765                        __free_page(bvec->bv_page);
 766        }
 767
 768        return ret;
 769}
 770
 771/**
 772 *      bio_uncopy_user -       finish previously mapped bio
 773 *      @bio: bio being terminated
 774 *
 775 *      Free pages allocated from bio_copy_user() and write back data
 776 *      to user space in case of a read.
 777 */
 778int bio_uncopy_user(struct bio *bio)
 779{
 780        struct bio_map_data *bmd = bio->bi_private;
 781        int ret = 0;
 782
 783        if (!bio_flagged(bio, BIO_NULL_MAPPED))
 784                ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
 785                                     bmd->nr_sgvecs, bio_data_dir(bio) == READ,
 786                                     0, bmd->is_our_pages);
 787        bio_free_map_data(bmd);
 788        bio_put(bio);
 789        return ret;
 790}
 791EXPORT_SYMBOL(bio_uncopy_user);
 792
 793/**
 794 *      bio_copy_user_iov       -       copy user data to bio
 795 *      @q: destination block queue
 796 *      @map_data: pointer to the rq_map_data holding pages (if necessary)
 797 *      @iov:   the iovec.
 798 *      @iov_count: number of elements in the iovec
 799 *      @write_to_vm: bool indicating writing to pages or not
 800 *      @gfp_mask: memory allocation flags
 801 *
 802 *      Prepares and returns a bio for indirect user io, bouncing data
 803 *      to/from kernel pages as necessary. Must be paired with
 804 *      call bio_uncopy_user() on io completion.
 805 */
 806struct bio *bio_copy_user_iov(struct request_queue *q,
 807                              struct rq_map_data *map_data,
 808                              struct sg_iovec *iov, int iov_count,
 809                              int write_to_vm, gfp_t gfp_mask)
 810{
 811        struct bio_map_data *bmd;
 812        struct bio_vec *bvec;
 813        struct page *page;
 814        struct bio *bio;
 815        int i, ret;
 816        int nr_pages = 0;
 817        unsigned int len = 0;
 818        unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
 819
 820        for (i = 0; i < iov_count; i++) {
 821                unsigned long uaddr;
 822                unsigned long end;
 823                unsigned long start;
 824
 825                uaddr = (unsigned long)iov[i].iov_base;
 826                end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
 827                start = uaddr >> PAGE_SHIFT;
 828
 829                nr_pages += end - start;
 830                len += iov[i].iov_len;
 831        }
 832
 833        if (offset)
 834                nr_pages++;
 835
 836        bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
 837        if (!bmd)
 838                return ERR_PTR(-ENOMEM);
 839
 840        ret = -ENOMEM;
 841        bio = bio_kmalloc(gfp_mask, nr_pages);
 842        if (!bio)
 843                goto out_bmd;
 844
 845        bio->bi_rw |= (!write_to_vm << BIO_RW);
 846
 847        ret = 0;
 848
 849        if (map_data) {
 850                nr_pages = 1 << map_data->page_order;
 851                i = map_data->offset / PAGE_SIZE;
 852        }
 853        while (len) {
 854                unsigned int bytes = PAGE_SIZE;
 855
 856                bytes -= offset;
 857
 858                if (bytes > len)
 859                        bytes = len;
 860
 861                if (map_data) {
 862                        if (i == map_data->nr_entries * nr_pages) {
 863                                ret = -ENOMEM;
 864                                break;
 865                        }
 866
 867                        page = map_data->pages[i / nr_pages];
 868                        page += (i % nr_pages);
 869
 870                        i++;
 871                } else {
 872                        page = alloc_page(q->bounce_gfp | gfp_mask);
 873                        if (!page) {
 874                                ret = -ENOMEM;
 875                                break;
 876                        }
 877                }
 878
 879                if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
 880                        break;
 881
 882                len -= bytes;
 883                offset = 0;
 884        }
 885
 886        if (ret)
 887                goto cleanup;
 888
 889        /*
 890         * success
 891         */
 892        if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
 893            (map_data && map_data->from_user)) {
 894                ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
 895                if (ret)
 896                        goto cleanup;
 897        }
 898
 899        bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
 900        return bio;
 901cleanup:
 902        if (!map_data)
 903                bio_for_each_segment(bvec, bio, i)
 904                        __free_page(bvec->bv_page);
 905
 906        bio_put(bio);
 907out_bmd:
 908        bio_free_map_data(bmd);
 909        return ERR_PTR(ret);
 910}
 911
 912/**
 913 *      bio_copy_user   -       copy user data to bio
 914 *      @q: destination block queue
 915 *      @map_data: pointer to the rq_map_data holding pages (if necessary)
 916 *      @uaddr: start of user address
 917 *      @len: length in bytes
 918 *      @write_to_vm: bool indicating writing to pages or not
 919 *      @gfp_mask: memory allocation flags
 920 *
 921 *      Prepares and returns a bio for indirect user io, bouncing data
 922 *      to/from kernel pages as necessary. Must be paired with
 923 *      call bio_uncopy_user() on io completion.
