linux/fs/btrfs/extent_io.c
<<
>>
Prefs
   1#include <linux/bitops.h>
   2#include <linux/slab.h>
   3#include <linux/bio.h>
   4#include <linux/mm.h>
   5#include <linux/gfp.h>
   6#include <linux/pagemap.h>
   7#include <linux/page-flags.h>
   8#include <linux/module.h>
   9#include <linux/spinlock.h>
  10#include <linux/blkdev.h>
  11#include <linux/swap.h>
  12#include <linux/writeback.h>
  13#include <linux/pagevec.h>
  14#include "extent_io.h"
  15#include "extent_map.h"
  16#include "compat.h"
  17#include "ctree.h"
  18#include "btrfs_inode.h"
  19
  20static struct kmem_cache *extent_state_cache;
  21static struct kmem_cache *extent_buffer_cache;
  22
  23static LIST_HEAD(buffers);
  24static LIST_HEAD(states);
  25
  26#define LEAK_DEBUG 0
  27#if LEAK_DEBUG
  28static DEFINE_SPINLOCK(leak_lock);
  29#endif
  30
  31#define BUFFER_LRU_MAX 64
  32
  33struct tree_entry {
  34        u64 start;
  35        u64 end;
  36        struct rb_node rb_node;
  37};
  38
  39struct extent_page_data {
  40        struct bio *bio;
  41        struct extent_io_tree *tree;
  42        get_extent_t *get_extent;
  43
  44        /* tells writepage not to lock the state bits for this range
  45         * it still does the unlocking
  46         */
  47        unsigned int extent_locked:1;
  48
  49        /* tells the submit_bio code to use a WRITE_SYNC */
  50        unsigned int sync_io:1;
  51};
  52
  53int __init extent_io_init(void)
  54{
  55        extent_state_cache = kmem_cache_create("extent_state",
  56                        sizeof(struct extent_state), 0,
  57                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
  58        if (!extent_state_cache)
  59                return -ENOMEM;
  60
  61        extent_buffer_cache = kmem_cache_create("extent_buffers",
  62                        sizeof(struct extent_buffer), 0,
  63                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
  64        if (!extent_buffer_cache)
  65                goto free_state_cache;
  66        return 0;
  67
  68free_state_cache:
  69        kmem_cache_destroy(extent_state_cache);
  70        return -ENOMEM;
  71}
  72
  73void extent_io_exit(void)
  74{
  75        struct extent_state *state;
  76        struct extent_buffer *eb;
  77
  78        while (!list_empty(&states)) {
  79                state = list_entry(states.next, struct extent_state, leak_list);
  80                printk(KERN_ERR "btrfs state leak: start %llu end %llu "
  81                       "state %lu in tree %p refs %d\n",
  82                       (unsigned long long)state->start,
  83                       (unsigned long long)state->end,
  84                       state->state, state->tree, atomic_read(&state->refs));
  85                list_del(&state->leak_list);
  86                kmem_cache_free(extent_state_cache, state);
  87
  88        }
  89
  90        while (!list_empty(&buffers)) {
  91                eb = list_entry(buffers.next, struct extent_buffer, leak_list);
  92                printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
  93                       "refs %d\n", (unsigned long long)eb->start,
  94                       eb->len, atomic_read(&eb->refs));
  95                list_del(&eb->leak_list);
  96                kmem_cache_free(extent_buffer_cache, eb);
  97        }
  98        if (extent_state_cache)
  99                kmem_cache_destroy(extent_state_cache);
 100        if (extent_buffer_cache)
 101                kmem_cache_destroy(extent_buffer_cache);
 102}
 103
 104void extent_io_tree_init(struct extent_io_tree *tree,
 105                          struct address_space *mapping, gfp_t mask)
 106{
 107        tree->state.rb_node = NULL;
 108        tree->buffer.rb_node = NULL;
 109        tree->ops = NULL;
 110        tree->dirty_bytes = 0;
 111        spin_lock_init(&tree->lock);
 112        spin_lock_init(&tree->buffer_lock);
 113        tree->mapping = mapping;
 114}
 115
 116static struct extent_state *alloc_extent_state(gfp_t mask)
 117{
 118        struct extent_state *state;
 119#if LEAK_DEBUG
 120        unsigned long flags;
 121#endif
 122
 123        state = kmem_cache_alloc(extent_state_cache, mask);
 124        if (!state)
 125                return state;
 126        state->state = 0;
 127        state->private = 0;
 128        state->tree = NULL;
 129#if LEAK_DEBUG
 130        spin_lock_irqsave(&leak_lock, flags);
 131        list_add(&state->leak_list, &states);
 132        spin_unlock_irqrestore(&leak_lock, flags);
 133#endif
 134        atomic_set(&state->refs, 1);
 135        init_waitqueue_head(&state->wq);
 136        return state;
 137}
 138
 139static void free_extent_state(struct extent_state *state)
 140{
 141        if (!state)
 142                return;
 143        if (atomic_dec_and_test(&state->refs)) {
 144#if LEAK_DEBUG
 145                unsigned long flags;
 146#endif
 147                WARN_ON(state->tree);
 148#if LEAK_DEBUG
 149                spin_lock_irqsave(&leak_lock, flags);
 150                list_del(&state->leak_list);
 151                spin_unlock_irqrestore(&leak_lock, flags);
 152#endif
 153                kmem_cache_free(extent_state_cache, state);
 154        }
 155}
 156
 157static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
 158                                   struct rb_node *node)
 159{
 160        struct rb_node **p = &root->rb_node;
 161        struct rb_node *parent = NULL;
 162        struct tree_entry *entry;
 163
 164        while (*p) {
 165                parent = *p;
 166                entry = rb_entry(parent, struct tree_entry, rb_node);
 167
 168                if (offset < entry->start)
 169                        p = &(*p)->rb_left;
 170                else if (offset > entry->end)
 171                        p = &(*p)->rb_right;
 172                else
 173                        return parent;
 174        }
 175
 176        entry = rb_entry(node, struct tree_entry, rb_node);
 177        rb_link_node(node, parent, p);
 178        rb_insert_color(node, root);
 179        return NULL;
 180}
 181
 182static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
 183                                     struct rb_node **prev_ret,
 184                                     struct rb_node **next_ret)
 185{
 186        struct rb_root *root = &tree->state;
 187        struct rb_node *n = root->rb_node;
 188        struct rb_node *prev = NULL;
 189        struct rb_node *orig_prev = NULL;
 190        struct tree_entry *entry;
 191        struct tree_entry *prev_entry = NULL;
 192
 193        while (n) {
 194                entry = rb_entry(n, struct tree_entry, rb_node);
 195                prev = n;
 196                prev_entry = entry;
 197
 198                if (offset < entry->start)
 199                        n = n->rb_left;
 200                else if (offset > entry->end)
 201                        n = n->rb_right;
 202                else
 203                        return n;
 204        }
 205
 206        if (prev_ret) {
 207                orig_prev = prev;
 208                while (prev && offset > prev_entry->end) {
 209                        prev = rb_next(prev);
 210                        prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 211                }
 212                *prev_ret = prev;
 213                prev = orig_prev;
 214        }
 215
 216        if (next_ret) {
 217                prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 218                while (prev && offset < prev_entry->start) {
 219                        prev = rb_prev(prev);
 220                        prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 221                }
 222                *next_ret = prev;
 223        }
 224        return NULL;
 225}
 226
 227static inline struct rb_node *tree_search(struct extent_io_tree *tree,
 228                                          u64 offset)
 229{
 230        struct rb_node *prev = NULL;
 231        struct rb_node *ret;
 232
 233        ret = __etree_search(tree, offset, &prev, NULL);
 234        if (!ret)
 235                return prev;
 236        return ret;
 237}
 238
 239static struct extent_buffer *buffer_tree_insert(struct extent_io_tree *tree,
 240                                          u64 offset, struct rb_node *node)
 241{
 242        struct rb_root *root = &tree->buffer;
 243        struct rb_node **p = &root->rb_node;
 244        struct rb_node *parent = NULL;
 245        struct extent_buffer *eb;
 246
 247        while (*p) {
 248                parent = *p;
 249                eb = rb_entry(parent, struct extent_buffer, rb_node);
 250
 251                if (offset < eb->start)
 252                        p = &(*p)->rb_left;
 253                else if (offset > eb->start)
 254                        p = &(*p)->rb_right;
 255                else
 256                        return eb;
 257        }
 258
 259        rb_link_node(node, parent, p);
 260        rb_insert_color(node, root);
 261        return NULL;
 262}
 263
 264static struct extent_buffer *buffer_search(struct extent_io_tree *tree,
 265                                           u64 offset)
 266{
 267        struct rb_root *root = &tree->buffer;
 268        struct rb_node *n = root->rb_node;
 269        struct extent_buffer *eb;
 270
 271        while (n) {
 272                eb = rb_entry(n, struct extent_buffer, rb_node);
 273                if (offset < eb->start)
 274                        n = n->rb_left;
 275                else if (offset > eb->start)
 276                        n = n->rb_right;
 277                else
 278                        return eb;
 279        }
 280        return NULL;
 281}
 282
 283static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
 284                     struct extent_state *other)
 285{
 286        if (tree->ops && tree->ops->merge_extent_hook)
 287                tree->ops->merge_extent_hook(tree->mapping->host, new,
 288                                             other);
 289}
 290
 291/*
 292 * utility function to look for merge candidates inside a given range.
 293 * Any extents with matching state are merged together into a single
 294 * extent in the tree.  Extents with EXTENT_IO in their state field
 295 * are not merged because the end_io handlers need to be able to do
 296 * operations on them without sleeping (or doing allocations/splits).
 297 *
 298 * This should be called with the tree lock held.
 299 */
 300static int merge_state(struct extent_io_tree *tree,
 301                       struct extent_state *state)
 302{
 303        struct extent_state *other;
 304        struct rb_node *other_node;
 305
 306        if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 307                return 0;
 308
 309        other_node = rb_prev(&state->rb_node);
 310        if (other_node) {
 311                other = rb_entry(other_node, struct extent_state, rb_node);
 312                if (other->end == state->start - 1 &&
 313                    other->state == state->state) {
 314                        merge_cb(tree, state, other);
 315                        state->start = other->start;
 316                        other->tree = NULL;
 317                        rb_erase(&other->rb_node, &tree->state);
 318                        free_extent_state(other);
 319                }
 320        }
 321        other_node = rb_next(&state->rb_node);
 322        if (other_node) {
 323                other = rb_entry(other_node, struct extent_state, rb_node);
 324                if (other->start == state->end + 1 &&
 325                    other->state == state->state) {
 326                        merge_cb(tree, state, other);
 327                        other->start = state->start;
 328                        state->tree = NULL;
 329                        rb_erase(&state->rb_node, &tree->state);
 330                        free_extent_state(state);
 331                        state = NULL;
 332                }
 333        }
 334
 335        return 0;
 336}
 337
 338static int set_state_cb(struct extent_io_tree *tree,
 339                         struct extent_state *state,
 340                         unsigned long bits)
 341{
 342        if (tree->ops && tree->ops->set_bit_hook) {
 343                return tree->ops->set_bit_hook(tree->mapping->host,
 344                                               state->start, state->end,
 345                                               state->state, bits);
 346        }
 347
 348        return 0;
 349}
 350
 351static void clear_state_cb(struct extent_io_tree *tree,
 352                           struct extent_state *state,
 353                           unsigned long bits)
 354{
 355        if (tree->ops && tree->ops->clear_bit_hook)
 356                tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
 357}
 358
 359/*
 360 * insert an extent_state struct into the tree.  'bits' are set on the
 361 * struct before it is inserted.
 362 *
 363 * This may return -EEXIST if the extent is already there, in which case the
 364 * state struct is freed.
 365 *
 366 * The tree lock is not taken internally.  This is a utility function and
 367 * probably isn't what you want to call (see set/clear_extent_bit).
 368 */
 369static int insert_state(struct extent_io_tree *tree,
 370                        struct extent_state *state, u64 start, u64 end,
 371                        int bits)
 372{
 373        struct rb_node *node;
 374        int ret;
 375
 376        if (end < start) {
 377                printk(KERN_ERR "btrfs end < start %llu %llu\n",
 378                       (unsigned long long)end,
 379                       (unsigned long long)start);
 380                WARN_ON(1);
 381        }
 382        state->start = start;
 383        state->end = end;
 384        ret = set_state_cb(tree, state, bits);
 385        if (ret)
 386                return ret;
 387
 388        if (bits & EXTENT_DIRTY)
 389                tree->dirty_bytes += end - start + 1;
 390        state->state |= bits;
 391        node = tree_insert(&tree->state, end, &state->rb_node);
 392        if (node) {
 393                struct extent_state *found;
 394                found = rb_entry(node, struct extent_state, rb_node);
 395                printk(KERN_ERR "btrfs found node %llu %llu on insert of "
 396                       "%llu %llu\n", (unsigned long long)found->start,
 397                       (unsigned long long)found->end,
 398                       (unsigned long long)start, (unsigned long long)end);
 399                free_extent_state(state);
 400                return -EEXIST;
 401        }
 402        state->tree = tree;
 403        merge_state(tree, state);
 404        return 0;
 405}
 406
 407static int split_cb(struct extent_io_tree *tree, struct extent_state *orig,
 408                     u64 split)
 409{
 410        if (tree->ops && tree->ops->split_extent_hook)
 411                return tree->ops->split_extent_hook(tree->mapping->host,
 412                                                    orig, split);
 413        return 0;
 414}
 415
 416/*
 417 * split a given extent state struct in two, inserting the preallocated
 418 * struct 'prealloc' as the newly created second half.  'split' indicates an
 419 * offset inside 'orig' where it should be split.
 420 *
 421 * Before calling,
 422 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 423 * are two extent state structs in the tree:
 424 * prealloc: [orig->start, split - 1]
 425 * orig: [ split, orig->end ]
 426 *
 427 * The tree locks are not taken by this function. They need to be held
 428 * by the caller.
 429 */
 430static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
 431                       struct extent_state *prealloc, u64 split)
 432{
 433        struct rb_node *node;
 434
 435        split_cb(tree, orig, split);
 436
 437        prealloc->start = orig->start;
 438        prealloc->end = split - 1;
 439        prealloc->state = orig->state;
 440        orig->start = split;
 441
 442        node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
 443        if (node) {
 444                free_extent_state(prealloc);
 445                return -EEXIST;
 446        }
 447        prealloc->tree = tree;
 448        return 0;
 449}
 450
 451/*
 452 * utility function to clear some bits in an extent state struct.
 453 * it will optionally wake up any one waiting on this state (wake == 1), or
 454 * forcibly remove the state from the tree (delete == 1).
