linux/fs/btrfs/tree-log.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include "ctree.h"
  21#include "transaction.h"
  22#include "disk-io.h"
  23#include "locking.h"
  24#include "print-tree.h"
  25#include "compat.h"
  26#include "tree-log.h"
  27
  28/* magic values for the inode_only field in btrfs_log_inode:
  29 *
  30 * LOG_INODE_ALL means to log everything
  31 * LOG_INODE_EXISTS means to log just enough to recreate the inode
  32 * during log replay
  33 */
  34#define LOG_INODE_ALL 0
  35#define LOG_INODE_EXISTS 1
  36
  37/*
  38 * directory trouble cases
  39 *
  40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
  41 * log, we must force a full commit before doing an fsync of the directory
  42 * where the unlink was done.
  43 * ---> record transid of last unlink/rename per directory
  44 *
  45 * mkdir foo/some_dir
  46 * normal commit
  47 * rename foo/some_dir foo2/some_dir
  48 * mkdir foo/some_dir
  49 * fsync foo/some_dir/some_file
  50 *
  51 * The fsync above will unlink the original some_dir without recording
  52 * it in its new location (foo2).  After a crash, some_dir will be gone
  53 * unless the fsync of some_file forces a full commit
  54 *
  55 * 2) we must log any new names for any file or dir that is in the fsync
  56 * log. ---> check inode while renaming/linking.
  57 *
  58 * 2a) we must log any new names for any file or dir during rename
  59 * when the directory they are being removed from was logged.
  60 * ---> check inode and old parent dir during rename
  61 *
  62 *  2a is actually the more important variant.  With the extra logging
  63 *  a crash might unlink the old name without recreating the new one
  64 *
  65 * 3) after a crash, we must go through any directories with a link count
  66 * of zero and redo the rm -rf
  67 *
  68 * mkdir f1/foo
  69 * normal commit
  70 * rm -rf f1/foo
  71 * fsync(f1)
  72 *
  73 * The directory f1 was fully removed from the FS, but fsync was never
  74 * called on f1, only its parent dir.  After a crash the rm -rf must
  75 * be replayed.  This must be able to recurse down the entire
  76 * directory tree.  The inode link count fixup code takes care of the
  77 * ugly details.
  78 */
  79
  80/*
  81 * stages for the tree walking.  The first
  82 * stage (0) is to only pin down the blocks we find
  83 * the second stage (1) is to make sure that all the inodes
  84 * we find in the log are created in the subvolume.
  85 *
  86 * The last stage is to deal with directories and links and extents
  87 * and all the other fun semantics
  88 */
  89#define LOG_WALK_PIN_ONLY 0
  90#define LOG_WALK_REPLAY_INODES 1
  91#define LOG_WALK_REPLAY_ALL 2
  92
  93static int btrfs_log_inode(struct btrfs_trans_handle *trans,
  94                             struct btrfs_root *root, struct inode *inode,
  95                             int inode_only);
  96static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
  97                             struct btrfs_root *root,
  98                             struct btrfs_path *path, u64 objectid);
  99static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
 100                                       struct btrfs_root *root,
 101                                       struct btrfs_root *log,
 102                                       struct btrfs_path *path,
 103                                       u64 dirid, int del_all);
 104
 105/*
 106 * tree logging is a special write ahead log used to make sure that
 107 * fsyncs and O_SYNCs can happen without doing full tree commits.
 108 *
 109 * Full tree commits are expensive because they require commonly
 110 * modified blocks to be recowed, creating many dirty pages in the
 111 * extent tree an 4x-6x higher write load than ext3.
 112 *
 113 * Instead of doing a tree commit on every fsync, we use the
 114 * key ranges and transaction ids to find items for a given file or directory
 115 * that have changed in this transaction.  Those items are copied into
 116 * a special tree (one per subvolume root), that tree is written to disk
 117 * and then the fsync is considered complete.
 118 *
 119 * After a crash, items are copied out of the log-tree back into the
 120 * subvolume tree.  Any file data extents found are recorded in the extent
 121 * allocation tree, and the log-tree freed.
 122 *
 123 * The log tree is read three times, once to pin down all the extents it is
 124 * using in ram and once, once to create all the inodes logged in the tree
 125 * and once to do all the other items.
 126 */
 127
 128/*
 129 * start a sub transaction and setup the log tree
 130 * this increments the log tree writer count to make the people
 131 * syncing the tree wait for us to finish
 132 */
 133static int start_log_trans(struct btrfs_trans_handle *trans,
 134                           struct btrfs_root *root)
 135{
 136        int ret;
 137
 138        mutex_lock(&root->log_mutex);
 139        if (root->log_root) {
 140                if (!root->log_start_pid) {
 141                        root->log_start_pid = current->pid;
 142                        root->log_multiple_pids = false;
 143                } else if (root->log_start_pid != current->pid) {
 144                        root->log_multiple_pids = true;
 145                }
 146
 147                root->log_batch++;
 148                atomic_inc(&root->log_writers);
 149                mutex_unlock(&root->log_mutex);
 150                return 0;
 151        }
 152        root->log_multiple_pids = false;
 153        root->log_start_pid = current->pid;
 154        mutex_lock(&root->fs_info->tree_log_mutex);
 155        if (!root->fs_info->log_root_tree) {
 156                ret = btrfs_init_log_root_tree(trans, root->fs_info);
 157                BUG_ON(ret);
 158        }
 159        if (!root->log_root) {
 160                ret = btrfs_add_log_tree(trans, root);
 161                BUG_ON(ret);
 162        }
 163        mutex_unlock(&root->fs_info->tree_log_mutex);
 164        root->log_batch++;
 165        atomic_inc(&root->log_writers);
 166        mutex_unlock(&root->log_mutex);
 167        return 0;
 168}
 169
 170/*
 171 * returns 0 if there was a log transaction running and we were able
 172 * to join, or returns -ENOENT if there were not transactions
 173 * in progress
 174 */
 175static int join_running_log_trans(struct btrfs_root *root)
 176{
 177        int ret = -ENOENT;
 178
 179        smp_mb();
 180        if (!root->log_root)
 181                return -ENOENT;
 182
 183        mutex_lock(&root->log_mutex);
 184        if (root->log_root) {
 185                ret = 0;
 186                atomic_inc(&root->log_writers);
 187        }
 188        mutex_unlock(&root->log_mutex);
 189        return ret;
 190}
 191
 192/*
 193 * This either makes the current running log transaction wait
 194 * until you call btrfs_end_log_trans() or it makes any future
 195 * log transactions wait until you call btrfs_end_log_trans()
 196 */
 197int btrfs_pin_log_trans(struct btrfs_root *root)
 198{
 199        int ret = -ENOENT;
 200
 201        mutex_lock(&root->log_mutex);
 202        atomic_inc(&root->log_writers);
 203        mutex_unlock(&root->log_mutex);
 204        return ret;
 205}
 206
 207/*
 208 * indicate we're done making changes to the log tree
 209 * and wake up anyone waiting to do a sync
 210 */
 211int btrfs_end_log_trans(struct btrfs_root *root)
 212{
 213        if (atomic_dec_and_test(&root->log_writers)) {
 214                smp_mb();
 215                if (waitqueue_active(&root->log_writer_wait))
 216                        wake_up(&root->log_writer_wait);
 217        }
 218        return 0;
 219}
 220
 221
 222/*
 223 * the walk control struct is used to pass state down the chain when
 224 * processing the log tree.  The stage field tells us which part
 225 * of the log tree processing we are currently doing.  The others
 226 * are state fields used for that specific part
 227 */
 228struct walk_control {
 229        /* should we free the extent on disk when done?  This is used
 230         * at transaction commit time while freeing a log tree
 231         */
 232        int free;
 233
 234        /* should we write out the extent buffer?  This is used
 235         * while flushing the log tree to disk during a sync
 236         */
 237        int write;
 238
 239        /* should we wait for the extent buffer io to finish?  Also used
 240         * while flushing the log tree to disk for a sync
 241         */
 242        int wait;
 243
 244        /* pin only walk, we record which extents on disk belong to the
 245         * log trees
 246         */
 247        int pin;
 248
 249        /* what stage of the replay code we're currently in */
 250        int stage;
 251
 252        /* the root we are currently replaying */
 253        struct btrfs_root *replay_dest;
 254
 255        /* the trans handle for the current replay */
 256        struct btrfs_trans_handle *trans;
 257
 258        /* the function that gets used to process blocks we find in the
 259         * tree.  Note the extent_buffer might not be up to date when it is
 260         * passed in, and it must be checked or read if you need the data
 261         * inside it
 262         */
 263        int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
 264                            struct walk_control *wc, u64 gen);
 265};
 266
 267/*
 268 * process_func used to pin down extents, write them or wait on them
 269 */
 270static int process_one_buffer(struct btrfs_root *log,
 271                              struct extent_buffer *eb,
 272                              struct walk_control *wc, u64 gen)
 273{
 274        if (wc->pin)
 275                btrfs_pin_extent(log->fs_info->extent_root,
 276                                 eb->start, eb->len, 0);
 277
 278        if (btrfs_buffer_uptodate(eb, gen)) {
 279                if (wc->write)
 280                        btrfs_write_tree_block(eb);
 281                if (wc->wait)
 282                        btrfs_wait_tree_block_writeback(eb);
 283        }
 284        return 0;
 285}
 286
 287/*
 288 * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 289 * to the src data we are copying out.
 290 *
 291 * root is the tree we are copying into, and path is a scratch
 292 * path for use in this function (it should be released on entry and
 293 * will be released on exit).
 294 *
 295 * If the key is already in the destination tree the existing item is
 296 * overwritten.  If the existing item isn't big enough, it is extended.
 297 * If it is too large, it is truncated.
 298 *
 299 * If the key isn't in the destination yet, a new item is inserted.
 300 */
 301static noinline int overwrite_item(struct btrfs_trans_handle *trans,
 302                                   struct btrfs_root *root,
 303                                   struct btrfs_path *path,
 304                                   struct extent_buffer *eb, int slot,
 305                                   struct btrfs_key *key)
 306{
 307        int ret;
 308        u32 item_size;
 309        u64 saved_i_size = 0;
 310        int save_old_i_size = 0;
 311        unsigned long src_ptr;
 312        unsigned long dst_ptr;
 313        int overwrite_root = 0;
 314
 315        if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
 316                overwrite_root = 1;
 317
 318        item_size = btrfs_item_size_nr(eb, slot);
 319        src_ptr = btrfs_item_ptr_offset(eb, slot);
 320
 321        /* look for the key in the destination tree */
 322        ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 323        if (ret == 0) {
 324                char *src_copy;
 325                char *dst_copy;
 326                u32 dst_size = btrfs_item_size_nr(path->nodes[0],
 327                                                  path->slots[0]);
 328                if (dst_size != item_size)
 329                        goto insert;
 330
 331                if (item_size == 0) {
 332                        btrfs_release_path(root, path);
 333                        return 0;
 334                }
 335                dst_copy = kmalloc(item_size, GFP_NOFS);
 336                src_copy = kmalloc(item_size, GFP_NOFS);
 337
 338                read_extent_buffer(eb, src_copy, src_ptr, item_size);
 339
 340                dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 341                read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
 342                                   item_size);
 343                ret = memcmp(dst_copy, src_copy, item_size);
 344
 345                kfree(dst_copy);
 346                kfree(src_copy);
 347                /*
 348                 * they have the same contents, just return, this saves
 349                 * us from cowing blocks in the destination tree and doing
 350                 * extra writes that may not have been done by a previous
 351                 * sync
 352                 */
 353                if (ret == 0) {
 354                        btrfs_release_path(root, path);
 355                        return 0;
 356                }
 357
 358        }
 359insert:
 360        btrfs_release_path(root, path);
 361        /* try to insert the key into the destination tree */
 362        ret = btrfs_insert_empty_item(trans, root, path,
 363                                      key, item_size);
 364
 365        /* make sure any existing item is the correct size */
 366        if (ret == -EEXIST) {
 367                u32 found_size;
 368                found_size = btrfs_item_size_nr(path->nodes[0],
 369                                                path->slots[0]);
 370                if (found_size > item_size) {
 371                        btrfs_truncate_item(trans, root, path, item_size, 1);
 372                } else if (found_size < item_size) {
 373                        ret = btrfs_extend_item(trans, root, path,
 374                                                item_size - found_size);
 375                        BUG_ON(ret);
 376                }
 377        } else if (ret) {
 378                BUG();
 379        }
 380        dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
 381                                        path->slots[0]);
 382
 383        /* don't overwrite an existing inode if the generation number
 384         * was logged as zero.  This is done when the tree logging code
 385         * is just logging an inode to make sure it exists after recovery.
 386         *
 387         * Also, don't overwrite i_size on directories during replay.