 924 */
 925struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
 926                          unsigned long uaddr, unsigned int len,
 927                          int write_to_vm, gfp_t gfp_mask)
 928{
 929        struct sg_iovec iov;
 930
 931        iov.iov_base = (void __user *)uaddr;
 932        iov.iov_len = len;
 933
 934        return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
 935}
 936EXPORT_SYMBOL(bio_copy_user);
 937
 938static struct bio *__bio_map_user_iov(struct request_queue *q,
 939                                      struct block_device *bdev,
 940                                      struct sg_iovec *iov, int iov_count,
 941                                      int write_to_vm, gfp_t gfp_mask)
 942{
 943        int i, j;
 944        int nr_pages = 0;
 945        struct page **pages;
 946        struct bio *bio;
 947        int cur_page = 0;
 948        int ret, offset;
 949
 950        for (i = 0; i < iov_count; i++) {
 951                unsigned long uaddr = (unsigned long)iov[i].iov_base;
 952                unsigned long len = iov[i].iov_len;
 953                unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
 954                unsigned long start = uaddr >> PAGE_SHIFT;
 955
 956                nr_pages += end - start;
 957                /*
 958                 * buffer must be aligned to at least hardsector size for now
 959                 */
 960                if (uaddr & queue_dma_alignment(q))
 961                        return ERR_PTR(-EINVAL);
 962        }
 963
 964        if (!nr_pages)
 965                return ERR_PTR(-EINVAL);
 966
 967        bio = bio_kmalloc(gfp_mask, nr_pages);
 968        if (!bio)
 969                return ERR_PTR(-ENOMEM);
 970
 971        ret = -ENOMEM;
 972        pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
 973        if (!pages)
 974                goto out;
 975
 976        for (i = 0; i < iov_count; i++) {
 977                unsigned long uaddr = (unsigned long)iov[i].iov_base;
 978                unsigned long len = iov[i].iov_len;
 979                unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
 980                unsigned long start = uaddr >> PAGE_SHIFT;
 981                const int local_nr_pages = end - start;
 982                const int page_limit = cur_page + local_nr_pages;
 983                
 984                ret = get_user_pages_fast(uaddr, local_nr_pages,
 985                                write_to_vm, &pages[cur_page]);
 986                if (ret < local_nr_pages) {
 987                        ret = -EFAULT;
 988                        goto out_unmap;
 989                }
 990
 991                offset = uaddr & ~PAGE_MASK;
 992                for (j = cur_page; j < page_limit; j++) {
 993                        unsigned int bytes = PAGE_SIZE - offset;
 994
 995                        if (len <= 0)
 996                                break;
 997                        
 998                        if (bytes > len)
 999                                bytes = len;
1000
1001                        /*
1002                         * sorry...