 455 *
 456 * If no bits are set on the state struct after clearing things, the
 457 * struct is freed and removed from the tree
 458 */
 459static int clear_state_bit(struct extent_io_tree *tree,
 460                            struct extent_state *state, int bits, int wake,
 461                            int delete)
 462{
 463        int bits_to_clear = bits & ~EXTENT_DO_ACCOUNTING;
 464        int ret = state->state & bits_to_clear;
 465
 466        if ((bits & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
 467                u64 range = state->end - state->start + 1;
 468                WARN_ON(range > tree->dirty_bytes);
 469                tree->dirty_bytes -= range;
 470        }
 471        clear_state_cb(tree, state, bits);
 472        state->state &= ~bits_to_clear;
 473        if (wake)
 474                wake_up(&state->wq);
 475        if (delete || state->state == 0) {
 476                if (state->tree) {
 477                        clear_state_cb(tree, state, state->state);
 478                        rb_erase(&state->rb_node, &tree->state);
 479                        state->tree = NULL;
 480                        free_extent_state(state);
 481                } else {
 482                        WARN_ON(1);
 483                }
 484        } else {
 485                merge_state(tree, state);
 486        }
 487        return ret;
 488}
 489
 490/*
 491 * clear some bits on a range in the tree.  This may require splitting
 492 * or inserting elements in the tree, so the gfp mask is used to
 493 * indicate which allocations or sleeping are allowed.
 494 *
 495 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 496 * the given range from the tree regardless of state (ie for truncate).
 497 *
 498 * the range [start, end] is inclusive.
 499 *
 500 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
 501 * bits were already set, or zero if none of the bits were already set.
 502 */
 503int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 504                     int bits, int wake, int delete,
 505                     struct extent_state **cached_state,
 506                     gfp_t mask)
 507{
 508        struct extent_state *state;
 509        struct extent_state *cached;
 510        struct extent_state *prealloc = NULL;
 511        struct rb_node *next_node;
 512        struct rb_node *node;
 513        u64 last_end;
 514        int err;
 515        int set = 0;
 516
 517again:
 518        if (!prealloc && (mask & __GFP_WAIT)) {
 519                prealloc = alloc_extent_state(mask);
 520                if (!prealloc)
 521                        return -ENOMEM;
 522        }
 523
 524        spin_lock(&tree->lock);
 525        if (cached_state) {
 526                cached = *cached_state;
 527                *cached_state = NULL;
 528                cached_state = NULL;
 529                if (cached && cached->tree && cached->start == start) {
 530                        atomic_dec(&cached->refs);
 531                        state = cached;
 532                        goto hit_next;
 533                }
 534                free_extent_state(cached);
 535        }
 536        /*
 537         * this search will find the extents that end after
 538         * our range starts
 539         */
 540        node = tree_search(tree, start);
 541        if (!node)
 542                goto out;
 543        state = rb_entry(node, struct extent_state, rb_node);
 544hit_next:
 545        if (state->start > end)
 546                goto out;
 547        WARN_ON(state->end < start);
 548        last_end = state->end;
 549
 550        /*
 551         *     | ---- desired range ---- |
 552         *  | state | or
 553         *  | ------------- state -------------- |
 554         *
 555         * We need to split the extent we found, and may flip
 556         * bits on second half.
 557         *
 558         * If the extent we found extends past our range, we
 559         * just split and search again.  It'll get split again
 560         * the next time though.
 561         *
 562         * If the extent we found is inside our range, we clear
 563         * the desired bit on it.
 564         */
 565
 566        if (state->start < start) {
 567                if (!prealloc)
 568                        prealloc = alloc_extent_state(GFP_ATOMIC);
 569                err = split_state(tree, state, prealloc, start);
 570                BUG_ON(err == -EEXIST);
 571                prealloc = NULL;
 572                if (err)
 573                        goto out;
 574                if (state->end <= end) {
 575                        set |= clear_state_bit(tree, state, bits, wake,
 576                                               delete);
 577                        if (last_end == (u64)-1)
 578                                goto out;
 579                        start = last_end + 1;
 580                }
 581                goto search_again;
 582        }
 583        /*
 584         * | ---- desired range ---- |
 585         *                        | state |
 586         * We need to split the extent, and clear the bit
 587         * on the first half
 588         */
 589        if (state->start <= end && state->end > end) {
 590                if (!prealloc)
 591                        prealloc = alloc_extent_state(GFP_ATOMIC);
 592                err = split_state(tree, state, prealloc, end + 1);
 593                BUG_ON(err == -EEXIST);
 594                if (wake)
 595                        wake_up(&state->wq);
 596
 597                set |= clear_state_bit(tree, prealloc, bits, wake, delete);
 598
 599                prealloc = NULL;
 600                goto out;
 601        }
 602
 603        if (state->end < end && prealloc && !need_resched())
 604                next_node = rb_next(&state->rb_node);
 605        else
 606                next_node = NULL;
 607
 608        set |= clear_state_bit(tree, state, bits, wake, delete);
 609        if (last_end == (u64)-1)
 610                goto out;
 611        start = last_end + 1;
 612        if (start <= end && next_node) {
 613                state = rb_entry(next_node, struct extent_state,
 614                                 rb_node);
 615                if (state->start == start)
 616                        goto hit_next;
 617        }
 618        goto search_again;
 619
 620out:
 621        spin_unlock(&tree->lock);
 622        if (prealloc)
 623                free_extent_state(prealloc);
 624
 625        return set;
 626
 627search_again:
 628        if (start > end)
 629                goto out;
 630        spin_unlock(&tree->lock);
 631        if (mask & __GFP_WAIT)
 632                cond_resched();
 633        goto again;
 634}
 635
 636static int wait_on_state(struct extent_io_tree *tree,
 637                         struct extent_state *state)
 638                __releases(tree->lock)
 639                __acquires(tree->lock)
 640{
 641        DEFINE_WAIT(wait);
 642        prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
 643        spin_unlock(&tree->lock);
 644        schedule();
 645        spin_lock(&tree->lock);
 646        finish_wait(&state->wq, &wait);
 647        return 0;
 648}
 649
 650/*
 651 * waits for one or more bits to clear on a range in the state tree.
 652 * The range [start, end] is inclusive.
 653 * The tree lock is taken by this function
 654 */
 655int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
 656{
 657        struct extent_state *state;
 658        struct rb_node *node;
 659
 660        spin_lock(&tree->lock);
 661again:
 662        while (1) {
 663                /*
 664                 * this search will find all the extents that end after
 665                 * our range starts
 666                 */
 667                node = tree_search(tree, start);
 668                if (!node)
 669                        break;
 670
 671                state = rb_entry(node, struct extent_state, rb_node);
 672
 673                if (state->start > end)
 674                        goto out;
 675
 676                if (state->state & bits) {
 677                        start = state->start;
 678                        atomic_inc(&state->refs);
 679                        wait_on_state(tree, state);
 680                        free_extent_state(state);
 681                        goto again;
 682                }
 683                start = state->end + 1;
 684
 685                if (start > end)
 686                        break;
 687
 688                if (need_resched()) {
 689                        spin_unlock(&tree->lock);
 690                        cond_resched();
 691                        spin_lock(&tree->lock);
 692                }
 693        }
 694out:
 695        spin_unlock(&tree->lock);
 696        return 0;
 697}
 698
 699static int set_state_bits(struct extent_io_tree *tree,
 700                           struct extent_state *state,
 701                           int bits)
 702{
 703        int ret;
 704
 705        ret = set_state_cb(tree, state, bits);
 706        if (ret)
 707                return ret;
 708
 709        if ((bits & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
 710                u64 range = state->end - state->start + 1;
 711                tree->dirty_bytes += range;
 712        }
 713        state->state |= bits;
 714
 715        return 0;
 716}
 717
 718static void cache_state(struct extent_state *state,
 719                        struct extent_state **cached_ptr)
 720{
 721        if (cached_ptr && !(*cached_ptr)) {
 722                if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
 723                        *cached_ptr = state;
 724                        atomic_inc(&state->refs);
 725                }
 726        }
 727}
 728
 729/*
 730 * set some bits on a range in the tree.  This may require allocations or
 731 * sleeping, so the gfp mask is used to indicate what is allowed.
 732 *
 733 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 734 * part of the range already has the desired bits set.  The start of the
 735 * existing range is returned in failed_start in this case.
 736 *
 737 * [start, end] is inclusive This takes the tree lock.
 738 */
 739
 740static int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 741                          int bits, int exclusive_bits, u64 *failed_start,
 742                          struct extent_state **cached_state,
 743                          gfp_t mask)
 744{
 745        struct extent_state *state;
 746        struct extent_state *prealloc = NULL;
 747        struct rb_node *node;
 748        int err = 0;
 749        u64 last_start;
 750        u64 last_end;
 751
 752again:
 753        if (!prealloc && (mask & __GFP_WAIT)) {
 754                prealloc = alloc_extent_state(mask);
 755                if (!prealloc)
 756                        return -ENOMEM;
 757        }
 758
 759        spin_lock(&tree->lock);
 760        if (cached_state && *cached_state) {
 761                state = *cached_state;
 762                if (state->start == start && state->tree) {
 763                        node = &state->rb_node;
 764                        goto hit_next;
 765                }
 766        }
 767        /*
 768         * this search will find all the extents that end after
 769         * our range starts.
 770         */
 771        node = tree_search(tree, start);
 772        if (!node) {
 773                err = insert_state(tree, prealloc, start, end, bits);
 774                prealloc = NULL;
 775                BUG_ON(err == -EEXIST);
 776                goto out;
 777        }
 778        state = rb_entry(node, struct extent_state, rb_node);
 779hit_next:
 780        last_start = state->start;
 781        last_end = state->end;
 782
 783        /*
 784         * | ---- desired range ---- |
 785         * | state |
 786         *
 787         * Just lock what we found and keep going
 788         */
 789        if (state->start == start && state->end <= end) {
 790                struct rb_node *next_node;
 791                if (state->state & exclusive_bits) {
 792                        *failed_start = state->start;
 793                        err = -EEXIST;
 794                        goto out;
 795                }
 796
 797                err = set_state_bits(tree, state, bits);
 798                if (err)
 799                        goto out;
 800
 801                cache_state(state, cached_state);
 802                merge_state(tree, state);
 803                if (last_end == (u64)-1)
 804                        goto out;
 805
 806                start = last_end + 1;
 807                if (start < end && prealloc && !need_resched()) {
 808                        next_node = rb_next(node);
 809                        if (next_node) {
 810                                state = rb_entry(next_node, struct extent_state,
 811                                                 rb_node);
 812                                if (state->start == start)
 813                                        goto hit_next;
 814                        }
 815                }
 816                goto search_again;
 817        }
 818
 819        /*
 820         *     | ---- desired range ---- |
 821         * | state |
 822         *   or
 823         * | ------------- state -------------- |
 824         *
 825         * We need to split the extent we found, and may flip bits on
 826         * second half.
 827         *
 828         * If the extent we found extends past our
 829         * range, we just split and search again.  It'll get split
 830         * again the next time though.
 831         *
 832         * If the extent we found is inside our range, we set the
 833         * desired bit on it.
 834         */
 835        if (state->start < start) {
 836                if (state->state & exclusive_bits) {
 837                        *failed_start = start;
 838                        err = -EEXIST;
 839                        goto out;
 840                }
 841                err = split_state(tree, state, prealloc, start);
 842                BUG_ON(err == -EEXIST);
 843                prealloc = NULL;
 844                if (err)
 845                        goto out;
 846                if (state->end <= end) {
 847                        err = set_state_bits(tree, state, bits);
 848                        if (err)
 849                                goto out;
 850                        cache_state(state, cached_state);
 851                        merge_state(tree, state);
 852                        if (last_end == (u64)-1)
 853                                goto out;
 854                        start = last_end + 1;
 855                }
 856                goto search_again;
 857        }
 858        /*
 859         * | ---- desired range ---- |
 860         *     | state | or               | state |
 861         *
 862         * There's a hole, we need to insert something in it and
 863         * ignore the extent we found.
 864         */
 865        if (state->start > start) {
 866                u64 this_end;
 867                if (end < last_start)
 868                        this_end = end;
 869                else
 870                        this_end = last_start - 1;
 871                err = insert_state(tree, prealloc, start, this_end,
 872                                   bits);
 873                BUG_ON(err == -EEXIST);
 874                if (err) {
 875                        prealloc = NULL;
 876                        goto out;
 877                }
 878                cache_state(prealloc, cached_state);
 879                prealloc = NULL;
 880                start = this_end + 1;
 881                goto search_again;
 882        }
 883        /*
 884         * | ---- desired range ---- |
 885         *                        | state |
 886         * We need to split the extent, and set the bit
 887         * on the first half
 888         */
 889        if (state->start <= end && state->end > end) {
 890                if (state->state & exclusive_bits) {
 891                        *failed_start = start;
 892                        err = -EEXIST;
 893                        goto out;
 894                }
 895                err = split_state(tree, state, prealloc, end + 1);
 896                BUG_ON(err == -EEXIST);
 897
 898                err = set_state_bits(tree, prealloc, bits);
 899                if (err) {
 900                        prealloc = NULL;
 901                        goto out;
 902                }
 903                cache_state(prealloc, cached_state);
 904                merge_state(tree, prealloc);
 905                prealloc = NULL;
 906                goto out;
 907        }
 908
 909        goto search_again;
 910
 911out:
 912        spin_unlock(&tree->lock);
 913        if (prealloc)
 914                free_extent_state(prealloc);
 915
 916        return err;
 917
 918search_again:
 919        if (start > end)
 920                goto out;
 921        spin_unlock(&tree->lock);
 922        if (mask & __GFP_WAIT)
 923                cond_resched();
 924        goto again;
 925}
 926
 927/* wrappers around set/clear extent bit */
 928int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
 929                     gfp_t mask)
 930{
 931        return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
 932                              NULL, mask);
 933}
 934
 935int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
 936                    int bits, gfp_t mask)
 937{
 938        return set_extent_bit(tree, start, end, bits, 0, NULL,
 939                              NULL, mask);
 940}
 941
 942int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
 943                      int bits, gfp_t mask)
 944{
 945        return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
 946}
 947
 948int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
 949                     gfp_t mask)
 950{
 951        return set_extent_bit(tree, start, end,
 952                              EXTENT_DELALLOC | EXTENT_DIRTY | EXTENT_UPTODATE,
 953                              0, NULL, NULL, mask);
 954}
 955
 956int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
 957                       gfp_t mask)
 958{
 959        return clear_extent_bit(tree, start, end,
 960                                EXTENT_DIRTY | EXTENT_DELALLOC |
 961                                EXTENT_DO_ACCOUNTING, 0, 0,
 962                                NULL, mask);
 963}
 964
 965int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
 966                     gfp_t mask)
 967{
 968        return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
 969                              NULL, mask);
 970}
 971
 972static int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
 973                       gfp_t mask)
 974{
 975        return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0,
 976                                NULL, mask);
 977}
 978
 979int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
 980                        gfp_t mask)
 981{
 982        return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
 983                              NULL, mask);
 984}
 985
 986static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
 987                                 u64 end, gfp_t mask)
 988{
 989        return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
 990                                NULL, mask);
 991}
 992
 993int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end)
 994{
 995        return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
 996}
 997
 998/*
 999 * either insert or lock state struct between start and end use mask to tell
1000 * us if waiting is desired.