 388         * log replay inserts and removes directory items based on the
 389         * state of the tree found in the subvolume, and i_size is modified
 390         * as it goes
 391         */
 392        if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
 393                struct btrfs_inode_item *src_item;
 394                struct btrfs_inode_item *dst_item;
 395
 396                src_item = (struct btrfs_inode_item *)src_ptr;
 397                dst_item = (struct btrfs_inode_item *)dst_ptr;
 398
 399                if (btrfs_inode_generation(eb, src_item) == 0)
 400                        goto no_copy;
 401
 402                if (overwrite_root &&
 403                    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
 404                    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
 405                        save_old_i_size = 1;
 406                        saved_i_size = btrfs_inode_size(path->nodes[0],
 407                                                        dst_item);
 408                }
 409        }
 410
 411        copy_extent_buffer(path->nodes[0], eb, dst_ptr,
 412                           src_ptr, item_size);
 413
 414        if (save_old_i_size) {
 415                struct btrfs_inode_item *dst_item;
 416                dst_item = (struct btrfs_inode_item *)dst_ptr;
 417                btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
 418        }
 419
 420        /* make sure the generation is filled in */
 421        if (key->type == BTRFS_INODE_ITEM_KEY) {
 422                struct btrfs_inode_item *dst_item;
 423                dst_item = (struct btrfs_inode_item *)dst_ptr;
 424                if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
 425                        btrfs_set_inode_generation(path->nodes[0], dst_item,
 426                                                   trans->transid);
 427                }
 428        }
 429no_copy:
 430        btrfs_mark_buffer_dirty(path->nodes[0]);
 431        btrfs_release_path(root, path);
 432        return 0;
 433}
 434
 435/*
 436 * simple helper to read an inode off the disk from a given root
 437 * This can only be called for subvolume roots and not for the log
 438 */
 439static noinline struct inode *read_one_inode(struct btrfs_root *root,
 440                                             u64 objectid)
 441{
 442        struct btrfs_key key;
 443        struct inode *inode;
 444
 445        key.objectid = objectid;
 446        key.type = BTRFS_INODE_ITEM_KEY;
 447        key.offset = 0;
 448        inode = btrfs_iget(root->fs_info->sb, &key, root);
 449        if (IS_ERR(inode)) {
 450                inode = NULL;
 451        } else if (is_bad_inode(inode)) {
 452                iput(inode);
 453                inode = NULL;
 454        }
 455        return inode;
 456}
 457
 458/* replays a single extent in 'eb' at 'slot' with 'key' into the
 459 * subvolume 'root'.  path is released on entry and should be released
 460 * on exit.
 461 *
 462 * extents in the log tree have not been allocated out of the extent
 463 * tree yet.  So, this completes the allocation, taking a reference
 464 * as required if the extent already exists or creating a new extent
 465 * if it isn't in the extent allocation tree yet.
 466 *
 467 * The extent is inserted into the file, dropping any existing extents
 468 * from the file that overlap the new one.
 469 */
 470static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
 471                                      struct btrfs_root *root,
 472                                      struct btrfs_path *path,
 473                                      struct extent_buffer *eb, int slot,
 474                                      struct btrfs_key *key)
 475{
 476        int found_type;
 477        u64 mask = root->sectorsize - 1;
 478        u64 extent_end;
 479        u64 alloc_hint;
 480        u64 start = key->offset;
 481        u64 saved_nbytes;
 482        struct btrfs_file_extent_item *item;
 483        struct inode *inode = NULL;
 484        unsigned long size;
 485        int ret = 0;
 486
 487        item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 488        found_type = btrfs_file_extent_type(eb, item);
 489
 490        if (found_type == BTRFS_FILE_EXTENT_REG ||
 491            found_type == BTRFS_FILE_EXTENT_PREALLOC)
 492                extent_end = start + btrfs_file_extent_num_bytes(eb, item);
 493        else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 494                size = btrfs_file_extent_inline_len(eb, item);
 495                extent_end = (start + size + mask) & ~mask;
 496        } else {
 497                ret = 0;
 498                goto out;
 499        }
 500
 501        inode = read_one_inode(root, key->objectid);
 502        if (!inode) {
 503                ret = -EIO;
 504                goto out;
 505        }
 506
 507        /*
 508         * first check to see if we already have this extent in the
 509         * file.  This must be done before the btrfs_drop_extents run
 510         * so we don't try to drop this extent.
 511         */
 512        ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
 513                                       start, 0);
 514
 515        if (ret == 0 &&
 516            (found_type == BTRFS_FILE_EXTENT_REG ||
 517             found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
 518                struct btrfs_file_extent_item cmp1;
 519                struct btrfs_file_extent_item cmp2;
 520                struct btrfs_file_extent_item *existing;
 521                struct extent_buffer *leaf;
 522
 523                leaf = path->nodes[0];
 524                existing = btrfs_item_ptr(leaf, path->slots[0],
 525                                          struct btrfs_file_extent_item);
 526
 527                read_extent_buffer(eb, &cmp1, (unsigned long)item,
 528                                   sizeof(cmp1));
 529                read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
 530                                   sizeof(cmp2));
 531
 532                /*
 533                 * we already have a pointer to this exact extent,
 534                 * we don't have to do anything
 535                 */
 536                if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
 537                        btrfs_release_path(root, path);
 538                        goto out;
 539                }
 540        }
 541        btrfs_release_path(root, path);
 542
 543        saved_nbytes = inode_get_bytes(inode);
 544        /* drop any overlapping extents */
 545        ret = btrfs_drop_extents(trans, root, inode,
 546                         start, extent_end, extent_end, start, &alloc_hint, 1);
 547        BUG_ON(ret);
 548
 549        if (found_type == BTRFS_FILE_EXTENT_REG ||
 550            found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 551                u64 offset;
 552                unsigned long dest_offset;
 553                struct btrfs_key ins;
 554
 555                ret = btrfs_insert_empty_item(trans, root, path, key,
 556                                              sizeof(*item));
 557                BUG_ON(ret);
 558                dest_offset = btrfs_item_ptr_offset(path->nodes[0],
 559                                                    path->slots[0]);
 560                copy_extent_buffer(path->nodes[0], eb, dest_offset,
 561                                (unsigned long)item,  sizeof(*item));
 562
 563                ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 564                ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 565                ins.type = BTRFS_EXTENT_ITEM_KEY;
 566                offset = key->offset - btrfs_file_extent_offset(eb, item);
 567
 568                if (ins.objectid > 0) {
 569                        u64 csum_start;
 570                        u64 csum_end;
 571                        LIST_HEAD(ordered_sums);
 572                        /*
 573                         * is this extent already allocated in the extent
 574                         * allocation tree?  If so, just add a reference
 575                         */
 576                        ret = btrfs_lookup_extent(root, ins.objectid,
 577                                                ins.offset);
 578                        if (ret == 0) {
 579                                ret = btrfs_inc_extent_ref(trans, root,
 580                                                ins.objectid, ins.offset,
 581                                                0, root->root_key.objectid,
 582                                                key->objectid, offset);
 583                        } else {
 584                                /*
 585                                 * insert the extent pointer in the extent
 586                                 * allocation tree
 587                                 */
 588                                ret = btrfs_alloc_logged_file_extent(trans,
 589                                                root, root->root_key.objectid,
 590                                                key->objectid, offset, &ins);
 591                                BUG_ON(ret);
 592                        }
 593                        btrfs_release_path(root, path);
 594
 595                        if (btrfs_file_extent_compression(eb, item)) {
 596                                csum_start = ins.objectid;
 597                                csum_end = csum_start + ins.offset;
 598                        } else {
 599                                csum_start = ins.objectid +
 600                                        btrfs_file_extent_offset(eb, item);
 601                                csum_end = csum_start +
 602                                        btrfs_file_extent_num_bytes(eb, item);
 603                        }
 604
 605                        ret = btrfs_lookup_csums_range(root->log_root,
 606                                                csum_start, csum_end - 1,
 607                                                &ordered_sums);
 608                        BUG_ON(ret);
 609                        while (!list_empty(&ordered_sums)) {
 610                                struct btrfs_ordered_sum *sums;
 611                                sums = list_entry(ordered_sums.next,
 612                                                struct btrfs_ordered_sum,
 613                                                list);
 614                                ret = btrfs_csum_file_blocks(trans,
 615                                                root->fs_info->csum_root,
 616                                                sums);
 617                                BUG_ON(ret);
 618                                list_del(&sums->list);
 619                                kfree(sums);
 620                        }
 621                } else {
 622                        btrfs_release_path(root, path);
 623                }
 624        } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 625                /* inline extents are easy, we just overwrite them */
 626                ret = overwrite_item(trans, root, path, eb, slot, key);
 627                BUG_ON(ret);
 628        }
 629
 630        inode_set_bytes(inode, saved_nbytes);
 631        btrfs_update_inode(trans, root, inode);
 632out:
 633        if (inode)
 634                iput(inode);
 635        return ret;
 636}
 637
 638/*
 639 * when cleaning up conflicts between the directory names in the
 640 * subvolume, directory names in the log and directory names in the
 641 * inode back references, we may have to unlink inodes from directories.
 642 *
 643 * This is a helper function to do the unlink of a specific directory
 644 * item
 645 */
 646static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
 647                                      struct btrfs_root *root,
 648                                      struct btrfs_path *path,
 649                                      struct inode *dir,
 650                                      struct btrfs_dir_item *di)
 651{
 652        struct inode *inode;
 653        char *name;
 654        int name_len;
 655        struct extent_buffer *leaf;
 656        struct btrfs_key location;
 657        int ret;
 658
 659        leaf = path->nodes[0];
 660
 661        btrfs_dir_item_key_to_cpu(leaf, di, &location);
 662        name_len = btrfs_dir_name_len(leaf, di);
 663        name = kmalloc(name_len, GFP_NOFS);
 664        read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
 665        btrfs_release_path(root, path);
 666
 667        inode = read_one_inode(root, location.objectid);
 668        BUG_ON(!inode);
 669
 670        ret = link_to_fixup_dir(trans, root, path, location.objectid);
 671        BUG_ON(ret);
 672
 673        ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
 674        BUG_ON(ret);
 675        kfree(name);
 676
 677        iput(inode);
 678        return ret;
 679}
 680
 681/*
 682 * helper function to see if a given name and sequence number found
 683 * in an inode back reference are already in a directory and correctly
 684 * point to this inode
 685 */
 686static noinline int inode_in_dir(struct btrfs_root *root,
 687                                 struct btrfs_path *path,
 688                                 u64 dirid, u64 objectid, u64 index,
 689                                 const char *name, int name_len)
 690{
 691        struct btrfs_dir_item *di;
 692        struct btrfs_key location;
 693        int match = 0;
 694
 695        di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
 696                                         index, name, name_len, 0);
 697        if (di && !IS_ERR(di)) {
 698                btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 699                if (location.objectid != objectid)
 700                        goto out;
 701        } else
 702                goto out;
 703        btrfs_release_path(root, path);
 704
 705        di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
 706        if (di && !IS_ERR(di)) {
 707                btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 708                if (location.objectid != objectid)
 709                        goto out;
 710        } else
 711                goto out;
 712        match = 1;
 713out:
 714        btrfs_release_path(root, path);
 715        return match;
 716}
 717
 718/*
 719 * helper function to check a log tree for a named back reference in
 720 * an inode.  This is used to decide if a back reference that is
 721 * found in the subvolume conflicts with what we find in the log.
 722 *
 723 * inode backreferences may have multiple refs in a single item,
 724 * during replay we process one reference at a time, and we don't
 725 * want to delete valid links to a file from the subvolume if that
 726 * link is also in the log.
 727 */
 728static noinline int backref_in_log(struct btrfs_root *log,
 729                                   struct btrfs_key *key,
 730                                   char *name, int namelen)
 731{
 732        struct btrfs_path *path;
 733        struct btrfs_inode_ref *ref;
 734        unsigned long ptr;
 735        unsigned long ptr_end;
 736        unsigned long name_ptr;
 737        int found_name_len;
 738        int item_size;
 739        int ret;
 740        int match = 0;
 741
 742        path = btrfs_alloc_path();
 743        ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
 744        if (ret != 0)
 745                goto out;
 746
 747        item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
 748        ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 749        ptr_end = ptr + item_size;
 750        while (ptr < ptr_end) {
 751                ref = (struct btrfs_inode_ref *)ptr;
 752                found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
 753                if (found_name_len == namelen) {
 754                        name_ptr = (unsigned long)(ref + 1);
 755                        ret = memcmp_extent_buffer(path->nodes[0], name,
 756                                                   name_ptr, namelen);
 757                        if (ret == 0) {
 758                                match = 1;
 759                                goto out;
 760                        }
 761                }
 762                ptr = (unsigned long)(ref + 1) + found_name_len;
 763        }
 764out:
 765        btrfs_free_path(path);
 766        return match;
 767}
 768
 769
 770/*
 771 * replay one inode back reference item found in the log tree.
 772 * eb, slot and key refer to the buffer and key found in the log tree.
 773 * root is the destination we are replaying into, and path is for temp
 774 * use by this function.  (it should be released on return).