1003                         */
1004                        if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1005                                            bytes)
1006                                break;
1007
1008                        len -= bytes;
1009                        offset = 0;
1010                }
1011
1012                cur_page = j;
1013                /*
1014                 * release the pages we didn't map into the bio, if any
1015                 */
1016                while (j < page_limit)
1017                        page_cache_release(pages[j++]);
1018        }
1019
1020        kfree(pages);
1021
1022        /*
1023         * set data direction, and check if mapped pages need bouncing
1024         */
1025        if (!write_to_vm)
1026                bio->bi_rw |= (1 << BIO_RW);
1027
1028        bio->bi_bdev = bdev;
1029        bio->bi_flags |= (1 << BIO_USER_MAPPED);
1030        return bio;
1031
1032 out_unmap:
1033        for (i = 0; i < nr_pages; i++) {
1034                if(!pages[i])
1035                        break;
1036                page_cache_release(pages[i]);
1037        }
1038 out:
1039        kfree(pages);
1040        bio_put(bio);
1041        return ERR_PTR(ret);
1042}
1043
1044/**
1045 *      bio_map_user    -       map user address into bio
1046 *      @q: the struct request_queue for the bio
1047 *      @bdev: destination block device
1048 *      @uaddr: start of user address
1049 *      @len: length in bytes
1050 *      @write_to_vm: bool indicating writing to pages or not
1051 *      @gfp_mask: memory allocation flags
1052 *
1053 *      Map the user space address into a bio suitable for io to a block
1054 *      device. Returns an error pointer in case of error.
1055 */
1056struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1057                         unsigned long uaddr, unsigned int len, int write_to_vm,
1058                         gfp_t gfp_mask)
1059{
1060        struct sg_iovec iov;
1061
1062        iov.iov_base = (void __user *)uaddr;
1063        iov.iov_len = len;
1064
1065        return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
1066}
1067EXPORT_SYMBOL(bio_map_user);
1068
1069/**
1070 *      bio_map_user_iov - map user sg_iovec table into bio
1071 *      @q: the struct request_queue for the bio
1072 *      @bdev: destination block device
1073 *      @iov:   the iovec.
1074 *      @iov_count: number of elements in the iovec
1075 *      @write_to_vm: bool indicating writing to pages or not
1076 *      @gfp_mask: memory allocation flags
1077 *
1078 *      Map the user space address into a bio suitable for io to a block
1079 *      device. Returns an error pointer in case of error.
1080 */
1081struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
1082                             struct sg_iovec *iov, int iov_count,
1083                             int write_to_vm, gfp_t gfp_mask)
1084{
1085        struct bio *bio;
1086
1087        bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1088                                 gfp_mask);
1089        if (IS_ERR(bio))
1090                return bio;
1091
1092        /*
1093         * subtle -- if __bio_map_user() ended up bouncing a bio,
1094         * it would normally disappear when its bi_end_io is run.
1095         * however, we need it for the unmap, so grab an extra
1096         * reference to it
1097         */
1098        bio_get(bio);
1099
1100        return bio;
1101}
1102
1103static void __bio_unmap_user(struct bio *bio)
1104{
1105        struct bio_vec *bvec;
1106        int i;
1107
1108        /*
1109         * make sure we dirty pages we wrote to
1110         */
1111        __bio_for_each_segment(bvec, bio, i, 0) {
1112                if (bio_data_dir(bio) == READ)
1113                        set_page_dirty_lock(bvec->bv_page);
1114
1115                page_cache_release(bvec->bv_page);
1116        }
1117
1118        bio_put(bio);
1119}
1120
1121/**
1122 *      bio_unmap_user  -       unmap a bio
1123 *      @bio:           the bio being unmapped
1124 *
1125 *      Unmap a bio previously mapped by bio_map_user(). Must be called with
1126 *      a process context.
1127 *
1128 *      bio_unmap_user() may sleep.
