linux/fs/btrfs/ctree.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include "ctree.h"
  21#include "disk-io.h"
  22#include "transaction.h"
  23#include "print-tree.h"
  24#include "locking.h"
  25
  26static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  27                      *root, struct btrfs_path *path, int level);
  28static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  29                      *root, struct btrfs_key *ins_key,
  30                      struct btrfs_path *path, int data_size, int extend);
  31static int push_node_left(struct btrfs_trans_handle *trans,
  32                          struct btrfs_root *root, struct extent_buffer *dst,
  33                          struct extent_buffer *src, int empty);
  34static int balance_node_right(struct btrfs_trans_handle *trans,
  35                              struct btrfs_root *root,
  36                              struct extent_buffer *dst_buf,
  37                              struct extent_buffer *src_buf);
  38static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  39                   struct btrfs_path *path, int level, int slot);
  40
  41struct btrfs_path *btrfs_alloc_path(void)
  42{
  43        struct btrfs_path *path;
  44        path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  45        if (path)
  46                path->reada = 1;
  47        return path;
  48}
  49
  50/*
  51 * set all locked nodes in the path to blocking locks.  This should
  52 * be done before scheduling
  53 */
  54noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  55{
  56        int i;
  57        for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  58                if (p->nodes[i] && p->locks[i])
  59                        btrfs_set_lock_blocking(p->nodes[i]);
  60        }
  61}
  62
  63/*
  64 * reset all the locked nodes in the patch to spinning locks.
  65 *
  66 * held is used to keep lockdep happy, when lockdep is enabled
  67 * we set held to a blocking lock before we go around and
  68 * retake all the spinlocks in the path.  You can safely use NULL
  69 * for held
  70 */
  71noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  72                                        struct extent_buffer *held)
  73{
  74        int i;
  75
  76#ifdef CONFIG_DEBUG_LOCK_ALLOC
  77        /* lockdep really cares that we take all of these spinlocks
  78         * in the right order.  If any of the locks in the path are not
  79         * currently blocking, it is going to complain.  So, make really
  80         * really sure by forcing the path to blocking before we clear
  81         * the path blocking.
  82         */
  83        if (held)
  84                btrfs_set_lock_blocking(held);
  85        btrfs_set_path_blocking(p);
  86#endif
  87
  88        for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  89                if (p->nodes[i] && p->locks[i])
  90                        btrfs_clear_lock_blocking(p->nodes[i]);
  91        }
  92
  93#ifdef CONFIG_DEBUG_LOCK_ALLOC
  94        if (held)
  95                btrfs_clear_lock_blocking(held);
  96#endif
  97}
  98
  99/* this also releases the path */
 100void btrfs_free_path(struct btrfs_path *p)
 101{
 102        btrfs_release_path(NULL, p);
 103        kmem_cache_free(btrfs_path_cachep, p);
 104}
 105
 106/*
 107 * path release drops references on the extent buffers in the path
 108 * and it drops any locks held by this path
 109 *
 110 * It is safe to call this on paths that no locks or extent buffers held.
 111 */
 112noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
 113{
 114        int i;
 115
 116        for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 117                p->slots[i] = 0;
 118                if (!p->nodes[i])
 119                        continue;
 120                if (p->locks[i]) {
 121                        btrfs_tree_unlock(p->nodes[i]);
 122                        p->locks[i] = 0;
 123                }
 124                free_extent_buffer(p->nodes[i]);
 125                p->nodes[i] = NULL;
 126        }
 127}
 128
 129/*
 130 * safely gets a reference on the root node of a tree.  A lock
 131 * is not taken, so a concurrent writer may put a different node
 132 * at the root of the tree.  See btrfs_lock_root_node for the
 133 * looping required.
 134 *
 135 * The extent buffer returned by this has a reference taken, so
 136 * it won't disappear.  It may stop being the root of the tree
 137 * at any time because there are no locks held.
 138 */
 139struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 140{
 141        struct extent_buffer *eb;
 142        spin_lock(&root->node_lock);
 143        eb = root->node;
 144        extent_buffer_get(eb);
 145        spin_unlock(&root->node_lock);
 146        return eb;
 147}
 148
 149/* loop around taking references on and locking the root node of the
 150 * tree until you end up with a lock on the root.  A locked buffer
 151 * is returned, with a reference held.
 152 */
 153struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
 154{
 155        struct extent_buffer *eb;
 156
 157        while (1) {
 158                eb = btrfs_root_node(root);
 159                btrfs_tree_lock(eb);
 160
 161                spin_lock(&root->node_lock);
 162                if (eb == root->node) {
 163                        spin_unlock(&root->node_lock);
 164                        break;
 165                }
 166                spin_unlock(&root->node_lock);
 167
 168                btrfs_tree_unlock(eb);
 169                free_extent_buffer(eb);
 170        }
 171        return eb;
 172}
 173
 174/* cowonly root (everything not a reference counted cow subvolume), just get
 175 * put onto a simple dirty list.  transaction.c walks this to make sure they
 176 * get properly updated on disk.
 177 */
 178static void add_root_to_dirty_list(struct btrfs_root *root)
 179{
 180        if (root->track_dirty && list_empty(&root->dirty_list)) {
 181                list_add(&root->dirty_list,
 182                         &root->fs_info->dirty_cowonly_roots);
 183        }
 184}
 185
 186/*
 187 * used by snapshot creation to make a copy of a root for a tree with
 188 * a given objectid.  The buffer with the new root node is returned in
 189 * cow_ret, and this func returns zero on success or a negative error code.
 190 */
 191int btrfs_copy_root(struct btrfs_trans_handle *trans,
 192                      struct btrfs_root *root,
 193                      struct extent_buffer *buf,
 194                      struct extent_buffer **cow_ret, u64 new_root_objectid)
 195{
 196        struct extent_buffer *cow;
 197        u32 nritems;
 198        int ret = 0;
 199        int level;
 200        struct btrfs_disk_key disk_key;
 201
 202        WARN_ON(root->ref_cows && trans->transid !=
 203                root->fs_info->running_transaction->transid);
 204        WARN_ON(root->ref_cows && trans->transid != root->last_trans);
 205
 206        level = btrfs_header_level(buf);
 207        nritems = btrfs_header_nritems(buf);
 208        if (level == 0)
 209                btrfs_item_key(buf, &disk_key, 0);
 210        else
 211                btrfs_node_key(buf, &disk_key, 0);
 212
 213        cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
 214                                     new_root_objectid, &disk_key, level,
 215                                     buf->start, 0);
 216        if (IS_ERR(cow))
 217                return PTR_ERR(cow);
 218
 219        copy_extent_buffer(cow, buf, 0, 0, cow->len);
 220        btrfs_set_header_bytenr(cow, cow->start);
 221        btrfs_set_header_generation(cow, trans->transid);
 222        btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 223        btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 224                                     BTRFS_HEADER_FLAG_RELOC);
 225        if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 226                btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 227        else
 228                btrfs_set_header_owner(cow, new_root_objectid);
 229
 230        write_extent_buffer(cow, root->fs_info->fsid,
 231                            (unsigned long)btrfs_header_fsid(cow),
 232                            BTRFS_FSID_SIZE);
 233
 234        WARN_ON(btrfs_header_generation(buf) > trans->transid);
 235        if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 236                ret = btrfs_inc_ref(trans, root, cow, 1);
 237        else
 238                ret = btrfs_inc_ref(trans, root, cow, 0);
 239
 240        if (ret)
 241                return ret;
 242
 243        btrfs_mark_buffer_dirty(cow);
 244        *cow_ret = cow;
 245        return 0;
 246}
 247
 248/*
 249 * check if the tree block can be shared by multiple trees
 250 */
 251int btrfs_block_can_be_shared(struct btrfs_root *root,
 252                              struct extent_buffer *buf)
 253{
 254        /*
 255         * Tree blocks not in refernece counted trees and tree roots
 256         * are never shared. If a block was allocated after the last
 257         * snapshot and the block was not allocated by tree relocation,
 258         * we know the block is not shared.
 259         */
 260        if (root->ref_cows &&
 261            buf != root->node && buf != root->commit_root &&
 262            (btrfs_header_generation(buf) <=
 263             btrfs_root_last_snapshot(&root->root_item) ||
 264             btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 265                return 1;
 266#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 267        if (root->ref_cows &&
 268            btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 269                return 1;
 270#endif
 271        return 0;
 272}
 273
 274static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 275                                       struct btrfs_root *root,
 276                                       struct extent_buffer *buf,
 277                                       struct extent_buffer *cow)
 278{
 279        u64 refs;
 280        u64 owner;
 281        u64 flags;
 282        u64 new_flags = 0;
 283        int ret;
 284
 285        /*
 286         * Backrefs update rules:
 287         *
 288         * Always use full backrefs for extent pointers in tree block
 289         * allocated by tree relocation.
 290         *
 291         * If a shared tree block is no longer referenced by its owner
 292         * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 293         * use full backrefs for extent pointers in tree block.
 294         *
 295         * If a tree block is been relocating
 296         * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
 297         * use full backrefs for extent pointers in tree block.
 298         * The reason for this is some operations (such as drop tree)
 299         * are only allowed for blocks use full backrefs.
 300         */
 301
 302        if (btrfs_block_can_be_shared(root, buf)) {
 303                ret = btrfs_lookup_extent_info(trans, root, buf->start,
 304                                               buf->len, &refs, &flags);
 305                BUG_ON(ret);
 306                BUG_ON(refs == 0);
 307        } else {
 308                refs = 1;
 309                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 310                    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 311                        flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 312                else
 313                        flags = 0;
 314        }
 315
 316        owner = btrfs_header_owner(buf);
 317        BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
 318               !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 319
 320        if (refs > 1) {
 321                if ((owner == root->root_key.objectid ||
 322                     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
 323                    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
 324                        ret = btrfs_inc_ref(trans, root, buf, 1);
 325                        BUG_ON(ret);
 326
 327                        if (root->root_key.objectid ==
 328                            BTRFS_TREE_RELOC_OBJECTID) {
 329                                ret = btrfs_dec_ref(trans, root, buf, 0);
 330                                BUG_ON(ret);
 331                                ret = btrfs_inc_ref(trans, root, cow, 1);
 332                                BUG_ON(ret);
 333                        }
 334                        new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 335                } else {
 336
 337                        if (root->root_key.objectid ==
 338                            BTRFS_TREE_RELOC_OBJECTID)
 339                                ret = btrfs_inc_ref(trans, root, cow, 1);
 340                        else
 341                                ret = btrfs_inc_ref(trans, root, cow, 0);
 342                        BUG_ON(ret);
 343                }
 344                if (new_flags != 0) {
 345                        ret = btrfs_set_disk_extent_flags(trans, root,
 346                                                          buf->start,
 347                                                          buf->len,
 348                                                          new_flags, 0);
 349                        BUG_ON(ret);
 350                }
 351        } else {
 352                if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 353                        if (root->root_key.objectid ==
 354                            BTRFS_TREE_RELOC_OBJECTID)
 355                                ret = btrfs_inc_ref(trans, root, cow, 1);
 356                        else
 357                                ret = btrfs_inc_ref(trans, root, cow, 0);
 358                        BUG_ON(ret);
 359                        ret = btrfs_dec_ref(trans, root, buf, 1);
 360                        BUG_ON(ret);
 361                }
 362                clean_tree_block(trans, root, buf);
 363        }
 364        return 0;
 365}
 366
 367/*
 368 * does the dirty work in cow of a single block.  The parent block (if
 369 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 370 * dirty and returned locked.  If you modify the block it needs to be marked
 371 * dirty again.
 372 *
 373 * search_start -- an allocation hint for the new block
 374 *
 375 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 376 * bytes the allocator should try to find free next to the block it returns.
 377 * This is just a hint and may be ignored by the allocator.
 378 */
 379static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
 380                             struct btrfs_root *root,
 381                             struct extent_buffer *buf,
 382                             struct extent_buffer *parent, int parent_slot,
 383                             struct extent_buffer **cow_ret,
 384                             u64 search_start, u64 empty_size)
 385{
 386        struct btrfs_disk_key disk_key;
 387        struct extent_buffer *cow;
 388        int level;
 389        int unlock_orig = 0;
 390        u64 parent_start;
 391
 392        if (*cow_ret == buf)
 393                unlock_orig = 1;
 394
 395        btrfs_assert_tree_locked(buf);
 396
 397        WARN_ON(root->ref_cows && trans->transid !=
 398                root->fs_info->running_transaction->transid);
 399        WARN_ON(root->ref_cows && trans->transid != root->last_trans);
 400
 401        level = btrfs_header_level(buf);
 402
 403        if (level == 0)
 404                btrfs_item_key(buf, &disk_key, 0);
 405        else
 406                btrfs_node_key(buf, &disk_key, 0);
 407
 408        if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
 409                if (parent)
 410                        parent_start = parent->start;
 411                else
 412                        parent_start = 0;
 413        } else
 414                parent_start = 0;
 415
 416        cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
 417                                     root->root_key.objectid, &disk_key,
 418                                     level, search_start, empty_size);
 419        if (IS_ERR(cow))
 420                return PTR_ERR(cow);
 421
 422        /* cow is set to blocking by btrfs_init_new_buffer */
 423
 424        copy_extent_buffer(cow, buf, 0, 0, cow->len);
 425        btrfs_set_header_bytenr(cow, cow->start);
 426        btrfs_set_header_generation(cow, trans->transid);
 427        btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 428        btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 429                                     BTRFS_HEADER_FLAG_RELOC);
 430        if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
 431                btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 432        else
 433                btrfs_set_header_owner(cow, root->root_key.objectid);
 434
 435        write_extent_buffer(cow, root->fs_info->fsid,
 436                            (unsigned long)btrfs_header_fsid(cow),
 437                            BTRFS_FSID_SIZE);
 438
 439        update_ref_for_cow(trans, root, buf, cow);
 440
 441        if (buf == root->node) {
 442                WARN_ON(parent && parent != buf);
 443                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 444                    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 445                        parent_start = buf->start;
 446                else
 447                        parent_start = 0;
 448
 449                spin_lock(&root->node_lock);
 450                root->node = cow;
 451                extent_buffer_get(cow);
 452                spin_unlock(&root->node_lock);
 453
 454                btrfs_free_extent(trans, root, buf->start, buf->len,
 455                                  parent_start, root->root_key.objectid,
 456                                  level, 0);
 457                free_extent_buffer(buf);
 458                add_root_to_dirty_list(root);
 459        } else {
 460                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
 461                        parent_start = parent->start;
 462                else
 463                        parent_start = 0;
 464
 465                WARN_ON(trans->transid != btrfs_header_generation(parent));
 466                btrfs_set_node_blockptr(parent, parent_slot,
 467                                        cow->start);
 468                btrfs_set_node_ptr_generation(parent, parent_slot,
 469                                              trans->transid);
 470                btrfs_mark_buffer_dirty(parent);
 471                btrfs_free_extent(trans, root, buf->start, buf->len,
 472                                  parent_start, root->root_key.objectid,
 473                                  level, 0);
 474        }
 475        if (unlock_orig)
 476                btrfs_tree_unlock(buf);
 477        free_extent_buffer(buf);
 478        btrfs_mark_buffer_dirty(cow);
 479        *cow_ret = cow;
 480        return 0;
 481}
 482
 483static inline int should_cow_block(struct btrfs_trans_handle *trans,
 484                                   struct btrfs_root *root,
 485                                   struct extent_buffer *buf)
 486{
 487        if (btrfs_header_generation(buf) == trans->transid &&
 488            !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
 489            !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
 490              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 491                return 0;
 492        return 1;
 493}
 494
 495/*
 496 * cows a single block, see __btrfs_cow_block for the real work.