1001 */
1002int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1003                     int bits, struct extent_state **cached_state, gfp_t mask)
1004{
1005        int err;
1006        u64 failed_start;
1007        while (1) {
1008                err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1009                                     EXTENT_LOCKED, &failed_start,
1010                                     cached_state, mask);
1011                if (err == -EEXIST && (mask & __GFP_WAIT)) {
1012                        wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1013                        start = failed_start;
1014                } else {
1015                        break;
1016                }
1017                WARN_ON(start > end);
1018        }
1019        return err;
1020}
1021
1022int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
1023{
1024        return lock_extent_bits(tree, start, end, 0, NULL, mask);
1025}
1026
1027int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1028                    gfp_t mask)
1029{
1030        int err;
1031        u64 failed_start;
1032
1033        err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1034                             &failed_start, NULL, mask);
1035        if (err == -EEXIST) {
1036                if (failed_start > start)
1037                        clear_extent_bit(tree, start, failed_start - 1,
1038                                         EXTENT_LOCKED, 1, 0, NULL, mask);
1039                return 0;
1040        }
1041        return 1;
1042}
1043
1044int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1045                         struct extent_state **cached, gfp_t mask)
1046{
1047        return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1048                                mask);
1049}
1050
1051int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1052                  gfp_t mask)
1053{
1054        return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1055                                mask);
1056}
1057
1058/*
1059 * helper function to set pages and extents in the tree dirty
1060 */
1061int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end)
1062{
1063        unsigned long index = start >> PAGE_CACHE_SHIFT;
1064        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1065        struct page *page;
1066
1067        while (index <= end_index) {
1068                page = find_get_page(tree->mapping, index);
1069                BUG_ON(!page);
1070                __set_page_dirty_nobuffers(page);
1071                page_cache_release(page);
1072                index++;
1073        }
1074        return 0;
1075}
1076
1077/*
1078 * helper function to set both pages and extents in the tree writeback
1079 */
1080static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1081{
1082        unsigned long index = start >> PAGE_CACHE_SHIFT;
1083        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1084        struct page *page;
1085
1086        while (index <= end_index) {
1087                page = find_get_page(tree->mapping, index);
1088                BUG_ON(!page);
1089                set_page_writeback(page);
1090                page_cache_release(page);
1091                index++;
1092        }
1093        return 0;
1094}
1095
1096/*
1097 * find the first offset in the io tree with 'bits' set. zero is
1098 * returned if we find something, and *start_ret and *end_ret are
1099 * set to reflect the state struct that was found.
1100 *
1101 * If nothing was found, 1 is returned, < 0 on error
1102 */
1103int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1104                          u64 *start_ret, u64 *end_ret, int bits)
1105{
1106        struct rb_node *node;
1107        struct extent_state *state;
1108        int ret = 1;
1109
1110        spin_lock(&tree->lock);
1111        /*
1112         * this search will find all the extents that end after
1113         * our range starts.
1114         */
1115        node = tree_search(tree, start);
1116        if (!node)
1117                goto out;
1118
1119        while (1) {
1120                state = rb_entry(node, struct extent_state, rb_node);
1121                if (state->end >= start && (state->state & bits)) {
1122                        *start_ret = state->start;
1123                        *end_ret = state->end;
1124                        ret = 0;
1125                        break;
1126                }
1127                node = rb_next(node);
1128                if (!node)
1129                        break;
1130        }
1131out:
1132        spin_unlock(&tree->lock);
1133        return ret;
1134}
1135
1136/* find the first state struct with 'bits' set after 'start', and
1137 * return it.  tree->lock must be held.  NULL will returned if
1138 * nothing was found after 'start'
1139 */
1140struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1141                                                 u64 start, int bits)
1142{
1143        struct rb_node *node;
1144        struct extent_state *state;
1145
1146        /*
1147         * this search will find all the extents that end after
1148         * our range starts.
1149         */
1150        node = tree_search(tree, start);
1151        if (!node)
1152                goto out;
1153
1154        while (1) {
1155                state = rb_entry(node, struct extent_state, rb_node);
1156                if (state->end >= start && (state->state & bits))
1157                        return state;
1158
1159                node = rb_next(node);
1160                if (!node)
1161                        break;
1162        }
1163out:
1164        return NULL;
1165}
1166
1167/*
1168 * find a contiguous range of bytes in the file marked as delalloc, not
1169 * more than 'max_bytes'.  start and end are used to return the range,
1170 *
1171 * 1 is returned if we find something, 0 if nothing was in the tree
1172 */
1173static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1174                                        u64 *start, u64 *end, u64 max_bytes)
1175{
1176        struct rb_node *node;
1177        struct extent_state *state;
1178        u64 cur_start = *start;
1179        u64 found = 0;
1180        u64 total_bytes = 0;
1181
1182        spin_lock(&tree->lock);
1183
1184        /*
1185         * this search will find all the extents that end after
1186         * our range starts.
1187         */
1188        node = tree_search(tree, cur_start);
1189        if (!node) {
1190                if (!found)
1191                        *end = (u64)-1;
1192                goto out;
1193        }
1194
1195        while (1) {
1196                state = rb_entry(node, struct extent_state, rb_node);
1197                if (found && (state->start != cur_start ||
1198                              (state->state & EXTENT_BOUNDARY))) {
1199                        goto out;
1200                }
1201                if (!(state->state & EXTENT_DELALLOC)) {
1202                        if (!found)
1203                                *end = state->end;
1204                        goto out;
1205                }
1206                if (!found)
1207                        *start = state->start;
1208                found++;
1209                *end = state->end;
1210                cur_start = state->end + 1;
1211                node = rb_next(node);
1212                if (!node)
1213                        break;
1214                total_bytes += state->end - state->start + 1;
1215                if (total_bytes >= max_bytes)
1216                        break;
1217        }
1218out:
1219        spin_unlock(&tree->lock);
1220        return found;
1221}
1222
1223static noinline int __unlock_for_delalloc(struct inode *inode,
1224                                          struct page *locked_page,
1225                                          u64 start, u64 end)
1226{
1227        int ret;
1228        struct page *pages[16];
1229        unsigned long index = start >> PAGE_CACHE_SHIFT;
1230        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1231        unsigned long nr_pages = end_index - index + 1;
1232        int i;
1233
1234        if (index == locked_page->index && end_index == index)
1235                return 0;
1236
1237        while (nr_pages > 0) {
1238                ret = find_get_pages_contig(inode->i_mapping, index,
1239                                     min_t(unsigned long, nr_pages,
1240                                     ARRAY_SIZE(pages)), pages);
1241                for (i = 0; i < ret; i++) {
1242                        if (pages[i] != locked_page)
1243                                unlock_page(pages[i]);
1244                        page_cache_release(pages[i]);
1245                }
1246                nr_pages -= ret;
1247                index += ret;
1248                cond_resched();
1249        }
1250        return 0;
1251}
1252
1253static noinline int lock_delalloc_pages(struct inode *inode,
1254                                        struct page *locked_page,
1255                                        u64 delalloc_start,
1256                                        u64 delalloc_end)
1257{
1258        unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1259        unsigned long start_index = index;
1260        unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1261        unsigned long pages_locked = 0;
1262        struct page *pages[16];
1263        unsigned long nrpages;
1264        int ret;
1265        int i;
1266
1267        /* the caller is responsible for locking the start index */
1268        if (index == locked_page->index && index == end_index)
1269                return 0;
1270
1271        /* skip the page at the start index */
1272        nrpages = end_index - index + 1;
1273        while (nrpages > 0) {
1274                ret = find_get_pages_contig(inode->i_mapping, index,
1275                                     min_t(unsigned long,
1276                                     nrpages, ARRAY_SIZE(pages)), pages);
1277                if (ret == 0) {
1278                        ret = -EAGAIN;
1279                        goto done;
1280                }
1281                /* now we have an array of pages, lock them all */
1282                for (i = 0; i < ret; i++) {
1283                        /*
1284                         * the caller is taking responsibility for
1285                         * locked_page
1286                         */
1287                        if (pages[i] != locked_page) {
1288                                lock_page(pages[i]);
1289                                if (!PageDirty(pages[i]) ||
1290                                    pages[i]->mapping != inode->i_mapping) {
1291                                        ret = -EAGAIN;
1292                                        unlock_page(pages[i]);
1293                                        page_cache_release(pages[i]);
1294                                        goto done;
1295                                }
1296                        }
1297                        page_cache_release(pages[i]);
1298                        pages_locked++;
1299                }
1300                nrpages -= ret;
1301                index += ret;
1302                cond_resched();
1303        }
1304        ret = 0;
1305done:
1306        if (ret && pages_locked) {
1307                __unlock_for_delalloc(inode, locked_page,
1308                              delalloc_start,
1309                              ((u64)(start_index + pages_locked - 1)) <<
1310                              PAGE_CACHE_SHIFT);
1311        }
1312        return ret;
1313}
1314
1315/*
1316 * find a contiguous range of bytes in the file marked as delalloc, not
1317 * more than 'max_bytes'.  start and end are used to return the range,
1318 *
1319 * 1 is returned if we find something, 0 if nothing was in the tree
1320 */
1321static noinline u64 find_lock_delalloc_range(struct inode *inode,
1322                                             struct extent_io_tree *tree,
1323                                             struct page *locked_page,
1324                                             u64 *start, u64 *end,
1325                                             u64 max_bytes)
1326{
1327        u64 delalloc_start;
1328        u64 delalloc_end;
1329        u64 found;
1330        struct extent_state *cached_state = NULL;
1331        int ret;
1332        int loops = 0;
1333
1334again:
1335        /* step one, find a bunch of delalloc bytes starting at start */
1336        delalloc_start = *start;
1337        delalloc_end = 0;
1338        found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1339                                    max_bytes);
1340        if (!found || delalloc_end <= *start) {
1341                *start = delalloc_start;
1342                *end = delalloc_end;
1343                return found;
1344        }
1345
1346        /*
1347         * start comes from the offset of locked_page.  We have to lock
1348         * pages in order, so we can't process delalloc bytes before
1349         * locked_page
1350         */
1351        if (delalloc_start < *start)
1352                delalloc_start = *start;
1353
1354        /*
1355         * make sure to limit the number of pages we try to lock down
1356         * if we're looping.
1357         */
1358        if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1359                delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1360
1361        /* step two, lock all the pages after the page that has start */
1362        ret = lock_delalloc_pages(inode, locked_page,
1363                                  delalloc_start, delalloc_end);
1364        if (ret == -EAGAIN) {
1365                /* some of the pages are gone, lets avoid looping by
1366                 * shortening the size of the delalloc range we're searching
1367                 */
1368                free_extent_state(cached_state);
1369                if (!loops) {
1370                        unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1371                        max_bytes = PAGE_CACHE_SIZE - offset;
1372                        loops = 1;
1373                        goto again;
1374                } else {
1375                        found = 0;
1376                        goto out_failed;
1377                }
1378        }
1379        BUG_ON(ret);
1380
1381        /* step three, lock the state bits for the whole range */
1382        lock_extent_bits(tree, delalloc_start, delalloc_end,
1383                         0, &cached_state, GFP_NOFS);
1384
1385        /* then test to make sure it is all still delalloc */
1386        ret = test_range_bit(tree, delalloc_start, delalloc_end,
1387                             EXTENT_DELALLOC, 1, cached_state);
1388        if (!ret) {
1389                unlock_extent_cached(tree, delalloc_start, delalloc_end,
1390                                     &cached_state, GFP_NOFS);
1391                __unlock_for_delalloc(inode, locked_page,
1392                              delalloc_start, delalloc_end);
1393                cond_resched();
1394                goto again;
1395        }
1396        free_extent_state(cached_state);
1397        *start = delalloc_start;
1398        *end = delalloc_end;
1399out_failed:
1400        return found;
1401}
1402
1403int extent_clear_unlock_delalloc(struct inode *inode,
1404                                struct extent_io_tree *tree,
1405                                u64 start, u64 end, struct page *locked_page,
1406                                unsigned long op)
1407{
1408        int ret;
1409        struct page *pages[16];
1410        unsigned long index = start >> PAGE_CACHE_SHIFT;
1411        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1412        unsigned long nr_pages = end_index - index + 1;
1413        int i;
1414        int clear_bits = 0;
1415
1416        if (op & EXTENT_CLEAR_UNLOCK)
1417                clear_bits |= EXTENT_LOCKED;
1418        if (op & EXTENT_CLEAR_DIRTY)
1419                clear_bits |= EXTENT_DIRTY;
1420
1421        if (op & EXTENT_CLEAR_DELALLOC)
1422                clear_bits |= EXTENT_DELALLOC;
1423
1424        if (op & EXTENT_CLEAR_ACCOUNTING)
1425                clear_bits |= EXTENT_DO_ACCOUNTING;
1426
1427        clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1428        if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1429                    EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1430                    EXTENT_SET_PRIVATE2)))
1431                return 0;
1432
1433        while (nr_pages > 0) {
1434                ret = find_get_pages_contig(inode->i_mapping, index,
1435                                     min_t(unsigned long,
1436                                     nr_pages, ARRAY_SIZE(pages)), pages);
1437                for (i = 0; i < ret; i++) {
1438
1439                        if (op & EXTENT_SET_PRIVATE2)
1440                                SetPagePrivate2(pages[i]);
1441
1442                        if (pages[i] == locked_page) {
1443                                page_cache_release(pages[i]);
1444                                continue;
1445                        }
1446                        if (op & EXTENT_CLEAR_DIRTY)
1447                                clear_page_dirty_for_io(pages[i]);
1448                        if (op & EXTENT_SET_WRITEBACK)
1449                                set_page_writeback(pages[i]);
1450                        if (op & EXTENT_END_WRITEBACK)
1451                                end_page_writeback(pages[i]);
1452                        if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1453                                unlock_page(pages[i]);
1454                        page_cache_release(pages[i]);
1455                }
1456                nr_pages -= ret;
1457                index += ret;
1458                cond_resched();
1459        }
1460        return 0;
1461}
1462
1463/*
1464 * count the number of bytes in the tree that have a given bit(s)
1465 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1466 * cached.  The total number found is returned.
1467 */
1468u64 count_range_bits(struct extent_io_tree *tree,
1469                     u64 *start, u64 search_end, u64 max_bytes,
1470                     unsigned long bits)
1471{
1472        struct rb_node *node;
1473        struct extent_state *state;
1474        u64 cur_start = *start;
1475        u64 total_bytes = 0;
1476        int found = 0;
1477
1478        if (search_end <= cur_start) {
1479                WARN_ON(1);
1480                return 0;
1481        }
1482
1483        spin_lock(&tree->lock);
1484        if (cur_start == 0 && bits == EXTENT_DIRTY) {
1485                total_bytes = tree->dirty_bytes;
1486                goto out;
1487        }
1488        /*
1489         * this search will find all the extents that end after
1490         * our range starts.
