linux/fs/btrfs/volumes.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18#include <linux/sched.h>
  19#include <linux/bio.h>
  20#include <linux/buffer_head.h>
  21#include <linux/blkdev.h>
  22#include <linux/random.h>
  23#include <linux/iocontext.h>
  24#include <asm/div64.h>
  25#include "compat.h"
  26#include "ctree.h"
  27#include "extent_map.h"
  28#include "disk-io.h"
  29#include "transaction.h"
  30#include "print-tree.h"
  31#include "volumes.h"
  32#include "async-thread.h"
  33
  34struct map_lookup {
  35        u64 type;
  36        int io_align;
  37        int io_width;
  38        int stripe_len;
  39        int sector_size;
  40        int num_stripes;
  41        int sub_stripes;
  42        struct btrfs_bio_stripe stripes[];
  43};
  44
  45static int init_first_rw_device(struct btrfs_trans_handle *trans,
  46                                struct btrfs_root *root,
  47                                struct btrfs_device *device);
  48static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
  49
  50#define map_lookup_size(n) (sizeof(struct map_lookup) + \
  51                            (sizeof(struct btrfs_bio_stripe) * (n)))
  52
  53static DEFINE_MUTEX(uuid_mutex);
  54static LIST_HEAD(fs_uuids);
  55
  56void btrfs_lock_volumes(void)
  57{
  58        mutex_lock(&uuid_mutex);
  59}
  60
  61void btrfs_unlock_volumes(void)
  62{
  63        mutex_unlock(&uuid_mutex);
  64}
  65
  66static void lock_chunks(struct btrfs_root *root)
  67{
  68        mutex_lock(&root->fs_info->chunk_mutex);
  69}
  70
  71static void unlock_chunks(struct btrfs_root *root)
  72{
  73        mutex_unlock(&root->fs_info->chunk_mutex);
  74}
  75
  76static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
  77{
  78        struct btrfs_device *device;
  79        WARN_ON(fs_devices->opened);
  80        while (!list_empty(&fs_devices->devices)) {
  81                device = list_entry(fs_devices->devices.next,
  82                                    struct btrfs_device, dev_list);
  83                list_del(&device->dev_list);
  84                kfree(device->name);
  85                kfree(device);
  86        }
  87        kfree(fs_devices);
  88}
  89
  90int btrfs_cleanup_fs_uuids(void)
  91{
  92        struct btrfs_fs_devices *fs_devices;
  93
  94        while (!list_empty(&fs_uuids)) {
  95                fs_devices = list_entry(fs_uuids.next,
  96                                        struct btrfs_fs_devices, list);
  97                list_del(&fs_devices->list);
  98                free_fs_devices(fs_devices);
  99        }
 100        return 0;
 101}
 102
 103static noinline struct btrfs_device *__find_device(struct list_head *head,
 104                                                   u64 devid, u8 *uuid)
 105{
 106        struct btrfs_device *dev;
 107
 108        list_for_each_entry(dev, head, dev_list) {
 109                if (dev->devid == devid &&
 110                    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
 111                        return dev;
 112                }
 113        }
 114        return NULL;
 115}
 116
 117static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
 118{
 119        struct btrfs_fs_devices *fs_devices;
 120
 121        list_for_each_entry(fs_devices, &fs_uuids, list) {
 122                if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
 123                        return fs_devices;
 124        }
 125        return NULL;
 126}
 127
 128static void requeue_list(struct btrfs_pending_bios *pending_bios,
 129                        struct bio *head, struct bio *tail)
 130{
 131
 132        struct bio *old_head;
 133
 134        old_head = pending_bios->head;
 135        pending_bios->head = head;
 136        if (pending_bios->tail)
 137                tail->bi_next = old_head;
 138        else
 139                pending_bios->tail = tail;
 140}
 141
 142/*
 143 * we try to collect pending bios for a device so we don't get a large
 144 * number of procs sending bios down to the same device.  This greatly
 145 * improves the schedulers ability to collect and merge the bios.
 146 *
 147 * But, it also turns into a long list of bios to process and that is sure
 148 * to eventually make the worker thread block.  The solution here is to
 149 * make some progress and then put this work struct back at the end of
 150 * the list if the block device is congested.  This way, multiple devices
 151 * can make progress from a single worker thread.
 152 */
 153static noinline int run_scheduled_bios(struct btrfs_device *device)
 154{
 155        struct bio *pending;
 156        struct backing_dev_info *bdi;
 157        struct btrfs_fs_info *fs_info;
 158        struct btrfs_pending_bios *pending_bios;
 159        struct bio *tail;
 160        struct bio *cur;
 161        int again = 0;
 162        unsigned long num_run;
 163        unsigned long num_sync_run;
 164        unsigned long batch_run = 0;
 165        unsigned long limit;
 166        unsigned long last_waited = 0;
 167        int force_reg = 0;
 168
 169        bdi = blk_get_backing_dev_info(device->bdev);
 170        fs_info = device->dev_root->fs_info;
 171        limit = btrfs_async_submit_limit(fs_info);
 172        limit = limit * 2 / 3;
 173
 174        /* we want to make sure that every time we switch from the sync
 175         * list to the normal list, we unplug
 176         */
 177        num_sync_run = 0;
 178
 179loop:
 180        spin_lock(&device->io_lock);
 181
 182loop_lock:
 183        num_run = 0;
 184
 185        /* take all the bios off the list at once and process them
 186         * later on (without the lock held).  But, remember the
 187         * tail and other pointers so the bios can be properly reinserted
 188         * into the list if we hit congestion
 189         */
 190        if (!force_reg && device->pending_sync_bios.head) {
 191                pending_bios = &device->pending_sync_bios;
 192                force_reg = 1;
 193        } else {
 194                pending_bios = &device->pending_bios;
 195                force_reg = 0;
 196        }
 197
 198        pending = pending_bios->head;
 199        tail = pending_bios->tail;
 200        WARN_ON(pending && !tail);
 201
 202        /*
 203         * if pending was null this time around, no bios need processing
 204         * at all and we can stop.  Otherwise it'll loop back up again
 205         * and do an additional check so no bios are missed.