1129 */
1130void bio_unmap_user(struct bio *bio)
1131{
1132        __bio_unmap_user(bio);
1133        bio_put(bio);
1134}
1135EXPORT_SYMBOL(bio_unmap_user);
1136
1137static void bio_map_kern_endio(struct bio *bio, int err)
1138{
1139        bio_put(bio);
1140}
1141
1142static struct bio *__bio_map_kern(struct request_queue *q, void *data,
1143                                  unsigned int len, gfp_t gfp_mask)
1144{
1145        unsigned long kaddr = (unsigned long)data;
1146        unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1147        unsigned long start = kaddr >> PAGE_SHIFT;
1148        const int nr_pages = end - start;
1149        int offset, i;
1150        struct bio *bio;
1151
1152        bio = bio_kmalloc(gfp_mask, nr_pages);
1153        if (!bio)
1154                return ERR_PTR(-ENOMEM);
1155
1156        offset = offset_in_page(kaddr);
1157        for (i = 0; i < nr_pages; i++) {
1158                unsigned int bytes = PAGE_SIZE - offset;
1159
1160                if (len <= 0)
1161                        break;
1162
1163                if (bytes > len)
1164                        bytes = len;
1165
1166                if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1167                                    offset) < bytes)
1168                        break;
1169
1170                data += bytes;
1171                len -= bytes;
1172                offset = 0;
1173        }
1174
1175        bio->bi_end_io = bio_map_kern_endio;
1176        return bio;
1177}
1178
1179/**
1180 *      bio_map_kern    -       map kernel address into bio
1181 *      @q: the struct request_queue for the bio
1182 *      @data: pointer to buffer to map
1183 *      @len: length in bytes
1184 *      @gfp_mask: allocation flags for bio allocation
1185 *
1186 *      Map the kernel address into a bio suitable for io to a block
1187 *      device. Returns an error pointer in case of error.
1188 */
1189struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1190                         gfp_t gfp_mask)
1191{
1192        struct bio *bio;
1193
1194        bio = __bio_map_kern(q, data, len, gfp_mask);
1195        if (IS_ERR(bio))
1196                return bio;
1197
1198        if (bio->bi_size == len)
1199                return bio;
1200
1201        /*
1202         * Don't support partial mappings.
1203         */
1204        bio_put(bio);
1205        return ERR_PTR(-EINVAL);
1206}
1207EXPORT_SYMBOL(bio_map_kern);
1208
1209static void bio_copy_kern_endio(struct bio *bio, int err)
1210{
1211        struct bio_vec *bvec;
1212        const int read = bio_data_dir(bio) == READ;
1213        struct bio_map_data *bmd = bio->bi_private;
1214        int i;
1215        char *p = bmd->sgvecs[0].iov_base;
1216
1217        __bio_for_each_segment(bvec, bio, i, 0) {
1218                char *addr = page_address(bvec->bv_page);
1219                int len = bmd->iovecs[i].bv_len;
1220
1221                if (read)
1222                        memcpy(p, addr, len);
1223
1224                __free_page(bvec->bv_page);
1225                p += len;
1226        }
1227
1228        bio_free_map_data(bmd);
1229        bio_put(bio);
1230}
1231
1232/**
1233 *      bio_copy_kern   -       copy kernel address into bio
1234 *      @q: the struct request_queue for the bio
1235 *      @data: pointer to buffer to copy
1236 *      @len: length in bytes
1237 *      @gfp_mask: allocation flags for bio and page allocation
1238 *      @reading: data direction is READ
1239 *
1240 *      copy the kernel address into a bio suitable for io to a block
1241 *      device. Returns an error pointer in case of error.
1242 */
1243struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1244                          gfp_t gfp_mask, int reading)
1245{
1246        struct bio *bio;
1247        struct bio_vec *bvec;
1248        int i;
1249
1250        bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1251        if (IS_ERR(bio))
1252                return bio;
1253
1254        if (!reading) {
1255                void *p = data;
1256
1257                bio_for_each_segment(bvec, bio, i) {
1258                        char *addr = page_address(bvec->bv_page);
1259
1260                        memcpy(addr, p, bvec->bv_len);
1261                        p += bvec->bv_len;
1262                }
1263        }
1264
1265        bio->bi_end_io = bio_copy_kern_endio;
1266
1267        return bio;
1268}
1269EXPORT_SYMBOL(bio_copy_kern);
1270
1271/*
1272 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1273 * for performing direct-IO in BIOs.