 775 */
 776static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
 777                                  struct btrfs_root *root,
 778                                  struct btrfs_root *log,
 779                                  struct btrfs_path *path,
 780                                  struct extent_buffer *eb, int slot,
 781                                  struct btrfs_key *key)
 782{
 783        struct inode *dir;
 784        int ret;
 785        struct btrfs_key location;
 786        struct btrfs_inode_ref *ref;
 787        struct btrfs_dir_item *di;
 788        struct inode *inode;
 789        char *name;
 790        int namelen;
 791        unsigned long ref_ptr;
 792        unsigned long ref_end;
 793
 794        location.objectid = key->objectid;
 795        location.type = BTRFS_INODE_ITEM_KEY;
 796        location.offset = 0;
 797
 798        /*
 799         * it is possible that we didn't log all the parent directories
 800         * for a given inode.  If we don't find the dir, just don't
 801         * copy the back ref in.  The link count fixup code will take
 802         * care of the rest
 803         */
 804        dir = read_one_inode(root, key->offset);
 805        if (!dir)
 806                return -ENOENT;
 807
 808        inode = read_one_inode(root, key->objectid);
 809        BUG_ON(!inode);
 810
 811        ref_ptr = btrfs_item_ptr_offset(eb, slot);
 812        ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
 813
 814again:
 815        ref = (struct btrfs_inode_ref *)ref_ptr;
 816
 817        namelen = btrfs_inode_ref_name_len(eb, ref);
 818        name = kmalloc(namelen, GFP_NOFS);
 819        BUG_ON(!name);
 820
 821        read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
 822
 823        /* if we already have a perfect match, we're done */
 824        if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
 825                         btrfs_inode_ref_index(eb, ref),
 826                         name, namelen)) {
 827                goto out;
 828        }
 829
 830        /*
 831         * look for a conflicting back reference in the metadata.
 832         * if we find one we have to unlink that name of the file
 833         * before we add our new link.  Later on, we overwrite any
 834         * existing back reference, and we don't want to create
 835         * dangling pointers in the directory.
 836         */
 837conflict_again:
 838        ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 839        if (ret == 0) {
 840                char *victim_name;
 841                int victim_name_len;
 842                struct btrfs_inode_ref *victim_ref;
 843                unsigned long ptr;
 844                unsigned long ptr_end;
 845                struct extent_buffer *leaf = path->nodes[0];
 846
 847                /* are we trying to overwrite a back ref for the root directory
 848                 * if so, just jump out, we're done
 849                 */
 850                if (key->objectid == key->offset)
 851                        goto out_nowrite;
 852
 853                /* check all the names in this back reference to see
 854                 * if they are in the log.  if so, we allow them to stay
 855                 * otherwise they must be unlinked as a conflict
 856                 */
 857                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
 858                ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
 859                while (ptr < ptr_end) {
 860                        victim_ref = (struct btrfs_inode_ref *)ptr;
 861                        victim_name_len = btrfs_inode_ref_name_len(leaf,
 862                                                                   victim_ref);
 863                        victim_name = kmalloc(victim_name_len, GFP_NOFS);
 864                        BUG_ON(!victim_name);
 865
 866                        read_extent_buffer(leaf, victim_name,
 867                                           (unsigned long)(victim_ref + 1),
 868                                           victim_name_len);
 869
 870                        if (!backref_in_log(log, key, victim_name,
 871                                            victim_name_len)) {
 872                                btrfs_inc_nlink(inode);
 873                                btrfs_release_path(root, path);
 874
 875                                ret = btrfs_unlink_inode(trans, root, dir,
 876                                                         inode, victim_name,
 877                                                         victim_name_len);
 878                                kfree(victim_name);
 879                                btrfs_release_path(root, path);
 880                                goto conflict_again;
 881                        }
 882                        kfree(victim_name);
 883                        ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
 884                }
 885                BUG_ON(ret);
 886        }
 887        btrfs_release_path(root, path);
 888
 889        /* look for a conflicting sequence number */
 890        di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
 891                                         btrfs_inode_ref_index(eb, ref),
 892                                         name, namelen, 0);
 893        if (di && !IS_ERR(di)) {
 894                ret = drop_one_dir_item(trans, root, path, dir, di);
 895                BUG_ON(ret);
 896        }
 897        btrfs_release_path(root, path);
 898
 899
 900        /* look for a conflicting name */
 901        di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
 902                                   name, namelen, 0);
 903        if (di && !IS_ERR(di)) {
 904                ret = drop_one_dir_item(trans, root, path, dir, di);
 905                BUG_ON(ret);
 906        }
 907        btrfs_release_path(root, path);
 908
 909        /* insert our name */
 910        ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
 911                             btrfs_inode_ref_index(eb, ref));
 912        BUG_ON(ret);
 913
 914        btrfs_update_inode(trans, root, inode);
 915
 916out:
 917        ref_ptr = (unsigned long)(ref + 1) + namelen;
 918        kfree(name);
 919        if (ref_ptr < ref_end)
 920                goto again;
 921
 922        /* finally write the back reference in the inode */
 923        ret = overwrite_item(trans, root, path, eb, slot, key);
 924        BUG_ON(ret);
 925
 926out_nowrite:
 927        btrfs_release_path(root, path);
 928        iput(dir);
 929        iput(inode);
 930        return 0;
 931}
 932
 933/*
 934 * There are a few corners where the link count of the file can't
 935 * be properly maintained during replay.  So, instead of adding
 936 * lots of complexity to the log code, we just scan the backrefs
 937 * for any file that has been through replay.
 938 *
 939 * The scan will update the link count on the inode to reflect the
 940 * number of back refs found.  If it goes down to zero, the iput
 941 * will free the inode.
 942 */
 943static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
 944                                           struct btrfs_root *root,
 945                                           struct inode *inode)
 946{
 947        struct btrfs_path *path;
 948        int ret;
 949        struct btrfs_key key;
 950        u64 nlink = 0;
 951        unsigned long ptr;
 952        unsigned long ptr_end;
 953        int name_len;
 954
 955        key.objectid = inode->i_ino;
 956        key.type = BTRFS_INODE_REF_KEY;
 957        key.offset = (u64)-1;
 958
 959        path = btrfs_alloc_path();
 960
 961        while (1) {
 962                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 963                if (ret < 0)
 964                        break;
 965                if (ret > 0) {
 966                        if (path->slots[0] == 0)
 967                                break;
 968                        path->slots[0]--;
 969                }
 970                btrfs_item_key_to_cpu(path->nodes[0], &key,
 971                                      path->slots[0]);
 972                if (key.objectid != inode->i_ino ||
 973                    key.type != BTRFS_INODE_REF_KEY)
 974                        break;
 975                ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 976                ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
 977                                                   path->slots[0]);
 978                while (ptr < ptr_end) {
 979                        struct btrfs_inode_ref *ref;
 980
 981                        ref = (struct btrfs_inode_ref *)ptr;
 982                        name_len = btrfs_inode_ref_name_len(path->nodes[0],
 983                                                            ref);
 984                        ptr = (unsigned long)(ref + 1) + name_len;
 985                        nlink++;
 986                }
 987
 988                if (key.offset == 0)
 989                        break;
 990                key.offset--;
 991                btrfs_release_path(root, path);
 992        }
 993        btrfs_release_path(root, path);
 994        if (nlink != inode->i_nlink) {
 995                inode->i_nlink = nlink;
 996                btrfs_update_inode(trans, root, inode);
 997        }
 998        BTRFS_I(inode)->index_cnt = (u64)-1;
 999
1000        if (inode->i_nlink == 0 && S_ISDIR(inode->i_mode)) {
1001                ret = replay_dir_deletes(trans, root, NULL, path,
1002                                         inode->i_ino, 1);
1003                BUG_ON(ret);
1004        }
1005        btrfs_free_path(path);
1006
1007        return 0;
1008}
1009
1010static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1011                                            struct btrfs_root *root,
1012                                            struct btrfs_path *path)
1013{
1014        int ret;
1015        struct btrfs_key key;
1016        struct inode *inode;
1017
1018        key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1019        key.type = BTRFS_ORPHAN_ITEM_KEY;
1020        key.offset = (u64)-1;
1021        while (1) {
1022                ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1023                if (ret < 0)
1024                        break;
1025
1026                if (ret == 1) {
1027                        if (path->slots[0] == 0)
1028                                break;
1029                        path->slots[0]--;
1030                }
1031
1032                btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1033                if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1034                    key.type != BTRFS_ORPHAN_ITEM_KEY)
1035                        break;
1036
1037                ret = btrfs_del_item(trans, root, path);
1038                BUG_ON(ret);
1039
1040                btrfs_release_path(root, path);
1041                inode = read_one_inode(root, key.offset);
1042                BUG_ON(!inode);
1043
1044                ret = fixup_inode_link_count(trans, root, inode);
1045                BUG_ON(ret);
1046
1047                iput(inode);
1048
1049                /*
1050                 * fixup on a directory may create new entries,
1051                 * make sure we always look for the highset possible
1052                 * offset
1053                 */
1054                key.offset = (u64)-1;
1055        }
1056        btrfs_release_path(root, path);
1057        return 0;
1058}
1059
1060
1061/*
1062 * record a given inode in the fixup dir so we can check its link
1063 * count when replay is done.  The link count is incremented here
1064 * so the inode won't go away until we check it
1065 */
1066static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1067                                      struct btrfs_root *root,
1068                                      struct btrfs_path *path,
1069                                      u64 objectid)
1070{
1071        struct btrfs_key key;
1072        int ret = 0;
1073        struct inode *inode;
1074
1075        inode = read_one_inode(root, objectid);
1076        BUG_ON(!inode);
1077
1078        key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1079        btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1080        key.offset = objectid;
1081
1082        ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1083
1084        btrfs_release_path(root, path);
1085        if (ret == 0) {
1086                btrfs_inc_nlink(inode);
1087                btrfs_update_inode(trans, root, inode);
1088        } else if (ret == -EEXIST) {
1089                ret = 0;
1090        } else {
1091                BUG();
1092        }
1093        iput(inode);
1094
1095        return ret;
1096}
1097
1098/*
1099 * when replaying the log for a directory, we only insert names
1100 * for inodes that actually exist.  This means an fsync on a directory
1101 * does not implicitly fsync all the new files in it
1102 */
1103static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1104                                    struct btrfs_root *root,
1105                                    struct btrfs_path *path,
1106                                    u64 dirid, u64 index,
1107                                    char *name, int name_len, u8 type,
1108                                    struct btrfs_key *location)
1109{
1110        struct inode *inode;
1111        struct inode *dir;
1112        int ret;
1113
1114        inode = read_one_inode(root, location->objectid);
1115        if (!inode)
1116                return -ENOENT;
1117
1118        dir = read_one_inode(root, dirid);
1119        if (!dir) {
1120                iput(inode);
1121                return -EIO;
1122        }
1123        ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1124
1125        /* FIXME, put inode into FIXUP list */
1126
1127        iput(inode);
1128        iput(dir);
1129        return ret;
1130}
1131
1132/*
1133 * take a single entry in a log directory item and replay it into
1134 * the subvolume.
1135 *
1136 * if a conflicting item exists in the subdirectory already,
1137 * the inode it points to is unlinked and put into the link count
1138 * fix up tree.
1139 *
1140 * If a name from the log points to a file or directory that does
1141 * not exist in the FS, it is skipped.  fsyncs on directories
1142 * do not force down inodes inside that directory, just changes to the
1143 * names or unlinks in a directory.
1144 */
1145static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1146                                    struct btrfs_root *root,
1147                                    struct btrfs_path *path,
1148                                    struct extent_buffer *eb,
1149                                    struct btrfs_dir_item *di,
1150                                    struct btrfs_key *key)
1151{
1152        char *name;
1153        int name_len;
1154        struct btrfs_dir_item *dst_di;
1155        struct btrfs_key found_key;
1156        struct btrfs_key log_key;
1157        struct inode *dir;
1158        u8 log_type;
1159        int exists;
1160        int ret;
1161
1162        dir = read_one_inode(root, key->objectid);
1163        BUG_ON(!dir);
1164
1165        name_len = btrfs_dir_name_len(eb, di);
1166        name = kmalloc(name_len, GFP_NOFS);
1167        log_type = btrfs_dir_type(eb, di);
1168        read_extent_buffer(eb, name, (unsigned long)(di + 1),
1169                   name_len);
1170
1171        btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1172        exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1173        if (exists == 0)
1174                exists = 1;
1175        else
1176                exists = 0;
1177        btrfs_release_path(root, path);
1178
1179        if (key->type == BTRFS_DIR_ITEM_KEY) {
1180                dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1181                                       name, name_len, 1);
1182        } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1183                dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1184                                                     key->objectid,
1185                                                     key->offset, name,
1186                                                     name_len, 1);
1187        } else {
1188                BUG();
1189        }
1190        if (!dst_di || IS_ERR(dst_di)) {
1191                /* we need a sequence number to insert, so we only
1192                 * do inserts for the BTRFS_DIR_INDEX_KEY types
1193                 */
1194                if (key->type != BTRFS_DIR_INDEX_KEY)
1195                        goto out;
1196                goto insert;
1197        }
1198
1199        btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1200        /* the existing item matches the logged item */
1201        if (found_key.objectid == log_key.objectid &&
1202            found_key.type == log_key.type &&
1203            found_key.offset == log_key.offset &&
1204            btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1205                goto out;
1206        }
1207
1208        /*
1209         * don't drop the conflicting directory entry if the inode
1210         * for the new entry doesn't exist
1211         */
1212        if (!exists)
1213                goto out;
1214
1215        ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1216        BUG_ON(ret);
1217
1218        if (key->type == BTRFS_DIR_INDEX_KEY)
1219                goto insert;
1220out:
1221        btrfs_release_path(root, path);
1222        kfree(name);
1223        iput(dir);
1224        return 0;
1225
1226insert:
1227        btrfs_release_path(root, path);
1228        ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1229                              name, name_len, log_type, &log_key);
1230
1231        BUG_ON(ret && ret != -ENOENT);
1232        goto out;
1233}
1234
1235/*
1236 * find all the names in a directory item and reconcile them into
1237 * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1238 * one name in a directory item, but the same code gets used for
1239 * both directory index types
1240 */
1241static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1242                                        struct btrfs_root *root,
1243                                        struct btrfs_path *path,
1244                                        struct extent_buffer *eb, int slot,
1245                                        struct btrfs_key *key)
1246{
1247        int ret;
1248        u32 item_size = btrfs_item_size_nr(eb, slot);
1249        struct btrfs_dir_item *di;
1250        int name_len;
1251        unsigned long ptr;
1252        unsigned long ptr_end;
1253
1254        ptr = btrfs_item_ptr_offset(eb, slot);
1255        ptr_end = ptr + item_size;
1256        while (ptr < ptr_end) {
1257                di = (struct btrfs_dir_item *)ptr;
1258                name_len = btrfs_dir_name_len(eb, di);
1259                ret = replay_one_name(trans, root, path, eb, di, key);
1260                BUG_ON(ret);
1261                ptr = (unsigned long)(di + 1);
1262                ptr += name_len;
1263        }
1264        return 0;
1265}
1266
1267/*
1268 * directory replay has two parts.  There are the standard directory
1269 * items in the log copied from the subvolume, and range items
1270 * created in the log while the subvolume was logged.