 497 * This version of it has extra checks so that a block isn't cow'd more than
 498 * once per transaction, as long as it hasn't been written yet
 499 */
 500noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
 501                    struct btrfs_root *root, struct extent_buffer *buf,
 502                    struct extent_buffer *parent, int parent_slot,
 503                    struct extent_buffer **cow_ret)
 504{
 505        u64 search_start;
 506        int ret;
 507
 508        if (trans->transaction != root->fs_info->running_transaction) {
 509                printk(KERN_CRIT "trans %llu running %llu\n",
 510                       (unsigned long long)trans->transid,
 511                       (unsigned long long)
 512                       root->fs_info->running_transaction->transid);
 513                WARN_ON(1);
 514        }
 515        if (trans->transid != root->fs_info->generation) {
 516                printk(KERN_CRIT "trans %llu running %llu\n",
 517                       (unsigned long long)trans->transid,
 518                       (unsigned long long)root->fs_info->generation);
 519                WARN_ON(1);
 520        }
 521
 522        if (!should_cow_block(trans, root, buf)) {
 523                *cow_ret = buf;
 524                return 0;
 525        }
 526
 527        search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
 528
 529        if (parent)
 530                btrfs_set_lock_blocking(parent);
 531        btrfs_set_lock_blocking(buf);
 532
 533        ret = __btrfs_cow_block(trans, root, buf, parent,
 534                                 parent_slot, cow_ret, search_start, 0);
 535        return ret;
 536}
 537
 538/*
 539 * helper function for defrag to decide if two blocks pointed to by a
 540 * node are actually close by
 541 */
 542static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
 543{
 544        if (blocknr < other && other - (blocknr + blocksize) < 32768)
 545                return 1;
 546        if (blocknr > other && blocknr - (other + blocksize) < 32768)
 547                return 1;
 548        return 0;
 549}
 550
 551/*
 552 * compare two keys in a memcmp fashion
 553 */
 554static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
 555{
 556        struct btrfs_key k1;
 557
 558        btrfs_disk_key_to_cpu(&k1, disk);
 559
 560        return btrfs_comp_cpu_keys(&k1, k2);
 561}
 562
 563/*
 564 * same as comp_keys only with two btrfs_key's
 565 */
 566int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
 567{
 568        if (k1->objectid > k2->objectid)
 569                return 1;
 570        if (k1->objectid < k2->objectid)
 571                return -1;
 572        if (k1->type > k2->type)
 573                return 1;
 574        if (k1->type < k2->type)
 575                return -1;
 576        if (k1->offset > k2->offset)
 577                return 1;
 578        if (k1->offset < k2->offset)
 579                return -1;
 580        return 0;
 581}
 582
 583/*
 584 * this is used by the defrag code to go through all the
 585 * leaves pointed to by a node and reallocate them so that
 586 * disk order is close to key order
 587 */
 588int btrfs_realloc_node(struct btrfs_trans_handle *trans,
 589                       struct btrfs_root *root, struct extent_buffer *parent,
 590                       int start_slot, int cache_only, u64 *last_ret,
 591                       struct btrfs_key *progress)
 592{
 593        struct extent_buffer *cur;
 594        u64 blocknr;
 595        u64 gen;
 596        u64 search_start = *last_ret;
 597        u64 last_block = 0;
 598        u64 other;
 599        u32 parent_nritems;
 600        int end_slot;
 601        int i;
 602        int err = 0;
 603        int parent_level;
 604        int uptodate;
 605        u32 blocksize;
 606        int progress_passed = 0;
 607        struct btrfs_disk_key disk_key;
 608
 609        parent_level = btrfs_header_level(parent);
 610        if (cache_only && parent_level != 1)
 611                return 0;
 612
 613        if (trans->transaction != root->fs_info->running_transaction)
 614                WARN_ON(1);
 615        if (trans->transid != root->fs_info->generation)
 616                WARN_ON(1);
 617
 618        parent_nritems = btrfs_header_nritems(parent);
 619        blocksize = btrfs_level_size(root, parent_level - 1);
 620        end_slot = parent_nritems;
 621
 622        if (parent_nritems == 1)
 623                return 0;
 624
 625        btrfs_set_lock_blocking(parent);
 626
 627        for (i = start_slot; i < end_slot; i++) {
 628                int close = 1;
 629
 630                if (!parent->map_token) {
 631                        map_extent_buffer(parent,
 632                                        btrfs_node_key_ptr_offset(i),
 633                                        sizeof(struct btrfs_key_ptr),
 634                                        &parent->map_token, &parent->kaddr,
 635                                        &parent->map_start, &parent->map_len,
 636                                        KM_USER1);
 637                }
 638                btrfs_node_key(parent, &disk_key, i);
 639                if (!progress_passed && comp_keys(&disk_key, progress) < 0)
 640                        continue;
 641
 642                progress_passed = 1;
 643                blocknr = btrfs_node_blockptr(parent, i);
 644                gen = btrfs_node_ptr_generation(parent, i);
 645                if (last_block == 0)
 646                        last_block = blocknr;
 647
 648                if (i > 0) {
 649                        other = btrfs_node_blockptr(parent, i - 1);
 650                        close = close_blocks(blocknr, other, blocksize);
 651                }
 652                if (!close && i < end_slot - 2) {
 653                        other = btrfs_node_blockptr(parent, i + 1);
 654                        close = close_blocks(blocknr, other, blocksize);
 655                }
 656                if (close) {
 657                        last_block = blocknr;
 658                        continue;
 659                }
 660                if (parent->map_token) {
 661                        unmap_extent_buffer(parent, parent->map_token,
 662                                            KM_USER1);
 663                        parent->map_token = NULL;
 664                }
 665
 666                cur = btrfs_find_tree_block(root, blocknr, blocksize);
 667                if (cur)
 668                        uptodate = btrfs_buffer_uptodate(cur, gen);
 669                else
 670                        uptodate = 0;
 671                if (!cur || !uptodate) {
 672                        if (cache_only) {
 673                                free_extent_buffer(cur);
 674                                continue;
 675                        }
 676                        if (!cur) {
 677                                cur = read_tree_block(root, blocknr,
 678                                                         blocksize, gen);
 679                        } else if (!uptodate) {
 680                                btrfs_read_buffer(cur, gen);
 681                        }
 682                }
 683                if (search_start == 0)
 684                        search_start = last_block;
 685
 686                btrfs_tree_lock(cur);
 687                btrfs_set_lock_blocking(cur);
 688                err = __btrfs_cow_block(trans, root, cur, parent, i,
 689                                        &cur, search_start,
 690                                        min(16 * blocksize,
 691                                            (end_slot - i) * blocksize));
 692                if (err) {
 693                        btrfs_tree_unlock(cur);
 694                        free_extent_buffer(cur);
 695                        break;
 696                }
 697                search_start = cur->start;
 698                last_block = cur->start;
 699                *last_ret = search_start;
 700                btrfs_tree_unlock(cur);
 701                free_extent_buffer(cur);
 702        }
 703        if (parent->map_token) {
 704                unmap_extent_buffer(parent, parent->map_token,
 705                                    KM_USER1);
 706                parent->map_token = NULL;
 707        }
 708        return err;
 709}
 710
 711/*
 712 * The leaf data grows from end-to-front in the node.
 713 * this returns the address of the start of the last item,
 714 * which is the stop of the leaf data stack
 715 */
 716static inline unsigned int leaf_data_end(struct btrfs_root *root,
 717                                         struct extent_buffer *leaf)
 718{
 719        u32 nr = btrfs_header_nritems(leaf);
 720        if (nr == 0)
 721                return BTRFS_LEAF_DATA_SIZE(root);
 722        return btrfs_item_offset_nr(leaf, nr - 1);
 723}
 724
 725/*
 726 * extra debugging checks to make sure all the items in a key are
 727 * well formed and in the proper order
 728 */
 729static int check_node(struct btrfs_root *root, struct btrfs_path *path,
 730                      int level)
 731{
 732        struct extent_buffer *parent = NULL;
 733        struct extent_buffer *node = path->nodes[level];
 734        struct btrfs_disk_key parent_key;
 735        struct btrfs_disk_key node_key;
 736        int parent_slot;
 737        int slot;
 738        struct btrfs_key cpukey;
 739        u32 nritems = btrfs_header_nritems(node);
 740
 741        if (path->nodes[level + 1])
 742                parent = path->nodes[level + 1];
 743
 744        slot = path->slots[level];
 745        BUG_ON(nritems == 0);
 746        if (parent) {
 747                parent_slot = path->slots[level + 1];
 748                btrfs_node_key(parent, &parent_key, parent_slot);
 749                btrfs_node_key(node, &node_key, 0);
 750                BUG_ON(memcmp(&parent_key, &node_key,
 751                              sizeof(struct btrfs_disk_key)));
 752                BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
 753                       btrfs_header_bytenr(node));
 754        }
 755        BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
 756        if (slot != 0) {
 757                btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
 758                btrfs_node_key(node, &node_key, slot);
 759                BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
 760        }
 761        if (slot < nritems - 1) {
 762                btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
 763                btrfs_node_key(node, &node_key, slot);
 764                BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
 765        }
 766        return 0;
 767}
 768
 769/*
 770 * extra checking to make sure all the items in a leaf are
 771 * well formed and in the proper order
 772 */
 773static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
 774                      int level)
 775{
 776        struct extent_buffer *leaf = path->nodes[level];
 777        struct extent_buffer *parent = NULL;
 778        int parent_slot;
 779        struct btrfs_key cpukey;
 780        struct btrfs_disk_key parent_key;
 781        struct btrfs_disk_key leaf_key;
 782        int slot = path->slots[0];
 783
 784        u32 nritems = btrfs_header_nritems(leaf);
 785
 786        if (path->nodes[level + 1])
 787                parent = path->nodes[level + 1];
 788
 789        if (nritems == 0)
 790                return 0;
 791
 792        if (parent) {
 793                parent_slot = path->slots[level + 1];
 794                btrfs_node_key(parent, &parent_key, parent_slot);
 795                btrfs_item_key(leaf, &leaf_key, 0);
 796
 797                BUG_ON(memcmp(&parent_key, &leaf_key,
 798                       sizeof(struct btrfs_disk_key)));
 799                BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
 800                       btrfs_header_bytenr(leaf));
 801        }
 802        if (slot != 0 && slot < nritems - 1) {
 803                btrfs_item_key(leaf, &leaf_key, slot);
 804                btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
 805                if (comp_keys(&leaf_key, &cpukey) <= 0) {
 806                        btrfs_print_leaf(root, leaf);
 807                        printk(KERN_CRIT "slot %d offset bad key\n", slot);
 808                        BUG_ON(1);
 809                }
 810                if (btrfs_item_offset_nr(leaf, slot - 1) !=
 811                       btrfs_item_end_nr(leaf, slot)) {
 812                        btrfs_print_leaf(root, leaf);
 813                        printk(KERN_CRIT "slot %d offset bad\n", slot);
 814                        BUG_ON(1);
 815                }
 816        }
 817        if (slot < nritems - 1) {
 818                btrfs_item_key(leaf, &leaf_key, slot);
 819                btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
 820                BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
 821                if (btrfs_item_offset_nr(leaf, slot) !=
 822                        btrfs_item_end_nr(leaf, slot + 1)) {
 823                        btrfs_print_leaf(root, leaf);
 824                        printk(KERN_CRIT "slot %d offset bad\n", slot);
 825                        BUG_ON(1);
 826                }
 827        }
 828        BUG_ON(btrfs_item_offset_nr(leaf, 0) +
 829               btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
 830        return 0;
 831}
 832
 833static noinline int check_block(struct btrfs_root *root,
 834                                struct btrfs_path *path, int level)
 835{
 836        return 0;
 837        if (level == 0)
 838                return check_leaf(root, path, level);
 839        return check_node(root, path, level);
 840}
 841
 842/*
 843 * search for key in the extent_buffer.  The items start at offset p,
 844 * and they are item_size apart.  There are 'max' items in p.
 845 *
 846 * the slot in the array is returned via slot, and it points to
 847 * the place where you would insert key if it is not found in
 848 * the array.
 849 *
 850 * slot may point to max if the key is bigger than all of the keys
 851 */
 852static noinline int generic_bin_search(struct extent_buffer *eb,
 853                                       unsigned long p,
 854                                       int item_size, struct btrfs_key *key,
 855                                       int max, int *slot)
 856{
 857        int low = 0;
 858        int high = max;
 859        int mid;
 860        int ret;
 861        struct btrfs_disk_key *tmp = NULL;
 862        struct btrfs_disk_key unaligned;
 863        unsigned long offset;
 864        char *map_token = NULL;
 865        char *kaddr = NULL;
 866        unsigned long map_start = 0;
 867        unsigned long map_len = 0;
 868        int err;
 869
 870        while (low < high) {
 871                mid = (low + high) / 2;
 872                offset = p + mid * item_size;
 873
 874                if (!map_token || offset < map_start ||
 875                    (offset + sizeof(struct btrfs_disk_key)) >
 876                    map_start + map_len) {
 877                        if (map_token) {
 878                                unmap_extent_buffer(eb, map_token, KM_USER0);
 879                                map_token = NULL;
 880                        }
 881
 882                        err = map_private_extent_buffer(eb, offset,
 883                                                sizeof(struct btrfs_disk_key),
 884                                                &map_token, &kaddr,
 885                                                &map_start, &map_len, KM_USER0);
 886
 887                        if (!err) {
 888                                tmp = (struct btrfs_disk_key *)(kaddr + offset -
 889                                                        map_start);
 890                        } else {
 891                                read_extent_buffer(eb, &unaligned,
 892                                                   offset, sizeof(unaligned));
 893                                tmp = &unaligned;
 894                        }
 895
 896                } else {
 897                        tmp = (struct btrfs_disk_key *)(kaddr + offset -
 898                                                        map_start);
 899                }
 900                ret = comp_keys(tmp, key);
 901
 902                if (ret < 0)
 903                        low = mid + 1;
 904                else if (ret > 0)
 905                        high = mid;
 906                else {
 907                        *slot = mid;
 908                        if (map_token)
 909                                unmap_extent_buffer(eb, map_token, KM_USER0);
 910                        return 0;
 911                }
 912        }
 913        *slot = low;
 914        if (map_token)
 915                unmap_extent_buffer(eb, map_token, KM_USER0);
 916        return 1;
 917}
 918
 919/*
 920 * simple bin_search frontend that does the right thing for
 921 * leaves vs nodes
 922 */
 923static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
 924                      int level, int *slot)
 925{
 926        if (level == 0) {
 927                return generic_bin_search(eb,
 928                                          offsetof(struct btrfs_leaf, items),
 929                                          sizeof(struct btrfs_item),
 930                                          key, btrfs_header_nritems(eb),
 931                                          slot);
 932        } else {
 933                return generic_bin_search(eb,
 934                                          offsetof(struct btrfs_node, ptrs),
 935                                          sizeof(struct btrfs_key_ptr),
 936                                          key, btrfs_header_nritems(eb),
 937                                          slot);
 938        }
 939        return -1;
 940}
 941
 942int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
 943                     int level, int *slot)
 944{
 945        return bin_search(eb, key, level, slot);
 946}
 947
 948/* given a node and slot number, this reads the blocks it points to.  The
 949 * extent buffer is returned with a reference taken (but unlocked).
 950 * NULL is returned on error.
 951 */
 952static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
 953                                   struct extent_buffer *parent, int slot)
 954{
 955        int level = btrfs_header_level(parent);
 956        if (slot < 0)
 957                return NULL;
 958        if (slot >= btrfs_header_nritems(parent))
 959                return NULL;
 960
 961        BUG_ON(level == 0);
 962
 963        return read_tree_block(root, btrfs_node_blockptr(parent, slot),
 964                       btrfs_level_size(root, level - 1),
 965                       btrfs_node_ptr_generation(parent, slot));
 966}
 967
 968/*
 969 * node level balancing, used to make sure nodes are in proper order for
 970 * item deletion.  We balance from the top down, so we have to make sure
 971 * that a deletion won't leave an node completely empty later on.
 972 */
 973static noinline int balance_level(struct btrfs_trans_handle *trans,
 974                         struct btrfs_root *root,
 975                         struct btrfs_path *path, int level)
 976{
 977        struct extent_buffer *right = NULL;
 978        struct extent_buffer *mid;
 979        struct extent_buffer *left = NULL;
 980        struct extent_buffer *parent = NULL;
 981        int ret = 0;
 982        int wret;
 983        int pslot;
 984        int orig_slot = path->slots[level];
 985        int err_on_enospc = 0;
 986        u64 orig_ptr;
 987
 988        if (level == 0)
 989                return 0;
 990
 991        mid = path->nodes[level];
 992
 993        WARN_ON(!path->locks[level]);
 994        WARN_ON(btrfs_header_generation(mid) != trans->transid);
 995
 996        orig_ptr = btrfs_node_blockptr(mid, orig_slot);
 997
 998        if (level < BTRFS_MAX_LEVEL - 1)
 999                parent = path->nodes[level + 1];
1000        pslot = path->slots[level + 1];
1001
1002        /*
1003         * deal with the case where there is only one pointer in the root
1004         * by promoting the node below to a root
1005         */
1006        if (!parent) {
1007                struct extent_buffer *child;
1008
1009                if (btrfs_header_nritems(mid) != 1)
1010                        return 0;
1011
1012                /* promote the child to a root */
1013                child = read_node_slot(root, mid, 0);
1014                BUG_ON(!child);
1015                btrfs_tree_lock(child);
1016                btrfs_set_lock_blocking(child);
1017                ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1018                BUG_ON(ret);
1019
1020                spin_lock(&root->node_lock);
1021                root->node = child;
1022                spin_unlock(&root->node_lock);
1023
1024                add_root_to_dirty_list(root);
1025                btrfs_tree_unlock(child);
1026
1027                path->locks[level] = 0;
1028                path->nodes[level] = NULL;
1029                clean_tree_block(trans, root, mid);
1030                btrfs_tree_unlock(mid);
1031                /* once for the path */
1032                free_extent_buffer(mid);
1033                ret = btrfs_free_extent(trans, root, mid->start, mid->len,
1034                                        0, root->root_key.objectid, level, 1);
1035                /* once for the root ptr */
1036                free_extent_buffer(mid);
1037                return ret;
1038        }
1039        if (btrfs_header_nritems(mid) >
1040            BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1041                return 0;
1042
1043        if (btrfs_header_nritems(mid) < 2)
1044                err_on_enospc = 1;
1045
1046        left = read_node_slot(root, parent, pslot - 1);
1047        if (left) {
1048                btrfs_tree_lock(left);
1049                btrfs_set_lock_blocking(left);
1050                wret = btrfs_cow_block(trans, root, left,
1051                                       parent, pslot - 1, &left);
1052                if (wret) {
1053                        ret = wret;
1054                        goto enospc;
1055                }
1056        }
1057        right = read_node_slot(root, parent, pslot + 1);
1058        if (right) {
1059                btrfs_tree_lock(right);
1060                btrfs_set_lock_blocking(right);
1061                wret = btrfs_cow_block(trans, root, right,
1062                                       parent, pslot + 1, &right);
1063                if (wret) {
1064                        ret = wret;
1065                        goto enospc;
1066                }
1067        }
1068
1069        /* first, try to make some room in the middle buffer */
1070        if (left) {
1071                orig_slot += btrfs_header_nritems(left);
1072                wret = push_node_left(trans, root, left, mid, 1);
1073                if (wret < 0)
1074                        ret = wret;
1075                if (btrfs_header_nritems(mid) < 2)
1076                        err_on_enospc = 1;
1077        }
1078
1079        /*
1080         * then try to empty the right most buffer into the middle
1081         */
1082        if (right) {
1083                wret = push_node_left(trans, root, mid, right, 1);
1084                if (wret < 0 && wret != -ENOSPC)
1085                        ret = wret;
1086                if (btrfs_header_nritems(right) == 0) {
1087                        u64 bytenr = right->start;
1088                        u32 blocksize = right->len;
1089
1090                        clean_tree_block(trans, root, right);
1091                        btrfs_tree_unlock(right);
1092                        free_extent_buffer(right);
1093                        right = NULL;
1094                        wret = del_ptr(trans, root, path, level + 1, pslot +
1095                                       1);
1096                        if (wret)
1097                                ret = wret;
1098                        wret = btrfs_free_extent(trans, root, bytenr,
1099                                                 blocksize, 0,
1100                                                 root->root_key.objectid,
1101                                                 level, 0);
1102                        if (wret)
1103                                ret = wret;
1104                } else {
1105                        struct btrfs_disk_key right_key;
1106                        btrfs_node_key(right, &right_key, 0);
1107                        btrfs_set_node_key(parent, &right_key, pslot + 1);
1108                        btrfs_mark_buffer_dirty(parent);
1109                }
1110        }
1111        if (btrfs_header_nritems(mid) == 1) {
1112                /*
1113                 * we're not allowed to leave a node with one item in the
1114                 * tree during a delete.  A deletion from lower in the tree
1115                 * could try to delete the only pointer in this node.