1274 *
1275 * The problem is that we cannot run set_page_dirty() from interrupt context
1276 * because the required locks are not interrupt-safe.  So what we can do is to
1277 * mark the pages dirty _before_ performing IO.  And in interrupt context,
1278 * check that the pages are still dirty.   If so, fine.  If not, redirty them
1279 * in process context.
1280 *
1281 * We special-case compound pages here: normally this means reads into hugetlb
1282 * pages.  The logic in here doesn't really work right for compound pages
1283 * because the VM does not uniformly chase down the head page in all cases.
1284 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1285 * handle them at all.  So we skip compound pages here at an early stage.
1286 *
1287 * Note that this code is very hard to test under normal circumstances because
1288 * direct-io pins the pages with get_user_pages().  This makes
1289 * is_page_cache_freeable return false, and the VM will not clean the pages.
1290 * But other code (eg, pdflush) could clean the pages if they are mapped
1291 * pagecache.
1292 *
1293 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1294 * deferred bio dirtying paths.
1295 */
1296
1297/*
1298 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1299 */
1300void bio_set_pages_dirty(struct bio *bio)
1301{
1302        struct bio_vec *bvec = bio->bi_io_vec;
1303        int i;
1304
1305        for (i = 0; i < bio->bi_vcnt; i++) {
1306                struct page *page = bvec[i].bv_page;
1307
1308                if (page && !PageCompound(page))
1309                        set_page_dirty_lock(page);
1310        }
1311}
1312
1313static void bio_release_pages(struct bio *bio)
1314{
1315        struct bio_vec *bvec = bio->bi_io_vec;
1316        int i;
1317
1318        for (i = 0; i < bio->bi_vcnt; i++) {
1319                struct page *page = bvec[i].bv_page;
1320
1321                if (page)
1322                        put_page(page);
1323        }
1324}
1325
1326/*
1327 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1328 * If they are, then fine.  If, however, some pages are clean then they must
1329 * have been written out during the direct-IO read.  So we take another ref on
1330 * the BIO and the offending pages and re-dirty the pages in process context.
1331 *
1332 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1333 * here on.  It will run one page_cache_release() against each page and will
1334 * run one bio_put() against the BIO.
1335 */
1336
1337static void bio_dirty_fn(struct work_struct *work);
1338
1339static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1340static DEFINE_SPINLOCK(bio_dirty_lock);
1341static struct bio *bio_dirty_list;
1342
1343/*
1344 * This runs in process context
1345 */
1346static void bio_dirty_fn(struct work_struct *work)
1347{
1348        unsigned long flags;
1349        struct bio *bio;
1350
1351        spin_lock_irqsave(&bio_dirty_lock, flags);
1352        bio = bio_dirty_list;
1353        bio_dirty_list = NULL;
1354        spin_unlock_irqrestore(&bio_dirty_lock, flags);
1355
1356        while (bio) {
1357                struct bio *next = bio->bi_private;
1358
1359                bio_set_pages_dirty(bio);
1360                bio_release_pages(bio);
1361                bio_put(bio);
1362                bio = next;
1363        }
1364}
1365
1366void bio_check_pages_dirty(struct bio *bio)
1367{
1368        struct bio_vec *bvec = bio->bi_io_vec;
1369        int nr_clean_pages = 0;
1370        int i;
1371
1372        for (i = 0; i < bio->bi_vcnt; i++) {
1373                struct page *page = bvec[i].bv_page;
1374
1375                if (PageDirty(page) || PageCompound(page)) {
1376                        page_cache_release(page);
1377                        bvec[i].bv_page = NULL;
1378                } else {
1379                        nr_clean_pages++;
1380                }
1381        }
1382
1383        if (nr_clean_pages) {
1384                unsigned long flags;
1385
1386                spin_lock_irqsave(&bio_dirty_lock, flags);
1387                bio->bi_private = bio_dirty_list;
1388                bio_dirty_list = bio;
1389                spin_unlock_irqrestore(&bio_dirty_lock, flags);
1390                schedule_work(&bio_dirty_work);
1391        } else {
1392                bio_put(bio);
1393        }
1394}
1395
1396/**
1397 * bio_endio - end I/O on a bio
1398 * @bio:        bio
1399 * @error:      error, if any
1400 *
1401 * Description:
1402 *   bio_endio() will end I/O on the whole bio. bio_endio() is the
1403 *   preferred way to end I/O on a bio, it takes care of clearing
1404 *   BIO_UPTODATE on error. @error is 0 on success, and and one of the
1405 *   established -Exxxx (-EIO, for instance) error values in case
1406 *   something went wrong. Noone should call bi_end_io() directly on a
1407 *   bio unless they own it and thus know that it has an end_io
1408 *   function.