1271 *
1272 * The range items tell us which parts of the key space the log
1273 * is authoritative for.  During replay, if a key in the subvolume
1274 * directory is in a logged range item, but not actually in the log
1275 * that means it was deleted from the directory before the fsync
1276 * and should be removed.
1277 */
1278static noinline int find_dir_range(struct btrfs_root *root,
1279                                   struct btrfs_path *path,
1280                                   u64 dirid, int key_type,
1281                                   u64 *start_ret, u64 *end_ret)
1282{
1283        struct btrfs_key key;
1284        u64 found_end;
1285        struct btrfs_dir_log_item *item;
1286        int ret;
1287        int nritems;
1288
1289        if (*start_ret == (u64)-1)
1290                return 1;
1291
1292        key.objectid = dirid;
1293        key.type = key_type;
1294        key.offset = *start_ret;
1295
1296        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1297        if (ret < 0)
1298                goto out;
1299        if (ret > 0) {
1300                if (path->slots[0] == 0)
1301                        goto out;
1302                path->slots[0]--;
1303        }
1304        if (ret != 0)
1305                btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1306
1307        if (key.type != key_type || key.objectid != dirid) {
1308                ret = 1;
1309                goto next;
1310        }
1311        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1312                              struct btrfs_dir_log_item);
1313        found_end = btrfs_dir_log_end(path->nodes[0], item);
1314
1315        if (*start_ret >= key.offset && *start_ret <= found_end) {
1316                ret = 0;
1317                *start_ret = key.offset;
1318                *end_ret = found_end;
1319                goto out;
1320        }
1321        ret = 1;
1322next:
1323        /* check the next slot in the tree to see if it is a valid item */
1324        nritems = btrfs_header_nritems(path->nodes[0]);
1325        if (path->slots[0] >= nritems) {
1326                ret = btrfs_next_leaf(root, path);
1327                if (ret)
1328                        goto out;
1329        } else {
1330                path->slots[0]++;
1331        }
1332
1333        btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1334
1335        if (key.type != key_type || key.objectid != dirid) {
1336                ret = 1;
1337                goto out;
1338        }
1339        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1340                              struct btrfs_dir_log_item);
1341        found_end = btrfs_dir_log_end(path->nodes[0], item);
1342        *start_ret = key.offset;
1343        *end_ret = found_end;
1344        ret = 0;
1345out:
1346        btrfs_release_path(root, path);
1347        return ret;
1348}
1349
1350/*
1351 * this looks for a given directory item in the log.  If the directory
1352 * item is not in the log, the item is removed and the inode it points
1353 * to is unlinked
1354 */
1355static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1356                                      struct btrfs_root *root,
1357                                      struct btrfs_root *log,
1358                                      struct btrfs_path *path,
1359                                      struct btrfs_path *log_path,
1360                                      struct inode *dir,
1361                                      struct btrfs_key *dir_key)
1362{
1363        int ret;
1364        struct extent_buffer *eb;
1365        int slot;
1366        u32 item_size;
1367        struct btrfs_dir_item *di;
1368        struct btrfs_dir_item *log_di;
1369        int name_len;
1370        unsigned long ptr;
1371        unsigned long ptr_end;
1372        char *name;
1373        struct inode *inode;
1374        struct btrfs_key location;
1375
1376again:
1377        eb = path->nodes[0];
1378        slot = path->slots[0];
1379        item_size = btrfs_item_size_nr(eb, slot);
1380        ptr = btrfs_item_ptr_offset(eb, slot);
1381        ptr_end = ptr + item_size;
1382        while (ptr < ptr_end) {
1383                di = (struct btrfs_dir_item *)ptr;
1384                name_len = btrfs_dir_name_len(eb, di);
1385                name = kmalloc(name_len, GFP_NOFS);
1386                if (!name) {
1387                        ret = -ENOMEM;
1388                        goto out;
1389                }
1390                read_extent_buffer(eb, name, (unsigned long)(di + 1),
1391                                  name_len);
1392                log_di = NULL;
1393                if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1394                        log_di = btrfs_lookup_dir_item(trans, log, log_path,
1395                                                       dir_key->objectid,
1396                                                       name, name_len, 0);
1397                } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1398                        log_di = btrfs_lookup_dir_index_item(trans, log,
1399                                                     log_path,
1400                                                     dir_key->objectid,
1401                                                     dir_key->offset,
1402                                                     name, name_len, 0);
1403                }
1404                if (!log_di || IS_ERR(log_di)) {
1405                        btrfs_dir_item_key_to_cpu(eb, di, &location);
1406                        btrfs_release_path(root, path);
1407                        btrfs_release_path(log, log_path);
1408                        inode = read_one_inode(root, location.objectid);
1409                        BUG_ON(!inode);
1410
1411                        ret = link_to_fixup_dir(trans, root,
1412                                                path, location.objectid);
1413                        BUG_ON(ret);
1414                        btrfs_inc_nlink(inode);
1415                        ret = btrfs_unlink_inode(trans, root, dir, inode,
1416                                                 name, name_len);
1417                        BUG_ON(ret);
1418                        kfree(name);
1419                        iput(inode);
1420
1421                        /* there might still be more names under this key
1422                         * check and repeat if required
1423                         */
1424                        ret = btrfs_search_slot(NULL, root, dir_key, path,
1425                                                0, 0);
1426                        if (ret == 0)
1427                                goto again;
1428                        ret = 0;
1429                        goto out;
1430                }
1431                btrfs_release_path(log, log_path);
1432                kfree(name);
1433
1434                ptr = (unsigned long)(di + 1);
1435                ptr += name_len;
1436        }
1437        ret = 0;
1438out:
1439        btrfs_release_path(root, path);
1440        btrfs_release_path(log, log_path);
1441        return ret;
1442}
1443
1444/*
1445 * deletion replay happens before we copy any new directory items
1446 * out of the log or out of backreferences from inodes.  It
1447 * scans the log to find ranges of keys that log is authoritative for,
1448 * and then scans the directory to find items in those ranges that are
1449 * not present in the log.
1450 *
1451 * Anything we don't find in the log is unlinked and removed from the
1452 * directory.
1453 */
1454static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1455                                       struct btrfs_root *root,
1456                                       struct btrfs_root *log,
1457                                       struct btrfs_path *path,
1458                                       u64 dirid, int del_all)
1459{
1460        u64 range_start;
1461        u64 range_end;
1462        int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1463        int ret = 0;
1464        struct btrfs_key dir_key;
1465        struct btrfs_key found_key;
1466        struct btrfs_path *log_path;
1467        struct inode *dir;
1468
1469        dir_key.objectid = dirid;
1470        dir_key.type = BTRFS_DIR_ITEM_KEY;
1471        log_path = btrfs_alloc_path();
1472        if (!log_path)
1473                return -ENOMEM;
1474
1475        dir = read_one_inode(root, dirid);
1476        /* it isn't an error if the inode isn't there, that can happen
1477         * because we replay the deletes before we copy in the inode item
1478         * from the log
1479         */
1480        if (!dir) {
1481                btrfs_free_path(log_path);
1482                return 0;
1483        }
1484again:
1485        range_start = 0;
1486        range_end = 0;
1487        while (1) {
1488                if (del_all)
1489                        range_end = (u64)-1;
1490                else {
1491                        ret = find_dir_range(log, path, dirid, key_type,
1492                                             &range_start, &range_end);
1493                        if (ret != 0)
1494                                break;
1495                }
1496
1497                dir_key.offset = range_start;
1498                while (1) {
1499                        int nritems;
1500                        ret = btrfs_search_slot(NULL, root, &dir_key, path,
1501                                                0, 0);
1502                        if (ret < 0)
1503                                goto out;
1504
1505                        nritems = btrfs_header_nritems(path->nodes[0]);
1506                        if (path->slots[0] >= nritems) {
1507                                ret = btrfs_next_leaf(root, path);
1508                                if (ret)
1509                                        break;
1510                        }
1511                        btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1512                                              path->slots[0]);
1513                        if (found_key.objectid != dirid ||
1514                            found_key.type != dir_key.type)
1515                                goto next_type;
1516
1517                        if (found_key.offset > range_end)
1518                                break;
1519
1520                        ret = check_item_in_log(trans, root, log, path,
1521                                                log_path, dir,
1522                                                &found_key);
1523                        BUG_ON(ret);
1524                        if (found_key.offset == (u64)-1)
1525                                break;
1526                        dir_key.offset = found_key.offset + 1;
1527                }
1528                btrfs_release_path(root, path);
1529                if (range_end == (u64)-1)
1530                        break;
1531                range_start = range_end + 1;
1532        }
1533
1534next_type:
1535        ret = 0;
1536        if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1537                key_type = BTRFS_DIR_LOG_INDEX_KEY;
1538                dir_key.type = BTRFS_DIR_INDEX_KEY;
1539                btrfs_release_path(root, path);
1540                goto again;
1541        }
1542out:
1543        btrfs_release_path(root, path);
1544        btrfs_free_path(log_path);
1545        iput(dir);
1546        return ret;
1547}
1548
1549/*
1550 * the process_func used to replay items from the log tree.  This
1551 * gets called in two different stages.  The first stage just looks
1552 * for inodes and makes sure they are all copied into the subvolume.
1553 *
1554 * The second stage copies all the other item types from the log into
1555 * the subvolume.  The two stage approach is slower, but gets rid of
1556 * lots of complexity around inodes referencing other inodes that exist
1557 * only in the log (references come from either directory items or inode
1558 * back refs).