1116                 * So, pull some keys from the left.
1117                 * There has to be a left pointer at this point because
1118                 * otherwise we would have pulled some pointers from the
1119                 * right
1120                 */
1121                BUG_ON(!left);
1122                wret = balance_node_right(trans, root, mid, left);
1123                if (wret < 0) {
1124                        ret = wret;
1125                        goto enospc;
1126                }
1127                if (wret == 1) {
1128                        wret = push_node_left(trans, root, left, mid, 1);
1129                        if (wret < 0)
1130                                ret = wret;
1131                }
1132                BUG_ON(wret == 1);
1133        }
1134        if (btrfs_header_nritems(mid) == 0) {
1135                /* we've managed to empty the middle node, drop it */
1136                u64 bytenr = mid->start;
1137                u32 blocksize = mid->len;
1138
1139                clean_tree_block(trans, root, mid);
1140                btrfs_tree_unlock(mid);
1141                free_extent_buffer(mid);
1142                mid = NULL;
1143                wret = del_ptr(trans, root, path, level + 1, pslot);
1144                if (wret)
1145                        ret = wret;
1146                wret = btrfs_free_extent(trans, root, bytenr, blocksize,
1147                                         0, root->root_key.objectid,
1148                                         level, 0);
1149                if (wret)
1150                        ret = wret;
1151        } else {
1152                /* update the parent key to reflect our changes */
1153                struct btrfs_disk_key mid_key;
1154                btrfs_node_key(mid, &mid_key, 0);
1155                btrfs_set_node_key(parent, &mid_key, pslot);
1156                btrfs_mark_buffer_dirty(parent);
1157        }
1158
1159        /* update the path */
1160        if (left) {
1161                if (btrfs_header_nritems(left) > orig_slot) {
1162                        extent_buffer_get(left);
1163                        /* left was locked after cow */
1164                        path->nodes[level] = left;
1165                        path->slots[level + 1] -= 1;
1166                        path->slots[level] = orig_slot;
1167                        if (mid) {
1168                                btrfs_tree_unlock(mid);
1169                                free_extent_buffer(mid);
1170                        }
1171                } else {
1172                        orig_slot -= btrfs_header_nritems(left);
1173                        path->slots[level] = orig_slot;
1174                }
1175        }
1176        /* double check we haven't messed things up */
1177        check_block(root, path, level);
1178        if (orig_ptr !=
1179            btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1180                BUG();
1181enospc:
1182        if (right) {
1183                btrfs_tree_unlock(right);
1184                free_extent_buffer(right);
1185        }
1186        if (left) {
1187                if (path->nodes[level] != left)
1188                        btrfs_tree_unlock(left);
1189                free_extent_buffer(left);
1190        }
1191        return ret;
1192}
1193
1194/* Node balancing for insertion.  Here we only split or push nodes around
1195 * when they are completely full.  This is also done top down, so we
1196 * have to be pessimistic.
1197 */
1198static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1199                                          struct btrfs_root *root,
1200                                          struct btrfs_path *path, int level)
1201{
1202        struct extent_buffer *right = NULL;
1203        struct extent_buffer *mid;
1204        struct extent_buffer *left = NULL;
1205        struct extent_buffer *parent = NULL;
1206        int ret = 0;
1207        int wret;
1208        int pslot;
1209        int orig_slot = path->slots[level];
1210        u64 orig_ptr;
1211
1212        if (level == 0)
1213                return 1;
1214
1215        mid = path->nodes[level];
1216        WARN_ON(btrfs_header_generation(mid) != trans->transid);
1217        orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1218
1219        if (level < BTRFS_MAX_LEVEL - 1)
1220                parent = path->nodes[level + 1];
1221        pslot = path->slots[level + 1];
1222
1223        if (!parent)
1224                return 1;
1225
1226        left = read_node_slot(root, parent, pslot - 1);
1227
1228        /* first, try to make some room in the middle buffer */
1229        if (left) {
1230                u32 left_nr;
1231
1232                btrfs_tree_lock(left);
1233                btrfs_set_lock_blocking(left);
1234
1235                left_nr = btrfs_header_nritems(left);
1236                if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1237                        wret = 1;
1238                } else {
1239                        ret = btrfs_cow_block(trans, root, left, parent,
1240                                              pslot - 1, &left);
1241                        if (ret)
1242                                wret = 1;
1243                        else {
1244                                wret = push_node_left(trans, root,
1245                                                      left, mid, 0);
1246                        }
1247                }
1248                if (wret < 0)
1249                        ret = wret;
1250                if (wret == 0) {
1251                        struct btrfs_disk_key disk_key;
1252                        orig_slot += left_nr;
1253                        btrfs_node_key(mid, &disk_key, 0);
1254                        btrfs_set_node_key(parent, &disk_key, pslot);
1255                        btrfs_mark_buffer_dirty(parent);
1256                        if (btrfs_header_nritems(left) > orig_slot) {
1257                                path->nodes[level] = left;
1258                                path->slots[level + 1] -= 1;
1259                                path->slots[level] = orig_slot;
1260                                btrfs_tree_unlock(mid);
1261                                free_extent_buffer(mid);
1262                        } else {
1263                                orig_slot -=
1264                                        btrfs_header_nritems(left);
1265                                path->slots[level] = orig_slot;
1266                                btrfs_tree_unlock(left);
1267                                free_extent_buffer(left);
1268                        }
1269                        return 0;
1270                }
1271                btrfs_tree_unlock(left);
1272                free_extent_buffer(left);
1273        }
1274        right = read_node_slot(root, parent, pslot + 1);
1275
1276        /*
1277         * then try to empty the right most buffer into the middle
1278         */
1279        if (right) {
1280                u32 right_nr;
1281
1282                btrfs_tree_lock(right);
1283                btrfs_set_lock_blocking(right);
1284
1285                right_nr = btrfs_header_nritems(right);
1286                if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1287                        wret = 1;
1288                } else {
1289                        ret = btrfs_cow_block(trans, root, right,
1290                                              parent, pslot + 1,
1291                                              &right);
1292                        if (ret)
1293                                wret = 1;
1294                        else {
1295                                wret = balance_node_right(trans, root,
1296                                                          right, mid);
1297                        }
1298                }
1299                if (wret < 0)
1300                        ret = wret;
1301                if (wret == 0) {
1302                        struct btrfs_disk_key disk_key;
1303
1304                        btrfs_node_key(right, &disk_key, 0);
1305                        btrfs_set_node_key(parent, &disk_key, pslot + 1);
1306                        btrfs_mark_buffer_dirty(parent);
1307
1308                        if (btrfs_header_nritems(mid) <= orig_slot) {
1309                                path->nodes[level] = right;
1310                                path->slots[level + 1] += 1;
1311                                path->slots[level] = orig_slot -
1312                                        btrfs_header_nritems(mid);
1313                                btrfs_tree_unlock(mid);
1314                                free_extent_buffer(mid);
1315                        } else {
1316                                btrfs_tree_unlock(right);
1317                                free_extent_buffer(right);
1318                        }
1319                        return 0;
1320                }
1321                btrfs_tree_unlock(right);
1322                free_extent_buffer(right);
1323        }
1324        return 1;
1325}
1326
1327/*
1328 * readahead one full node of leaves, finding things that are close
1329 * to the block in 'slot', and triggering ra on them.
1330 */
1331static void reada_for_search(struct btrfs_root *root,
1332                             struct btrfs_path *path,
1333                             int level, int slot, u64 objectid)
1334{
1335        struct extent_buffer *node;
1336        struct btrfs_disk_key disk_key;
1337        u32 nritems;
1338        u64 search;
1339        u64 target;
1340        u64 nread = 0;
1341        int direction = path->reada;
1342        struct extent_buffer *eb;
1343        u32 nr;
1344        u32 blocksize;
1345        u32 nscan = 0;
1346
1347        if (level != 1)
1348                return;
1349
1350        if (!path->nodes[level])
1351                return;
1352
1353        node = path->nodes[level];
1354
1355        search = btrfs_node_blockptr(node, slot);
1356        blocksize = btrfs_level_size(root, level - 1);
1357        eb = btrfs_find_tree_block(root, search, blocksize);
1358        if (eb) {
1359                free_extent_buffer(eb);
1360                return;
1361        }
1362
1363        target = search;
1364
1365        nritems = btrfs_header_nritems(node);
1366        nr = slot;
1367        while (1) {
1368                if (direction < 0) {
1369                        if (nr == 0)
1370                                break;
1371                        nr--;
1372                } else if (direction > 0) {
1373                        nr++;
1374                        if (nr >= nritems)
1375                                break;
1376                }
1377                if (path->reada < 0 && objectid) {
1378                        btrfs_node_key(node, &disk_key, nr);
1379                        if (btrfs_disk_key_objectid(&disk_key) != objectid)
1380                                break;
1381                }
1382                search = btrfs_node_blockptr(node, nr);
1383                if ((search <= target && target - search <= 65536) ||
1384                    (search > target && search - target <= 65536)) {
1385                        readahead_tree_block(root, search, blocksize,
1386                                     btrfs_node_ptr_generation(node, nr));
1387                        nread += blocksize;
1388                }
1389                nscan++;
1390                if ((nread > 65536 || nscan > 32))
1391                        break;
1392        }
1393}
1394
1395/*
1396 * returns -EAGAIN if it had to drop the path, or zero if everything was in
1397 * cache
1398 */
1399static noinline int reada_for_balance(struct btrfs_root *root,
1400                                      struct btrfs_path *path, int level)
1401{
1402        int slot;
1403        int nritems;
1404        struct extent_buffer *parent;
1405        struct extent_buffer *eb;
1406        u64 gen;
1407        u64 block1 = 0;
1408        u64 block2 = 0;
1409        int ret = 0;
1410        int blocksize;
1411
1412        parent = path->nodes[level + 1];
1413        if (!parent)
1414                return 0;
1415
1416        nritems = btrfs_header_nritems(parent);
1417        slot = path->slots[level + 1];
1418        blocksize = btrfs_level_size(root, level);
1419
1420        if (slot > 0) {
1421                block1 = btrfs_node_blockptr(parent, slot - 1);
1422                gen = btrfs_node_ptr_generation(parent, slot - 1);
1423                eb = btrfs_find_tree_block(root, block1, blocksize);
1424                if (eb && btrfs_buffer_uptodate(eb, gen))
1425                        block1 = 0;
1426                free_extent_buffer(eb);
1427        }
1428        if (slot + 1 < nritems) {
1429                block2 = btrfs_node_blockptr(parent, slot + 1);
1430                gen = btrfs_node_ptr_generation(parent, slot + 1);
1431                eb = btrfs_find_tree_block(root, block2, blocksize);
1432                if (eb && btrfs_buffer_uptodate(eb, gen))
1433                        block2 = 0;
1434                free_extent_buffer(eb);
1435        }
1436        if (block1 || block2) {
1437                ret = -EAGAIN;
1438
1439                /* release the whole path */
1440                btrfs_release_path(root, path);
1441
1442                /* read the blocks */
1443                if (block1)
1444                        readahead_tree_block(root, block1, blocksize, 0);
1445                if (block2)
1446                        readahead_tree_block(root, block2, blocksize, 0);
1447
1448                if (block1) {
1449                        eb = read_tree_block(root, block1, blocksize, 0);
1450                        free_extent_buffer(eb);
1451                }
1452                if (block2) {
1453                        eb = read_tree_block(root, block2, blocksize, 0);
1454                        free_extent_buffer(eb);
1455                }
1456        }
1457        return ret;
1458}
1459
1460
1461/*
1462 * when we walk down the tree, it is usually safe to unlock the higher layers
1463 * in the tree.  The exceptions are when our path goes through slot 0, because
1464 * operations on the tree might require changing key pointers higher up in the
1465 * tree.
1466 *
1467 * callers might also have set path->keep_locks, which tells this code to keep
1468 * the lock if the path points to the last slot in the block.  This is part of
1469 * walking through the tree, and selecting the next slot in the higher block.
1470 *
1471 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1472 * if lowest_unlock is 1, level 0 won't be unlocked
1473 */
1474static noinline void unlock_up(struct btrfs_path *path, int level,
1475                               int lowest_unlock)
1476{
1477        int i;
1478        int skip_level = level;
1479        int no_skips = 0;
1480        struct extent_buffer *t;
1481
1482        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1483                if (!path->nodes[i])
1484                        break;
1485                if (!path->locks[i])
1486                        break;
1487                if (!no_skips && path->slots[i] == 0) {
1488                        skip_level = i + 1;
1489                        continue;
1490                }
1491                if (!no_skips && path->keep_locks) {
1492                        u32 nritems;
1493                        t = path->nodes[i];
1494                        nritems = btrfs_header_nritems(t);
1495                        if (nritems < 1 || path->slots[i] >= nritems - 1) {
1496                                skip_level = i + 1;
1497                                continue;
1498                        }
1499                }
1500                if (skip_level < i && i >= lowest_unlock)
1501                        no_skips = 1;
1502
1503                t = path->nodes[i];
1504                if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1505                        btrfs_tree_unlock(t);
1506                        path->locks[i] = 0;
1507                }
1508        }
1509}
1510
1511/*
1512 * This releases any locks held in the path starting at level and
1513 * going all the way up to the root.
1514 *
1515 * btrfs_search_slot will keep the lock held on higher nodes in a few
1516 * corner cases, such as COW of the block at slot zero in the node.  This
1517 * ignores those rules, and it should only be called when there are no
1518 * more updates to be done higher up in the tree.
1519 */
1520noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1521{
1522        int i;
1523
1524        if (path->keep_locks)
1525                return;
1526
1527        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1528                if (!path->nodes[i])
1529                        continue;
1530                if (!path->locks[i])
1531                        continue;
1532                btrfs_tree_unlock(path->nodes[i]);
1533                path->locks[i] = 0;
1534        }
1535}
1536
1537/*
1538 * helper function for btrfs_search_slot.  The goal is to find a block
1539 * in cache without setting the path to blocking.  If we find the block
1540 * we return zero and the path is unchanged.
1541 *
1542 * If we can't find the block, we set the path blocking and do some
1543 * reada.  -EAGAIN is returned and the search must be repeated.
1544 */
1545static int
1546read_block_for_search(struct btrfs_trans_handle *trans,
1547                       struct btrfs_root *root, struct btrfs_path *p,
1548                       struct extent_buffer **eb_ret, int level, int slot,
1549                       struct btrfs_key *key)
1550{
1551        u64 blocknr;
1552        u64 gen;
1553        u32 blocksize;
1554        struct extent_buffer *b = *eb_ret;
1555        struct extent_buffer *tmp;
1556        int ret;
1557
1558        blocknr = btrfs_node_blockptr(b, slot);
1559        gen = btrfs_node_ptr_generation(b, slot);
1560        blocksize = btrfs_level_size(root, level - 1);
1561
1562        tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1563        if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1564                /*
1565                 * we found an up to date block without sleeping, return
1566                 * right away
1567                 */
1568                *eb_ret = tmp;
1569                return 0;
1570        }
1571
1572        /*
1573         * reduce lock contention at high levels
1574         * of the btree by dropping locks before
1575         * we read.  Don't release the lock on the current
1576         * level because we need to walk this node to figure
1577         * out which blocks to read.
1578         */
1579        btrfs_unlock_up_safe(p, level + 1);
1580        btrfs_set_path_blocking(p);
1581
1582        if (tmp)
1583                free_extent_buffer(tmp);
1584        if (p->reada)
1585                reada_for_search(root, p, level, slot, key->objectid);
1586
1587        btrfs_release_path(NULL, p);
1588
1589        ret = -EAGAIN;
1590        tmp = read_tree_block(root, blocknr, blocksize, gen);
1591        if (tmp) {
1592                /*
1593                 * If the read above didn't mark this buffer up to date,
1594                 * it will never end up being up to date.  Set ret to EIO now
1595                 * and give up so that our caller doesn't loop forever
1596                 * on our EAGAINs.
1597                 */
1598                if (!btrfs_buffer_uptodate(tmp, 0))
1599                        ret = -EIO;
1600                free_extent_buffer(tmp);
1601        }
1602        return ret;
1603}
1604
1605/*
1606 * helper function for btrfs_search_slot.  This does all of the checks
1607 * for node-level blocks and does any balancing required based on
1608 * the ins_len.