1491         */
1492        node = tree_search(tree, cur_start);
1493        if (!node)
1494                goto out;
1495
1496        while (1) {
1497                state = rb_entry(node, struct extent_state, rb_node);
1498                if (state->start > search_end)
1499                        break;
1500                if (state->end >= cur_start && (state->state & bits)) {
1501                        total_bytes += min(search_end, state->end) + 1 -
1502                                       max(cur_start, state->start);
1503                        if (total_bytes >= max_bytes)
1504                                break;
1505                        if (!found) {
1506                                *start = state->start;
1507                                found = 1;
1508                        }
1509                }
1510                node = rb_next(node);
1511                if (!node)
1512                        break;
1513        }
1514out:
1515        spin_unlock(&tree->lock);
1516        return total_bytes;
1517}
1518
1519/*
1520 * set the private field for a given byte offset in the tree.  If there isn't
1521 * an extent_state there already, this does nothing.
1522 */
1523int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1524{
1525        struct rb_node *node;
1526        struct extent_state *state;
1527        int ret = 0;
1528
1529        spin_lock(&tree->lock);
1530        /*
1531         * this search will find all the extents that end after
1532         * our range starts.
1533         */
1534        node = tree_search(tree, start);
1535        if (!node) {
1536                ret = -ENOENT;
1537                goto out;
1538        }
1539        state = rb_entry(node, struct extent_state, rb_node);
1540        if (state->start != start) {
1541                ret = -ENOENT;
1542                goto out;
1543        }
1544        state->private = private;
1545out:
1546        spin_unlock(&tree->lock);
1547        return ret;
1548}
1549
1550int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1551{
1552        struct rb_node *node;
1553        struct extent_state *state;
1554        int ret = 0;
1555
1556        spin_lock(&tree->lock);
1557        /*
1558         * this search will find all the extents that end after
1559         * our range starts.
1560         */
1561        node = tree_search(tree, start);
1562        if (!node) {
1563                ret = -ENOENT;
1564                goto out;
1565        }
1566        state = rb_entry(node, struct extent_state, rb_node);
1567        if (state->start != start) {
1568                ret = -ENOENT;
1569                goto out;
1570        }
1571        *private = state->private;
1572out:
1573        spin_unlock(&tree->lock);
1574        return ret;
1575}
1576
1577/*
1578 * searches a range in the state tree for a given mask.
1579 * If 'filled' == 1, this returns 1 only if every extent in the tree
1580 * has the bits set.  Otherwise, 1 is returned if any bit in the
1581 * range is found set.
1582 */
1583int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1584                   int bits, int filled, struct extent_state *cached)
1585{
1586        struct extent_state *state = NULL;
1587        struct rb_node *node;
1588        int bitset = 0;
1589
1590        spin_lock(&tree->lock);
1591        if (cached && cached->tree && cached->start == start)
1592                node = &cached->rb_node;
1593        else
1594                node = tree_search(tree, start);
1595        while (node && start <= end) {
1596                state = rb_entry(node, struct extent_state, rb_node);
1597
1598                if (filled && state->start > start) {
1599                        bitset = 0;
1600                        break;
1601                }
1602
1603                if (state->start > end)
1604                        break;
1605
1606                if (state->state & bits) {
1607                        bitset = 1;
1608                        if (!filled)
1609                                break;
1610                } else if (filled) {
1611                        bitset = 0;
1612                        break;
1613                }
1614
1615                if (state->end == (u64)-1)
1616                        break;
1617
1618                start = state->end + 1;
1619                if (start > end)
1620                        break;
1621                node = rb_next(node);
1622                if (!node) {
1623                        if (filled)
1624                                bitset = 0;
1625                        break;
1626                }
1627        }
1628        spin_unlock(&tree->lock);
1629        return bitset;
1630}
1631
1632/*
1633 * helper function to set a given page up to date if all the
1634 * extents in the tree for that page are up to date
1635 */
1636static int check_page_uptodate(struct extent_io_tree *tree,
1637                               struct page *page)
1638{
1639        u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1640        u64 end = start + PAGE_CACHE_SIZE - 1;
1641        if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1642                SetPageUptodate(page);
1643        return 0;
1644}
1645
1646/*
1647 * helper function to unlock a page if all the extents in the tree
1648 * for that page are unlocked
1649 */
1650static int check_page_locked(struct extent_io_tree *tree,
1651                             struct page *page)
1652{
1653        u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1654        u64 end = start + PAGE_CACHE_SIZE - 1;
1655        if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1656                unlock_page(page);
1657        return 0;
1658}
1659
1660/*
1661 * helper function to end page writeback if all the extents
1662 * in the tree for that page are done with writeback
1663 */
1664static int check_page_writeback(struct extent_io_tree *tree,
1665                             struct page *page)
1666{
1667        end_page_writeback(page);
1668        return 0;
1669}
1670
1671/* lots and lots of room for performance fixes in the end_bio funcs */
1672
1673/*
1674 * after a writepage IO is done, we need to:
1675 * clear the uptodate bits on error
1676 * clear the writeback bits in the extent tree for this IO
1677 * end_page_writeback if the page has no more pending IO
1678 *
1679 * Scheduling is not allowed, so the extent state tree is expected
1680 * to have one and only one object corresponding to this IO.
1681 */
1682static void end_bio_extent_writepage(struct bio *bio, int err)
1683{
1684        int uptodate = err == 0;
1685        struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1686        struct extent_io_tree *tree;
1687        u64 start;
1688        u64 end;
1689        int whole_page;
1690        int ret;
1691
1692        do {
1693                struct page *page = bvec->bv_page;
1694                tree = &BTRFS_I(page->mapping->host)->io_tree;
1695
1696                start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1697                         bvec->bv_offset;
1698                end = start + bvec->bv_len - 1;
1699
1700                if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1701                        whole_page = 1;
1702                else
1703                        whole_page = 0;
1704
1705                if (--bvec >= bio->bi_io_vec)
1706                        prefetchw(&bvec->bv_page->flags);
1707                if (tree->ops && tree->ops->writepage_end_io_hook) {
1708                        ret = tree->ops->writepage_end_io_hook(page, start,
1709                                                       end, NULL, uptodate);
1710                        if (ret)
1711                                uptodate = 0;
1712                }
1713
1714                if (!uptodate && tree->ops &&
1715                    tree->ops->writepage_io_failed_hook) {
1716                        ret = tree->ops->writepage_io_failed_hook(bio, page,
1717                                                         start, end, NULL);
1718                        if (ret == 0) {
1719                                uptodate = (err == 0);
1720                                continue;
1721                        }
1722                }
1723
1724                if (!uptodate) {
1725                        clear_extent_uptodate(tree, start, end, GFP_NOFS);
1726                        ClearPageUptodate(page);
1727                        SetPageError(page);
1728                }
1729
1730                if (whole_page)
1731                        end_page_writeback(page);
1732                else
1733                        check_page_writeback(tree, page);
1734        } while (bvec >= bio->bi_io_vec);
1735
1736        bio_put(bio);
1737}
1738
1739/*
1740 * after a readpage IO is done, we need to:
1741 * clear the uptodate bits on error
1742 * set the uptodate bits if things worked
1743 * set the page up to date if all extents in the tree are uptodate
1744 * clear the lock bit in the extent tree
1745 * unlock the page if there are no other extents locked for it
1746 *
1747 * Scheduling is not allowed, so the extent state tree is expected
1748 * to have one and only one object corresponding to this IO.
1749 */
1750static void end_bio_extent_readpage(struct bio *bio, int err)
1751{
1752        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1753        struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1754        struct extent_io_tree *tree;
1755        u64 start;
1756        u64 end;
1757        int whole_page;
1758        int ret;
1759
1760        if (err)
1761                uptodate = 0;
1762
1763        do {
1764                struct page *page = bvec->bv_page;
1765                tree = &BTRFS_I(page->mapping->host)->io_tree;
1766
1767                start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1768                        bvec->bv_offset;
1769                end = start + bvec->bv_len - 1;
1770
1771                if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1772                        whole_page = 1;
1773                else
1774                        whole_page = 0;
1775
1776                if (--bvec >= bio->bi_io_vec)
1777                        prefetchw(&bvec->bv_page->flags);
1778
1779                if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1780                        ret = tree->ops->readpage_end_io_hook(page, start, end,
1781                                                              NULL);
1782                        if (ret)
1783                                uptodate = 0;
1784                }
1785                if (!uptodate && tree->ops &&
1786                    tree->ops->readpage_io_failed_hook) {
1787                        ret = tree->ops->readpage_io_failed_hook(bio, page,
1788                                                         start, end, NULL);
1789                        if (ret == 0) {
1790                                uptodate =
1791                                        test_bit(BIO_UPTODATE, &bio->bi_flags);
1792                                if (err)
1793                                        uptodate = 0;
1794                                continue;
1795                        }
1796                }
1797
1798                if (uptodate) {
1799                        set_extent_uptodate(tree, start, end,
1800                                            GFP_ATOMIC);
1801                }
1802                unlock_extent(tree, start, end, GFP_ATOMIC);
1803
1804                if (whole_page) {
1805                        if (uptodate) {
1806                                SetPageUptodate(page);
1807                        } else {
1808                                ClearPageUptodate(page);
1809                                SetPageError(page);
1810                        }
1811                        unlock_page(page);
1812                } else {
1813                        if (uptodate) {
1814                                check_page_uptodate(tree, page);
1815                        } else {
1816                                ClearPageUptodate(page);
1817                                SetPageError(page);
1818                        }
1819                        check_page_locked(tree, page);
1820                }
1821        } while (bvec >= bio->bi_io_vec);
1822
1823        bio_put(bio);
1824}
1825
1826/*
1827 * IO done from prepare_write is pretty simple, we just unlock
1828 * the structs in the extent tree when done, and set the uptodate bits
1829 * as appropriate.
1830 */
1831static void end_bio_extent_preparewrite(struct bio *bio, int err)
1832{
1833        const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1834        struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1835        struct extent_io_tree *tree;
1836        u64 start;
1837        u64 end;
1838
1839        do {
1840                struct page *page = bvec->bv_page;
1841                tree = &BTRFS_I(page->mapping->host)->io_tree;
1842
1843                start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1844                        bvec->bv_offset;
1845                end = start + bvec->bv_len - 1;
1846
1847                if (--bvec >= bio->bi_io_vec)
1848                        prefetchw(&bvec->bv_page->flags);
1849
1850                if (uptodate) {
1851                        set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1852                } else {
1853                        ClearPageUptodate(page);
1854                        SetPageError(page);
1855                }
1856
1857                unlock_extent(tree, start, end, GFP_ATOMIC);
1858
1859        } while (bvec >= bio->bi_io_vec);
1860
1861        bio_put(bio);
1862}
1863
1864static struct bio *
1865extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1866                 gfp_t gfp_flags)
1867{
1868        struct bio *bio;
1869
1870        bio = bio_alloc(gfp_flags, nr_vecs);
1871
1872        if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1873                while (!bio && (nr_vecs /= 2))
1874                        bio = bio_alloc(gfp_flags, nr_vecs);
1875        }
1876
1877        if (bio) {
1878                bio->bi_size = 0;
1879                bio->bi_bdev = bdev;
1880                bio->bi_sector = first_sector;
1881        }
1882        return bio;
1883}
1884
1885static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
1886                          unsigned long bio_flags)
1887{
1888        int ret = 0;
1889        struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1890        struct page *page = bvec->bv_page;
1891        struct extent_io_tree *tree = bio->bi_private;
1892        u64 start;
1893        u64 end;
1894
1895        start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1896        end = start + bvec->bv_len - 1;
1897
1898        bio->bi_private = NULL;
1899
1900        bio_get(bio);
1901
1902        if (tree->ops && tree->ops->submit_bio_hook)
1903                tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
1904                                           mirror_num, bio_flags);
1905        else
1906                submit_bio(rw, bio);
1907        if (bio_flagged(bio, BIO_EOPNOTSUPP))
1908                ret = -EOPNOTSUPP;
1909        bio_put(bio);
1910        return ret;
1911}
1912
1913static int submit_extent_page(int rw, struct extent_io_tree *tree,
1914                              struct page *page, sector_t sector,
1915                              size_t size, unsigned long offset,
1916                              struct block_device *bdev,
1917                              struct bio **bio_ret,
1918                              unsigned long max_pages,
1919                              bio_end_io_t end_io_func,
1920                              int mirror_num,
1921                              unsigned long prev_bio_flags,
1922                              unsigned long bio_flags)
1923{
1924        int ret = 0;
1925        struct bio *bio;
1926        int nr;
1927        int contig = 0;
1928        int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
1929        int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
1930        size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
1931
1932        if (bio_ret && *bio_ret) {
1933                bio = *bio_ret;
1934                if (old_compressed)
1935                        contig = bio->bi_sector == sector;
1936                else
1937                        contig = bio->bi_sector + (bio->bi_size >> 9) ==
1938                                sector;
1939
1940                if (prev_bio_flags != bio_flags || !contig ||
1941                    (tree->ops && tree->ops->merge_bio_hook &&
1942                     tree->ops->merge_bio_hook(page, offset, page_size, bio,
1943                                               bio_flags)) ||
1944                    bio_add_page(bio, page, page_size, offset) < page_size) {
1945                        ret = submit_one_bio(rw, bio, mirror_num,
1946                                             prev_bio_flags);
1947                        bio = NULL;
1948                } else {
1949                        return 0;
1950                }
1951        }
1952        if (this_compressed)
1953                nr = BIO_MAX_PAGES;
1954        else
1955                nr = bio_get_nr_vecs(bdev);
1956
1957        bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1958
1959        bio_add_page(bio, page, page_size, offset);
1960        bio->bi_end_io = end_io_func;
1961        bio->bi_private = tree;
1962
1963        if (bio_ret)
1964                *bio_ret = bio;
1965        else
1966                ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
1967
1968        return ret;
1969}
1970
1971void set_page_extent_mapped(struct page *page)
1972{
1973        if (!PagePrivate(page)) {
1974                SetPagePrivate(page);
1975                page_cache_get(page);
1976                set_page_private(page, EXTENT_PAGE_PRIVATE);
1977        }
1978}
1979
1980static void set_page_extent_head(struct page *page, unsigned long len)
1981{
1982        set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1983}
1984
1985/*
1986 * basic readpage implementation.  Locked extent state structs are inserted
1987 * into the tree that are removed when the IO is done (by the end_io
1988 * handlers)
1989 */
1990static int __extent_read_full_page(struct extent_io_tree *tree,
1991                                   struct page *page,
1992                                   get_extent_t *get_extent,
1993                                   struct bio **bio, int mirror_num,
1994                                   unsigned long *bio_flags)
1995{
1996        struct inode *inode = page->mapping->host;
1997        u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1998        u64 page_end = start + PAGE_CACHE_SIZE - 1;
1999        u64 end;
2000        u64 cur = start;
2001        u64 extent_offset;
2002        u64 last_byte = i_size_read(inode);
2003        u64 block_start;
2004        u64 cur_end;
2005        sector_t sector;
2006        struct extent_map *em;
2007        struct block_device *bdev;
2008        int ret;
2009        int nr = 0;
2010        size_t page_offset = 0;
2011        size_t iosize;
2012        size_t disk_io_size;
2013        size_t blocksize = inode->i_sb->s_blocksize;
2014        unsigned long this_bio_flag = 0;