1559 */
1560static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1561                             struct walk_control *wc, u64 gen)
1562{
1563        int nritems;
1564        struct btrfs_path *path;
1565        struct btrfs_root *root = wc->replay_dest;
1566        struct btrfs_key key;
1567        u32 item_size;
1568        int level;
1569        int i;
1570        int ret;
1571
1572        btrfs_read_buffer(eb, gen);
1573
1574        level = btrfs_header_level(eb);
1575
1576        if (level != 0)
1577                return 0;
1578
1579        path = btrfs_alloc_path();
1580        BUG_ON(!path);
1581
1582        nritems = btrfs_header_nritems(eb);
1583        for (i = 0; i < nritems; i++) {
1584                btrfs_item_key_to_cpu(eb, &key, i);
1585                item_size = btrfs_item_size_nr(eb, i);
1586
1587                /* inode keys are done during the first stage */
1588                if (key.type == BTRFS_INODE_ITEM_KEY &&
1589                    wc->stage == LOG_WALK_REPLAY_INODES) {
1590                        struct inode *inode;
1591                        struct btrfs_inode_item *inode_item;
1592                        u32 mode;
1593
1594                        inode_item = btrfs_item_ptr(eb, i,
1595                                            struct btrfs_inode_item);
1596                        mode = btrfs_inode_mode(eb, inode_item);
1597                        if (S_ISDIR(mode)) {
1598                                ret = replay_dir_deletes(wc->trans,
1599                                         root, log, path, key.objectid, 0);
1600                                BUG_ON(ret);
1601                        }
1602                        ret = overwrite_item(wc->trans, root, path,
1603                                             eb, i, &key);
1604                        BUG_ON(ret);
1605
1606                        /* for regular files, truncate away
1607                         * extents past the new EOF
1608                         */
1609                        if (S_ISREG(mode)) {
1610                                inode = read_one_inode(root,
1611                                                       key.objectid);
1612                                BUG_ON(!inode);
1613
1614                                ret = btrfs_truncate_inode_items(wc->trans,
1615                                        root, inode, inode->i_size,
1616                                        BTRFS_EXTENT_DATA_KEY);
1617                                BUG_ON(ret);
1618
1619                                /* if the nlink count is zero here, the iput
1620                                 * will free the inode.  We bump it to make
1621                                 * sure it doesn't get freed until the link
1622                                 * count fixup is done
1623                                 */
1624                                if (inode->i_nlink == 0) {
1625                                        btrfs_inc_nlink(inode);
1626                                        btrfs_update_inode(wc->trans,
1627                                                           root, inode);
1628                                }
1629                                iput(inode);
1630                        }
1631                        ret = link_to_fixup_dir(wc->trans, root,
1632                                                path, key.objectid);
1633                        BUG_ON(ret);
1634                }
1635                if (wc->stage < LOG_WALK_REPLAY_ALL)
1636                        continue;
1637
1638                /* these keys are simply copied */
1639                if (key.type == BTRFS_XATTR_ITEM_KEY) {
1640                        ret = overwrite_item(wc->trans, root, path,
1641                                             eb, i, &key);
1642                        BUG_ON(ret);
1643                } else if (key.type == BTRFS_INODE_REF_KEY) {
1644                        ret = add_inode_ref(wc->trans, root, log, path,
1645                                            eb, i, &key);
1646                        BUG_ON(ret && ret != -ENOENT);
1647                } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1648                        ret = replay_one_extent(wc->trans, root, path,
1649                                                eb, i, &key);
1650                        BUG_ON(ret);
1651                } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1652                           key.type == BTRFS_DIR_INDEX_KEY) {
1653                        ret = replay_one_dir_item(wc->trans, root, path,
1654                                                  eb, i, &key);
1655                        BUG_ON(ret);
1656                }
1657        }
1658        btrfs_free_path(path);
1659        return 0;
1660}
1661
1662static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1663                                   struct btrfs_root *root,
1664                                   struct btrfs_path *path, int *level,
1665                                   struct walk_control *wc)
1666{
1667        u64 root_owner;
1668        u64 root_gen;
1669        u64 bytenr;
1670        u64 ptr_gen;
1671        struct extent_buffer *next;
1672        struct extent_buffer *cur;
1673        struct extent_buffer *parent;
1674        u32 blocksize;
1675        int ret = 0;
1676
1677        WARN_ON(*level < 0);
1678        WARN_ON(*level >= BTRFS_MAX_LEVEL);
1679
1680        while (*level > 0) {
1681                WARN_ON(*level < 0);
1682                WARN_ON(*level >= BTRFS_MAX_LEVEL);
1683                cur = path->nodes[*level];
1684
1685                if (btrfs_header_level(cur) != *level)
1686                        WARN_ON(1);
1687
1688                if (path->slots[*level] >=
1689                    btrfs_header_nritems(cur))
1690                        break;
1691
1692                bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1693                ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1694                blocksize = btrfs_level_size(root, *level - 1);
1695
1696                parent = path->nodes[*level];
1697                root_owner = btrfs_header_owner(parent);
1698                root_gen = btrfs_header_generation(parent);
1699
1700                next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1701
1702                wc->process_func(root, next, wc, ptr_gen);
1703
1704                if (*level == 1) {
1705                        path->slots[*level]++;
1706                        if (wc->free) {
1707                                btrfs_read_buffer(next, ptr_gen);
1708
1709                                btrfs_tree_lock(next);
1710                                clean_tree_block(trans, root, next);
1711                                btrfs_set_lock_blocking(next);
1712                                btrfs_wait_tree_block_writeback(next);
1713                                btrfs_tree_unlock(next);
1714
1715                                WARN_ON(root_owner !=
1716                                        BTRFS_TREE_LOG_OBJECTID);
1717                                ret = btrfs_free_reserved_extent(root,
1718                                                         bytenr, blocksize);
1719                                BUG_ON(ret);
1720                        }
1721                        free_extent_buffer(next);
1722                        continue;
1723                }
1724                btrfs_read_buffer(next, ptr_gen);
1725
1726                WARN_ON(*level <= 0);
1727                if (path->nodes[*level-1])
1728                        free_extent_buffer(path->nodes[*level-1]);
1729                path->nodes[*level-1] = next;
1730                *level = btrfs_header_level(next);
1731                path->slots[*level] = 0;
1732                cond_resched();
1733        }
1734        WARN_ON(*level < 0);
1735        WARN_ON(*level >= BTRFS_MAX_LEVEL);
1736
1737        if (path->nodes[*level] == root->node)
1738                parent = path->nodes[*level];
1739        else
1740                parent = path->nodes[*level + 1];
1741
1742        bytenr = path->nodes[*level]->start;
1743
1744        blocksize = btrfs_level_size(root, *level);
1745        root_owner = btrfs_header_owner(parent);
1746        root_gen = btrfs_header_generation(parent);
1747
1748        wc->process_func(root, path->nodes[*level], wc,
1749                         btrfs_header_generation(path->nodes[*level]));
1750
1751        if (wc->free) {
1752                next = path->nodes[*level];
1753                btrfs_tree_lock(next);
1754                clean_tree_block(trans, root, next);
1755                btrfs_set_lock_blocking(next);
1756                btrfs_wait_tree_block_writeback(next);
1757                btrfs_tree_unlock(next);
1758
1759                WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1760                ret = btrfs_free_reserved_extent(root, bytenr, blocksize);
1761                BUG_ON(ret);
1762        }
1763        free_extent_buffer(path->nodes[*level]);
1764        path->nodes[*level] = NULL;
1765        *level += 1;
1766
1767        cond_resched();
1768        return 0;
1769}
1770
1771static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1772                                 struct btrfs_root *root,
1773                                 struct btrfs_path *path, int *level,
1774                                 struct walk_control *wc)
1775{
1776        u64 root_owner;
1777        u64 root_gen;
1778        int i;
1779        int slot;
1780        int ret;
1781
1782        for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1783                slot = path->slots[i];
1784                if (slot < btrfs_header_nritems(path->nodes[i]) - 1) {
1785                        struct extent_buffer *node;
1786                        node = path->nodes[i];
1787                        path->slots[i]++;
1788                        *level = i;
1789                        WARN_ON(*level == 0);
1790                        return 0;
1791                } else {
1792                        struct extent_buffer *parent;
1793                        if (path->nodes[*level] == root->node)
1794                                parent = path->nodes[*level];
1795                        else
1796                                parent = path->nodes[*level + 1];
1797
1798                        root_owner = btrfs_header_owner(parent);
1799                        root_gen = btrfs_header_generation(parent);
1800                        wc->process_func(root, path->nodes[*level], wc,
1801                                 btrfs_header_generation(path->nodes[*level]));
1802                        if (wc->free) {
1803                                struct extent_buffer *next;
1804
1805                                next = path->nodes[*level];
1806
1807                                btrfs_tree_lock(next);
1808                                clean_tree_block(trans, root, next);
1809                                btrfs_set_lock_blocking(next);
1810                                btrfs_wait_tree_block_writeback(next);
1811                                btrfs_tree_unlock(next);
1812
1813                                WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1814                                ret = btrfs_free_reserved_extent(root,
1815                                                path->nodes[*level]->start,
1816                                                path->nodes[*level]->len);
1817                                BUG_ON(ret);
1818                        }
1819                        free_extent_buffer(path->nodes[*level]);
1820                        path->nodes[*level] = NULL;
1821                        *level = i + 1;
1822                }
1823        }
1824        return 1;
1825}
1826
1827/*
1828 * drop the reference count on the tree rooted at 'snap'.  This traverses
1829 * the tree freeing any blocks that have a ref count of zero after being
1830 * decremented.
1831 */
1832static int walk_log_tree(struct btrfs_trans_handle *trans,
1833                         struct btrfs_root *log, struct walk_control *wc)
1834{
1835        int ret = 0;
1836        int wret;
1837        int level;
1838        struct btrfs_path *path;
1839        int i;
1840        int orig_level;
1841
1842        path = btrfs_alloc_path();
1843        BUG_ON(!path);
1844
1845        level = btrfs_header_level(log->node);
1846        orig_level = level;
1847        path->nodes[level] = log->node;
1848        extent_buffer_get(log->node);
1849        path->slots[level] = 0;
1850
1851        while (1) {
1852                wret = walk_down_log_tree(trans, log, path, &level, wc);
1853                if (wret > 0)
1854                        break;
1855                if (wret < 0)
1856                        ret = wret;
1857
1858                wret = walk_up_log_tree(trans, log, path, &level, wc);
1859                if (wret > 0)
1860                        break;
1861                if (wret < 0)
1862                        ret = wret;
1863        }
1864
1865        /* was the root node processed? if not, catch it here */
1866        if (path->nodes[orig_level]) {
1867                wc->process_func(log, path->nodes[orig_level], wc,
1868                         btrfs_header_generation(path->nodes[orig_level]));
1869                if (wc->free) {
1870                        struct extent_buffer *next;
1871
1872                        next = path->nodes[orig_level];
1873
1874                        btrfs_tree_lock(next);
1875                        clean_tree_block(trans, log, next);
1876                        btrfs_set_lock_blocking(next);
1877                        btrfs_wait_tree_block_writeback(next);
1878                        btrfs_tree_unlock(next);
1879
1880                        WARN_ON(log->root_key.objectid !=
1881                                BTRFS_TREE_LOG_OBJECTID);
1882                        ret = btrfs_free_reserved_extent(log, next->start,
1883                                                         next->len);
1884                        BUG_ON(ret);
1885                }
1886        }
1887
1888        for (i = 0; i <= orig_level; i++) {
1889                if (path->nodes[i]) {
1890                        free_extent_buffer(path->nodes[i]);
1891                        path->nodes[i] = NULL;
1892                }
1893        }
1894        btrfs_free_path(path);
1895        return ret;
1896}
1897
1898/*
1899 * helper function to update the item for a given subvolumes log root
1900 * in the tree of log roots
1901 */
1902static int update_log_root(struct btrfs_trans_handle *trans,
1903                           struct btrfs_root *log)
1904{
1905        int ret;
1906
1907        if (log->log_transid == 1) {
1908                /* insert root item on the first sync */
1909                ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1910                                &log->root_key, &log->root_item);
1911        } else {
1912                ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1913                                &log->root_key, &log->root_item);
1914        }
1915        return ret;
1916}
1917
1918static int wait_log_commit(struct btrfs_trans_handle *trans,
1919                           struct btrfs_root *root, unsigned long transid)
1920{
1921        DEFINE_WAIT(wait);
1922        int index = transid % 2;
1923
1924        /*
1925         * we only allow two pending log transactions at a time,
1926         * so we know that if ours is more than 2 older than the
1927         * current transaction, we're done
1928         */
1929        do {
1930                prepare_to_wait(&root->log_commit_wait[index],
1931                                &wait, TASK_UNINTERRUPTIBLE);
1932                mutex_unlock(&root->log_mutex);
1933
1934                if (root->fs_info->last_trans_log_full_commit !=
1935                    trans->transid && root->log_transid < transid + 2 &&
1936                    atomic_read(&root->log_commit[index]))
1937                        schedule();
1938
1939                finish_wait(&root->log_commit_wait[index], &wait);
1940                mutex_lock(&root->log_mutex);
1941        } while (root->log_transid < transid + 2 &&
1942                 atomic_read(&root->log_commit[index]));
1943        return 0;
1944}
1945
1946static int wait_for_writer(struct btrfs_trans_handle *trans,
1947                           struct btrfs_root *root)
1948{
1949        DEFINE_WAIT(wait);
1950        while (atomic_read(&root->log_writers)) {
1951                prepare_to_wait(&root->log_writer_wait,
1952                                &wait, TASK_UNINTERRUPTIBLE);
1953                mutex_unlock(&root->log_mutex);
1954                if (root->fs_info->last_trans_log_full_commit !=
1955                    trans->transid && atomic_read(&root->log_writers))
1956                        schedule();
1957                mutex_lock(&root->log_mutex);
1958                finish_wait(&root->log_writer_wait, &wait);
1959        }
1960        return 0;
1961}
1962
1963/*
1964 * btrfs_sync_log does sends a given tree log down to the disk and
1965 * updates the super blocks to record it.  When this call is done,
1966 * you know that any inodes previously logged are safely on disk only
1967 * if it returns 0.
1968 *
1969 * Any other return value means you need to call btrfs_commit_transaction.
1970 * Some of the edge cases for fsyncing directories that have had unlinks
1971 * or renames done in the past mean that sometimes the only safe
1972 * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
1973 * that has happened.