1609 *
1610 * If no extra work was required, zero is returned.  If we had to
1611 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1612 * start over
1613 */
1614static int
1615setup_nodes_for_search(struct btrfs_trans_handle *trans,
1616                       struct btrfs_root *root, struct btrfs_path *p,
1617                       struct extent_buffer *b, int level, int ins_len)
1618{
1619        int ret;
1620        if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1621            BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1622                int sret;
1623
1624                sret = reada_for_balance(root, p, level);
1625                if (sret)
1626                        goto again;
1627
1628                btrfs_set_path_blocking(p);
1629                sret = split_node(trans, root, p, level);
1630                btrfs_clear_path_blocking(p, NULL);
1631
1632                BUG_ON(sret > 0);
1633                if (sret) {
1634                        ret = sret;
1635                        goto done;
1636                }
1637                b = p->nodes[level];
1638        } else if (ins_len < 0 && btrfs_header_nritems(b) <
1639                   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
1640                int sret;
1641
1642                sret = reada_for_balance(root, p, level);
1643                if (sret)
1644                        goto again;
1645
1646                btrfs_set_path_blocking(p);
1647                sret = balance_level(trans, root, p, level);
1648                btrfs_clear_path_blocking(p, NULL);
1649
1650                if (sret) {
1651                        ret = sret;
1652                        goto done;
1653                }
1654                b = p->nodes[level];
1655                if (!b) {
1656                        btrfs_release_path(NULL, p);
1657                        goto again;
1658                }
1659                BUG_ON(btrfs_header_nritems(b) == 1);
1660        }
1661        return 0;
1662
1663again:
1664        ret = -EAGAIN;
1665done:
1666        return ret;
1667}
1668
1669/*
1670 * look for key in the tree.  path is filled in with nodes along the way
1671 * if key is found, we return zero and you can find the item in the leaf
1672 * level of the path (level 0)
1673 *
1674 * If the key isn't found, the path points to the slot where it should
1675 * be inserted, and 1 is returned.  If there are other errors during the
1676 * search a negative error number is returned.
1677 *
1678 * if ins_len > 0, nodes and leaves will be split as we walk down the
1679 * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
1680 * possible)
1681 */
1682int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1683                      *root, struct btrfs_key *key, struct btrfs_path *p, int
1684                      ins_len, int cow)
1685{
1686        struct extent_buffer *b;
1687        int slot;
1688        int ret;
1689        int err;
1690        int level;
1691        int lowest_unlock = 1;
1692        u8 lowest_level = 0;
1693
1694        lowest_level = p->lowest_level;
1695        WARN_ON(lowest_level && ins_len > 0);
1696        WARN_ON(p->nodes[0] != NULL);
1697
1698        if (ins_len < 0)
1699                lowest_unlock = 2;
1700
1701again:
1702        if (p->search_commit_root) {
1703                b = root->commit_root;
1704                extent_buffer_get(b);
1705                if (!p->skip_locking)
1706                        btrfs_tree_lock(b);
1707        } else {
1708                if (p->skip_locking)
1709                        b = btrfs_root_node(root);
1710                else
1711                        b = btrfs_lock_root_node(root);
1712        }
1713
1714        while (b) {
1715                level = btrfs_header_level(b);
1716
1717                /*
1718                 * setup the path here so we can release it under lock
1719                 * contention with the cow code
1720                 */
1721                p->nodes[level] = b;
1722                if (!p->skip_locking)
1723                        p->locks[level] = 1;
1724
1725                if (cow) {
1726                        /*
1727                         * if we don't really need to cow this block
1728                         * then we don't want to set the path blocking,
1729                         * so we test it here
1730                         */
1731                        if (!should_cow_block(trans, root, b))
1732                                goto cow_done;
1733
1734                        btrfs_set_path_blocking(p);
1735
1736                        err = btrfs_cow_block(trans, root, b,
1737                                              p->nodes[level + 1],
1738                                              p->slots[level + 1], &b);
1739                        if (err) {
1740                                free_extent_buffer(b);
1741                                ret = err;
1742                                goto done;
1743                        }
1744                }
1745cow_done:
1746                BUG_ON(!cow && ins_len);
1747                if (level != btrfs_header_level(b))
1748                        WARN_ON(1);
1749                level = btrfs_header_level(b);
1750
1751                p->nodes[level] = b;
1752                if (!p->skip_locking)
1753                        p->locks[level] = 1;
1754
1755                btrfs_clear_path_blocking(p, NULL);
1756
1757                /*
1758                 * we have a lock on b and as long as we aren't changing
1759                 * the tree, there is no way to for the items in b to change.
1760                 * It is safe to drop the lock on our parent before we
1761                 * go through the expensive btree search on b.
1762                 *
1763                 * If cow is true, then we might be changing slot zero,
1764                 * which may require changing the parent.  So, we can't
1765                 * drop the lock until after we know which slot we're
1766                 * operating on.
1767                 */
1768                if (!cow)
1769                        btrfs_unlock_up_safe(p, level + 1);
1770
1771                ret = check_block(root, p, level);
1772                if (ret) {
1773                        ret = -1;
1774                        goto done;
1775                }
1776
1777                ret = bin_search(b, key, level, &slot);
1778
1779                if (level != 0) {
1780                        int dec = 0;
1781                        if (ret && slot > 0) {
1782                                dec = 1;
1783                                slot -= 1;
1784                        }
1785                        p->slots[level] = slot;
1786                        err = setup_nodes_for_search(trans, root, p, b, level,
1787                                                     ins_len);
1788                        if (err == -EAGAIN)
1789                                goto again;
1790                        if (err) {
1791                                ret = err;
1792                                goto done;
1793                        }
1794                        b = p->nodes[level];
1795                        slot = p->slots[level];
1796
1797                        unlock_up(p, level, lowest_unlock);
1798
1799                        if (level == lowest_level) {
1800                                if (dec)
1801                                        p->slots[level]++;
1802                                goto done;
1803                        }
1804
1805                        err = read_block_for_search(trans, root, p,
1806                                                    &b, level, slot, key);
1807                        if (err == -EAGAIN)
1808                                goto again;
1809                        if (err) {
1810                                ret = err;
1811                                goto done;
1812                        }
1813
1814                        if (!p->skip_locking) {
1815                                btrfs_clear_path_blocking(p, NULL);
1816                                err = btrfs_try_spin_lock(b);
1817
1818                                if (!err) {
1819                                        btrfs_set_path_blocking(p);
1820                                        btrfs_tree_lock(b);
1821                                        btrfs_clear_path_blocking(p, b);
1822                                }
1823                        }
1824                } else {
1825                        p->slots[level] = slot;
1826                        if (ins_len > 0 &&
1827                            btrfs_leaf_free_space(root, b) < ins_len) {
1828                                btrfs_set_path_blocking(p);
1829                                err = split_leaf(trans, root, key,
1830                                                 p, ins_len, ret == 0);
1831                                btrfs_clear_path_blocking(p, NULL);
1832
1833                                BUG_ON(err > 0);
1834                                if (err) {
1835                                        ret = err;
1836                                        goto done;
1837                                }
1838                        }
1839                        if (!p->search_for_split)
1840                                unlock_up(p, level, lowest_unlock);
1841                        goto done;
1842                }
1843        }
1844        ret = 1;
1845done:
1846        /*
1847         * we don't really know what they plan on doing with the path
1848         * from here on, so for now just mark it as blocking
1849         */
1850        if (!p->leave_spinning)
1851                btrfs_set_path_blocking(p);
1852        if (ret < 0)
1853                btrfs_release_path(root, p);
1854        return ret;
1855}
1856
1857/*
1858 * adjust the pointers going up the tree, starting at level
1859 * making sure the right key of each node is points to 'key'.
1860 * This is used after shifting pointers to the left, so it stops
1861 * fixing up pointers when a given leaf/node is not in slot 0 of the
1862 * higher levels
1863 *
1864 * If this fails to write a tree block, it returns -1, but continues
1865 * fixing up the blocks in ram so the tree is consistent.
1866 */
1867static int fixup_low_keys(struct btrfs_trans_handle *trans,
1868                          struct btrfs_root *root, struct btrfs_path *path,
1869                          struct btrfs_disk_key *key, int level)
1870{
1871        int i;
1872        int ret = 0;
1873        struct extent_buffer *t;
1874
1875        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1876                int tslot = path->slots[i];
1877                if (!path->nodes[i])
1878                        break;
1879                t = path->nodes[i];
1880                btrfs_set_node_key(t, key, tslot);
1881                btrfs_mark_buffer_dirty(path->nodes[i]);
1882                if (tslot != 0)
1883                        break;
1884        }
1885        return ret;
1886}
1887
1888/*
1889 * update item key.
1890 *
1891 * This function isn't completely safe. It's the caller's responsibility
1892 * that the new key won't break the order
1893 */
1894int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1895                            struct btrfs_root *root, struct btrfs_path *path,
1896                            struct btrfs_key *new_key)
1897{
1898        struct btrfs_disk_key disk_key;
1899        struct extent_buffer *eb;
1900        int slot;
1901
1902        eb = path->nodes[0];
1903        slot = path->slots[0];
1904        if (slot > 0) {
1905                btrfs_item_key(eb, &disk_key, slot - 1);
1906                if (comp_keys(&disk_key, new_key) >= 0)
1907                        return -1;
1908        }
1909        if (slot < btrfs_header_nritems(eb) - 1) {
1910                btrfs_item_key(eb, &disk_key, slot + 1);
1911                if (comp_keys(&disk_key, new_key) <= 0)
1912                        return -1;
1913        }
1914
1915        btrfs_cpu_key_to_disk(&disk_key, new_key);
1916        btrfs_set_item_key(eb, &disk_key, slot);
1917        btrfs_mark_buffer_dirty(eb);
1918        if (slot == 0)
1919                fixup_low_keys(trans, root, path, &disk_key, 1);
1920        return 0;
1921}
1922
1923/*
1924 * try to push data from one node into the next node left in the
1925 * tree.
1926 *
1927 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1928 * error, and > 0 if there was no room in the left hand block.
1929 */
1930static int push_node_left(struct btrfs_trans_handle *trans,
1931                          struct btrfs_root *root, struct extent_buffer *dst,
1932                          struct extent_buffer *src, int empty)
1933{
1934        int push_items = 0;
1935        int src_nritems;
1936        int dst_nritems;
1937        int ret = 0;
1938
1939        src_nritems = btrfs_header_nritems(src);
1940        dst_nritems = btrfs_header_nritems(dst);
1941        push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1942        WARN_ON(btrfs_header_generation(src) != trans->transid);
1943        WARN_ON(btrfs_header_generation(dst) != trans->transid);
1944
1945        if (!empty && src_nritems <= 8)
1946                return 1;
1947
1948        if (push_items <= 0)
1949                return 1;
1950
1951        if (empty) {
1952                push_items = min(src_nritems, push_items);
1953                if (push_items < src_nritems) {
1954                        /* leave at least 8 pointers in the node if
1955                         * we aren't going to empty it
1956                         */
1957                        if (src_nritems - push_items < 8) {
1958                                if (push_items <= 8)
1959                                        return 1;
1960                                push_items -= 8;
1961                        }
1962                }
1963        } else
1964                push_items = min(src_nritems - 8, push_items);
1965
1966        copy_extent_buffer(dst, src,
1967                           btrfs_node_key_ptr_offset(dst_nritems),
1968                           btrfs_node_key_ptr_offset(0),
1969                           push_items * sizeof(struct btrfs_key_ptr));
1970
1971        if (push_items < src_nritems) {
1972                memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1973                                      btrfs_node_key_ptr_offset(push_items),
1974                                      (src_nritems - push_items) *
1975                                      sizeof(struct btrfs_key_ptr));
1976        }
1977        btrfs_set_header_nritems(src, src_nritems - push_items);
1978        btrfs_set_header_nritems(dst, dst_nritems + push_items);
1979        btrfs_mark_buffer_dirty(src);
1980        btrfs_mark_buffer_dirty(dst);
1981
1982        return ret;
1983}
1984
1985/*
1986 * try to push data from one node into the next node right in the
1987 * tree.
1988 *
1989 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1990 * error, and > 0 if there was no room in the right hand block.
1991 *
1992 * this will  only push up to 1/2 the contents of the left node over
1993 */
1994static int balance_node_right(struct btrfs_trans_handle *trans,
1995                              struct btrfs_root *root,
1996                              struct extent_buffer *dst,
1997                              struct extent_buffer *src)
1998{
1999        int push_items = 0;
2000        int max_push;
2001        int src_nritems;
2002        int dst_nritems;
2003        int ret = 0;
2004
2005        WARN_ON(btrfs_header_generation(src) != trans->transid);
2006        WARN_ON(btrfs_header_generation(dst) != trans->transid);
2007
2008        src_nritems = btrfs_header_nritems(src);
2009        dst_nritems = btrfs_header_nritems(dst);
2010        push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2011        if (push_items <= 0)
2012                return 1;
2013
2014        if (src_nritems < 4)
2015                return 1;
2016
2017        max_push = src_nritems / 2 + 1;
2018        /* don't try to empty the node */
2019        if (max_push >= src_nritems)
2020                return 1;
2021
2022        if (max_push < push_items)
2023                push_items = max_push;
2024
2025        memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2026                                      btrfs_node_key_ptr_offset(0),
2027                                      (dst_nritems) *
2028                                      sizeof(struct btrfs_key_ptr));
2029
2030        copy_extent_buffer(dst, src,
2031                           btrfs_node_key_ptr_offset(0),
2032                           btrfs_node_key_ptr_offset(src_nritems - push_items),
2033                           push_items * sizeof(struct btrfs_key_ptr));
2034
2035        btrfs_set_header_nritems(src, src_nritems - push_items);
2036        btrfs_set_header_nritems(dst, dst_nritems + push_items);
2037
2038        btrfs_mark_buffer_dirty(src);
2039        btrfs_mark_buffer_dirty(dst);
2040
2041        return ret;
2042}
2043
2044/*
2045 * helper function to insert a new root level in the tree.
2046 * A new node is allocated, and a single item is inserted to
2047 * point to the existing root
2048 *
2049 * returns zero on success or < 0 on failure.
2050 */
2051static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2052                           struct btrfs_root *root,
2053                           struct btrfs_path *path, int level)
2054{
2055        u64 lower_gen;
2056        struct extent_buffer *lower;
2057        struct extent_buffer *c;
2058        struct extent_buffer *old;
2059        struct btrfs_disk_key lower_key;
2060
2061        BUG_ON(path->nodes[level]);
2062        BUG_ON(path->nodes[level-1] != root->node);
2063
2064        lower = path->nodes[level-1];
2065        if (level == 1)
2066                btrfs_item_key(lower, &lower_key, 0);
2067        else
2068                btrfs_node_key(lower, &lower_key, 0);
2069
2070        c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2071                                   root->root_key.objectid, &lower_key,
2072                                   level, root->node->start, 0);
2073        if (IS_ERR(c))
2074                return PTR_ERR(c);
2075
2076        memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2077        btrfs_set_header_nritems(c, 1);
2078        btrfs_set_header_level(c, level);
2079        btrfs_set_header_bytenr(c, c->start);
2080        btrfs_set_header_generation(c, trans->transid);
2081        btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2082        btrfs_set_header_owner(c, root->root_key.objectid);
2083
2084        write_extent_buffer(c, root->fs_info->fsid,
2085                            (unsigned long)btrfs_header_fsid(c),
2086                            BTRFS_FSID_SIZE);
2087
2088        write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2089                            (unsigned long)btrfs_header_chunk_tree_uuid(c),
2090                            BTRFS_UUID_SIZE);
2091
2092        btrfs_set_node_key(c, &lower_key, 0);
2093        btrfs_set_node_blockptr(c, 0, lower->start);
2094        lower_gen = btrfs_header_generation(lower);
2095        WARN_ON(lower_gen != trans->transid);
2096
2097        btrfs_set_node_ptr_generation(c, 0, lower_gen);
2098
2099        btrfs_mark_buffer_dirty(c);
2100
2101        spin_lock(&root->node_lock);
2102        old = root->node;
2103        root->node = c;
2104        spin_unlock(&root->node_lock);
2105
2106        /* the super has an extra ref to root->node */
2107        free_extent_buffer(old);
2108
2109        add_root_to_dirty_list(root);
2110        extent_buffer_get(c);
2111        path->nodes[level] = c;
2112        path->locks[level] = 1;
2113        path->slots[level] = 0;
2114        return 0;
2115}
2116
2117/*
2118 * worker function to insert a single pointer in a node.
2119 * the node should have enough room for the pointer already
2120 *
2121 * slot and level indicate where you want the key to go, and
2122 * blocknr is the block the key points to.
2123 *
2124 * returns zero on success and < 0 on any error
2125 */
2126static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2127                      *root, struct btrfs_path *path, struct btrfs_disk_key
2128                      *key, u64 bytenr, int slot, int level)
2129{
2130        struct extent_buffer *lower;
2131        int nritems;
2132
2133        BUG_ON(!path->nodes[level]);
2134        lower = path->nodes[level];
2135        nritems = btrfs_header_nritems(lower);
2136        BUG_ON(slot > nritems);
2137        if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2138                BUG();
2139        if (slot != nritems) {
2140                memmove_extent_buffer(lower,
2141                              btrfs_node_key_ptr_offset(slot + 1),
2142                              btrfs_node_key_ptr_offset(slot),
2143                              (nritems - slot) * sizeof(struct btrfs_key_ptr));
2144        }
2145        btrfs_set_node_key(lower, key, slot);
2146        btrfs_set_node_blockptr(lower, slot, bytenr);
2147        WARN_ON(trans->transid == 0);
2148        btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2149        btrfs_set_header_nritems(lower, nritems + 1);
2150        btrfs_mark_buffer_dirty(lower);
2151        return 0;
2152}
2153
2154/*
2155 * split the node at the specified level in path in two.
2156 * The path is corrected to point to the appropriate node after the split
2157 *
2158 * Before splitting this tries to make some room in the node by pushing
2159 * left and right, if either one works, it returns right away.