2015
2016        set_page_extent_mapped(page);
2017
2018        end = page_end;
2019        lock_extent(tree, start, end, GFP_NOFS);
2020
2021        if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2022                char *userpage;
2023                size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2024
2025                if (zero_offset) {
2026                        iosize = PAGE_CACHE_SIZE - zero_offset;
2027                        userpage = kmap_atomic(page, KM_USER0);
2028                        memset(userpage + zero_offset, 0, iosize);
2029                        flush_dcache_page(page);
2030                        kunmap_atomic(userpage, KM_USER0);
2031                }
2032        }
2033        while (cur <= end) {
2034                if (cur >= last_byte) {
2035                        char *userpage;
2036                        iosize = PAGE_CACHE_SIZE - page_offset;
2037                        userpage = kmap_atomic(page, KM_USER0);
2038                        memset(userpage + page_offset, 0, iosize);
2039                        flush_dcache_page(page);
2040                        kunmap_atomic(userpage, KM_USER0);
2041                        set_extent_uptodate(tree, cur, cur + iosize - 1,
2042                                            GFP_NOFS);
2043                        unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2044                        break;
2045                }
2046                em = get_extent(inode, page, page_offset, cur,
2047                                end - cur + 1, 0);
2048                if (IS_ERR(em) || !em) {
2049                        SetPageError(page);
2050                        unlock_extent(tree, cur, end, GFP_NOFS);
2051                        break;
2052                }
2053                extent_offset = cur - em->start;
2054                BUG_ON(extent_map_end(em) <= cur);
2055                BUG_ON(end < cur);
2056
2057                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
2058                        this_bio_flag = EXTENT_BIO_COMPRESSED;
2059
2060                iosize = min(extent_map_end(em) - cur, end - cur + 1);
2061                cur_end = min(extent_map_end(em) - 1, end);
2062                iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2063                if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2064                        disk_io_size = em->block_len;
2065                        sector = em->block_start >> 9;
2066                } else {
2067                        sector = (em->block_start + extent_offset) >> 9;
2068                        disk_io_size = iosize;
2069                }
2070                bdev = em->bdev;
2071                block_start = em->block_start;
2072                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2073                        block_start = EXTENT_MAP_HOLE;
2074                free_extent_map(em);
2075                em = NULL;
2076
2077                /* we've found a hole, just zero and go on */
2078                if (block_start == EXTENT_MAP_HOLE) {
2079                        char *userpage;
2080                        userpage = kmap_atomic(page, KM_USER0);
2081                        memset(userpage + page_offset, 0, iosize);
2082                        flush_dcache_page(page);
2083                        kunmap_atomic(userpage, KM_USER0);
2084
2085                        set_extent_uptodate(tree, cur, cur + iosize - 1,
2086                                            GFP_NOFS);
2087                        unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2088                        cur = cur + iosize;
2089                        page_offset += iosize;
2090                        continue;
2091                }
2092                /* the get_extent function already copied into the page */
2093                if (test_range_bit(tree, cur, cur_end,
2094                                   EXTENT_UPTODATE, 1, NULL)) {
2095                        check_page_uptodate(tree, page);
2096                        unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2097                        cur = cur + iosize;
2098                        page_offset += iosize;
2099                        continue;
2100                }
2101                /* we have an inline extent but it didn't get marked up
2102                 * to date.  Error out
2103                 */
2104                if (block_start == EXTENT_MAP_INLINE) {
2105                        SetPageError(page);
2106                        unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2107                        cur = cur + iosize;
2108                        page_offset += iosize;
2109                        continue;
2110                }
2111
2112                ret = 0;
2113                if (tree->ops && tree->ops->readpage_io_hook) {
2114                        ret = tree->ops->readpage_io_hook(page, cur,
2115                                                          cur + iosize - 1);
2116                }
2117                if (!ret) {
2118                        unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2119                        pnr -= page->index;
2120                        ret = submit_extent_page(READ, tree, page,
2121                                         sector, disk_io_size, page_offset,
2122                                         bdev, bio, pnr,
2123                                         end_bio_extent_readpage, mirror_num,
2124                                         *bio_flags,
2125                                         this_bio_flag);
2126                        nr++;
2127                        *bio_flags = this_bio_flag;
2128                }
2129                if (ret)
2130                        SetPageError(page);
2131                cur = cur + iosize;
2132                page_offset += iosize;
2133        }
2134        if (!nr) {
2135                if (!PageError(page))
2136                        SetPageUptodate(page);
2137                unlock_page(page);
2138        }
2139        return 0;
2140}
2141
2142int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2143                            get_extent_t *get_extent)
2144{
2145        struct bio *bio = NULL;
2146        unsigned long bio_flags = 0;
2147        int ret;
2148
2149        ret = __extent_read_full_page(tree, page, get_extent, &bio, 0,
2150                                      &bio_flags);
2151        if (bio)
2152                submit_one_bio(READ, bio, 0, bio_flags);
2153        return ret;
2154}
2155
2156static noinline void update_nr_written(struct page *page,
2157                                      struct writeback_control *wbc,
2158                                      unsigned long nr_written)
2159{
2160        wbc->nr_to_write -= nr_written;
2161        if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2162            wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2163                page->mapping->writeback_index = page->index + nr_written;
2164}
2165
2166/*
2167 * the writepage semantics are similar to regular writepage.  extent
2168 * records are inserted to lock ranges in the tree, and as dirty areas
2169 * are found, they are marked writeback.  Then the lock bits are removed
2170 * and the end_io handler clears the writeback ranges
2171 */
2172static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2173                              void *data)
2174{
2175        struct inode *inode = page->mapping->host;
2176        struct extent_page_data *epd = data;
2177        struct extent_io_tree *tree = epd->tree;
2178        u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2179        u64 delalloc_start;
2180        u64 page_end = start + PAGE_CACHE_SIZE - 1;
2181        u64 end;
2182        u64 cur = start;
2183        u64 extent_offset;
2184        u64 last_byte = i_size_read(inode);
2185        u64 block_start;
2186        u64 iosize;
2187        u64 unlock_start;
2188        sector_t sector;
2189        struct extent_state *cached_state = NULL;
2190        struct extent_map *em;
2191        struct block_device *bdev;
2192        int ret;
2193        int nr = 0;
2194        size_t pg_offset = 0;
2195        size_t blocksize;
2196        loff_t i_size = i_size_read(inode);
2197        unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2198        u64 nr_delalloc;
2199        u64 delalloc_end;
2200        int page_started;
2201        int compressed;
2202        int write_flags;
2203        unsigned long nr_written = 0;
2204
2205        if (wbc->sync_mode == WB_SYNC_ALL)
2206                write_flags = WRITE_SYNC_PLUG;
2207        else
2208                write_flags = WRITE;
2209
2210        WARN_ON(!PageLocked(page));
2211        pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2212        if (page->index > end_index ||
2213           (page->index == end_index && !pg_offset)) {
2214                page->mapping->a_ops->invalidatepage(page, 0);
2215                unlock_page(page);
2216                return 0;
2217        }
2218
2219        if (page->index == end_index) {
2220                char *userpage;
2221
2222                userpage = kmap_atomic(page, KM_USER0);
2223                memset(userpage + pg_offset, 0,
2224                       PAGE_CACHE_SIZE - pg_offset);
2225                kunmap_atomic(userpage, KM_USER0);
2226                flush_dcache_page(page);
2227        }
2228        pg_offset = 0;
2229
2230        set_page_extent_mapped(page);
2231
2232        delalloc_start = start;
2233        delalloc_end = 0;
2234        page_started = 0;
2235        if (!epd->extent_locked) {
2236                u64 delalloc_to_write = 0;
2237                /*
2238                 * make sure the wbc mapping index is at least updated
2239                 * to this page.
2240                 */
2241                update_nr_written(page, wbc, 0);
2242
2243                while (delalloc_end < page_end) {
2244                        nr_delalloc = find_lock_delalloc_range(inode, tree,
2245                                                       page,
2246                                                       &delalloc_start,
2247                                                       &delalloc_end,
2248                                                       128 * 1024 * 1024);
2249                        if (nr_delalloc == 0) {
2250                                delalloc_start = delalloc_end + 1;
2251                                continue;
2252                        }
2253                        tree->ops->fill_delalloc(inode, page, delalloc_start,
2254                                                 delalloc_end, &page_started,
2255                                                 &nr_written);
2256                        /*
2257                         * delalloc_end is already one less than the total
2258                         * length, so we don't subtract one from
2259                         * PAGE_CACHE_SIZE
2260                         */
2261                        delalloc_to_write += (delalloc_end - delalloc_start +
2262                                              PAGE_CACHE_SIZE) >>
2263                                              PAGE_CACHE_SHIFT;
2264                        delalloc_start = delalloc_end + 1;
2265                }
2266                if (wbc->nr_to_write < delalloc_to_write) {
2267                        int thresh = 8192;
2268
2269                        if (delalloc_to_write < thresh * 2)
2270                                thresh = delalloc_to_write;
2271                        wbc->nr_to_write = min_t(u64, delalloc_to_write,
2272                                                 thresh);
2273                }
2274
2275                /* did the fill delalloc function already unlock and start
2276                 * the IO?
2277                 */
2278                if (page_started) {
2279                        ret = 0;
2280                        /*
2281                         * we've unlocked the page, so we can't update
2282                         * the mapping's writeback index, just update
2283                         * nr_to_write.
2284                         */
2285                        wbc->nr_to_write -= nr_written;
2286                        goto done_unlocked;
2287                }
2288        }
2289        if (tree->ops && tree->ops->writepage_start_hook) {
2290                ret = tree->ops->writepage_start_hook(page, start,
2291                                                      page_end);
2292                if (ret == -EAGAIN) {
2293                        redirty_page_for_writepage(wbc, page);
2294                        update_nr_written(page, wbc, nr_written);
2295                        unlock_page(page);
2296                        ret = 0;
2297                        goto done_unlocked;
2298                }
2299        }
2300
2301        /*
2302         * we don't want to touch the inode after unlocking the page,
2303         * so we update the mapping writeback index now
2304         */
2305        update_nr_written(page, wbc, nr_written + 1);
2306
2307        end = page_end;
2308        if (last_byte <= start) {
2309                if (tree->ops && tree->ops->writepage_end_io_hook)
2310                        tree->ops->writepage_end_io_hook(page, start,
2311                                                         page_end, NULL, 1);
2312                unlock_start = page_end + 1;
2313                goto done;
2314        }
2315
2316        blocksize = inode->i_sb->s_blocksize;
2317
2318        while (cur <= end) {
2319                if (cur >= last_byte) {
2320                        if (tree->ops && tree->ops->writepage_end_io_hook)
2321                                tree->ops->writepage_end_io_hook(page, cur,
2322                                                         page_end, NULL, 1);
2323                        unlock_start = page_end + 1;
2324                        break;
2325                }
2326                em = epd->get_extent(inode, page, pg_offset, cur,
2327                                     end - cur + 1, 1);
2328                if (IS_ERR(em) || !em) {
2329                        SetPageError(page);
2330                        break;
2331                }
2332
2333                extent_offset = cur - em->start;
2334                BUG_ON(extent_map_end(em) <= cur);
2335                BUG_ON(end < cur);
2336                iosize = min(extent_map_end(em) - cur, end - cur + 1);
2337                iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2338                sector = (em->block_start + extent_offset) >> 9;
2339                bdev = em->bdev;
2340                block_start = em->block_start;
2341                compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2342                free_extent_map(em);
2343                em = NULL;
2344
2345                /*
2346                 * compressed and inline extents are written through other
2347                 * paths in the FS
2348                 */
2349                if (compressed || block_start == EXTENT_MAP_HOLE ||
2350                    block_start == EXTENT_MAP_INLINE) {
2351                        /*
2352                         * end_io notification does not happen here for
2353                         * compressed extents
2354                         */
2355                        if (!compressed && tree->ops &&
2356                            tree->ops->writepage_end_io_hook)
2357                                tree->ops->writepage_end_io_hook(page, cur,
2358                                                         cur + iosize - 1,
2359                                                         NULL, 1);
2360                        else if (compressed) {
2361                                /* we don't want to end_page_writeback on
2362                                 * a compressed extent.  this happens
2363                                 * elsewhere
2364                                 */
2365                                nr++;
2366                        }
2367
2368                        cur += iosize;
2369                        pg_offset += iosize;
2370                        unlock_start = cur;
2371                        continue;
2372                }
2373                /* leave this out until we have a page_mkwrite call */
2374                if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2375                                   EXTENT_DIRTY, 0, NULL)) {
2376                        cur = cur + iosize;
2377                        pg_offset += iosize;
2378                        continue;
2379                }
2380
2381                if (tree->ops && tree->ops->writepage_io_hook) {
2382                        ret = tree->ops->writepage_io_hook(page, cur,
2383                                                cur + iosize - 1);
2384                } else {
2385                        ret = 0;
2386                }
2387                if (ret) {
2388                        SetPageError(page);
2389                } else {
2390                        unsigned long max_nr = end_index + 1;
2391
2392                        set_range_writeback(tree, cur, cur + iosize - 1);
2393                        if (!PageWriteback(page)) {
2394                                printk(KERN_ERR "btrfs warning page %lu not "
2395                                       "writeback, cur %llu end %llu\n",
2396                                       page->index, (unsigned long long)cur,
2397                                       (unsigned long long)end);
2398                        }
2399
2400                        ret = submit_extent_page(write_flags, tree, page,
2401                                                 sector, iosize, pg_offset,
2402                                                 bdev, &epd->bio, max_nr,
2403                                                 end_bio_extent_writepage,
2404                                                 0, 0, 0);
2405                        if (ret)
2406                                SetPageError(page);
2407                }
2408                cur = cur + iosize;
2409                pg_offset += iosize;
2410                nr++;
2411        }
2412done:
2413        if (nr == 0) {
2414                /* make sure the mapping tag for page dirty gets cleared */
2415                set_page_writeback(page);
2416                end_page_writeback(page);
2417        }
2418        unlock_page(page);
2419
2420done_unlocked:
2421
2422        /* drop our reference on any cached states */
2423        free_extent_state(cached_state);
2424        return 0;
2425}
2426
2427/**
2428 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2429 * @mapping: address space structure to write
2430 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2431 * @writepage: function called for each page
2432 * @data: data passed to writepage function
2433 *
2434 * If a page is already under I/O, write_cache_pages() skips it, even
2435 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2436 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2437 * and msync() need to guarantee that all the data which was dirty at the time
2438 * the call was made get new I/O started against them.  If wbc->sync_mode is
2439 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2440 * existing IO to complete.