1409 **/
1410void bio_endio(struct bio *bio, int error)
1411{
1412        if (error)
1413                clear_bit(BIO_UPTODATE, &bio->bi_flags);
1414        else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1415                error = -EIO;
1416
1417        if (bio->bi_end_io)
1418                bio->bi_end_io(bio, error);
1419}
1420EXPORT_SYMBOL(bio_endio);
1421
1422void bio_pair_release(struct bio_pair *bp)
1423{
1424        if (atomic_dec_and_test(&bp->cnt)) {
1425                struct bio *master = bp->bio1.bi_private;
1426
1427                bio_endio(master, bp->error);
1428                mempool_free(bp, bp->bio2.bi_private);
1429        }
1430}
1431EXPORT_SYMBOL(bio_pair_release);
1432
1433static void bio_pair_end_1(struct bio *bi, int err)
1434{
1435        struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1436
1437        if (err)
1438                bp->error = err;
1439
1440        bio_pair_release(bp);
1441}
1442
1443static void bio_pair_end_2(struct bio *bi, int err)
1444{
1445        struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1446
1447        if (err)
1448                bp->error = err;
1449
1450        bio_pair_release(bp);
1451}
1452
1453/*
1454 * split a bio - only worry about a bio with a single page in its iovec
1455 */
1456struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1457{
1458        struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1459
1460        if (!bp)
1461                return bp;
1462
1463        trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
1464                                bi->bi_sector + first_sectors);
1465
1466        BUG_ON(bi->bi_vcnt != 1);
1467        BUG_ON(bi->bi_idx != 0);
1468        atomic_set(&bp->cnt, 3);
1469        bp->error = 0;
1470        bp->bio1 = *bi;
1471        bp->bio2 = *bi;
1472        bp->bio2.bi_sector += first_sectors;
1473        bp->bio2.bi_size -= first_sectors << 9;
1474        bp->bio1.bi_size = first_sectors << 9;
1475
1476        bp->bv1 = bi->bi_io_vec[0];
1477        bp->bv2 = bi->bi_io_vec[0];
1478        bp->bv2.bv_offset += first_sectors << 9;
1479        bp->bv2.bv_len -= first_sectors << 9;
1480        bp->bv1.bv_len = first_sectors << 9;
1481
1482        bp->bio1.bi_io_vec = &bp->bv1;
1483        bp->bio2.bi_io_vec = &bp->bv2;
1484
1485        bp->bio1.bi_max_vecs = 1;
1486        bp->bio2.bi_max_vecs = 1;
1487
1488        bp->bio1.bi_end_io = bio_pair_end_1;
1489        bp->bio2.bi_end_io = bio_pair_end_2;
1490
1491        bp->bio1.bi_private = bi;
1492        bp->bio2.bi_private = bio_split_pool;
1493
1494        if (bio_integrity(bi))
1495                bio_integrity_split(bi, bp, first_sectors);
1496
1497        return bp;
1498}
1499EXPORT_SYMBOL(bio_split);
1500
1501/**
1502 *      bio_sector_offset - Find hardware sector offset in bio
1503 *      @bio:           bio to inspect
1504 *      @index:         bio_vec index
1505 *      @offset:        offset in bv_page
1506 *
1507 *      Return the number of hardware sectors between beginning of bio
1508 *      and an end point indicated by a bio_vec index and an offset
1509 *      within that vector's page.