1974 */
1975int btrfs_sync_log(struct btrfs_trans_handle *trans,
1976                   struct btrfs_root *root)
1977{
1978        int index1;
1979        int index2;
1980        int ret;
1981        struct btrfs_root *log = root->log_root;
1982        struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
1983        u64 log_transid = 0;
1984
1985        mutex_lock(&root->log_mutex);
1986        index1 = root->log_transid % 2;
1987        if (atomic_read(&root->log_commit[index1])) {
1988                wait_log_commit(trans, root, root->log_transid);
1989                mutex_unlock(&root->log_mutex);
1990                return 0;
1991        }
1992        atomic_set(&root->log_commit[index1], 1);
1993
1994        /* wait for previous tree log sync to complete */
1995        if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
1996                wait_log_commit(trans, root, root->log_transid - 1);
1997
1998        while (1) {
1999                unsigned long batch = root->log_batch;
2000                if (root->log_multiple_pids) {
2001                        mutex_unlock(&root->log_mutex);
2002                        schedule_timeout_uninterruptible(1);
2003                        mutex_lock(&root->log_mutex);
2004                }
2005                wait_for_writer(trans, root);
2006                if (batch == root->log_batch)
2007                        break;
2008        }
2009
2010        /* bail out if we need to do a full commit */
2011        if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2012                ret = -EAGAIN;
2013                mutex_unlock(&root->log_mutex);
2014                goto out;
2015        }
2016
2017        /* we start IO on  all the marked extents here, but we don't actually
2018         * wait for them until later.
2019         */
2020        ret = btrfs_write_marked_extents(log, &log->dirty_log_pages);
2021        BUG_ON(ret);
2022
2023        btrfs_set_root_node(&log->root_item, log->node);
2024
2025        root->log_batch = 0;
2026        log_transid = root->log_transid;
2027        root->log_transid++;
2028        log->log_transid = root->log_transid;
2029        root->log_start_pid = 0;
2030        smp_mb();
2031        /*
2032         * log tree has been flushed to disk, new modifications of
2033         * the log will be written to new positions. so it's safe to
2034         * allow log writers to go in.
2035         */
2036        mutex_unlock(&root->log_mutex);
2037
2038        mutex_lock(&log_root_tree->log_mutex);
2039        log_root_tree->log_batch++;
2040        atomic_inc(&log_root_tree->log_writers);
2041        mutex_unlock(&log_root_tree->log_mutex);
2042
2043        ret = update_log_root(trans, log);
2044        BUG_ON(ret);
2045
2046        mutex_lock(&log_root_tree->log_mutex);
2047        if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2048                smp_mb();
2049                if (waitqueue_active(&log_root_tree->log_writer_wait))
2050                        wake_up(&log_root_tree->log_writer_wait);
2051        }
2052
2053        index2 = log_root_tree->log_transid % 2;
2054        if (atomic_read(&log_root_tree->log_commit[index2])) {
2055                btrfs_wait_marked_extents(log, &log->dirty_log_pages);
2056                wait_log_commit(trans, log_root_tree,
2057                                log_root_tree->log_transid);
2058                mutex_unlock(&log_root_tree->log_mutex);
2059                goto out;
2060        }
2061        atomic_set(&log_root_tree->log_commit[index2], 1);
2062
2063        if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2064                wait_log_commit(trans, log_root_tree,
2065                                log_root_tree->log_transid - 1);
2066        }
2067
2068        wait_for_writer(trans, log_root_tree);
2069
2070        /*
2071         * now that we've moved on to the tree of log tree roots,
2072         * check the full commit flag again
2073         */
2074        if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2075                btrfs_wait_marked_extents(log, &log->dirty_log_pages);
2076                mutex_unlock(&log_root_tree->log_mutex);
2077                ret = -EAGAIN;
2078                goto out_wake_log_root;
2079        }
2080
2081        ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2082                                &log_root_tree->dirty_log_pages);
2083        BUG_ON(ret);
2084        btrfs_wait_marked_extents(log, &log->dirty_log_pages);
2085
2086        btrfs_set_super_log_root(&root->fs_info->super_for_commit,
2087                                log_root_tree->node->start);
2088        btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
2089                                btrfs_header_level(log_root_tree->node));
2090
2091        log_root_tree->log_batch = 0;
2092        log_root_tree->log_transid++;
2093        smp_mb();
2094
2095        mutex_unlock(&log_root_tree->log_mutex);
2096
2097        /*
2098         * nobody else is going to jump in and write the the ctree
2099         * super here because the log_commit atomic below is protecting
2100         * us.  We must be called with a transaction handle pinning
2101         * the running transaction open, so a full commit can't hop
2102         * in and cause problems either.
2103         */
2104        write_ctree_super(trans, root->fs_info->tree_root, 1);
2105        ret = 0;
2106
2107        mutex_lock(&root->log_mutex);
2108        if (root->last_log_commit < log_transid)
2109                root->last_log_commit = log_transid;
2110        mutex_unlock(&root->log_mutex);
2111
2112out_wake_log_root:
2113        atomic_set(&log_root_tree->log_commit[index2], 0);
2114        smp_mb();
2115        if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2116                wake_up(&log_root_tree->log_commit_wait[index2]);
2117out:
2118        atomic_set(&root->log_commit[index1], 0);
2119        smp_mb();
2120        if (waitqueue_active(&root->log_commit_wait[index1]))
2121                wake_up(&root->log_commit_wait[index1]);
2122        return 0;
2123}
2124
2125/*
2126 * free all the extents used by the tree log.  This should be called
2127 * at commit time of the full transaction
2128 */
2129int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2130{
2131        int ret;
2132        struct btrfs_root *log;
2133        struct key;
2134        u64 start;
2135        u64 end;
2136        struct walk_control wc = {
2137                .free = 1,
2138                .process_func = process_one_buffer
2139        };
2140
2141        if (!root->log_root || root->fs_info->log_root_recovering)
2142                return 0;
2143
2144        log = root->log_root;
2145        ret = walk_log_tree(trans, log, &wc);
2146        BUG_ON(ret);
2147
2148        while (1) {
2149                ret = find_first_extent_bit(&log->dirty_log_pages,
2150                                    0, &start, &end, EXTENT_DIRTY);
2151                if (ret)
2152                        break;
2153
2154                clear_extent_dirty(&log->dirty_log_pages,
2155                                   start, end, GFP_NOFS);
2156        }
2157
2158        if (log->log_transid > 0) {
2159                ret = btrfs_del_root(trans, root->fs_info->log_root_tree,
2160                                     &log->root_key);
2161                BUG_ON(ret);
2162        }
2163        root->log_root = NULL;
2164        free_extent_buffer(log->node);
2165        kfree(log);
2166        return 0;
2167}
2168
2169/*
2170 * If both a file and directory are logged, and unlinks or renames are
2171 * mixed in, we have a few interesting corners:
2172 *
2173 * create file X in dir Y
2174 * link file X to X.link in dir Y
2175 * fsync file X
2176 * unlink file X but leave X.link
2177 * fsync dir Y
2178 *
2179 * After a crash we would expect only X.link to exist.  But file X
2180 * didn't get fsync'd again so the log has back refs for X and X.link.
2181 *
2182 * We solve this by removing directory entries and inode backrefs from the
2183 * log when a file that was logged in the current transaction is
2184 * unlinked.  Any later fsync will include the updated log entries, and
2185 * we'll be able to reconstruct the proper directory items from backrefs.
2186 *
2187 * This optimizations allows us to avoid relogging the entire inode
2188 * or the entire directory.
2189 */
2190int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2191                                 struct btrfs_root *root,
2192                                 const char *name, int name_len,
2193                                 struct inode *dir, u64 index)
2194{
2195        struct btrfs_root *log;
2196        struct btrfs_dir_item *di;
2197        struct btrfs_path *path;
2198        int ret;
2199        int bytes_del = 0;
2200
2201        if (BTRFS_I(dir)->logged_trans < trans->transid)
2202                return 0;
2203
2204        ret = join_running_log_trans(root);
2205        if (ret)
2206                return 0;
2207
2208        mutex_lock(&BTRFS_I(dir)->log_mutex);
2209
2210        log = root->log_root;
2211        path = btrfs_alloc_path();
2212        di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
2213                                   name, name_len, -1);
2214        if (di && !IS_ERR(di)) {
2215                ret = btrfs_delete_one_dir_name(trans, log, path, di);
2216                bytes_del += name_len;
2217                BUG_ON(ret);
2218        }
2219        btrfs_release_path(log, path);
2220        di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
2221                                         index, name, name_len, -1);
2222        if (di && !IS_ERR(di)) {
2223                ret = btrfs_delete_one_dir_name(trans, log, path, di);
2224                bytes_del += name_len;
2225                BUG_ON(ret);
2226        }
2227
2228        /* update the directory size in the log to reflect the names
2229         * we have removed
2230         */
2231        if (bytes_del) {
2232                struct btrfs_key key;
2233
2234                key.objectid = dir->i_ino;
2235                key.offset = 0;
2236                key.type = BTRFS_INODE_ITEM_KEY;
2237                btrfs_release_path(log, path);
2238
2239                ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2240                if (ret == 0) {
2241                        struct btrfs_inode_item *item;
2242                        u64 i_size;
2243
2244                        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2245                                              struct btrfs_inode_item);
2246                        i_size = btrfs_inode_size(path->nodes[0], item);
2247                        if (i_size > bytes_del)
2248                                i_size -= bytes_del;
2249                        else
2250                                i_size = 0;
2251                        btrfs_set_inode_size(path->nodes[0], item, i_size);
2252                        btrfs_mark_buffer_dirty(path->nodes[0]);
2253                } else
2254                        ret = 0;
2255                btrfs_release_path(log, path);
2256        }
2257
2258        btrfs_free_path(path);
2259        mutex_unlock(&BTRFS_I(dir)->log_mutex);
2260        btrfs_end_log_trans(root);
2261
2262        return 0;
2263}
2264
2265/* see comments for btrfs_del_dir_entries_in_log */
2266int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2267                               struct btrfs_root *root,
2268                               const char *name, int name_len,
2269                               struct inode *inode, u64 dirid)
2270{
2271        struct btrfs_root *log;
2272        u64 index;
2273        int ret;
2274
2275        if (BTRFS_I(inode)->logged_trans < trans->transid)
2276                return 0;
2277
2278        ret = join_running_log_trans(root);
2279        if (ret)
2280                return 0;
2281        log = root->log_root;
2282        mutex_lock(&BTRFS_I(inode)->log_mutex);
2283
2284        ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
2285                                  dirid, &index);
2286        mutex_unlock(&BTRFS_I(inode)->log_mutex);
2287        btrfs_end_log_trans(root);
2288
2289        return ret;
2290}
2291
2292/*
2293 * creates a range item in the log for 'dirid'.  first_offset and
2294 * last_offset tell us which parts of the key space the log should
2295 * be considered authoritative for.
2296 */
2297static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2298                                       struct btrfs_root *log,
2299                                       struct btrfs_path *path,
2300                                       int key_type, u64 dirid,
2301                                       u64 first_offset, u64 last_offset)
2302{
2303        int ret;
2304        struct btrfs_key key;
2305        struct btrfs_dir_log_item *item;
2306
2307        key.objectid = dirid;
2308        key.offset = first_offset;
2309        if (key_type == BTRFS_DIR_ITEM_KEY)
2310                key.type = BTRFS_DIR_LOG_ITEM_KEY;
2311        else
2312                key.type = BTRFS_DIR_LOG_INDEX_KEY;
2313        ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2314        BUG_ON(ret);
2315
2316        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2317                              struct btrfs_dir_log_item);
2318        btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2319        btrfs_mark_buffer_dirty(path->nodes[0]);
2320        btrfs_release_path(log, path);
2321        return 0;
2322}
2323
2324/*
2325 * log all the items included in the current transaction for a given
2326 * directory.  This also creates the range items in the log tree required
2327 * to replay anything deleted before the fsync
2328 */
2329static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2330                          struct btrfs_root *root, struct inode *inode,
2331                          struct btrfs_path *path,
2332                          struct btrfs_path *dst_path, int key_type,
2333                          u64 min_offset, u64 *last_offset_ret)
2334{
2335        struct btrfs_key min_key;
2336        struct btrfs_key max_key;
2337        struct btrfs_root *log = root->log_root;
2338        struct extent_buffer *src;
2339        int ret;
2340        int i;
2341        int nritems;
2342        u64 first_offset = min_offset;
2343        u64 last_offset = (u64)-1;
2344
2345        log = root->log_root;
2346        max_key.objectid = inode->i_ino;
2347        max_key.offset = (u64)-1;
2348        max_key.type = key_type;
2349
2350        min_key.objectid = inode->i_ino;
2351        min_key.type = key_type;
2352        min_key.offset = min_offset;
2353
2354        path->keep_locks = 1;
2355
2356        ret = btrfs_search_forward(root, &min_key, &max_key,
2357                                   path, 0, trans->transid);
2358
2359        /*
2360         * we didn't find anything from this transaction, see if there
2361         * is anything at all
2362         */
2363        if (ret != 0 || min_key.objectid != inode->i_ino ||
2364            min_key.type != key_type) {
2365                min_key.objectid = inode->i_ino;
2366                min_key.type = key_type;
2367                min_key.offset = (u64)-1;
2368                btrfs_release_path(root, path);
2369                ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2370                if (ret < 0) {
2371                        btrfs_release_path(root, path);
2372                        return ret;
2373                }
2374                ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2375
2376                /* if ret == 0 there are items for this type,
2377                 * create a range to tell us the last key of this type.