2160 *
2161 * returns 0 on success and < 0 on failure
2162 */
2163static noinline int split_node(struct btrfs_trans_handle *trans,
2164                               struct btrfs_root *root,
2165                               struct btrfs_path *path, int level)
2166{
2167        struct extent_buffer *c;
2168        struct extent_buffer *split;
2169        struct btrfs_disk_key disk_key;
2170        int mid;
2171        int ret;
2172        int wret;
2173        u32 c_nritems;
2174
2175        c = path->nodes[level];
2176        WARN_ON(btrfs_header_generation(c) != trans->transid);
2177        if (c == root->node) {
2178                /* trying to split the root, lets make a new one */
2179                ret = insert_new_root(trans, root, path, level + 1);
2180                if (ret)
2181                        return ret;
2182        } else {
2183                ret = push_nodes_for_insert(trans, root, path, level);
2184                c = path->nodes[level];
2185                if (!ret && btrfs_header_nritems(c) <
2186                    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2187                        return 0;
2188                if (ret < 0)
2189                        return ret;
2190        }
2191
2192        c_nritems = btrfs_header_nritems(c);
2193        mid = (c_nritems + 1) / 2;
2194        btrfs_node_key(c, &disk_key, mid);
2195
2196        split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2197                                        root->root_key.objectid,
2198                                        &disk_key, level, c->start, 0);
2199        if (IS_ERR(split))
2200                return PTR_ERR(split);
2201
2202        memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
2203        btrfs_set_header_level(split, btrfs_header_level(c));
2204        btrfs_set_header_bytenr(split, split->start);
2205        btrfs_set_header_generation(split, trans->transid);
2206        btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
2207        btrfs_set_header_owner(split, root->root_key.objectid);
2208        write_extent_buffer(split, root->fs_info->fsid,
2209                            (unsigned long)btrfs_header_fsid(split),
2210                            BTRFS_FSID_SIZE);
2211        write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2212                            (unsigned long)btrfs_header_chunk_tree_uuid(split),
2213                            BTRFS_UUID_SIZE);
2214
2215
2216        copy_extent_buffer(split, c,
2217                           btrfs_node_key_ptr_offset(0),
2218                           btrfs_node_key_ptr_offset(mid),
2219                           (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2220        btrfs_set_header_nritems(split, c_nritems - mid);
2221        btrfs_set_header_nritems(c, mid);
2222        ret = 0;
2223
2224        btrfs_mark_buffer_dirty(c);
2225        btrfs_mark_buffer_dirty(split);
2226
2227        wret = insert_ptr(trans, root, path, &disk_key, split->start,
2228                          path->slots[level + 1] + 1,
2229                          level + 1);
2230        if (wret)
2231                ret = wret;
2232
2233        if (path->slots[level] >= mid) {
2234                path->slots[level] -= mid;
2235                btrfs_tree_unlock(c);
2236                free_extent_buffer(c);
2237                path->nodes[level] = split;
2238                path->slots[level + 1] += 1;
2239        } else {
2240                btrfs_tree_unlock(split);
2241                free_extent_buffer(split);
2242        }
2243        return ret;
2244}
2245
2246/*
2247 * how many bytes are required to store the items in a leaf.  start
2248 * and nr indicate which items in the leaf to check.  This totals up the
2249 * space used both by the item structs and the item data
2250 */
2251static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2252{
2253        int data_len;
2254        int nritems = btrfs_header_nritems(l);
2255        int end = min(nritems, start + nr) - 1;
2256
2257        if (!nr)
2258                return 0;
2259        data_len = btrfs_item_end_nr(l, start);
2260        data_len = data_len - btrfs_item_offset_nr(l, end);
2261        data_len += sizeof(struct btrfs_item) * nr;
2262        WARN_ON(data_len < 0);
2263        return data_len;
2264}
2265
2266/*
2267 * The space between the end of the leaf items and
2268 * the start of the leaf data.  IOW, how much room
2269 * the leaf has left for both items and data
2270 */
2271noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2272                                   struct extent_buffer *leaf)
2273{
2274        int nritems = btrfs_header_nritems(leaf);
2275        int ret;
2276        ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2277        if (ret < 0) {
2278                printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2279                       "used %d nritems %d\n",
2280                       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2281                       leaf_space_used(leaf, 0, nritems), nritems);
2282        }
2283        return ret;
2284}
2285
2286static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2287                                      struct btrfs_root *root,
2288                                      struct btrfs_path *path,
2289                                      int data_size, int empty,
2290                                      struct extent_buffer *right,
2291                                      int free_space, u32 left_nritems)
2292{
2293        struct extent_buffer *left = path->nodes[0];
2294        struct extent_buffer *upper = path->nodes[1];
2295        struct btrfs_disk_key disk_key;
2296        int slot;
2297        u32 i;
2298        int push_space = 0;
2299        int push_items = 0;
2300        struct btrfs_item *item;
2301        u32 nr;
2302        u32 right_nritems;
2303        u32 data_end;
2304        u32 this_item_size;
2305
2306        if (empty)
2307                nr = 0;
2308        else
2309                nr = 1;
2310
2311        if (path->slots[0] >= left_nritems)
2312                push_space += data_size;
2313
2314        slot = path->slots[1];
2315        i = left_nritems - 1;
2316        while (i >= nr) {
2317                item = btrfs_item_nr(left, i);
2318
2319                if (!empty && push_items > 0) {
2320                        if (path->slots[0] > i)
2321                                break;
2322                        if (path->slots[0] == i) {
2323                                int space = btrfs_leaf_free_space(root, left);
2324                                if (space + push_space * 2 > free_space)
2325                                        break;
2326                        }
2327                }
2328
2329                if (path->slots[0] == i)
2330                        push_space += data_size;
2331
2332                if (!left->map_token) {
2333                        map_extent_buffer(left, (unsigned long)item,
2334                                        sizeof(struct btrfs_item),
2335                                        &left->map_token, &left->kaddr,
2336                                        &left->map_start, &left->map_len,
2337                                        KM_USER1);
2338                }
2339
2340                this_item_size = btrfs_item_size(left, item);
2341                if (this_item_size + sizeof(*item) + push_space > free_space)
2342                        break;
2343
2344                push_items++;
2345                push_space += this_item_size + sizeof(*item);
2346                if (i == 0)
2347                        break;
2348                i--;
2349        }
2350        if (left->map_token) {
2351                unmap_extent_buffer(left, left->map_token, KM_USER1);
2352                left->map_token = NULL;
2353        }
2354
2355        if (push_items == 0)
2356                goto out_unlock;
2357
2358        if (!empty && push_items == left_nritems)
2359                WARN_ON(1);
2360
2361        /* push left to right */
2362        right_nritems = btrfs_header_nritems(right);
2363
2364        push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2365        push_space -= leaf_data_end(root, left);
2366
2367        /* make room in the right data area */
2368        data_end = leaf_data_end(root, right);
2369        memmove_extent_buffer(right,
2370                              btrfs_leaf_data(right) + data_end - push_space,
2371                              btrfs_leaf_data(right) + data_end,
2372                              BTRFS_LEAF_DATA_SIZE(root) - data_end);
2373
2374        /* copy from the left data area */
2375        copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2376                     BTRFS_LEAF_DATA_SIZE(root) - push_space,
2377                     btrfs_leaf_data(left) + leaf_data_end(root, left),
2378                     push_space);
2379
2380        memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2381                              btrfs_item_nr_offset(0),
2382                              right_nritems * sizeof(struct btrfs_item));
2383
2384        /* copy the items from left to right */
2385        copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2386                   btrfs_item_nr_offset(left_nritems - push_items),
2387                   push_items * sizeof(struct btrfs_item));
2388
2389        /* update the item pointers */
2390        right_nritems += push_items;
2391        btrfs_set_header_nritems(right, right_nritems);
2392        push_space = BTRFS_LEAF_DATA_SIZE(root);
2393        for (i = 0; i < right_nritems; i++) {
2394                item = btrfs_item_nr(right, i);
2395                if (!right->map_token) {
2396                        map_extent_buffer(right, (unsigned long)item,
2397                                        sizeof(struct btrfs_item),
2398                                        &right->map_token, &right->kaddr,
2399                                        &right->map_start, &right->map_len,
2400                                        KM_USER1);
2401                }
2402                push_space -= btrfs_item_size(right, item);
2403                btrfs_set_item_offset(right, item, push_space);
2404        }
2405
2406        if (right->map_token) {
2407                unmap_extent_buffer(right, right->map_token, KM_USER1);
2408                right->map_token = NULL;
2409        }
2410        left_nritems -= push_items;
2411        btrfs_set_header_nritems(left, left_nritems);
2412
2413        if (left_nritems)
2414                btrfs_mark_buffer_dirty(left);
2415        btrfs_mark_buffer_dirty(right);
2416
2417        btrfs_item_key(right, &disk_key, 0);
2418        btrfs_set_node_key(upper, &disk_key, slot + 1);
2419        btrfs_mark_buffer_dirty(upper);
2420
2421        /* then fixup the leaf pointer in the path */
2422        if (path->slots[0] >= left_nritems) {
2423                path->slots[0] -= left_nritems;
2424                if (btrfs_header_nritems(path->nodes[0]) == 0)
2425                        clean_tree_block(trans, root, path->nodes[0]);
2426                btrfs_tree_unlock(path->nodes[0]);
2427                free_extent_buffer(path->nodes[0]);
2428                path->nodes[0] = right;
2429                path->slots[1] += 1;
2430        } else {
2431                btrfs_tree_unlock(right);
2432                free_extent_buffer(right);
2433        }
2434        return 0;
2435
2436out_unlock:
2437        btrfs_tree_unlock(right);
2438        free_extent_buffer(right);
2439        return 1;
2440}
2441
2442/*
2443 * push some data in the path leaf to the right, trying to free up at
2444 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2445 *
2446 * returns 1 if the push failed because the other node didn't have enough
2447 * room, 0 if everything worked out and < 0 if there were major errors.
2448 */
2449static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2450                           *root, struct btrfs_path *path, int data_size,
2451                           int empty)
2452{
2453        struct extent_buffer *left = path->nodes[0];
2454        struct extent_buffer *right;
2455        struct extent_buffer *upper;
2456        int slot;
2457        int free_space;
2458        u32 left_nritems;
2459        int ret;
2460
2461        if (!path->nodes[1])
2462                return 1;
2463
2464        slot = path->slots[1];
2465        upper = path->nodes[1];
2466        if (slot >= btrfs_header_nritems(upper) - 1)
2467                return 1;
2468
2469        btrfs_assert_tree_locked(path->nodes[1]);
2470
2471        right = read_node_slot(root, upper, slot + 1);
2472        btrfs_tree_lock(right);
2473        btrfs_set_lock_blocking(right);
2474
2475        free_space = btrfs_leaf_free_space(root, right);
2476        if (free_space < data_size)
2477                goto out_unlock;
2478
2479        /* cow and double check */
2480        ret = btrfs_cow_block(trans, root, right, upper,
2481                              slot + 1, &right);
2482        if (ret)
2483                goto out_unlock;
2484
2485        free_space = btrfs_leaf_free_space(root, right);
2486        if (free_space < data_size)
2487                goto out_unlock;
2488
2489        left_nritems = btrfs_header_nritems(left);
2490        if (left_nritems == 0)
2491                goto out_unlock;
2492
2493        return __push_leaf_right(trans, root, path, data_size, empty,
2494                                right, free_space, left_nritems);
2495out_unlock:
2496        btrfs_tree_unlock(right);
2497        free_extent_buffer(right);
2498        return 1;
2499}
2500
2501/*
2502 * push some data in the path leaf to the left, trying to free up at
2503 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2504 */
2505static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2506                                     struct btrfs_root *root,
2507                                     struct btrfs_path *path, int data_size,
2508                                     int empty, struct extent_buffer *left,
2509                                     int free_space, int right_nritems)
2510{
2511        struct btrfs_disk_key disk_key;
2512        struct extent_buffer *right = path->nodes[0];
2513        int slot;
2514        int i;
2515        int push_space = 0;
2516        int push_items = 0;
2517        struct btrfs_item *item;
2518        u32 old_left_nritems;
2519        u32 nr;
2520        int ret = 0;
2521        int wret;
2522        u32 this_item_size;
2523        u32 old_left_item_size;
2524
2525        slot = path->slots[1];
2526
2527        if (empty)
2528                nr = right_nritems;
2529        else
2530                nr = right_nritems - 1;
2531
2532        for (i = 0; i < nr; i++) {
2533                item = btrfs_item_nr(right, i);
2534                if (!right->map_token) {
2535                        map_extent_buffer(right, (unsigned long)item,
2536                                        sizeof(struct btrfs_item),
2537                                        &right->map_token, &right->kaddr,
2538                                        &right->map_start, &right->map_len,
2539                                        KM_USER1);
2540                }
2541
2542                if (!empty && push_items > 0) {
2543                        if (path->slots[0] < i)
2544                                break;
2545                        if (path->slots[0] == i) {
2546                                int space = btrfs_leaf_free_space(root, right);
2547                                if (space + push_space * 2 > free_space)
2548                                        break;
2549                        }
2550                }
2551
2552                if (path->slots[0] == i)
2553                        push_space += data_size;
2554
2555                this_item_size = btrfs_item_size(right, item);
2556                if (this_item_size + sizeof(*item) + push_space > free_space)
2557                        break;
2558
2559                push_items++;
2560                push_space += this_item_size + sizeof(*item);
2561        }
2562
2563        if (right->map_token) {
2564                unmap_extent_buffer(right, right->map_token, KM_USER1);
2565                right->map_token = NULL;
2566        }
2567
2568        if (push_items == 0) {
2569                ret = 1;
2570                goto out;
2571        }
2572        if (!empty && push_items == btrfs_header_nritems(right))
2573                WARN_ON(1);
2574
2575        /* push data from right to left */
2576        copy_extent_buffer(left, right,
2577                           btrfs_item_nr_offset(btrfs_header_nritems(left)),
2578                           btrfs_item_nr_offset(0),
2579                           push_items * sizeof(struct btrfs_item));
2580
2581        push_space = BTRFS_LEAF_DATA_SIZE(root) -
2582                     btrfs_item_offset_nr(right, push_items - 1);
2583
2584        copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2585                     leaf_data_end(root, left) - push_space,
2586                     btrfs_leaf_data(right) +
2587                     btrfs_item_offset_nr(right, push_items - 1),
2588                     push_space);
2589        old_left_nritems = btrfs_header_nritems(left);
2590        BUG_ON(old_left_nritems <= 0);
2591
2592        old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2593        for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2594                u32 ioff;
2595
2596                item = btrfs_item_nr(left, i);
2597                if (!left->map_token) {
2598                        map_extent_buffer(left, (unsigned long)item,
2599                                        sizeof(struct btrfs_item),
2600                                        &left->map_token, &left->kaddr,
2601                                        &left->map_start, &left->map_len,
2602                                        KM_USER1);
2603                }
2604
2605                ioff = btrfs_item_offset(left, item);
2606                btrfs_set_item_offset(left, item,
2607                      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2608        }
2609        btrfs_set_header_nritems(left, old_left_nritems + push_items);
2610        if (left->map_token) {
2611                unmap_extent_buffer(left, left->map_token, KM_USER1);
2612                left->map_token = NULL;
2613        }
2614
2615        /* fixup right node */
2616        if (push_items > right_nritems) {
2617                printk(KERN_CRIT "push items %d nr %u\n", push_items,
2618                       right_nritems);
2619                WARN_ON(1);
2620        }
2621
2622        if (push_items < right_nritems) {
2623                push_space = btrfs_item_offset_nr(right, push_items - 1) -
2624                                                  leaf_data_end(root, right);
2625                memmove_extent_buffer(right, btrfs_leaf_data(right) +
2626                                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
2627                                      btrfs_leaf_data(right) +
2628                                      leaf_data_end(root, right), push_space);
2629
2630                memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2631                              btrfs_item_nr_offset(push_items),
2632                             (btrfs_header_nritems(right) - push_items) *
2633                             sizeof(struct btrfs_item));
2634        }
2635        right_nritems -= push_items;
2636        btrfs_set_header_nritems(right, right_nritems);
2637        push_space = BTRFS_LEAF_DATA_SIZE(root);
2638        for (i = 0; i < right_nritems; i++) {
2639                item = btrfs_item_nr(right, i);
2640
2641                if (!right->map_token) {
2642                        map_extent_buffer(right, (unsigned long)item,
2643                                        sizeof(struct btrfs_item),
2644                                        &right->map_token, &right->kaddr,
2645                                        &right->map_start, &right->map_len,
2646                                        KM_USER1);
2647                }
2648
2649                push_space = push_space - btrfs_item_size(right, item);
2650                btrfs_set_item_offset(right, item, push_space);
2651        }
2652        if (right->map_token) {
2653                unmap_extent_buffer(right, right->map_token, KM_USER1);
2654                right->map_token = NULL;
2655        }
2656
2657        btrfs_mark_buffer_dirty(left);
2658        if (right_nritems)
2659                btrfs_mark_buffer_dirty(right);
2660
2661        btrfs_item_key(right, &disk_key, 0);
2662        wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2663        if (wret)
2664                ret = wret;
2665
2666        /* then fixup the leaf pointer in the path */
2667        if (path->slots[0] < push_items) {
2668                path->slots[0] += old_left_nritems;
2669                if (btrfs_header_nritems(path->nodes[0]) == 0)
2670                        clean_tree_block(trans, root, path->nodes[0]);
2671                btrfs_tree_unlock(path->nodes[0]);
2672                free_extent_buffer(path->nodes[0]);
2673                path->nodes[0] = left;
2674                path->slots[1] -= 1;
2675        } else {
2676                btrfs_tree_unlock(left);
2677                free_extent_buffer(left);
2678                path->slots[0] -= push_items;
2679        }
2680        BUG_ON(path->slots[0] < 0);
2681        return ret;
2682out:
2683        btrfs_tree_unlock(left);
2684        free_extent_buffer(left);
2685        return ret;
2686}
2687
2688/*
2689 * push some data in the path leaf to the left, trying to free up at
2690 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2691 */
2692static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2693                          *root, struct btrfs_path *path, int data_size,
2694                          int empty)
2695{
2696        struct extent_buffer *right = path->nodes[0];
2697        struct extent_buffer *left;
2698        int slot;
2699        int free_space;
2700        u32 right_nritems;
2701        int ret = 0;
2702
2703        slot = path->slots[1];
2704        if (slot == 0)
2705                return 1;
2706        if (!path->nodes[1])
2707                return 1;
2708
2709        right_nritems = btrfs_header_nritems(right);
2710        if (right_nritems == 0)
2711                return 1;
2712
2713        btrfs_assert_tree_locked(path->nodes[1]);
2714
2715        left = read_node_slot(root, path->nodes[1], slot - 1);
2716        btrfs_tree_lock(left);
2717        btrfs_set_lock_blocking(left);
2718
2719        free_space = btrfs_leaf_free_space(root, left);
2720        if (free_space < data_size) {
2721                ret = 1;
2722                goto out;
2723        }
2724
2725        /* cow and double check */
2726        ret = btrfs_cow_block(trans, root, left,
2727                              path->nodes[1], slot - 1, &left);
2728        if (ret) {
2729                /* we hit -ENOSPC, but it isn't fatal here */
2730                ret = 1;
2731                goto out;
2732        }
2733
2734        free_space = btrfs_leaf_free_space(root, left);
2735        if (free_space < data_size) {
2736                ret = 1;
2737                goto out;
2738        }
2739
2740        return __push_leaf_left(trans, root, path, data_size,
2741                               empty, left, free_space, right_nritems);
2742out:
2743        btrfs_tree_unlock(left);
2744        free_extent_buffer(left);
2745        return ret;
2746}
2747
2748/*
2749 * split the path's leaf in two, making sure there is at least data_size
2750 * available for the resulting leaf level of the path.