2441 */
2442static int extent_write_cache_pages(struct extent_io_tree *tree,
2443                             struct address_space *mapping,
2444                             struct writeback_control *wbc,
2445                             writepage_t writepage, void *data,
2446                             void (*flush_fn)(void *))
2447{
2448        int ret = 0;
2449        int done = 0;
2450        int nr_to_write_done = 0;
2451        struct pagevec pvec;
2452        int nr_pages;
2453        pgoff_t index;
2454        pgoff_t end;            /* Inclusive */
2455        int scanned = 0;
2456        int range_whole = 0;
2457
2458        pagevec_init(&pvec, 0);
2459        if (wbc->range_cyclic) {
2460                index = mapping->writeback_index; /* Start from prev offset */
2461                end = -1;
2462        } else {
2463                index = wbc->range_start >> PAGE_CACHE_SHIFT;
2464                end = wbc->range_end >> PAGE_CACHE_SHIFT;
2465                if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2466                        range_whole = 1;
2467                scanned = 1;
2468        }
2469retry:
2470        while (!done && !nr_to_write_done && (index <= end) &&
2471               (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2472                              PAGECACHE_TAG_DIRTY, min(end - index,
2473                                  (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2474                unsigned i;
2475
2476                scanned = 1;
2477                for (i = 0; i < nr_pages; i++) {
2478                        struct page *page = pvec.pages[i];
2479
2480                        /*
2481                         * At this point we hold neither mapping->tree_lock nor
2482                         * lock on the page itself: the page may be truncated or
2483                         * invalidated (changing page->mapping to NULL), or even
2484                         * swizzled back from swapper_space to tmpfs file
2485                         * mapping
2486                         */
2487                        if (tree->ops && tree->ops->write_cache_pages_lock_hook)
2488                                tree->ops->write_cache_pages_lock_hook(page);
2489                        else
2490                                lock_page(page);
2491
2492                        if (unlikely(page->mapping != mapping)) {
2493                                unlock_page(page);
2494                                continue;
2495                        }
2496
2497                        if (!wbc->range_cyclic && page->index > end) {
2498                                done = 1;
2499                                unlock_page(page);
2500                                continue;
2501                        }
2502
2503                        if (wbc->sync_mode != WB_SYNC_NONE) {
2504                                if (PageWriteback(page))
2505                                        flush_fn(data);
2506                                wait_on_page_writeback(page);
2507                        }
2508
2509                        if (PageWriteback(page) ||
2510                            !clear_page_dirty_for_io(page)) {
2511                                unlock_page(page);
2512                                continue;
2513                        }
2514
2515                        ret = (*writepage)(page, wbc, data);
2516
2517                        if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2518                                unlock_page(page);
2519                                ret = 0;
2520                        }
2521                        if (ret)
2522                                done = 1;
2523
2524                        /*
2525                         * the filesystem may choose to bump up nr_to_write.
2526                         * We have to make sure to honor the new nr_to_write
2527                         * at any time
2528                         */
2529                        nr_to_write_done = wbc->nr_to_write <= 0;
2530                }
2531                pagevec_release(&pvec);
2532                cond_resched();
2533        }
2534        if (!scanned && !done) {
2535                /*
2536                 * We hit the last page and there is more work to be done: wrap
2537                 * back to the start of the file
2538                 */
2539                scanned = 1;
2540                index = 0;
2541                goto retry;
2542        }
2543        return ret;
2544}
2545
2546static void flush_epd_write_bio(struct extent_page_data *epd)
2547{
2548        if (epd->bio) {
2549                if (epd->sync_io)
2550                        submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
2551                else
2552                        submit_one_bio(WRITE, epd->bio, 0, 0);
2553                epd->bio = NULL;
2554        }
2555}
2556
2557static noinline void flush_write_bio(void *data)
2558{
2559        struct extent_page_data *epd = data;
2560        flush_epd_write_bio(epd);
2561}
2562
2563int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2564                          get_extent_t *get_extent,
2565                          struct writeback_control *wbc)
2566{
2567        int ret;
2568        struct address_space *mapping = page->mapping;
2569        struct extent_page_data epd = {
2570                .bio = NULL,
2571                .tree = tree,
2572                .get_extent = get_extent,
2573                .extent_locked = 0,
2574                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2575        };
2576        struct writeback_control wbc_writepages = {
2577                .bdi            = wbc->bdi,
2578                .sync_mode      = wbc->sync_mode,
2579                .older_than_this = NULL,
2580                .nr_to_write    = 64,
2581                .range_start    = page_offset(page) + PAGE_CACHE_SIZE,
2582                .range_end      = (loff_t)-1,
2583        };
2584
2585        ret = __extent_writepage(page, wbc, &epd);
2586
2587        extent_write_cache_pages(tree, mapping, &wbc_writepages,
2588                                 __extent_writepage, &epd, flush_write_bio);
2589        flush_epd_write_bio(&epd);
2590        return ret;
2591}
2592
2593int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
2594                              u64 start, u64 end, get_extent_t *get_extent,
2595                              int mode)
2596{
2597        int ret = 0;
2598        struct address_space *mapping = inode->i_mapping;
2599        struct page *page;
2600        unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
2601                PAGE_CACHE_SHIFT;
2602
2603        struct extent_page_data epd = {
2604                .bio = NULL,
2605                .tree = tree,
2606                .get_extent = get_extent,
2607                .extent_locked = 1,
2608                .sync_io = mode == WB_SYNC_ALL,
2609        };
2610        struct writeback_control wbc_writepages = {
2611                .bdi            = inode->i_mapping->backing_dev_info,
2612                .sync_mode      = mode,
2613                .older_than_this = NULL,
2614                .nr_to_write    = nr_pages * 2,
2615                .range_start    = start,
2616                .range_end      = end + 1,
2617        };
2618
2619        while (start <= end) {
2620                page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
2621                if (clear_page_dirty_for_io(page))
2622                        ret = __extent_writepage(page, &wbc_writepages, &epd);
2623                else {
2624                        if (tree->ops && tree->ops->writepage_end_io_hook)
2625                                tree->ops->writepage_end_io_hook(page, start,
2626                                                 start + PAGE_CACHE_SIZE - 1,
2627                                                 NULL, 1);
2628                        unlock_page(page);
2629                }
2630                page_cache_release(page);
2631                start += PAGE_CACHE_SIZE;
2632        }
2633
2634        flush_epd_write_bio(&epd);
2635        return ret;
2636}
2637
2638int extent_writepages(struct extent_io_tree *tree,
2639                      struct address_space *mapping,
2640                      get_extent_t *get_extent,
2641                      struct writeback_control *wbc)
2642{
2643        int ret = 0;
2644        struct extent_page_data epd = {
2645                .bio = NULL,
2646                .tree = tree,
2647                .get_extent = get_extent,
2648                .extent_locked = 0,
2649                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2650        };
2651
2652        ret = extent_write_cache_pages(tree, mapping, wbc,
2653                                       __extent_writepage, &epd,
2654                                       flush_write_bio);
2655        flush_epd_write_bio(&epd);
2656        return ret;
2657}
2658
2659int extent_readpages(struct extent_io_tree *tree,
2660                     struct address_space *mapping,
2661                     struct list_head *pages, unsigned nr_pages,
2662                     get_extent_t get_extent)
2663{
2664        struct bio *bio = NULL;
2665        unsigned page_idx;
2666        struct pagevec pvec;
2667        unsigned long bio_flags = 0;
2668
2669        pagevec_init(&pvec, 0);
2670        for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2671                struct page *page = list_entry(pages->prev, struct page, lru);
2672
2673                prefetchw(&page->flags);
2674                list_del(&page->lru);
2675                /*
2676                 * what we want to do here is call add_to_page_cache_lru,
2677                 * but that isn't exported, so we reproduce it here
2678                 */
2679                if (!add_to_page_cache(page, mapping,
2680                                        page->index, GFP_KERNEL)) {
2681
2682                        /* open coding of lru_cache_add, also not exported */
2683                        page_cache_get(page);
2684                        if (!pagevec_add(&pvec, page))
2685                                __pagevec_lru_add_file(&pvec);
2686                        __extent_read_full_page(tree, page, get_extent,
2687                                                &bio, 0, &bio_flags);
2688                }
2689                page_cache_release(page);
2690        }
2691        if (pagevec_count(&pvec))
2692                __pagevec_lru_add_file(&pvec);
2693        BUG_ON(!list_empty(pages));
2694        if (bio)
2695                submit_one_bio(READ, bio, 0, bio_flags);
2696        return 0;
2697}
2698
2699/*
2700 * basic invalidatepage code, this waits on any locked or writeback
2701 * ranges corresponding to the page, and then deletes any extent state
2702 * records from the tree
2703 */
2704int extent_invalidatepage(struct extent_io_tree *tree,
2705                          struct page *page, unsigned long offset)
2706{
2707        u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2708        u64 end = start + PAGE_CACHE_SIZE - 1;
2709        size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2710
2711        start += (offset + blocksize - 1) & ~(blocksize - 1);
2712        if (start > end)
2713                return 0;
2714
2715        lock_extent(tree, start, end, GFP_NOFS);
2716        wait_on_page_writeback(page);
2717        clear_extent_bit(tree, start, end,
2718                         EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2719                         EXTENT_DO_ACCOUNTING,
2720                         1, 1, NULL, GFP_NOFS);
2721        return 0;
2722}
2723
2724/*
2725 * simple commit_write call, set_range_dirty is used to mark both
2726 * the pages and the extent records as dirty
2727 */
2728int extent_commit_write(struct extent_io_tree *tree,
2729                        struct inode *inode, struct page *page,
2730                        unsigned from, unsigned to)
2731{
2732        loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2733
2734        set_page_extent_mapped(page);
2735        set_page_dirty(page);
2736
2737        if (pos > inode->i_size) {
2738                i_size_write(inode, pos);
2739                mark_inode_dirty(inode);
2740        }
2741        return 0;
2742}
2743
2744int extent_prepare_write(struct extent_io_tree *tree,
2745                         struct inode *inode, struct page *page,
2746                         unsigned from, unsigned to, get_extent_t *get_extent)
2747{
2748        u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2749        u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2750        u64 block_start;
2751        u64 orig_block_start;
2752        u64 block_end;
2753        u64 cur_end;
2754        struct extent_map *em;
2755        unsigned blocksize = 1 << inode->i_blkbits;
2756        size_t page_offset = 0;
2757        size_t block_off_start;
2758        size_t block_off_end;
2759        int err = 0;
2760        int iocount = 0;
2761        int ret = 0;
2762        int isnew;
2763
2764        set_page_extent_mapped(page);
2765
2766        block_start = (page_start + from) & ~((u64)blocksize - 1);
2767        block_end = (page_start + to - 1) | (blocksize - 1);
2768        orig_block_start = block_start;
2769
2770        lock_extent(tree, page_start, page_end, GFP_NOFS);
2771        while (block_start <= block_end) {
2772                em = get_extent(inode, page, page_offset, block_start,
2773                                block_end - block_start + 1, 1);
2774                if (IS_ERR(em) || !em)
2775                        goto err;
2776
2777                cur_end = min(block_end, extent_map_end(em) - 1);
2778                block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2779                block_off_end = block_off_start + blocksize;
2780                isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2781
2782                if (!PageUptodate(page) && isnew &&
2783                    (block_off_end > to || block_off_start < from)) {
2784                        void *kaddr;
2785
2786                        kaddr = kmap_atomic(page, KM_USER0);
2787                        if (block_off_end > to)
2788                                memset(kaddr + to, 0, block_off_end - to);
2789                        if (block_off_start < from)
2790                                memset(kaddr + block_off_start, 0,
2791                                       from - block_off_start);
2792                        flush_dcache_page(page);
2793                        kunmap_atomic(kaddr, KM_USER0);
2794                }
2795                if ((em->block_start != EXTENT_MAP_HOLE &&
2796                     em->block_start != EXTENT_MAP_INLINE) &&
2797                    !isnew && !PageUptodate(page) &&
2798                    (block_off_end > to || block_off_start < from) &&
2799                    !test_range_bit(tree, block_start, cur_end,
2800                                    EXTENT_UPTODATE, 1, NULL)) {
2801                        u64 sector;
2802                        u64 extent_offset = block_start - em->start;
2803                        size_t iosize;
2804                        sector = (em->block_start + extent_offset) >> 9;
2805                        iosize = (cur_end - block_start + blocksize) &
2806                                ~((u64)blocksize - 1);
2807                        /*
2808                         * we've already got the extent locked, but we
2809                         * need to split the state such that our end_bio
2810                         * handler can clear the lock.
2811                         */
2812                        set_extent_bit(tree, block_start,
2813                                       block_start + iosize - 1,
2814                                       EXTENT_LOCKED, 0, NULL, NULL, GFP_NOFS);
2815                        ret = submit_extent_page(READ, tree, page,
2816                                         sector, iosize, page_offset, em->bdev,
2817                                         NULL, 1,
2818                                         end_bio_extent_preparewrite, 0,
2819                                         0, 0);
2820                        iocount++;
2821                        block_start = block_start + iosize;
2822                } else {
2823                        set_extent_uptodate(tree, block_start, cur_end,
2824                                            GFP_NOFS);
2825                        unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2826                        block_start = cur_end + 1;
2827                }
2828                page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2829                free_extent_map(em);
2830        }
2831        if (iocount) {
2832                wait_extent_bit(tree, orig_block_start,
2833                                block_end, EXTENT_LOCKED);
2834        }
2835        check_page_uptodate(tree, page);
2836err:
2837        /* FIXME, zero out newly allocated blocks on error */
2838        return err;
2839}
2840
2841/*
2842 * a helper for releasepage, this tests for areas of the page that
2843 * are locked or under IO and drops the related state bits if it is safe
2844 * to drop the page.