2378                 * otherwise, there are no items in this directory after
2379                 * *min_offset, and we create a range to indicate that.
2380                 */
2381                if (ret == 0) {
2382                        struct btrfs_key tmp;
2383                        btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2384                                              path->slots[0]);
2385                        if (key_type == tmp.type)
2386                                first_offset = max(min_offset, tmp.offset) + 1;
2387                }
2388                goto done;
2389        }
2390
2391        /* go backward to find any previous key */
2392        ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2393        if (ret == 0) {
2394                struct btrfs_key tmp;
2395                btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2396                if (key_type == tmp.type) {
2397                        first_offset = tmp.offset;
2398                        ret = overwrite_item(trans, log, dst_path,
2399                                             path->nodes[0], path->slots[0],
2400                                             &tmp);
2401                }
2402        }
2403        btrfs_release_path(root, path);
2404
2405        /* find the first key from this transaction again */
2406        ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2407        if (ret != 0) {
2408                WARN_ON(1);
2409                goto done;
2410        }
2411
2412        /*
2413         * we have a block from this transaction, log every item in it
2414         * from our directory
2415         */
2416        while (1) {
2417                struct btrfs_key tmp;
2418                src = path->nodes[0];
2419                nritems = btrfs_header_nritems(src);
2420                for (i = path->slots[0]; i < nritems; i++) {
2421                        btrfs_item_key_to_cpu(src, &min_key, i);
2422
2423                        if (min_key.objectid != inode->i_ino ||
2424                            min_key.type != key_type)
2425                                goto done;
2426                        ret = overwrite_item(trans, log, dst_path, src, i,
2427                                             &min_key);
2428                        BUG_ON(ret);
2429                }
2430                path->slots[0] = nritems;
2431
2432                /*
2433                 * look ahead to the next item and see if it is also
2434                 * from this directory and from this transaction
2435                 */
2436                ret = btrfs_next_leaf(root, path);
2437                if (ret == 1) {
2438                        last_offset = (u64)-1;
2439                        goto done;
2440                }
2441                btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2442                if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
2443                        last_offset = (u64)-1;
2444                        goto done;
2445                }
2446                if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2447                        ret = overwrite_item(trans, log, dst_path,
2448                                             path->nodes[0], path->slots[0],
2449                                             &tmp);
2450
2451                        BUG_ON(ret);
2452                        last_offset = tmp.offset;
2453                        goto done;
2454                }
2455        }
2456done:
2457        *last_offset_ret = last_offset;
2458        btrfs_release_path(root, path);
2459        btrfs_release_path(log, dst_path);
2460
2461        /* insert the log range keys to indicate where the log is valid */
2462        ret = insert_dir_log_key(trans, log, path, key_type, inode->i_ino,
2463                                 first_offset, last_offset);
2464        BUG_ON(ret);
2465        return 0;
2466}
2467
2468/*
2469 * logging directories is very similar to logging inodes, We find all the items
2470 * from the current transaction and write them to the log.
2471 *
2472 * The recovery code scans the directory in the subvolume, and if it finds a
2473 * key in the range logged that is not present in the log tree, then it means
2474 * that dir entry was unlinked during the transaction.
2475 *
2476 * In order for that scan to work, we must include one key smaller than
2477 * the smallest logged by this transaction and one key larger than the largest
2478 * key logged by this transaction.
2479 */
2480static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2481                          struct btrfs_root *root, struct inode *inode,
2482                          struct btrfs_path *path,
2483                          struct btrfs_path *dst_path)
2484{
2485        u64 min_key;
2486        u64 max_key;
2487        int ret;
2488        int key_type = BTRFS_DIR_ITEM_KEY;
2489
2490again:
2491        min_key = 0;
2492        max_key = 0;
2493        while (1) {
2494                ret = log_dir_items(trans, root, inode, path,
2495                                    dst_path, key_type, min_key,
2496                                    &max_key);
2497                BUG_ON(ret);
2498                if (max_key == (u64)-1)
2499                        break;
2500                min_key = max_key + 1;
2501        }
2502
2503        if (key_type == BTRFS_DIR_ITEM_KEY) {
2504                key_type = BTRFS_DIR_INDEX_KEY;
2505                goto again;
2506        }
2507        return 0;
2508}
2509
2510/*
2511 * a helper function to drop items from the log before we relog an
2512 * inode.  max_key_type indicates the highest item type to remove.
2513 * This cannot be run for file data extents because it does not
2514 * free the extents they point to.
2515 */
2516static int drop_objectid_items(struct btrfs_trans_handle *trans,
2517                                  struct btrfs_root *log,
2518                                  struct btrfs_path *path,
2519                                  u64 objectid, int max_key_type)
2520{
2521        int ret;
2522        struct btrfs_key key;
2523        struct btrfs_key found_key;
2524
2525        key.objectid = objectid;
2526        key.type = max_key_type;
2527        key.offset = (u64)-1;
2528
2529        while (1) {
2530                ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2531
2532                if (ret != 1)
2533                        break;
2534
2535                if (path->slots[0] == 0)
2536                        break;
2537
2538                path->slots[0]--;
2539                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2540                                      path->slots[0]);
2541
2542                if (found_key.objectid != objectid)
2543                        break;
2544
2545                ret = btrfs_del_item(trans, log, path);
2546                BUG_ON(ret);
2547                btrfs_release_path(log, path);
2548        }
2549        btrfs_release_path(log, path);
2550        return 0;
2551}
2552
2553static noinline int copy_items(struct btrfs_trans_handle *trans,
2554                               struct btrfs_root *log,
2555                               struct btrfs_path *dst_path,
2556                               struct extent_buffer *src,
2557                               int start_slot, int nr, int inode_only)
2558{
2559        unsigned long src_offset;
2560        unsigned long dst_offset;
2561        struct btrfs_file_extent_item *extent;
2562        struct btrfs_inode_item *inode_item;
2563        int ret;
2564        struct btrfs_key *ins_keys;
2565        u32 *ins_sizes;
2566        char *ins_data;
2567        int i;
2568        struct list_head ordered_sums;
2569
2570        INIT_LIST_HEAD(&ordered_sums);
2571
2572        ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2573                           nr * sizeof(u32), GFP_NOFS);
2574        ins_sizes = (u32 *)ins_data;
2575        ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2576
2577        for (i = 0; i < nr; i++) {
2578                ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2579                btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2580        }
2581        ret = btrfs_insert_empty_items(trans, log, dst_path,
2582                                       ins_keys, ins_sizes, nr);
2583        BUG_ON(ret);
2584
2585        for (i = 0; i < nr; i++, dst_path->slots[0]++) {
2586                dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2587                                                   dst_path->slots[0]);
2588
2589                src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2590
2591                copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2592                                   src_offset, ins_sizes[i]);
2593
2594                if (inode_only == LOG_INODE_EXISTS &&
2595                    ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2596                        inode_item = btrfs_item_ptr(dst_path->nodes[0],
2597                                                    dst_path->slots[0],
2598                                                    struct btrfs_inode_item);
2599                        btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2600
2601                        /* set the generation to zero so the recover code
2602                         * can tell the difference between an logging
2603                         * just to say 'this inode exists' and a logging
2604                         * to say 'update this inode with these values'
2605                         */
2606                        btrfs_set_inode_generation(dst_path->nodes[0],
2607                                                   inode_item, 0);
2608                }
2609                /* take a reference on file data extents so that truncates
2610                 * or deletes of this inode don't have to relog the inode
2611                 * again
2612                 */
2613                if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2614                        int found_type;
2615                        extent = btrfs_item_ptr(src, start_slot + i,
2616                                                struct btrfs_file_extent_item);
2617
2618                        found_type = btrfs_file_extent_type(src, extent);
2619                        if (found_type == BTRFS_FILE_EXTENT_REG ||
2620                            found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2621                                u64 ds, dl, cs, cl;
2622                                ds = btrfs_file_extent_disk_bytenr(src,
2623                                                                extent);
2624                                /* ds == 0 is a hole */
2625                                if (ds == 0)
2626                                        continue;
2627
2628                                dl = btrfs_file_extent_disk_num_bytes(src,
2629                                                                extent);
2630                                cs = btrfs_file_extent_offset(src, extent);
2631                                cl = btrfs_file_extent_num_bytes(src,
2632                                                                extent);
2633                                if (btrfs_file_extent_compression(src,
2634                                                                  extent)) {
2635                                        cs = 0;
2636                                        cl = dl;
2637                                }
2638
2639                                ret = btrfs_lookup_csums_range(
2640                                                log->fs_info->csum_root,
2641                                                ds + cs, ds + cs + cl - 1,
2642                                                &ordered_sums);
2643                                BUG_ON(ret);
2644                        }
2645                }
2646        }
2647
2648        btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2649        btrfs_release_path(log, dst_path);
2650        kfree(ins_data);
2651
2652        /*
2653         * we have to do this after the loop above to avoid changing the
2654         * log tree while trying to change the log tree.
2655         */
2656        while (!list_empty(&ordered_sums)) {
2657                struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2658                                                   struct btrfs_ordered_sum,
2659                                                   list);
2660                ret = btrfs_csum_file_blocks(trans, log, sums);
2661                BUG_ON(ret);
2662                list_del(&sums->list);
2663                kfree(sums);
2664        }
2665        return 0;
2666}
2667
2668/* log a single inode in the tree log.
2669 * At least one parent directory for this inode must exist in the tree
2670 * or be logged already.
2671 *
2672 * Any items from this inode changed by the current transaction are copied
2673 * to the log tree.  An extra reference is taken on any extents in this
2674 * file, allowing us to avoid a whole pile of corner cases around logging
2675 * blocks that have been removed from the tree.
2676 *
2677 * See LOG_INODE_ALL and related defines for a description of what inode_only
2678 * does.
2679 *
2680 * This handles both files and directories.
2681 */
2682static int btrfs_log_inode(struct btrfs_trans_handle *trans,
2683                             struct btrfs_root *root, struct inode *inode,
2684                             int inode_only)
2685{
2686        struct btrfs_path *path;
2687        struct btrfs_path *dst_path;
2688        struct btrfs_key min_key;
2689        struct btrfs_key max_key;
2690        struct btrfs_root *log = root->log_root;
2691        struct extent_buffer *src = NULL;
2692        u32 size;
2693        int ret;
2694        int nritems;
2695        int ins_start_slot = 0;
2696        int ins_nr;
2697
2698        log = root->log_root;
2699
2700        path = btrfs_alloc_path();
2701        dst_path = btrfs_alloc_path();
2702
2703        min_key.objectid = inode->i_ino;
2704        min_key.type = BTRFS_INODE_ITEM_KEY;
2705        min_key.offset = 0;
2706
2707        max_key.objectid = inode->i_ino;
2708
2709        /* today the code can only do partial logging of directories */
2710        if (!S_ISDIR(inode->i_mode))
2711            inode_only = LOG_INODE_ALL;
2712
2713        if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2714                max_key.type = BTRFS_XATTR_ITEM_KEY;
2715        else
2716                max_key.type = (u8)-1;
2717        max_key.offset = (u64)-1;
2718
2719        mutex_lock(&BTRFS_I(inode)->log_mutex);
2720
2721        /*
2722         * a brute force approach to making sure we get the most uptodate
2723         * copies of everything.
2724         */
2725        if (S_ISDIR(inode->i_mode)) {
2726                int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2727
2728                if (inode_only == LOG_INODE_EXISTS)
2729                        max_key_type = BTRFS_XATTR_ITEM_KEY;
2730                ret = drop_objectid_items(trans, log, path,
2731                                          inode->i_ino, max_key_type);
2732        } else {
2733                ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2734        }
2735        BUG_ON(ret);
2736        path->keep_locks = 1;
2737
2738        while (1) {
2739                ins_nr = 0;
2740                ret = btrfs_search_forward(root, &min_key, &max_key,
2741                                           path, 0, trans->transid);
2742                if (ret != 0)
2743                        break;
2744again:
2745                /* note, ins_nr might be > 0 here, cleanup outside the loop */
2746                if (min_key.objectid != inode->i_ino)
2747                        break;
2748                if (min_key.type > max_key.type)
2749                        break;
2750
2751                src = path->nodes[0];
2752                size = btrfs_item_size_nr(src, path->slots[0]);
2753                if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2754                        ins_nr++;
2755                        goto next_slot;
2756                } else if (!ins_nr) {
2757                        ins_start_slot = path->slots[0];
2758                        ins_nr = 1;
2759                        goto next_slot;
2760                }
2761
2762                ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2763                                 ins_nr, inode_only);
2764                BUG_ON(ret);
2765                ins_nr = 1;
2766                ins_start_slot = path->slots[0];
2767next_slot:
2768
2769                nritems = btrfs_header_nritems(path->nodes[0]);
2770                path->slots[0]++;
2771                if (path->slots[0] < nritems) {
2772                        btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2773                                              path->slots[0]);
2774                        goto again;
2775                }
2776                if (ins_nr) {
2777                        ret = copy_items(trans, log, dst_path, src,
2778                                         ins_start_slot,
2779                                         ins_nr, inode_only);
2780                        BUG_ON(ret);
2781                        ins_nr = 0;
2782                }
2783                btrfs_release_path(root, path);
2784
2785                if (min_key.offset < (u64)-1)
2786                        min_key.offset++;
2787                else if (min_key.type < (u8)-1)
2788                        min_key.type++;
2789                else if (min_key.objectid < (u64)-1)
2790                        min_key.objectid++;
2791                else
2792                        break;
2793        }
2794        if (ins_nr) {
2795                ret = copy_items(trans, log, dst_path, src,
2796                                 ins_start_slot,
2797                                 ins_nr, inode_only);
2798                BUG_ON(ret);
2799                ins_nr = 0;
2800        }
2801        WARN_ON(ins_nr);
2802        if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2803                btrfs_release_path(root, path);
2804                btrfs_release_path(log, dst_path);
2805                ret = log_directory_changes(trans, root, inode, path, dst_path);
2806                BUG_ON(ret);
2807        }
2808        BTRFS_I(inode)->logged_trans = trans->transid;
2809        mutex_unlock(&BTRFS_I(inode)->log_mutex);
2810
2811        btrfs_free_path(path);
2812        btrfs_free_path(dst_path);
2813        return 0;
2814}
2815
2816/*
2817 * follow the dentry parent pointers up the chain and see if any
2818 * of the directories in it require a full commit before they can
2819 * be logged.  Returns zero if nothing special needs to be done or 1 if
2820 * a full commit is required.