2751 *
2752 * returns 0 if all went well and < 0 on failure.
2753 */
2754static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2755                               struct btrfs_root *root,
2756                               struct btrfs_path *path,
2757                               struct extent_buffer *l,
2758                               struct extent_buffer *right,
2759                               int slot, int mid, int nritems)
2760{
2761        int data_copy_size;
2762        int rt_data_off;
2763        int i;
2764        int ret = 0;
2765        int wret;
2766        struct btrfs_disk_key disk_key;
2767
2768        nritems = nritems - mid;
2769        btrfs_set_header_nritems(right, nritems);
2770        data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2771
2772        copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2773                           btrfs_item_nr_offset(mid),
2774                           nritems * sizeof(struct btrfs_item));
2775
2776        copy_extent_buffer(right, l,
2777                     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2778                     data_copy_size, btrfs_leaf_data(l) +
2779                     leaf_data_end(root, l), data_copy_size);
2780
2781        rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2782                      btrfs_item_end_nr(l, mid);
2783
2784        for (i = 0; i < nritems; i++) {
2785                struct btrfs_item *item = btrfs_item_nr(right, i);
2786                u32 ioff;
2787
2788                if (!right->map_token) {
2789                        map_extent_buffer(right, (unsigned long)item,
2790                                        sizeof(struct btrfs_item),
2791                                        &right->map_token, &right->kaddr,
2792                                        &right->map_start, &right->map_len,
2793                                        KM_USER1);
2794                }
2795
2796                ioff = btrfs_item_offset(right, item);
2797                btrfs_set_item_offset(right, item, ioff + rt_data_off);
2798        }
2799
2800        if (right->map_token) {
2801                unmap_extent_buffer(right, right->map_token, KM_USER1);
2802                right->map_token = NULL;
2803        }
2804
2805        btrfs_set_header_nritems(l, mid);
2806        ret = 0;
2807        btrfs_item_key(right, &disk_key, 0);
2808        wret = insert_ptr(trans, root, path, &disk_key, right->start,
2809                          path->slots[1] + 1, 1);
2810        if (wret)
2811                ret = wret;
2812
2813        btrfs_mark_buffer_dirty(right);
2814        btrfs_mark_buffer_dirty(l);
2815        BUG_ON(path->slots[0] != slot);
2816
2817        if (mid <= slot) {
2818                btrfs_tree_unlock(path->nodes[0]);
2819                free_extent_buffer(path->nodes[0]);
2820                path->nodes[0] = right;
2821                path->slots[0] -= mid;
2822                path->slots[1] += 1;
2823        } else {
2824                btrfs_tree_unlock(right);
2825                free_extent_buffer(right);
2826        }
2827
2828        BUG_ON(path->slots[0] < 0);
2829
2830        return ret;
2831}
2832
2833/*
2834 * split the path's leaf in two, making sure there is at least data_size
2835 * available for the resulting leaf level of the path.
2836 *
2837 * returns 0 if all went well and < 0 on failure.
2838 */
2839static noinline int split_leaf(struct btrfs_trans_handle *trans,
2840                               struct btrfs_root *root,
2841                               struct btrfs_key *ins_key,
2842                               struct btrfs_path *path, int data_size,
2843                               int extend)
2844{
2845        struct btrfs_disk_key disk_key;
2846        struct extent_buffer *l;
2847        u32 nritems;
2848        int mid;
2849        int slot;
2850        struct extent_buffer *right;
2851        int ret = 0;
2852        int wret;
2853        int split;
2854        int num_doubles = 0;
2855
2856        l = path->nodes[0];
2857        slot = path->slots[0];
2858        if (extend && data_size + btrfs_item_size_nr(l, slot) +
2859            sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
2860                return -EOVERFLOW;
2861
2862        /* first try to make some room by pushing left and right */
2863        if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) {
2864                wret = push_leaf_right(trans, root, path, data_size, 0);
2865                if (wret < 0)
2866                        return wret;
2867                if (wret) {
2868                        wret = push_leaf_left(trans, root, path, data_size, 0);
2869                        if (wret < 0)
2870                                return wret;
2871                }
2872                l = path->nodes[0];
2873
2874                /* did the pushes work? */
2875                if (btrfs_leaf_free_space(root, l) >= data_size)
2876                        return 0;
2877        }
2878
2879        if (!path->nodes[1]) {
2880                ret = insert_new_root(trans, root, path, 1);
2881                if (ret)
2882                        return ret;
2883        }
2884again:
2885        split = 1;
2886        l = path->nodes[0];
2887        slot = path->slots[0];
2888        nritems = btrfs_header_nritems(l);
2889        mid = (nritems + 1) / 2;
2890
2891        if (mid <= slot) {
2892                if (nritems == 1 ||
2893                    leaf_space_used(l, mid, nritems - mid) + data_size >
2894                        BTRFS_LEAF_DATA_SIZE(root)) {
2895                        if (slot >= nritems) {
2896                                split = 0;
2897                        } else {
2898                                mid = slot;
2899                                if (mid != nritems &&
2900                                    leaf_space_used(l, mid, nritems - mid) +
2901                                    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2902                                        split = 2;
2903                                }
2904                        }
2905                }
2906        } else {
2907                if (leaf_space_used(l, 0, mid) + data_size >
2908                        BTRFS_LEAF_DATA_SIZE(root)) {
2909                        if (!extend && data_size && slot == 0) {
2910                                split = 0;
2911                        } else if ((extend || !data_size) && slot == 0) {
2912                                mid = 1;
2913                        } else {
2914                                mid = slot;
2915                                if (mid != nritems &&
2916                                    leaf_space_used(l, mid, nritems - mid) +
2917                                    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2918                                        split = 2 ;
2919                                }
2920                        }
2921                }
2922        }
2923
2924        if (split == 0)
2925                btrfs_cpu_key_to_disk(&disk_key, ins_key);
2926        else
2927                btrfs_item_key(l, &disk_key, mid);
2928
2929        right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
2930                                        root->root_key.objectid,
2931                                        &disk_key, 0, l->start, 0);
2932        if (IS_ERR(right)) {
2933                BUG_ON(1);
2934                return PTR_ERR(right);
2935        }
2936
2937        memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2938        btrfs_set_header_bytenr(right, right->start);
2939        btrfs_set_header_generation(right, trans->transid);
2940        btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
2941        btrfs_set_header_owner(right, root->root_key.objectid);
2942        btrfs_set_header_level(right, 0);
2943        write_extent_buffer(right, root->fs_info->fsid,
2944                            (unsigned long)btrfs_header_fsid(right),
2945                            BTRFS_FSID_SIZE);
2946
2947        write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2948                            (unsigned long)btrfs_header_chunk_tree_uuid(right),
2949                            BTRFS_UUID_SIZE);
2950
2951        if (split == 0) {
2952                if (mid <= slot) {
2953                        btrfs_set_header_nritems(right, 0);
2954                        wret = insert_ptr(trans, root, path,
2955                                          &disk_key, right->start,
2956                                          path->slots[1] + 1, 1);
2957                        if (wret)
2958                                ret = wret;
2959
2960                        btrfs_tree_unlock(path->nodes[0]);
2961                        free_extent_buffer(path->nodes[0]);
2962                        path->nodes[0] = right;
2963                        path->slots[0] = 0;
2964                        path->slots[1] += 1;
2965                } else {
2966                        btrfs_set_header_nritems(right, 0);
2967                        wret = insert_ptr(trans, root, path,
2968                                          &disk_key,
2969                                          right->start,
2970                                          path->slots[1], 1);
2971                        if (wret)
2972                                ret = wret;
2973                        btrfs_tree_unlock(path->nodes[0]);
2974                        free_extent_buffer(path->nodes[0]);
2975                        path->nodes[0] = right;
2976                        path->slots[0] = 0;
2977                        if (path->slots[1] == 0) {
2978                                wret = fixup_low_keys(trans, root,
2979                                                path, &disk_key, 1);
2980                                if (wret)
2981                                        ret = wret;
2982                        }
2983                }
2984                btrfs_mark_buffer_dirty(right);
2985                return ret;
2986        }
2987
2988        ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
2989        BUG_ON(ret);
2990
2991        if (split == 2) {
2992                BUG_ON(num_doubles != 0);
2993                num_doubles++;
2994                goto again;
2995        }
2996
2997        return ret;
2998}
2999
3000/*
3001 * This function splits a single item into two items,
3002 * giving 'new_key' to the new item and splitting the
3003 * old one at split_offset (from the start of the item).
3004 *
3005 * The path may be released by this operation.  After
3006 * the split, the path is pointing to the old item.  The
3007 * new item is going to be in the same node as the old one.
3008 *
3009 * Note, the item being split must be smaller enough to live alone on
3010 * a tree block with room for one extra struct btrfs_item
3011 *
3012 * This allows us to split the item in place, keeping a lock on the
3013 * leaf the entire time.
3014 */
3015int btrfs_split_item(struct btrfs_trans_handle *trans,
3016                     struct btrfs_root *root,
3017                     struct btrfs_path *path,
3018                     struct btrfs_key *new_key,
3019                     unsigned long split_offset)
3020{
3021        u32 item_size;
3022        struct extent_buffer *leaf;
3023        struct btrfs_key orig_key;
3024        struct btrfs_item *item;
3025        struct btrfs_item *new_item;
3026        int ret = 0;
3027        int slot;
3028        u32 nritems;
3029        u32 orig_offset;
3030        struct btrfs_disk_key disk_key;
3031        char *buf;
3032
3033        leaf = path->nodes[0];
3034        btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]);
3035        if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item))
3036                goto split;
3037
3038        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3039        btrfs_release_path(root, path);
3040
3041        path->search_for_split = 1;
3042        path->keep_locks = 1;
3043
3044        ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1);
3045        path->search_for_split = 0;
3046
3047        /* if our item isn't there or got smaller, return now */
3048        if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0],
3049                                                        path->slots[0])) {
3050                path->keep_locks = 0;
3051                return -EAGAIN;
3052        }
3053
3054        btrfs_set_path_blocking(path);
3055        ret = split_leaf(trans, root, &orig_key, path,
3056                         sizeof(struct btrfs_item), 1);
3057        path->keep_locks = 0;
3058        BUG_ON(ret);
3059
3060        btrfs_unlock_up_safe(path, 1);
3061        leaf = path->nodes[0];
3062        BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3063
3064split:
3065        /*
3066         * make sure any changes to the path from split_leaf leave it
3067         * in a blocking state
3068         */
3069        btrfs_set_path_blocking(path);
3070
3071        item = btrfs_item_nr(leaf, path->slots[0]);
3072        orig_offset = btrfs_item_offset(leaf, item);
3073        item_size = btrfs_item_size(leaf, item);
3074
3075        buf = kmalloc(item_size, GFP_NOFS);
3076        read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3077                            path->slots[0]), item_size);
3078        slot = path->slots[0] + 1;
3079        leaf = path->nodes[0];
3080
3081        nritems = btrfs_header_nritems(leaf);
3082
3083        if (slot != nritems) {
3084                /* shift the items */
3085                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3086                              btrfs_item_nr_offset(slot),
3087                              (nritems - slot) * sizeof(struct btrfs_item));
3088
3089        }
3090
3091        btrfs_cpu_key_to_disk(&disk_key, new_key);
3092        btrfs_set_item_key(leaf, &disk_key, slot);
3093
3094        new_item = btrfs_item_nr(leaf, slot);
3095
3096        btrfs_set_item_offset(leaf, new_item, orig_offset);
3097        btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3098
3099        btrfs_set_item_offset(leaf, item,
3100                              orig_offset + item_size - split_offset);
3101        btrfs_set_item_size(leaf, item, split_offset);
3102
3103        btrfs_set_header_nritems(leaf, nritems + 1);
3104
3105        /* write the data for the start of the original item */
3106        write_extent_buffer(leaf, buf,
3107                            btrfs_item_ptr_offset(leaf, path->slots[0]),
3108                            split_offset);
3109
3110        /* write the data for the new item */
3111        write_extent_buffer(leaf, buf + split_offset,
3112                            btrfs_item_ptr_offset(leaf, slot),
3113                            item_size - split_offset);
3114        btrfs_mark_buffer_dirty(leaf);
3115
3116        ret = 0;
3117        if (btrfs_leaf_free_space(root, leaf) < 0) {
3118                btrfs_print_leaf(root, leaf);
3119                BUG();
3120        }
3121        kfree(buf);
3122        return ret;
3123}
3124
3125/*
3126 * make the item pointed to by the path smaller.  new_size indicates
3127 * how small to make it, and from_end tells us if we just chop bytes
3128 * off the end of the item or if we shift the item to chop bytes off
3129 * the front.
3130 */
3131int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3132                        struct btrfs_root *root,
3133                        struct btrfs_path *path,
3134                        u32 new_size, int from_end)
3135{
3136        int ret = 0;
3137        int slot;
3138        int slot_orig;
3139        struct extent_buffer *leaf;
3140        struct btrfs_item *item;
3141        u32 nritems;
3142        unsigned int data_end;
3143        unsigned int old_data_start;
3144        unsigned int old_size;
3145        unsigned int size_diff;
3146        int i;
3147
3148        slot_orig = path->slots[0];
3149        leaf = path->nodes[0];
3150        slot = path->slots[0];
3151
3152        old_size = btrfs_item_size_nr(leaf, slot);
3153        if (old_size == new_size)
3154                return 0;
3155
3156        nritems = btrfs_header_nritems(leaf);
3157        data_end = leaf_data_end(root, leaf);
3158
3159        old_data_start = btrfs_item_offset_nr(leaf, slot);
3160
3161        size_diff = old_size - new_size;
3162
3163        BUG_ON(slot < 0);
3164        BUG_ON(slot >= nritems);
3165
3166        /*
3167         * item0..itemN ... dataN.offset..dataN.size .. data0.size
3168         */
3169        /* first correct the data pointers */
3170        for (i = slot; i < nritems; i++) {
3171                u32 ioff;
3172                item = btrfs_item_nr(leaf, i);
3173
3174                if (!leaf->map_token) {
3175                        map_extent_buffer(leaf, (unsigned long)item,
3176                                        sizeof(struct btrfs_item),
3177                                        &leaf->map_token, &leaf->kaddr,
3178                                        &leaf->map_start, &leaf->map_len,
3179                                        KM_USER1);
3180                }
3181
3182                ioff = btrfs_item_offset(leaf, item);
3183                btrfs_set_item_offset(leaf, item, ioff + size_diff);
3184        }
3185
3186        if (leaf->map_token) {
3187                unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3188                leaf->map_token = NULL;
3189        }
3190
3191        /* shift the data */
3192        if (from_end) {
3193                memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3194                              data_end + size_diff, btrfs_leaf_data(leaf) +
3195                              data_end, old_data_start + new_size - data_end);
3196        } else {
3197                struct btrfs_disk_key disk_key;
3198                u64 offset;
3199
3200                btrfs_item_key(leaf, &disk_key, slot);
3201
3202                if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3203                        unsigned long ptr;
3204                        struct btrfs_file_extent_item *fi;
3205
3206                        fi = btrfs_item_ptr(leaf, slot,
3207                                            struct btrfs_file_extent_item);
3208                        fi = (struct btrfs_file_extent_item *)(
3209                             (unsigned long)fi - size_diff);
3210
3211                        if (btrfs_file_extent_type(leaf, fi) ==
3212                            BTRFS_FILE_EXTENT_INLINE) {
3213                                ptr = btrfs_item_ptr_offset(leaf, slot);
3214                                memmove_extent_buffer(leaf, ptr,
3215                                      (unsigned long)fi,
3216                                      offsetof(struct btrfs_file_extent_item,
3217                                                 disk_bytenr));
3218                        }
3219                }
3220
3221                memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3222                              data_end + size_diff, btrfs_leaf_data(leaf) +
3223                              data_end, old_data_start - data_end);
3224
3225                offset = btrfs_disk_key_offset(&disk_key);
3226                btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3227                btrfs_set_item_key(leaf, &disk_key, slot);
3228                if (slot == 0)
3229                        fixup_low_keys(trans, root, path, &disk_key, 1);
3230        }
3231
3232        item = btrfs_item_nr(leaf, slot);
3233        btrfs_set_item_size(leaf, item, new_size);
3234        btrfs_mark_buffer_dirty(leaf);
3235
3236        ret = 0;
3237        if (btrfs_leaf_free_space(root, leaf) < 0) {
3238                btrfs_print_leaf(root, leaf);
3239                BUG();
3240        }
3241        return ret;
3242}
3243
3244/*
3245 * make the item pointed to by the path bigger, data_size is the new size.