2845 */
2846int try_release_extent_state(struct extent_map_tree *map,
2847                             struct extent_io_tree *tree, struct page *page,
2848                             gfp_t mask)
2849{
2850        u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2851        u64 end = start + PAGE_CACHE_SIZE - 1;
2852        int ret = 1;
2853
2854        if (test_range_bit(tree, start, end,
2855                           EXTENT_IOBITS, 0, NULL))
2856                ret = 0;
2857        else {
2858                if ((mask & GFP_NOFS) == GFP_NOFS)
2859                        mask = GFP_NOFS;
2860                /*
2861                 * at this point we can safely clear everything except the
2862                 * locked bit and the nodatasum bit
2863                 */
2864                clear_extent_bit(tree, start, end,
2865                                 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
2866                                 0, 0, NULL, mask);
2867        }
2868        return ret;
2869}
2870
2871/*
2872 * a helper for releasepage.  As long as there are no locked extents
2873 * in the range corresponding to the page, both state records and extent
2874 * map records are removed
2875 */
2876int try_release_extent_mapping(struct extent_map_tree *map,
2877                               struct extent_io_tree *tree, struct page *page,
2878                               gfp_t mask)
2879{
2880        struct extent_map *em;
2881        u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2882        u64 end = start + PAGE_CACHE_SIZE - 1;
2883
2884        if ((mask & __GFP_WAIT) &&
2885            page->mapping->host->i_size > 16 * 1024 * 1024) {
2886                u64 len;
2887                while (start <= end) {
2888                        len = end - start + 1;
2889                        write_lock(&map->lock);
2890                        em = lookup_extent_mapping(map, start, len);
2891                        if (!em || IS_ERR(em)) {
2892                                write_unlock(&map->lock);
2893                                break;
2894                        }
2895                        if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2896                            em->start != start) {
2897                                write_unlock(&map->lock);
2898                                free_extent_map(em);
2899                                break;
2900                        }
2901                        if (!test_range_bit(tree, em->start,
2902                                            extent_map_end(em) - 1,
2903                                            EXTENT_LOCKED | EXTENT_WRITEBACK,
2904                                            0, NULL)) {
2905                                remove_extent_mapping(map, em);
2906                                /* once for the rb tree */
2907                                free_extent_map(em);
2908                        }
2909                        start = extent_map_end(em);
2910                        write_unlock(&map->lock);
2911
2912                        /* once for us */
2913                        free_extent_map(em);
2914                }
2915        }
2916        return try_release_extent_state(map, tree, page, mask);
2917}
2918
2919sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2920                get_extent_t *get_extent)
2921{
2922        struct inode *inode = mapping->host;
2923        u64 start = iblock << inode->i_blkbits;
2924        sector_t sector = 0;
2925        size_t blksize = (1 << inode->i_blkbits);
2926        struct extent_map *em;
2927
2928        lock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2929                    GFP_NOFS);
2930        em = get_extent(inode, NULL, 0, start, blksize, 0);
2931        unlock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2932                      GFP_NOFS);
2933        if (!em || IS_ERR(em))
2934                return 0;
2935
2936        if (em->block_start > EXTENT_MAP_LAST_BYTE)
2937                goto out;
2938
2939        sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2940out:
2941        free_extent_map(em);
2942        return sector;
2943}
2944
2945int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2946                __u64 start, __u64 len, get_extent_t *get_extent)
2947{
2948        int ret;
2949        u64 off = start;
2950        u64 max = start + len;
2951        u32 flags = 0;
2952        u64 disko = 0;
2953        struct extent_map *em = NULL;
2954        int end = 0;
2955        u64 em_start = 0, em_len = 0;
2956        unsigned long emflags;
2957        ret = 0;
2958
2959        if (len == 0)
2960                return -EINVAL;
2961
2962        lock_extent(&BTRFS_I(inode)->io_tree, start, start + len,
2963                GFP_NOFS);
2964        em = get_extent(inode, NULL, 0, off, max - off, 0);
2965        if (!em)
2966                goto out;
2967        if (IS_ERR(em)) {
2968                ret = PTR_ERR(em);
2969                goto out;
2970        }
2971        while (!end) {
2972                off = em->start + em->len;
2973                if (off >= max)
2974                        end = 1;
2975
2976                em_start = em->start;
2977                em_len = em->len;
2978
2979                disko = 0;
2980                flags = 0;
2981
2982                if (em->block_start == EXTENT_MAP_LAST_BYTE) {
2983                        end = 1;
2984                        flags |= FIEMAP_EXTENT_LAST;
2985                } else if (em->block_start == EXTENT_MAP_HOLE) {
2986                        flags |= FIEMAP_EXTENT_UNWRITTEN;
2987                } else if (em->block_start == EXTENT_MAP_INLINE) {
2988                        flags |= (FIEMAP_EXTENT_DATA_INLINE |
2989                                  FIEMAP_EXTENT_NOT_ALIGNED);
2990                } else if (em->block_start == EXTENT_MAP_DELALLOC) {
2991                        flags |= (FIEMAP_EXTENT_DELALLOC |
2992                                  FIEMAP_EXTENT_UNKNOWN);
2993                } else {
2994                        disko = em->block_start;
2995                }
2996                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
2997                        flags |= FIEMAP_EXTENT_ENCODED;
2998
2999                emflags = em->flags;
3000                free_extent_map(em);
3001                em = NULL;
3002
3003                if (!end) {
3004                        em = get_extent(inode, NULL, 0, off, max - off, 0);
3005                        if (!em)
3006                                goto out;
3007                        if (IS_ERR(em)) {
3008                                ret = PTR_ERR(em);
3009                                goto out;
3010                        }
3011                        emflags = em->flags;
3012                }
3013                if (test_bit(EXTENT_FLAG_VACANCY, &emflags)) {
3014                        flags |= FIEMAP_EXTENT_LAST;
3015                        end = 1;
3016                }
3017
3018                ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3019                                        em_len, flags);
3020                if (ret)
3021                        goto out_free;
3022        }
3023out_free:
3024        free_extent_map(em);
3025out:
3026        unlock_extent(&BTRFS_I(inode)->io_tree, start, start + len,
3027                        GFP_NOFS);
3028        return ret;
3029}
3030
3031static inline struct page *extent_buffer_page(struct extent_buffer *eb,
3032                                              unsigned long i)
3033{
3034        struct page *p;
3035        struct address_space *mapping;
3036
3037        if (i == 0)
3038                return eb->first_page;
3039        i += eb->start >> PAGE_CACHE_SHIFT;
3040        mapping = eb->first_page->mapping;
3041        if (!mapping)
3042                return NULL;
3043
3044        /*
3045         * extent_buffer_page is only called after pinning the page
3046         * by increasing the reference count.  So we know the page must
3047         * be in the radix tree.
3048         */
3049        rcu_read_lock();
3050        p = radix_tree_lookup(&mapping->page_tree, i);
3051        rcu_read_unlock();
3052
3053        return p;
3054}
3055
3056static inline unsigned long num_extent_pages(u64 start, u64 len)
3057{
3058        return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3059                (start >> PAGE_CACHE_SHIFT);
3060}
3061
3062static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3063                                                   u64 start,
3064                                                   unsigned long len,
3065                                                   gfp_t mask)
3066{
3067        struct extent_buffer *eb = NULL;
3068#if LEAK_DEBUG
3069        unsigned long flags;
3070#endif
3071
3072        eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3073        eb->start = start;
3074        eb->len = len;
3075        spin_lock_init(&eb->lock);
3076        init_waitqueue_head(&eb->lock_wq);
3077
3078#if LEAK_DEBUG
3079        spin_lock_irqsave(&leak_lock, flags);
3080        list_add(&eb->leak_list, &buffers);
3081        spin_unlock_irqrestore(&leak_lock, flags);
3082#endif
3083        atomic_set(&eb->refs, 1);
3084
3085        return eb;
3086}
3087
3088static void __free_extent_buffer(struct extent_buffer *eb)
3089{
3090#if LEAK_DEBUG
3091        unsigned long flags;
3092        spin_lock_irqsave(&leak_lock, flags);
3093        list_del(&eb->leak_list);
3094        spin_unlock_irqrestore(&leak_lock, flags);
3095#endif
3096        kmem_cache_free(extent_buffer_cache, eb);
3097}
3098
3099struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
3100                                          u64 start, unsigned long len,
3101                                          struct page *page0,
3102                                          gfp_t mask)
3103{
3104        unsigned long num_pages = num_extent_pages(start, len);
3105        unsigned long i;
3106        unsigned long index = start >> PAGE_CACHE_SHIFT;
3107        struct extent_buffer *eb;
3108        struct extent_buffer *exists = NULL;
3109        struct page *p;
3110        struct address_space *mapping = tree->mapping;
3111        int uptodate = 1;
3112
3113        spin_lock(&tree->buffer_lock);
3114        eb = buffer_search(tree, start);
3115        if (eb) {
3116                atomic_inc(&eb->refs);
3117                spin_unlock(&tree->buffer_lock);
3118                mark_page_accessed(eb->first_page);
3119                return eb;
3120        }
3121        spin_unlock(&tree->buffer_lock);
3122
3123        eb = __alloc_extent_buffer(tree, start, len, mask);
3124        if (!eb)
3125                return NULL;
3126
3127        if (page0) {
3128                eb->first_page = page0;
3129                i = 1;
3130                index++;
3131                page_cache_get(page0);
3132                mark_page_accessed(page0);
3133                set_page_extent_mapped(page0);
3134                set_page_extent_head(page0, len);
3135                uptodate = PageUptodate(page0);
3136        } else {
3137                i = 0;
3138        }
3139        for (; i < num_pages; i++, index++) {
3140                p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
3141                if (!p) {
3142                        WARN_ON(1);
3143                        goto free_eb;
3144                }
3145                set_page_extent_mapped(p);
3146                mark_page_accessed(p);
3147                if (i == 0) {
3148                        eb->first_page = p;
3149                        set_page_extent_head(p, len);
3150                } else {
3151                        set_page_private(p, EXTENT_PAGE_PRIVATE);
3152                }
3153                if (!PageUptodate(p))
3154                        uptodate = 0;
3155                unlock_page(p);
3156        }
3157        if (uptodate)
3158                set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3159
3160        spin_lock(&tree->buffer_lock);
3161        exists = buffer_tree_insert(tree, start, &eb->rb_node);
3162        if (exists) {
3163                /* add one reference for the caller */
3164                atomic_inc(&exists->refs);
3165                spin_unlock(&tree->buffer_lock);
3166                goto free_eb;
3167        }
3168        spin_unlock(&tree->buffer_lock);
3169
3170        /* add one reference for the tree */
3171        atomic_inc(&eb->refs);
3172        return eb;
3173
3174free_eb:
3175        if (!atomic_dec_and_test(&eb->refs))
3176                return exists;
3177        for (index = 1; index < i; index++)
3178                page_cache_release(extent_buffer_page(eb, index));
3179        page_cache_release(extent_buffer_page(eb, 0));
3180        __free_extent_buffer(eb);
3181        return exists;
3182}
3183
3184struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3185                                         u64 start, unsigned long len,
3186                                          gfp_t mask)
3187{
3188        struct extent_buffer *eb;
3189
3190        spin_lock(&tree->buffer_lock);
3191        eb = buffer_search(tree, start);
3192        if (eb)
3193                atomic_inc(&eb->refs);
3194        spin_unlock(&tree->buffer_lock);
3195
3196        if (eb)
3197                mark_page_accessed(eb->first_page);
3198
3199        return eb;
3200}
3201
3202void free_extent_buffer(struct extent_buffer *eb)
3203{
3204        if (!eb)
3205                return;
3206
3207        if (!atomic_dec_and_test(&eb->refs))
3208                return;
3209
3210        WARN_ON(1);
3211}
3212
3213int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3214                              struct extent_buffer *eb)
3215{
3216        unsigned long i;
3217        unsigned long num_pages;
3218        struct page *page;
3219
3220        num_pages = num_extent_pages(eb->start, eb->len);
3221
3222        for (i = 0; i < num_pages; i++) {
3223                page = extent_buffer_page(eb, i);
3224                if (!PageDirty(page))
3225                        continue;
3226
3227                lock_page(page);
3228                if (i == 0)
3229                        set_page_extent_head(page, eb->len);
3230                else
3231                        set_page_private(page, EXTENT_PAGE_PRIVATE);
3232
3233                clear_page_dirty_for_io(page);
3234                spin_lock_irq(&page->mapping->tree_lock);
3235                if (!PageDirty(page)) {
3236                        radix_tree_tag_clear(&page->mapping->page_tree,
3237                                                page_index(page),
3238                                                PAGECACHE_TAG_DIRTY);
3239                }
3240                spin_unlock_irq(&page->mapping->tree_lock);
3241                unlock_page(page);
3242        }
3243        return 0;
3244}
3245
3246int wait_on_extent_buffer_writeback(struct extent_io_tree *tree,
3247                                    struct extent_buffer *eb)
3248{
3249        return wait_on_extent_writeback(tree, eb->start,
3250                                        eb->start + eb->len - 1);
3251}
3252
3253int set_extent_buffer_dirty(struct extent_io_tree *tree,
3254                             struct extent_buffer *eb)
3255{
3256        unsigned long i;
3257        unsigned long num_pages;
3258        int was_dirty = 0;
3259
3260        was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3261        num_pages = num_extent_pages(eb->start, eb->len);
3262        for (i = 0; i < num_pages; i++)
3263                __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3264        return was_dirty;
3265}
3266
3267int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3268                                struct extent_buffer *eb)
3269{
3270        unsigned long i;
3271        struct page *page;
3272        unsigned long num_pages;
3273
3274        num_pages = num_extent_pages(eb->start, eb->len);
3275        clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3276
3277        clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3278                              GFP_NOFS);
3279        for (i = 0; i < num_pages; i++) {
3280                page = extent_buffer_page(eb, i);
3281                if (page)
3282                        ClearPageUptodate(page);
3283        }
3284        return 0;
3285}
3286
3287int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3288                                struct extent_buffer *eb)
3289{
3290        unsigned long i;
3291        struct page *page;
3292        unsigned long num_pages;
3293
3294        num_pages = num_extent_pages(eb->start, eb->len);
3295
3296        set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3297                            GFP_NOFS);
3298        for (i = 0; i < num_pages; i++) {
3299                page = extent_buffer_page(eb, i);
3300                if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3301                    ((i == num_pages - 1) &&
3302                     ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3303                        check_page_uptodate(tree, page);
3304                        continue;
3305                }
3306                SetPageUptodate(page);
3307        }
3308        return 0;
3309}
3310
3311int extent_range_uptodate(struct extent_io_tree *tree,
3312                          u64 start, u64 end)
3313{
3314        struct page *page;
3315        int ret;
3316        int pg_uptodate = 1;
3317        int uptodate;
3318        unsigned long index;
3319
3320        ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL);
3321        if (ret)
3322                return 1;
3323        while (start <= end) {
3324                index = start >> PAGE_CACHE_SHIFT;
3325                page = find_get_page(tree->mapping, index);
3326                uptodate = PageUptodate(page);
3327                page_cache_release(page);
3328                if (!uptodate) {
3329                        pg_uptodate = 0;
3330                        break;
3331                }
3332                start += PAGE_CACHE_SIZE;
3333        }
3334        return pg_uptodate;
3335}
3336
3337int extent_buffer_uptodate(struct extent_io_tree *tree,
3338                           struct extent_buffer *eb)
3339{
3340        int ret = 0;
3341        unsigned long num_pages;
3342        unsigned long i;
3343        struct page *page;
3344        int pg_uptodate = 1;
3345
3346        if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3347                return 1;
3348
3349        ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3350                           EXTENT_UPTODATE, 1, NULL);