2821 */
2822static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2823                                               struct inode *inode,
2824                                               struct dentry *parent,
2825                                               struct super_block *sb,
2826                                               u64 last_committed)
2827{
2828        int ret = 0;
2829        struct btrfs_root *root;
2830
2831        /*
2832         * for regular files, if its inode is already on disk, we don't
2833         * have to worry about the parents at all.  This is because
2834         * we can use the last_unlink_trans field to record renames
2835         * and other fun in this file.
2836         */
2837        if (S_ISREG(inode->i_mode) &&
2838            BTRFS_I(inode)->generation <= last_committed &&
2839            BTRFS_I(inode)->last_unlink_trans <= last_committed)
2840                        goto out;
2841
2842        if (!S_ISDIR(inode->i_mode)) {
2843                if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2844                        goto out;
2845                inode = parent->d_inode;
2846        }
2847
2848        while (1) {
2849                BTRFS_I(inode)->logged_trans = trans->transid;
2850                smp_mb();
2851
2852                if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
2853                        root = BTRFS_I(inode)->root;
2854
2855                        /*
2856                         * make sure any commits to the log are forced
2857                         * to be full commits
2858                         */
2859                        root->fs_info->last_trans_log_full_commit =
2860                                trans->transid;
2861                        ret = 1;
2862                        break;
2863                }
2864
2865                if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2866                        break;
2867
2868                if (IS_ROOT(parent))
2869                        break;
2870
2871                parent = parent->d_parent;
2872                inode = parent->d_inode;
2873
2874        }
2875out:
2876        return ret;
2877}
2878
2879static int inode_in_log(struct btrfs_trans_handle *trans,
2880                 struct inode *inode)
2881{
2882        struct btrfs_root *root = BTRFS_I(inode)->root;
2883        int ret = 0;
2884
2885        mutex_lock(&root->log_mutex);
2886        if (BTRFS_I(inode)->logged_trans == trans->transid &&
2887            BTRFS_I(inode)->last_sub_trans <= root->last_log_commit)
2888                ret = 1;
2889        mutex_unlock(&root->log_mutex);
2890        return ret;
2891}
2892
2893
2894/*
2895 * helper function around btrfs_log_inode to make sure newly created
2896 * parent directories also end up in the log.  A minimal inode and backref
2897 * only logging is done of any parent directories that are older than
2898 * the last committed transaction
2899 */
2900int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
2901                    struct btrfs_root *root, struct inode *inode,
2902                    struct dentry *parent, int exists_only)
2903{
2904        int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
2905        struct super_block *sb;
2906        int ret = 0;
2907        u64 last_committed = root->fs_info->last_trans_committed;
2908
2909        sb = inode->i_sb;
2910
2911        if (btrfs_test_opt(root, NOTREELOG)) {
2912                ret = 1;
2913                goto end_no_trans;
2914        }
2915
2916        if (root->fs_info->last_trans_log_full_commit >
2917            root->fs_info->last_trans_committed) {
2918                ret = 1;
2919                goto end_no_trans;
2920        }
2921
2922        if (root != BTRFS_I(inode)->root ||
2923            btrfs_root_refs(&root->root_item) == 0) {
2924                ret = 1;
2925                goto end_no_trans;
2926        }
2927
2928        ret = check_parent_dirs_for_sync(trans, inode, parent,
2929                                         sb, last_committed);
2930        if (ret)
2931                goto end_no_trans;
2932
2933        if (inode_in_log(trans, inode)) {
2934                ret = BTRFS_NO_LOG_SYNC;
2935                goto end_no_trans;
2936        }
2937
2938        start_log_trans(trans, root);
2939
2940        ret = btrfs_log_inode(trans, root, inode, inode_only);
2941        BUG_ON(ret);
2942
2943        /*
2944         * for regular files, if its inode is already on disk, we don't
2945         * have to worry about the parents at all.  This is because
2946         * we can use the last_unlink_trans field to record renames
2947         * and other fun in this file.
2948         */
2949        if (S_ISREG(inode->i_mode) &&
2950            BTRFS_I(inode)->generation <= last_committed &&
2951            BTRFS_I(inode)->last_unlink_trans <= last_committed)
2952                        goto no_parent;
2953
2954        inode_only = LOG_INODE_EXISTS;
2955        while (1) {
2956                if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2957                        break;
2958
2959                inode = parent->d_inode;
2960                if (root != BTRFS_I(inode)->root)
2961                        break;
2962
2963                if (BTRFS_I(inode)->generation >
2964                    root->fs_info->last_trans_committed) {
2965                        ret = btrfs_log_inode(trans, root, inode, inode_only);
2966                        BUG_ON(ret);
2967                }
2968                if (IS_ROOT(parent))
2969                        break;
2970
2971                parent = parent->d_parent;
2972        }
2973no_parent:
2974        ret = 0;
2975        btrfs_end_log_trans(root);
2976end_no_trans:
2977        return ret;
2978}
2979
2980/*
2981 * it is not safe to log dentry if the chunk root has added new
2982 * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
2983 * If this returns 1, you must commit the transaction to safely get your
2984 * data on disk.
2985 */
2986int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
2987                          struct btrfs_root *root, struct dentry *dentry)
2988{
2989        return btrfs_log_inode_parent(trans, root, dentry->d_inode,
2990                                      dentry->d_parent, 0);
2991}
2992
2993/*
2994 * should be called during mount to recover any replay any log trees
2995 * from the FS
2996 */
2997int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
2998{
2999        int ret;
3000        struct btrfs_path *path;
3001        struct btrfs_trans_handle *trans;
3002        struct btrfs_key key;
3003        struct btrfs_key found_key;
3004        struct btrfs_key tmp_key;
3005        struct btrfs_root *log;
3006        struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3007        struct walk_control wc = {
3008                .process_func = process_one_buffer,
3009                .stage = 0,
3010        };
3011
3012        fs_info->log_root_recovering = 1;
3013        path = btrfs_alloc_path();
3014        BUG_ON(!path);
3015
3016        trans = btrfs_start_transaction(fs_info->tree_root, 1);
3017
3018        wc.trans = trans;
3019        wc.pin = 1;
3020
3021        walk_log_tree(trans, log_root_tree, &wc);
3022
3023again:
3024        key.objectid = BTRFS_TREE_LOG_OBJECTID;
3025        key.offset = (u64)-1;
3026        btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3027
3028        while (1) {
3029                ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3030                if (ret < 0)
3031                        break;
3032                if (ret > 0) {
3033                        if (path->slots[0] == 0)
3034                                break;
3035                        path->slots[0]--;
3036                }
3037                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3038                                      path->slots[0]);
3039                btrfs_release_path(log_root_tree, path);
3040                if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3041                        break;
3042
3043                log = btrfs_read_fs_root_no_radix(log_root_tree,
3044                                                  &found_key);
3045                BUG_ON(!log);
3046
3047
3048                tmp_key.objectid = found_key.offset;
3049                tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3050                tmp_key.offset = (u64)-1;
3051
3052                wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3053                BUG_ON(!wc.replay_dest);
3054
3055                wc.replay_dest->log_root = log;
3056                btrfs_record_root_in_trans(trans, wc.replay_dest);
3057                ret = walk_log_tree(trans, log, &wc);
3058                BUG_ON(ret);
3059
3060                if (wc.stage == LOG_WALK_REPLAY_ALL) {
3061                        ret = fixup_inode_link_counts(trans, wc.replay_dest,
3062                                                      path);
3063                        BUG_ON(ret);
3064                }
3065
3066                key.offset = found_key.offset - 1;
3067                wc.replay_dest->log_root = NULL;
3068                free_extent_buffer(log->node);
3069                free_extent_buffer(log->commit_root);
3070                kfree(log);
3071
3072                if (found_key.offset == 0)
3073                        break;
3074        }
3075        btrfs_release_path(log_root_tree, path);
3076
3077        /* step one is to pin it all, step two is to replay just inodes */
3078        if (wc.pin) {
3079                wc.pin = 0;
3080                wc.process_func = replay_one_buffer;
3081                wc.stage = LOG_WALK_REPLAY_INODES;
3082                goto again;
3083        }
3084        /* step three is to replay everything */
3085        if (wc.stage < LOG_WALK_REPLAY_ALL) {
3086                wc.stage++;
3087                goto again;
3088        }
3089
3090        btrfs_free_path(path);
3091
3092        free_extent_buffer(log_root_tree->node);
3093        log_root_tree->log_root = NULL;
3094        fs_info->log_root_recovering = 0;
3095
3096        /* step 4: commit the transaction, which also unpins the blocks */
3097        btrfs_commit_transaction(trans, fs_info->tree_root);
3098
3099        kfree(log_root_tree);
3100        return 0;
3101}
3102
3103/*
3104 * there are some corner cases where we want to force a full
3105 * commit instead of allowing a directory to be logged.
3106 *
3107 * They revolve around files there were unlinked from the directory, and
3108 * this function updates the parent directory so that a full commit is
3109 * properly done if it is fsync'd later after the unlinks are done.
3110 */
3111void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3112                             struct inode *dir, struct inode *inode,
3113                             int for_rename)
3114{
3115        /*
3116         * when we're logging a file, if it hasn't been renamed
3117         * or unlinked, and its inode is fully committed on disk,
3118         * we don't have to worry about walking up the directory chain
3119         * to log its parents.
3120         *
3121         * So, we use the last_unlink_trans field to put this transid
3122         * into the file.  When the file is logged we check it and
3123         * don't log the parents if the file is fully on disk.
3124         */
3125        if (S_ISREG(inode->i_mode))
3126                BTRFS_I(inode)->last_unlink_trans = trans->transid;
3127
3128        /*
3129         * if this directory was already logged any new
3130         * names for this file/dir will get recorded
3131         */
3132        smp_mb();
3133        if (BTRFS_I(dir)->logged_trans == trans->transid)
3134                return;
3135
3136        /*
3137         * if the inode we're about to unlink was logged,
3138         * the log will be properly updated for any new names
3139         */
3140        if (BTRFS_I(inode)->logged_trans == trans->transid)
3141                return;
3142
3143        /*
3144         * when renaming files across directories, if the directory
3145         * there we're unlinking from gets fsync'd later on, there's
3146         * no way to find the destination directory later and fsync it
3147         * properly.  So, we have to be conservative and force commits
3148         * so the new name gets discovered.
3149         */
3150        if (for_rename)
3151                goto record;
3152
3153        /* we can safely do the unlink without any special recording */
3154        return;
3155
3156record:
3157        BTRFS_I(dir)->last_unlink_trans = trans->transid;
3158}
3159
3160/*
3161 * Call this after adding a new name for a file and it will properly
3162 * update the log to reflect the new name.
3163 *
3164 * It will return zero if all goes well, and it will return 1 if a
3165 * full transaction commit is required.
3166 */
3167int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3168                        struct inode *inode, struct inode *old_dir,
3169                        struct dentry *parent)
3170{
3171        struct btrfs_root * root = BTRFS_I(inode)->root;
3172
3173        /*
3174         * this will force the logging code to walk the dentry chain
3175         * up for the file
3176         */
3177        if (S_ISREG(inode->i_mode))
3178                BTRFS_I(inode)->last_unlink_trans = trans->transid;
3179
3180        /*
3181         * if this inode hasn't been logged and directory we're renaming it
3182         * from hasn't been logged, we don't need to log it
3183         */
3184        if (BTRFS_I(inode)->logged_trans <=
3185            root->fs_info->last_trans_committed &&
3186            (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3187                    root->fs_info->last_trans_committed))
3188                return 0;
3189
3190        return btrfs_log_inode_parent(trans, root, inode, parent, 1);
3191}
3192
3193