3246 */
3247int btrfs_extend_item(struct btrfs_trans_handle *trans,
3248                      struct btrfs_root *root, struct btrfs_path *path,
3249                      u32 data_size)
3250{
3251        int ret = 0;
3252        int slot;
3253        int slot_orig;
3254        struct extent_buffer *leaf;
3255        struct btrfs_item *item;
3256        u32 nritems;
3257        unsigned int data_end;
3258        unsigned int old_data;
3259        unsigned int old_size;
3260        int i;
3261
3262        slot_orig = path->slots[0];
3263        leaf = path->nodes[0];
3264
3265        nritems = btrfs_header_nritems(leaf);
3266        data_end = leaf_data_end(root, leaf);
3267
3268        if (btrfs_leaf_free_space(root, leaf) < data_size) {
3269                btrfs_print_leaf(root, leaf);
3270                BUG();
3271        }
3272        slot = path->slots[0];
3273        old_data = btrfs_item_end_nr(leaf, slot);
3274
3275        BUG_ON(slot < 0);
3276        if (slot >= nritems) {
3277                btrfs_print_leaf(root, leaf);
3278                printk(KERN_CRIT "slot %d too large, nritems %d\n",
3279                       slot, nritems);
3280                BUG_ON(1);
3281        }
3282
3283        /*
3284         * item0..itemN ... dataN.offset..dataN.size .. data0.size
3285         */
3286        /* first correct the data pointers */
3287        for (i = slot; i < nritems; i++) {
3288                u32 ioff;
3289                item = btrfs_item_nr(leaf, i);
3290
3291                if (!leaf->map_token) {
3292                        map_extent_buffer(leaf, (unsigned long)item,
3293                                        sizeof(struct btrfs_item),
3294                                        &leaf->map_token, &leaf->kaddr,
3295                                        &leaf->map_start, &leaf->map_len,
3296                                        KM_USER1);
3297                }
3298                ioff = btrfs_item_offset(leaf, item);
3299                btrfs_set_item_offset(leaf, item, ioff - data_size);
3300        }
3301
3302        if (leaf->map_token) {
3303                unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3304                leaf->map_token = NULL;
3305        }
3306
3307        /* shift the data */
3308        memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3309                      data_end - data_size, btrfs_leaf_data(leaf) +
3310                      data_end, old_data - data_end);
3311
3312        data_end = old_data;
3313        old_size = btrfs_item_size_nr(leaf, slot);
3314        item = btrfs_item_nr(leaf, slot);
3315        btrfs_set_item_size(leaf, item, old_size + data_size);
3316        btrfs_mark_buffer_dirty(leaf);
3317
3318        ret = 0;
3319        if (btrfs_leaf_free_space(root, leaf) < 0) {
3320                btrfs_print_leaf(root, leaf);
3321                BUG();
3322        }
3323        return ret;
3324}
3325
3326/*
3327 * Given a key and some data, insert items into the tree.
3328 * This does all the path init required, making room in the tree if needed.
3329 * Returns the number of keys that were inserted.
3330 */
3331int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3332                            struct btrfs_root *root,
3333                            struct btrfs_path *path,
3334                            struct btrfs_key *cpu_key, u32 *data_size,
3335                            int nr)
3336{
3337        struct extent_buffer *leaf;
3338        struct btrfs_item *item;
3339        int ret = 0;
3340        int slot;
3341        int i;
3342        u32 nritems;
3343        u32 total_data = 0;
3344        u32 total_size = 0;
3345        unsigned int data_end;
3346        struct btrfs_disk_key disk_key;
3347        struct btrfs_key found_key;
3348
3349        for (i = 0; i < nr; i++) {
3350                if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3351                    BTRFS_LEAF_DATA_SIZE(root)) {
3352                        break;
3353                        nr = i;
3354                }
3355                total_data += data_size[i];
3356                total_size += data_size[i] + sizeof(struct btrfs_item);
3357        }
3358        BUG_ON(nr == 0);
3359
3360        ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3361        if (ret == 0)
3362                return -EEXIST;
3363        if (ret < 0)
3364                goto out;
3365
3366        leaf = path->nodes[0];
3367
3368        nritems = btrfs_header_nritems(leaf);
3369        data_end = leaf_data_end(root, leaf);
3370
3371        if (btrfs_leaf_free_space(root, leaf) < total_size) {
3372                for (i = nr; i >= 0; i--) {
3373                        total_data -= data_size[i];
3374                        total_size -= data_size[i] + sizeof(struct btrfs_item);
3375                        if (total_size < btrfs_leaf_free_space(root, leaf))
3376                                break;
3377                }
3378                nr = i;
3379        }
3380
3381        slot = path->slots[0];
3382        BUG_ON(slot < 0);
3383
3384        if (slot != nritems) {
3385                unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3386
3387                item = btrfs_item_nr(leaf, slot);
3388                btrfs_item_key_to_cpu(leaf, &found_key, slot);
3389
3390                /* figure out how many keys we can insert in here */
3391                total_data = data_size[0];
3392                for (i = 1; i < nr; i++) {
3393                        if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3394                                break;
3395                        total_data += data_size[i];
3396                }
3397                nr = i;
3398
3399                if (old_data < data_end) {
3400                        btrfs_print_leaf(root, leaf);
3401                        printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3402                               slot, old_data, data_end);
3403                        BUG_ON(1);
3404                }
3405                /*
3406                 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3407                 */
3408                /* first correct the data pointers */
3409                WARN_ON(leaf->map_token);
3410                for (i = slot; i < nritems; i++) {
3411                        u32 ioff;
3412
3413                        item = btrfs_item_nr(leaf, i);
3414                        if (!leaf->map_token) {
3415                                map_extent_buffer(leaf, (unsigned long)item,
3416                                        sizeof(struct btrfs_item),
3417                                        &leaf->map_token, &leaf->kaddr,
3418                                        &leaf->map_start, &leaf->map_len,
3419                                        KM_USER1);
3420                        }
3421
3422                        ioff = btrfs_item_offset(leaf, item);
3423                        btrfs_set_item_offset(leaf, item, ioff - total_data);
3424                }
3425                if (leaf->map_token) {
3426                        unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3427                        leaf->map_token = NULL;
3428                }
3429
3430                /* shift the items */
3431                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3432                              btrfs_item_nr_offset(slot),
3433                              (nritems - slot) * sizeof(struct btrfs_item));
3434
3435                /* shift the data */
3436                memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3437                              data_end - total_data, btrfs_leaf_data(leaf) +
3438                              data_end, old_data - data_end);
3439                data_end = old_data;
3440        } else {
3441                /*
3442                 * this sucks but it has to be done, if we are inserting at
3443                 * the end of the leaf only insert 1 of the items, since we
3444                 * have no way of knowing whats on the next leaf and we'd have
3445                 * to drop our current locks to figure it out
3446                 */
3447                nr = 1;
3448        }
3449
3450        /* setup the item for the new data */
3451        for (i = 0; i < nr; i++) {
3452                btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3453                btrfs_set_item_key(leaf, &disk_key, slot + i);
3454                item = btrfs_item_nr(leaf, slot + i);
3455                btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3456                data_end -= data_size[i];
3457                btrfs_set_item_size(leaf, item, data_size[i]);
3458        }
3459        btrfs_set_header_nritems(leaf, nritems + nr);
3460        btrfs_mark_buffer_dirty(leaf);
3461
3462        ret = 0;
3463        if (slot == 0) {
3464                btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3465                ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3466        }
3467
3468        if (btrfs_leaf_free_space(root, leaf) < 0) {
3469                btrfs_print_leaf(root, leaf);
3470                BUG();
3471        }
3472out:
3473        if (!ret)
3474                ret = nr;
3475        return ret;
3476}
3477
3478/*
3479 * this is a helper for btrfs_insert_empty_items, the main goal here is
3480 * to save stack depth by doing the bulk of the work in a function
3481 * that doesn't call btrfs_search_slot
3482 */
3483static noinline_for_stack int
3484setup_items_for_insert(struct btrfs_trans_handle *trans,
3485                      struct btrfs_root *root, struct btrfs_path *path,
3486                      struct btrfs_key *cpu_key, u32 *data_size,
3487                      u32 total_data, u32 total_size, int nr)
3488{
3489        struct btrfs_item *item;
3490        int i;
3491        u32 nritems;
3492        unsigned int data_end;
3493        struct btrfs_disk_key disk_key;
3494        int ret;
3495        struct extent_buffer *leaf;
3496        int slot;
3497
3498        leaf = path->nodes[0];
3499        slot = path->slots[0];
3500
3501        nritems = btrfs_header_nritems(leaf);
3502        data_end = leaf_data_end(root, leaf);
3503
3504        if (btrfs_leaf_free_space(root, leaf) < total_size) {
3505                btrfs_print_leaf(root, leaf);
3506                printk(KERN_CRIT "not enough freespace need %u have %d\n",
3507                       total_size, btrfs_leaf_free_space(root, leaf));
3508                BUG();
3509        }
3510
3511        if (slot != nritems) {
3512                unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3513
3514                if (old_data < data_end) {
3515                        btrfs_print_leaf(root, leaf);
3516                        printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3517                               slot, old_data, data_end);
3518                        BUG_ON(1);
3519                }
3520                /*
3521                 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3522                 */
3523                /* first correct the data pointers */
3524                WARN_ON(leaf->map_token);
3525                for (i = slot; i < nritems; i++) {
3526                        u32 ioff;
3527
3528                        item = btrfs_item_nr(leaf, i);
3529                        if (!leaf->map_token) {
3530                                map_extent_buffer(leaf, (unsigned long)item,
3531                                        sizeof(struct btrfs_item),
3532                                        &leaf->map_token, &leaf->kaddr,
3533                                        &leaf->map_start, &leaf->map_len,
3534                                        KM_USER1);
3535                        }
3536
3537                        ioff = btrfs_item_offset(leaf, item);
3538                        btrfs_set_item_offset(leaf, item, ioff - total_data);
3539                }
3540                if (leaf->map_token) {
3541                        unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3542                        leaf->map_token = NULL;
3543                }
3544
3545                /* shift the items */
3546                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3547                              btrfs_item_nr_offset(slot),
3548                              (nritems - slot) * sizeof(struct btrfs_item));
3549
3550                /* shift the data */
3551                memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3552                              data_end - total_data, btrfs_leaf_data(leaf) +
3553                              data_end, old_data - data_end);
3554                data_end = old_data;
3555        }
3556
3557        /* setup the item for the new data */
3558        for (i = 0; i < nr; i++) {
3559                btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3560                btrfs_set_item_key(leaf, &disk_key, slot + i);
3561                item = btrfs_item_nr(leaf, slot + i);
3562                btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3563                data_end -= data_size[i];
3564                btrfs_set_item_size(leaf, item, data_size[i]);
3565        }
3566
3567        btrfs_set_header_nritems(leaf, nritems + nr);
3568
3569        ret = 0;
3570        if (slot == 0) {
3571                struct btrfs_disk_key disk_key;
3572                btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3573                ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3574        }
3575        btrfs_unlock_up_safe(path, 1);
3576        btrfs_mark_buffer_dirty(leaf);
3577
3578        if (btrfs_leaf_free_space(root, leaf) < 0) {
3579                btrfs_print_leaf(root, leaf);
3580                BUG();
3581        }
3582        return ret;
3583}
3584
3585/*
3586 * Given a key and some data, insert items into the tree.
3587 * This does all the path init required, making room in the tree if needed.
3588 */
3589int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3590                            struct btrfs_root *root,
3591                            struct btrfs_path *path,
3592                            struct btrfs_key *cpu_key, u32 *data_size,
3593                            int nr)
3594{
3595        struct extent_buffer *leaf;
3596        int ret = 0;
3597        int slot;
3598        int i;
3599        u32 total_size = 0;
3600        u32 total_data = 0;
3601
3602        for (i = 0; i < nr; i++)
3603                total_data += data_size[i];
3604
3605        total_size = total_data + (nr * sizeof(struct btrfs_item));
3606        ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3607        if (ret == 0)
3608                return -EEXIST;
3609        if (ret < 0)
3610                goto out;
3611
3612        leaf = path->nodes[0];
3613        slot = path->slots[0];
3614        BUG_ON(slot < 0);
3615
3616        ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3617                               total_data, total_size, nr);
3618
3619out:
3620        return ret;
3621}
3622
3623/*
3624 * Given a key and some data, insert an item into the tree.
3625 * This does all the path init required, making room in the tree if needed.
3626 */
3627int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3628                      *root, struct btrfs_key *cpu_key, void *data, u32
3629                      data_size)
3630{
3631        int ret = 0;
3632        struct btrfs_path *path;
3633        struct extent_buffer *leaf;
3634        unsigned long ptr;
3635
3636        path = btrfs_alloc_path();
3637        BUG_ON(!path);
3638        ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3639        if (!ret) {
3640                leaf = path->nodes[0];
3641                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3642                write_extent_buffer(leaf, data, ptr, data_size);
3643                btrfs_mark_buffer_dirty(leaf);
3644        }
3645        btrfs_free_path(path);
3646        return ret;
3647}
3648
3649/*
3650 * delete the pointer from a given node.
3651 *
3652 * the tree should have been previously balanced so the deletion does not
3653 * empty a node.
3654 */
3655static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3656                   struct btrfs_path *path, int level, int slot)
3657{
3658        struct extent_buffer *parent = path->nodes[level];
3659        u32 nritems;
3660        int ret = 0;
3661        int wret;
3662
3663        nritems = btrfs_header_nritems(parent);
3664        if (slot != nritems - 1) {
3665                memmove_extent_buffer(parent,
3666                              btrfs_node_key_ptr_offset(slot),
3667                              btrfs_node_key_ptr_offset(slot + 1),
3668                              sizeof(struct btrfs_key_ptr) *
3669                              (nritems - slot - 1));
3670        }
3671        nritems--;
3672        btrfs_set_header_nritems(parent, nritems);
3673        if (nritems == 0 && parent == root->node) {
3674                BUG_ON(btrfs_header_level(root->node) != 1);
3675                /* just turn the root into a leaf and break */
3676                btrfs_set_header_level(root->node, 0);
3677        } else if (slot == 0) {
3678                struct btrfs_disk_key disk_key;
3679
3680                btrfs_node_key(parent, &disk_key, 0);
3681                wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3682                if (wret)
3683                        ret = wret;
3684        }
3685        btrfs_mark_buffer_dirty(parent);
3686        return ret;
3687}
3688
3689/*
3690 * a helper function to delete the leaf pointed to by path->slots[1] and
3691 * path->nodes[1].
3692 *
3693 * This deletes the pointer in path->nodes[1] and frees the leaf
3694 * block extent.  zero is returned if it all worked out, < 0 otherwise.
3695 *
3696 * The path must have already been setup for deleting the leaf, including
3697 * all the proper balancing.  path->nodes[1] must be locked.
3698 */
3699static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3700                                   struct btrfs_root *root,
3701                                   struct btrfs_path *path,
3702                                   struct extent_buffer *leaf)
3703{
3704        int ret;
3705
3706        WARN_ON(btrfs_header_generation(leaf) != trans->transid);
3707        ret = del_ptr(trans, root, path, 1, path->slots[1]);
3708        if (ret)
3709                return ret;
3710
3711        /*
3712         * btrfs_free_extent is expensive, we want to make sure we
3713         * aren't holding any locks when we call it
3714         */
3715        btrfs_unlock_up_safe(path, 0);
3716
3717        ret = btrfs_free_extent(trans, root, leaf->start, leaf->len,
3718                                0, root->root_key.objectid, 0, 0);
3719        return ret;
3720}
3721/*
3722 * delete the item at the leaf level in path.  If that empties
3723 * the leaf, remove it from the tree
3724 */
3725int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3726                    struct btrfs_path *path, int slot, int nr)
3727{
3728        struct extent_buffer *leaf;
3729        struct btrfs_item *item;
3730        int last_off;
3731        int dsize = 0;
3732        int ret = 0;
3733        int wret;
3734        int i;
3735        u32 nritems;
3736
3737        leaf = path->nodes[0];
3738        last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3739
3740        for (i = 0; i < nr; i++)
3741                dsize += btrfs_item_size_nr(leaf, slot + i);
3742
3743        nritems = btrfs_header_nritems(leaf);
3744
3745        if (slot + nr != nritems) {
3746                int data_end = leaf_data_end(root, leaf);
3747
3748                memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3749                              data_end + dsize,
3750                              btrfs_leaf_data(leaf) + data_end,
3751                              last_off - data_end);
3752
3753                for (i = slot + nr; i < nritems; i++) {
3754                        u32 ioff;
3755
3756                        item = btrfs_item_nr(leaf, i);
3757                        if (!leaf->map_token) {
3758                                map_extent_buffer(leaf, (unsigned long)item,
3759                                        sizeof(struct btrfs_item),
3760                                        &leaf->map_token, &leaf->kaddr,
3761                                        &leaf->map_start, &leaf->map_len,
3762                                        KM_USER1);
3763                        }
3764                        ioff = btrfs_item_offset(leaf, item);
3765                        btrfs_set_item_offset(leaf, item, ioff + dsize);
3766                }
3767
3768                if (leaf->map_token) {
3769                        unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3770                        leaf->map_token = NULL;
3771                }
3772
3773                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3774                              btrfs_item_nr_offset(slot + nr),
3775                              sizeof(struct btrfs_item) *
3776                              (nritems - slot - nr));
3777        }
3778        btrfs_set_header_nritems(leaf, nritems - nr);
3779        nritems -= nr;
3780
3781        /* delete the leaf if we've emptied it */
3782        if (nritems == 0) {
3783                if (leaf == root->node) {
3784                        btrfs_set_header_level(leaf, 0);
3785                } else {
3786                        ret = btrfs_del_leaf(trans, root, path, leaf);
3787                        BUG_ON(ret);
3788                }
3789        } else {
3790                int used = leaf_space_used(leaf, 0, nritems);
3791                if (slot == 0) {
3792                        struct btrfs_disk_key disk_key;
3793
3794                        btrfs_item_key(leaf, &disk_key, 0);
3795                        wret = fixup_low_keys(trans, root, path,
3796                                              &disk_key, 1);
3797                        if (wret)
3798                                ret = wret;
3799                }
3800
3801                /* delete the leaf if it is mostly empty */
3802                if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
3803                        /* push_leaf_left fixes the path.