3351        if (ret)
3352                return ret;
3353
3354        num_pages = num_extent_pages(eb->start, eb->len);
3355        for (i = 0; i < num_pages; i++) {
3356                page = extent_buffer_page(eb, i);
3357                if (!PageUptodate(page)) {
3358                        pg_uptodate = 0;
3359                        break;
3360                }
3361        }
3362        return pg_uptodate;
3363}
3364
3365int read_extent_buffer_pages(struct extent_io_tree *tree,
3366                             struct extent_buffer *eb,
3367                             u64 start, int wait,
3368                             get_extent_t *get_extent, int mirror_num)
3369{
3370        unsigned long i;
3371        unsigned long start_i;
3372        struct page *page;
3373        int err;
3374        int ret = 0;
3375        int locked_pages = 0;
3376        int all_uptodate = 1;
3377        int inc_all_pages = 0;
3378        unsigned long num_pages;
3379        struct bio *bio = NULL;
3380        unsigned long bio_flags = 0;
3381
3382        if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3383                return 0;
3384
3385        if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3386                           EXTENT_UPTODATE, 1, NULL)) {
3387                return 0;
3388        }
3389
3390        if (start) {
3391                WARN_ON(start < eb->start);
3392                start_i = (start >> PAGE_CACHE_SHIFT) -
3393                        (eb->start >> PAGE_CACHE_SHIFT);
3394        } else {
3395                start_i = 0;
3396        }
3397
3398        num_pages = num_extent_pages(eb->start, eb->len);
3399        for (i = start_i; i < num_pages; i++) {
3400                page = extent_buffer_page(eb, i);
3401                if (!wait) {
3402                        if (!trylock_page(page))
3403                                goto unlock_exit;
3404                } else {
3405                        lock_page(page);
3406                }
3407                locked_pages++;
3408                if (!PageUptodate(page))
3409                        all_uptodate = 0;
3410        }
3411        if (all_uptodate) {
3412                if (start_i == 0)
3413                        set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3414                goto unlock_exit;
3415        }
3416
3417        for (i = start_i; i < num_pages; i++) {
3418                page = extent_buffer_page(eb, i);
3419                if (inc_all_pages)
3420                        page_cache_get(page);
3421                if (!PageUptodate(page)) {
3422                        if (start_i == 0)
3423                                inc_all_pages = 1;
3424                        ClearPageError(page);
3425                        err = __extent_read_full_page(tree, page,
3426                                                      get_extent, &bio,
3427                                                      mirror_num, &bio_flags);
3428                        if (err)
3429                                ret = err;
3430                } else {
3431                        unlock_page(page);
3432                }
3433        }
3434
3435        if (bio)
3436                submit_one_bio(READ, bio, mirror_num, bio_flags);
3437
3438        if (ret || !wait)
3439                return ret;
3440
3441        for (i = start_i; i < num_pages; i++) {
3442                page = extent_buffer_page(eb, i);
3443                wait_on_page_locked(page);
3444                if (!PageUptodate(page))
3445                        ret = -EIO;
3446        }
3447
3448        if (!ret)
3449                set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3450        return ret;
3451
3452unlock_exit:
3453        i = start_i;
3454        while (locked_pages > 0) {
3455                page = extent_buffer_page(eb, i);
3456                i++;
3457                unlock_page(page);
3458                locked_pages--;
3459        }
3460        return ret;
3461}
3462
3463void read_extent_buffer(struct extent_buffer *eb, void *dstv,
3464                        unsigned long start,
3465                        unsigned long len)
3466{
3467        size_t cur;
3468        size_t offset;
3469        struct page *page;
3470        char *kaddr;
3471        char *dst = (char *)dstv;
3472        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3473        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3474
3475        WARN_ON(start > eb->len);
3476        WARN_ON(start + len > eb->start + eb->len);
3477
3478        offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3479
3480        while (len > 0) {
3481                page = extent_buffer_page(eb, i);
3482
3483                cur = min(len, (PAGE_CACHE_SIZE - offset));
3484                kaddr = kmap_atomic(page, KM_USER1);
3485                memcpy(dst, kaddr + offset, cur);
3486                kunmap_atomic(kaddr, KM_USER1);
3487
3488                dst += cur;
3489                len -= cur;
3490                offset = 0;
3491                i++;
3492        }
3493}
3494
3495int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
3496                               unsigned long min_len, char **token, char **map,
3497                               unsigned long *map_start,
3498                               unsigned long *map_len, int km)
3499{
3500        size_t offset = start & (PAGE_CACHE_SIZE - 1);
3501        char *kaddr;
3502        struct page *p;
3503        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3504        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3505        unsigned long end_i = (start_offset + start + min_len - 1) >>
3506                PAGE_CACHE_SHIFT;
3507
3508        if (i != end_i)
3509                return -EINVAL;
3510
3511        if (i == 0) {
3512                offset = start_offset;
3513                *map_start = 0;
3514        } else {
3515                offset = 0;
3516                *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
3517        }
3518
3519        if (start + min_len > eb->len) {
3520                printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
3521                       "wanted %lu %lu\n", (unsigned long long)eb->start,
3522                       eb->len, start, min_len);
3523                WARN_ON(1);
3524        }
3525
3526        p = extent_buffer_page(eb, i);
3527        kaddr = kmap_atomic(p, km);
3528        *token = kaddr;
3529        *map = kaddr + offset;
3530        *map_len = PAGE_CACHE_SIZE - offset;
3531        return 0;
3532}
3533
3534int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
3535                      unsigned long min_len,
3536                      char **token, char **map,
3537                      unsigned long *map_start,
3538                      unsigned long *map_len, int km)
3539{
3540        int err;
3541        int save = 0;
3542        if (eb->map_token) {
3543                unmap_extent_buffer(eb, eb->map_token, km);
3544                eb->map_token = NULL;
3545                save = 1;
3546        }
3547        err = map_private_extent_buffer(eb, start, min_len, token, map,
3548                                       map_start, map_len, km);
3549        if (!err && save) {
3550                eb->map_token = *token;
3551                eb->kaddr = *map;
3552                eb->map_start = *map_start;
3553                eb->map_len = *map_len;
3554        }
3555        return err;
3556}
3557
3558void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
3559{
3560        kunmap_atomic(token, km);
3561}
3562
3563int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
3564                          unsigned long start,
3565                          unsigned long len)
3566{
3567        size_t cur;
3568        size_t offset;
3569        struct page *page;
3570        char *kaddr;
3571        char *ptr = (char *)ptrv;
3572        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3573        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3574        int ret = 0;
3575
3576        WARN_ON(start > eb->len);
3577        WARN_ON(start + len > eb->start + eb->len);
3578
3579        offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3580
3581        while (len > 0) {
3582                page = extent_buffer_page(eb, i);
3583
3584                cur = min(len, (PAGE_CACHE_SIZE - offset));
3585
3586                kaddr = kmap_atomic(page, KM_USER0);
3587                ret = memcmp(ptr, kaddr + offset, cur);
3588                kunmap_atomic(kaddr, KM_USER0);
3589                if (ret)
3590                        break;
3591
3592                ptr += cur;
3593                len -= cur;
3594                offset = 0;
3595                i++;
3596        }
3597        return ret;
3598}
3599
3600void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
3601                         unsigned long start, unsigned long len)
3602{
3603        size_t cur;
3604        size_t offset;
3605        struct page *page;
3606        char *kaddr;
3607        char *src = (char *)srcv;
3608        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3609        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3610
3611        WARN_ON(start > eb->len);
3612        WARN_ON(start + len > eb->start + eb->len);
3613
3614        offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3615
3616        while (len > 0) {
3617                page = extent_buffer_page(eb, i);
3618                WARN_ON(!PageUptodate(page));
3619
3620                cur = min(len, PAGE_CACHE_SIZE - offset);
3621                kaddr = kmap_atomic(page, KM_USER1);
3622                memcpy(kaddr + offset, src, cur);
3623                kunmap_atomic(kaddr, KM_USER1);
3624
3625                src += cur;
3626                len -= cur;
3627                offset = 0;
3628                i++;
3629        }
3630}
3631
3632void memset_extent_buffer(struct extent_buffer *eb, char c,
3633                          unsigned long start, unsigned long len)
3634{
3635        size_t cur;
3636        size_t offset;
3637        struct page *page;
3638        char *kaddr;
3639        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3640        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3641
3642        WARN_ON(start > eb->len);
3643        WARN_ON(start + len > eb->start + eb->len);
3644
3645        offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3646
3647        while (len > 0) {
3648                page = extent_buffer_page(eb, i);
3649                WARN_ON(!PageUptodate(page));
3650
3651                cur = min(len, PAGE_CACHE_SIZE - offset);
3652                kaddr = kmap_atomic(page, KM_USER0);
3653                memset(kaddr + offset, c, cur);
3654                kunmap_atomic(kaddr, KM_USER0);
3655
3656                len -= cur;
3657                offset = 0;
3658                i++;
3659        }
3660}
3661
3662void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3663                        unsigned long dst_offset, unsigned long src_offset,
3664                        unsigned long len)
3665{
3666        u64 dst_len = dst->len;
3667        size_t cur;
3668        size_t offset;
3669        struct page *page;
3670        char *kaddr;
3671        size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3672        unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3673
3674        WARN_ON(src->len != dst_len);
3675
3676        offset = (start_offset + dst_offset) &
3677                ((unsigned long)PAGE_CACHE_SIZE - 1);
3678
3679        while (len > 0) {
3680                page = extent_buffer_page(dst, i);
3681                WARN_ON(!PageUptodate(page));
3682
3683                cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3684
3685                kaddr = kmap_atomic(page, KM_USER0);
3686                read_extent_buffer(src, kaddr + offset, src_offset, cur);
3687                kunmap_atomic(kaddr, KM_USER0);
3688
3689                src_offset += cur;
3690                len -= cur;
3691                offset = 0;
3692                i++;
3693        }
3694}
3695
3696static void move_pages(struct page *dst_page, struct page *src_page,
3697                       unsigned long dst_off, unsigned long src_off,
3698                       unsigned long len)
3699{
3700        char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3701        if (dst_page == src_page) {
3702                memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3703        } else {
3704                char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3705                char *p = dst_kaddr + dst_off + len;
3706                char *s = src_kaddr + src_off + len;
3707
3708                while (len--)
3709                        *--p = *--s;
3710
3711                kunmap_atomic(src_kaddr, KM_USER1);
3712        }
3713        kunmap_atomic(dst_kaddr, KM_USER0);
3714}
3715
3716static void copy_pages(struct page *dst_page, struct page *src_page,
3717                       unsigned long dst_off, unsigned long src_off,
3718                       unsigned long len)
3719{
3720        char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3721        char *src_kaddr;
3722
3723        if (dst_page != src_page)
3724                src_kaddr = kmap_atomic(src_page, KM_USER1);
3725        else
3726                src_kaddr = dst_kaddr;
3727
3728        memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3729        kunmap_atomic(dst_kaddr, KM_USER0);
3730        if (dst_page != src_page)
3731                kunmap_atomic(src_kaddr, KM_USER1);
3732}
3733
3734void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3735                           unsigned long src_offset, unsigned long len)
3736{
3737        size_t cur;
3738        size_t dst_off_in_page;
3739        size_t src_off_in_page;
3740        size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3741        unsigned long dst_i;
3742        unsigned long src_i;
3743
3744        if (src_offset + len > dst->len) {
3745                printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3746                       "len %lu dst len %lu\n", src_offset, len, dst->len);
3747                BUG_ON(1);
3748        }
3749        if (dst_offset + len > dst->len) {
3750                printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3751                       "len %lu dst len %lu\n", dst_offset, len, dst->len);
3752                BUG_ON(1);
3753        }
3754
3755        while (len > 0) {
3756                dst_off_in_page = (start_offset + dst_offset) &
3757                        ((unsigned long)PAGE_CACHE_SIZE - 1);
3758                src_off_in_page = (start_offset + src_offset) &
3759                        ((unsigned long)PAGE_CACHE_SIZE - 1);
3760
3761                dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3762                src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3763
3764                cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3765                                               src_off_in_page));
3766                cur = min_t(unsigned long, cur,
3767                        (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3768
3769                copy_pages(extent_buffer_page(dst, dst_i),
3770                           extent_buffer_page(dst, src_i),
3771                           dst_off_in_page, src_off_in_page, cur);
3772
3773                src_offset += cur;
3774                dst_offset += cur;
3775                len -= cur;
3776        }
3777}
3778
3779void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3780                           unsigned long src_offset, unsigned long len)
3781{
3782        size_t cur;
3783        size_t dst_off_in_page;
3784        size_t src_off_in_page;
3785        unsigned long dst_end = dst_offset + len - 1;
3786        unsigned long src_end = src_offset + len - 1;
3787        size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3788        unsigned long dst_i;
3789        unsigned long src_i;
3790
3791        if (src_offset + len > dst->len) {
3792                printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3793                       "len %lu len %lu\n", src_offset, len, dst->len);
3794                BUG_ON(1);
3795        }
3796        if (dst_offset + len > dst->len) {
3797                printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3798                       "len %lu len %lu\n", dst_offset, len, dst->len);
3799                BUG_ON(1);
3800        }
3801        if (dst_offset < src_offset) {
3802                memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3803                return;
3804        }
3805        while (len > 0) {
3806                dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3807                src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3808
3809                dst_off_in_page = (start_offset + dst_end) &
3810                        ((unsigned long)PAGE_CACHE_SIZE - 1);
3811                src_off_in_page = (start_offset + src_end) &
3812                        ((unsigned long)PAGE_CACHE_SIZE - 1);
3813
3814                cur = min_t(unsigned long, len, src_off_in_page + 1);
3815                cur = min(cur, dst_off_in_page + 1);
3816                move_pages(extent_buffer_page(dst, dst_i),
3817                           extent_buffer_page(dst, src_i),
3818                           dst_off_in_page - cur + 1,
3819                           src_off_in_page - cur + 1, cur);
3820
3821                dst_end -= cur;
3822                src_end -= cur;
3823                len -= cur;
3824        }
3825}
3826
3827int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
3828{
3829        u64 start = page_offset(page);
3830        struct extent_buffer *eb;
3831        int ret = 1;
3832        unsigned long i;
3833        unsigned long num_pages;
3834
3835        spin_lock(&tree->buffer_lock);
3836        eb = buffer_search(tree, start);
3837        if (!eb)
3838                goto out;
3839
3840        if (atomic_read(&eb->refs) > 1) {
3841                ret = 0;
3842                goto out;
3843        }
3844        if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3845                ret = 0;
3846                goto out;
3847        }
3848        /* at this point we can safely release the extent buffer */
3849        num_pages = num_extent_pages(eb->start, eb->len);
3850        for (i = 0; i < num_pages; i++)
3851                page_cache_release(extent_buffer_page(eb, i));
3852        rb_erase(&eb->rb_node, &tree->buffer);
3853        __free_extent_buffer(eb);
3854out:
3855        spin_unlock(&tree->buffer_lock);
3856        return ret;
3857}
3858