1510 */
1511sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1512                           unsigned int offset)
1513{
1514        unsigned int sector_sz;
1515        struct bio_vec *bv;
1516        sector_t sectors;
1517        int i;
1518
1519        sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
1520        sectors = 0;
1521
1522        if (index >= bio->bi_idx)
1523                index = bio->bi_vcnt - 1;
1524
1525        __bio_for_each_segment(bv, bio, i, 0) {
1526                if (i == index) {
1527                        if (offset > bv->bv_offset)
1528                                sectors += (offset - bv->bv_offset) / sector_sz;
1529                        break;
1530                }
1531
1532                sectors += bv->bv_len / sector_sz;
1533        }
1534
1535        return sectors;
1536}
1537EXPORT_SYMBOL(bio_sector_offset);
1538
1539/*
1540 * create memory pools for biovec's in a bio_set.
1541 * use the global biovec slabs created for general use.
1542 */
1543static int biovec_create_pools(struct bio_set *bs, int pool_entries)
1544{
1545        struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1546
1547        bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
1548        if (!bs->bvec_pool)
1549                return -ENOMEM;
1550
1551        return 0;
1552}
1553
1554static void biovec_free_pools(struct bio_set *bs)
1555{
1556        mempool_destroy(bs->bvec_pool);
1557}
1558
1559void bioset_free(struct bio_set *bs)
1560{
1561        if (bs->bio_pool)
1562                mempool_destroy(bs->bio_pool);
1563
1564        bioset_integrity_free(bs);
1565        biovec_free_pools(bs);
1566        bio_put_slab(bs);
1567
1568        kfree(bs);
1569}
1570EXPORT_SYMBOL(bioset_free);
1571
1572/**
1573 * bioset_create  - Create a bio_set
1574 * @pool_size:  Number of bio and bio_vecs to cache in the mempool
1575 * @front_pad:  Number of bytes to allocate in front of the returned bio
1576 *
1577 * Description:
1578 *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1579 *    to ask for a number of bytes to be allocated in front of the bio.
1580 *    Front pad allocation is useful for embedding the bio inside
1581 *    another structure, to avoid allocating extra data to go with the bio.
1582 *    Note that the bio must be embedded at the END of that structure always,
1583 *    or things will break badly.
1584 */
1585struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1586{
1587        unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1588        struct bio_set *bs;
1589
1590        bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1591        if (!bs)
1592                return NULL;
1593
1594        bs->front_pad = front_pad;
1595
1596        bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1597        if (!bs->bio_slab) {
1598                kfree(bs);
1599                return NULL;
1600        }
1601
1602        bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1603        if (!bs->bio_pool)
1604                goto bad;
1605
1606        if (bioset_integrity_create(bs, pool_size))
1607                goto bad;
1608
1609        if (!biovec_create_pools(bs, pool_size))
1610                return bs;
1611
1612bad:
1613        bioset_free(bs);
1614        return NULL;
1615}
1616EXPORT_SYMBOL(bioset_create);
1617
1618static void __init biovec_init_slabs(void)
1619{
1620        int i;
1621
1622        for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1623                int size;
1624                struct biovec_slab *bvs = bvec_slabs + i;
1625
1626#ifndef CONFIG_BLK_DEV_INTEGRITY
1627                if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1628                        bvs->slab = NULL;
1629                        continue;
1630                }
1631#endif
1632
1633                size = bvs->nr_vecs * sizeof(struct bio_vec);
1634                bvs->slab = kmem_cache_create(bvs->name, size, 0,
1635                                SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1636        }
1637}
1638
1639static int __init init_bio(void)
1640{
1641        bio_slab_max = 2;
1642        bio_slab_nr = 0;
1643        bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
1644        if (!bio_slabs)
1645                panic("bio: can't allocate bios\n");
1646
1647        bio_integrity_init();
1648        biovec_init_slabs();
1649
1650        fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1651        if (!fs_bio_set)
1652                panic("bio: can't allocate bios\n");
1653
1654        bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1655                                                     sizeof(struct bio_pair));
1656        if (!bio_split_pool)
1657                panic("bio: can't create split pool\n");
1658
1659        return 0;
1660}
1661subsys_initcall(init_bio);
1662