3804                         * make sure the path still points to our leaf
3805                         * for possible call to del_ptr below
3806                         */
3807                        slot = path->slots[1];
3808                        extent_buffer_get(leaf);
3809
3810                        btrfs_set_path_blocking(path);
3811                        wret = push_leaf_left(trans, root, path, 1, 1);
3812                        if (wret < 0 && wret != -ENOSPC)
3813                                ret = wret;
3814
3815                        if (path->nodes[0] == leaf &&
3816                            btrfs_header_nritems(leaf)) {
3817                                wret = push_leaf_right(trans, root, path, 1, 1);
3818                                if (wret < 0 && wret != -ENOSPC)
3819                                        ret = wret;
3820                        }
3821
3822                        if (btrfs_header_nritems(leaf) == 0) {
3823                                path->slots[1] = slot;
3824                                ret = btrfs_del_leaf(trans, root, path, leaf);
3825                                BUG_ON(ret);
3826                                free_extent_buffer(leaf);
3827                        } else {
3828                                /* if we're still in the path, make sure
3829                                 * we're dirty.  Otherwise, one of the
3830                                 * push_leaf functions must have already
3831                                 * dirtied this buffer
3832                                 */
3833                                if (path->nodes[0] == leaf)
3834                                        btrfs_mark_buffer_dirty(leaf);
3835                                free_extent_buffer(leaf);
3836                        }
3837                } else {
3838                        btrfs_mark_buffer_dirty(leaf);
3839                }
3840        }
3841        return ret;
3842}
3843
3844/*
3845 * search the tree again to find a leaf with lesser keys
3846 * returns 0 if it found something or 1 if there are no lesser leaves.
3847 * returns < 0 on io errors.
3848 *
3849 * This may release the path, and so you may lose any locks held at the
3850 * time you call it.
3851 */
3852int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3853{
3854        struct btrfs_key key;
3855        struct btrfs_disk_key found_key;
3856        int ret;
3857
3858        btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3859
3860        if (key.offset > 0)
3861                key.offset--;
3862        else if (key.type > 0)
3863                key.type--;
3864        else if (key.objectid > 0)
3865                key.objectid--;
3866        else
3867                return 1;
3868
3869        btrfs_release_path(root, path);
3870        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3871        if (ret < 0)
3872                return ret;
3873        btrfs_item_key(path->nodes[0], &found_key, 0);
3874        ret = comp_keys(&found_key, &key);
3875        if (ret < 0)
3876                return 0;
3877        return 1;
3878}
3879
3880/*
3881 * A helper function to walk down the tree starting at min_key, and looking
3882 * for nodes or leaves that are either in cache or have a minimum
3883 * transaction id.  This is used by the btree defrag code, and tree logging
3884 *
3885 * This does not cow, but it does stuff the starting key it finds back
3886 * into min_key, so you can call btrfs_search_slot with cow=1 on the
3887 * key and get a writable path.
3888 *
3889 * This does lock as it descends, and path->keep_locks should be set
3890 * to 1 by the caller.
3891 *
3892 * This honors path->lowest_level to prevent descent past a given level
3893 * of the tree.
3894 *
3895 * min_trans indicates the oldest transaction that you are interested
3896 * in walking through.  Any nodes or leaves older than min_trans are
3897 * skipped over (without reading them).
3898 *
3899 * returns zero if something useful was found, < 0 on error and 1 if there
3900 * was nothing in the tree that matched the search criteria.
3901 */
3902int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3903                         struct btrfs_key *max_key,
3904                         struct btrfs_path *path, int cache_only,
3905                         u64 min_trans)
3906{
3907        struct extent_buffer *cur;
3908        struct btrfs_key found_key;
3909        int slot;
3910        int sret;
3911        u32 nritems;
3912        int level;
3913        int ret = 1;
3914
3915        WARN_ON(!path->keep_locks);
3916again:
3917        cur = btrfs_lock_root_node(root);
3918        level = btrfs_header_level(cur);
3919        WARN_ON(path->nodes[level]);
3920        path->nodes[level] = cur;
3921        path->locks[level] = 1;
3922
3923        if (btrfs_header_generation(cur) < min_trans) {
3924                ret = 1;
3925                goto out;
3926        }
3927        while (1) {
3928                nritems = btrfs_header_nritems(cur);
3929                level = btrfs_header_level(cur);
3930                sret = bin_search(cur, min_key, level, &slot);
3931
3932                /* at the lowest level, we're done, setup the path and exit */
3933                if (level == path->lowest_level) {
3934                        if (slot >= nritems)
3935                                goto find_next_key;
3936                        ret = 0;
3937                        path->slots[level] = slot;
3938                        btrfs_item_key_to_cpu(cur, &found_key, slot);
3939                        goto out;
3940                }
3941                if (sret && slot > 0)
3942                        slot--;
3943                /*
3944                 * check this node pointer against the cache_only and
3945                 * min_trans parameters.  If it isn't in cache or is too
3946                 * old, skip to the next one.
3947                 */
3948                while (slot < nritems) {
3949                        u64 blockptr;
3950                        u64 gen;
3951                        struct extent_buffer *tmp;
3952                        struct btrfs_disk_key disk_key;
3953
3954                        blockptr = btrfs_node_blockptr(cur, slot);
3955                        gen = btrfs_node_ptr_generation(cur, slot);
3956                        if (gen < min_trans) {
3957                                slot++;
3958                                continue;
3959                        }
3960                        if (!cache_only)
3961                                break;
3962
3963                        if (max_key) {
3964                                btrfs_node_key(cur, &disk_key, slot);
3965                                if (comp_keys(&disk_key, max_key) >= 0) {
3966                                        ret = 1;
3967                                        goto out;
3968                                }
3969                        }
3970
3971                        tmp = btrfs_find_tree_block(root, blockptr,
3972                                            btrfs_level_size(root, level - 1));
3973
3974                        if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
3975                                free_extent_buffer(tmp);
3976                                break;
3977                        }
3978                        if (tmp)
3979                                free_extent_buffer(tmp);
3980                        slot++;
3981                }
3982find_next_key:
3983                /*
3984                 * we didn't find a candidate key in this node, walk forward
3985                 * and find another one
3986                 */
3987                if (slot >= nritems) {
3988                        path->slots[level] = slot;
3989                        btrfs_set_path_blocking(path);
3990                        sret = btrfs_find_next_key(root, path, min_key, level,
3991                                                  cache_only, min_trans);
3992                        if (sret == 0) {
3993                                btrfs_release_path(root, path);
3994                                goto again;
3995                        } else {
3996                                goto out;
3997                        }
3998                }
3999                /* save our key for returning back */
4000                btrfs_node_key_to_cpu(cur, &found_key, slot);
4001                path->slots[level] = slot;
4002                if (level == path->lowest_level) {
4003                        ret = 0;
4004                        unlock_up(path, level, 1);
4005                        goto out;
4006                }
4007                btrfs_set_path_blocking(path);
4008                cur = read_node_slot(root, cur, slot);
4009
4010                btrfs_tree_lock(cur);
4011
4012                path->locks[level - 1] = 1;
4013                path->nodes[level - 1] = cur;
4014                unlock_up(path, level, 1);
4015                btrfs_clear_path_blocking(path, NULL);
4016        }
4017out:
4018        if (ret == 0)
4019                memcpy(min_key, &found_key, sizeof(found_key));
4020        btrfs_set_path_blocking(path);
4021        return ret;
4022}
4023
4024/*
4025 * this is similar to btrfs_next_leaf, but does not try to preserve
4026 * and fixup the path.  It looks for and returns the next key in the
4027 * tree based on the current path and the cache_only and min_trans
4028 * parameters.
4029 *
4030 * 0 is returned if another key is found, < 0 if there are any errors
4031 * and 1 is returned if there are no higher keys in the tree
4032 *
4033 * path->keep_locks should be set to 1 on the search made before
4034 * calling this function.
4035 */
4036int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4037                        struct btrfs_key *key, int level,
4038                        int cache_only, u64 min_trans)
4039{
4040        int slot;
4041        struct extent_buffer *c;
4042
4043        WARN_ON(!path->keep_locks);
4044        while (level < BTRFS_MAX_LEVEL) {
4045                if (!path->nodes[level])
4046                        return 1;
4047
4048                slot = path->slots[level] + 1;
4049                c = path->nodes[level];
4050next:
4051                if (slot >= btrfs_header_nritems(c)) {
4052                        int ret;
4053                        int orig_lowest;
4054                        struct btrfs_key cur_key;
4055                        if (level + 1 >= BTRFS_MAX_LEVEL ||
4056                            !path->nodes[level + 1])
4057                                return 1;
4058
4059                        if (path->locks[level + 1]) {
4060                                level++;
4061                                continue;
4062                        }
4063
4064                        slot = btrfs_header_nritems(c) - 1;
4065                        if (level == 0)
4066                                btrfs_item_key_to_cpu(c, &cur_key, slot);
4067                        else
4068                                btrfs_node_key_to_cpu(c, &cur_key, slot);
4069
4070                        orig_lowest = path->lowest_level;
4071                        btrfs_release_path(root, path);
4072                        path->lowest_level = level;
4073                        ret = btrfs_search_slot(NULL, root, &cur_key, path,
4074                                                0, 0);
4075                        path->lowest_level = orig_lowest;
4076                        if (ret < 0)
4077                                return ret;
4078
4079                        c = path->nodes[level];
4080                        slot = path->slots[level];
4081                        if (ret == 0)
4082                                slot++;
4083                        goto next;
4084                }
4085
4086                if (level == 0)
4087                        btrfs_item_key_to_cpu(c, key, slot);
4088                else {
4089                        u64 blockptr = btrfs_node_blockptr(c, slot);
4090                        u64 gen = btrfs_node_ptr_generation(c, slot);
4091
4092                        if (cache_only) {
4093                                struct extent_buffer *cur;
4094                                cur = btrfs_find_tree_block(root, blockptr,
4095                                            btrfs_level_size(root, level - 1));
4096                                if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4097                                        slot++;
4098                                        if (cur)
4099                                                free_extent_buffer(cur);
4100                                        goto next;
4101                                }
4102                                free_extent_buffer(cur);
4103                        }
4104                        if (gen < min_trans) {
4105                                slot++;
4106                                goto next;
4107                        }
4108                        btrfs_node_key_to_cpu(c, key, slot);
4109                }
4110                return 0;
4111        }
4112        return 1;
4113}
4114
4115/*
4116 * search the tree again to find a leaf with greater keys
4117 * returns 0 if it found something or 1 if there are no greater leaves.
4118 * returns < 0 on io errors.
4119 */
4120int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4121{
4122        int slot;
4123        int level;
4124        struct extent_buffer *c;
4125        struct extent_buffer *next;
4126        struct btrfs_key key;
4127        u32 nritems;
4128        int ret;
4129        int old_spinning = path->leave_spinning;
4130        int force_blocking = 0;
4131
4132        nritems = btrfs_header_nritems(path->nodes[0]);
4133        if (nritems == 0)
4134                return 1;
4135
4136        /*
4137         * we take the blocks in an order that upsets lockdep.  Using
4138         * blocking mode is the only way around it.
4139         */
4140#ifdef CONFIG_DEBUG_LOCK_ALLOC
4141        force_blocking = 1;
4142#endif
4143
4144        btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4145again:
4146        level = 1;
4147        next = NULL;
4148        btrfs_release_path(root, path);
4149
4150        path->keep_locks = 1;
4151
4152        if (!force_blocking)
4153                path->leave_spinning = 1;
4154
4155        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4156        path->keep_locks = 0;
4157
4158        if (ret < 0)
4159                return ret;
4160
4161        nritems = btrfs_header_nritems(path->nodes[0]);
4162        /*
4163         * by releasing the path above we dropped all our locks.  A balance
4164         * could have added more items next to the key that used to be
4165         * at the very end of the block.  So, check again here and
4166         * advance the path if there are now more items available.
4167         */
4168        if (nritems > 0 && path->slots[0] < nritems - 1) {
4169                if (ret == 0)
4170                        path->slots[0]++;
4171                ret = 0;
4172                goto done;
4173        }
4174
4175        while (level < BTRFS_MAX_LEVEL) {
4176                if (!path->nodes[level]) {
4177                        ret = 1;
4178                        goto done;
4179                }
4180
4181                slot = path->slots[level] + 1;
4182                c = path->nodes[level];
4183                if (slot >= btrfs_header_nritems(c)) {
4184                        level++;
4185                        if (level == BTRFS_MAX_LEVEL) {
4186                                ret = 1;
4187                                goto done;
4188                        }
4189                        continue;
4190                }
4191
4192                if (next) {
4193                        btrfs_tree_unlock(next);
4194                        free_extent_buffer(next);
4195                }
4196
4197                next = c;
4198                ret = read_block_for_search(NULL, root, path, &next, level,
4199                                            slot, &key);
4200                if (ret == -EAGAIN)
4201                        goto again;
4202
4203                if (ret < 0) {
4204                        btrfs_release_path(root, path);
4205                        goto done;
4206                }
4207
4208                if (!path->skip_locking) {
4209                        ret = btrfs_try_spin_lock(next);
4210                        if (!ret) {
4211                                btrfs_set_path_blocking(path);
4212                                btrfs_tree_lock(next);
4213                                if (!force_blocking)
4214                                        btrfs_clear_path_blocking(path, next);
4215                        }
4216                        if (force_blocking)
4217                                btrfs_set_lock_blocking(next);
4218                }
4219                break;
4220        }
4221        path->slots[level] = slot;
4222        while (1) {
4223                level--;
4224                c = path->nodes[level];
4225                if (path->locks[level])
4226                        btrfs_tree_unlock(c);
4227
4228                free_extent_buffer(c);
4229                path->nodes[level] = next;
4230                path->slots[level] = 0;
4231                if (!path->skip_locking)
4232                        path->locks[level] = 1;
4233
4234                if (!level)
4235                        break;
4236
4237                ret = read_block_for_search(NULL, root, path, &next, level,
4238                                            0, &key);
4239                if (ret == -EAGAIN)
4240                        goto again;
4241
4242                if (ret < 0) {
4243                        btrfs_release_path(root, path);
4244                        goto done;
4245                }
4246
4247                if (!path->skip_locking) {
4248                        btrfs_assert_tree_locked(path->nodes[level]);
4249                        ret = btrfs_try_spin_lock(next);
4250                        if (!ret) {
4251                                btrfs_set_path_blocking(path);
4252                                btrfs_tree_lock(next);
4253                                if (!force_blocking)
4254                                        btrfs_clear_path_blocking(path, next);
4255                        }
4256                        if (force_blocking)
4257                                btrfs_set_lock_blocking(next);
4258                }
4259        }
4260        ret = 0;
4261done:
4262        unlock_up(path, 0, 1);
4263        path->leave_spinning = old_spinning;
4264        if (!old_spinning)
4265                btrfs_set_path_blocking(path);
4266
4267        return ret;
4268}
4269
4270/*
4271 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4272 * searching until it gets past min_objectid or finds an item of 'type'
4273 *
4274 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4275 */
4276int btrfs_previous_item(struct btrfs_root *root,
4277                        struct btrfs_path *path, u64 min_objectid,
4278                        int type)
4279{
4280        struct btrfs_key found_key;
4281        struct extent_buffer *leaf;
4282        u32 nritems;
4283        int ret;
4284
4285        while (1) {
4286                if (path->slots[0] == 0) {
4287                        btrfs_set_path_blocking(path);
4288                        ret = btrfs_prev_leaf(root, path);
4289                        if (ret != 0)
4290                                return ret;
4291                } else {
4292                        path->slots[0]--;
4293                }
4294                leaf = path->nodes[0];
4295                nritems = btrfs_header_nritems(leaf);
4296                if (nritems == 0)
4297                        return 1;
4298                if (path->slots[0] == nritems)
4299                        path->slots[0]--;
4300
4301                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4302                if (found_key.objectid < min_objectid)
4303                        break;
4304                if (found_key.type == type)
4305                        return 0;
4306                if (found_key.objectid == min_objectid &&
4307                    found_key.type < type)
4308                        break;
4309        }
4310        return 1;
4311}
4312