 206         *
 207         * device->running_pending is used to synchronize with the
 208         * schedule_bio code.
 209         */
 210        if (device->pending_sync_bios.head == NULL &&
 211            device->pending_bios.head == NULL) {
 212                again = 0;
 213                device->running_pending = 0;
 214        } else {
 215                again = 1;
 216                device->running_pending = 1;
 217        }
 218
 219        pending_bios->head = NULL;
 220        pending_bios->tail = NULL;
 221
 222        spin_unlock(&device->io_lock);
 223
 224        /*
 225         * if we're doing the regular priority list, make sure we unplug
 226         * for any high prio bios we've sent down
 227         */
 228        if (pending_bios == &device->pending_bios && num_sync_run > 0) {
 229                num_sync_run = 0;
 230                blk_run_backing_dev(bdi, NULL);
 231        }
 232
 233        while (pending) {
 234
 235                rmb();
 236                /* we want to work on both lists, but do more bios on the
 237                 * sync list than the regular list
 238                 */
 239                if ((num_run > 32 &&
 240                    pending_bios != &device->pending_sync_bios &&
 241                    device->pending_sync_bios.head) ||
 242                   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
 243                    device->pending_bios.head)) {
 244                        spin_lock(&device->io_lock);
 245                        requeue_list(pending_bios, pending, tail);
 246                        goto loop_lock;
 247                }
 248
 249                cur = pending;
 250                pending = pending->bi_next;
 251                cur->bi_next = NULL;
 252                atomic_dec(&fs_info->nr_async_bios);
 253
 254                if (atomic_read(&fs_info->nr_async_bios) < limit &&
 255                    waitqueue_active(&fs_info->async_submit_wait))
 256                        wake_up(&fs_info->async_submit_wait);
 257
 258                BUG_ON(atomic_read(&cur->bi_cnt) == 0);
 259                submit_bio(cur->bi_rw, cur);
 260                num_run++;
 261                batch_run++;
 262
 263                if (bio_rw_flagged(cur, BIO_RW_SYNCIO))
 264                        num_sync_run++;
 265
 266                if (need_resched()) {
 267                        if (num_sync_run) {
 268                                blk_run_backing_dev(bdi, NULL);
 269                                num_sync_run = 0;
 270                        }
 271                        cond_resched();
 272                }
 273
 274                /*
 275                 * we made progress, there is more work to do and the bdi
 276                 * is now congested.  Back off and let other work structs
 277                 * run instead
 278                 */
 279                if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
 280                    fs_info->fs_devices->open_devices > 1) {
 281                        struct io_context *ioc;
 282
 283                        ioc = current->io_context;
 284
 285                        /*
 286                         * the main goal here is that we don't want to
 287                         * block if we're going to be able to submit
 288                         * more requests without blocking.
 289                         *
 290                         * This code does two great things, it pokes into
 291                         * the elevator code from a filesystem _and_
 292                         * it makes assumptions about how batching works.
 293                         */
 294                        if (ioc && ioc->nr_batch_requests > 0 &&
 295                            time_before(jiffies, ioc->last_waited + HZ/50UL) &&
 296                            (last_waited == 0 ||
 297                             ioc->last_waited == last_waited)) {
 298                                /*
 299                                 * we want to go through our batch of
 300                                 * requests and stop.  So, we copy out
 301                                 * the ioc->last_waited time and test
 302                                 * against it before looping
 303                                 */
 304                                last_waited = ioc->last_waited;
 305                                if (need_resched()) {
 306                                        if (num_sync_run) {
 307                                                blk_run_backing_dev(bdi, NULL);
 308                                                num_sync_run = 0;
 309                                        }
 310                                        cond_resched();
 311                                }
 312                                continue;
 313                        }
 314                        spin_lock(&device->io_lock);
 315                        requeue_list(pending_bios, pending, tail);
 316                        device->running_pending = 1;
 317
 318                        spin_unlock(&device->io_lock);
 319                        btrfs_requeue_work(&device->work);
 320                        goto done;
 321                }
 322        }
 323
 324        if (num_sync_run) {
 325                num_sync_run = 0;
 326                blk_run_backing_dev(bdi, NULL);
 327        }
 328
 329        cond_resched();
 330        if (again)
 331                goto loop;
 332
 333        spin_lock(&device->io_lock);
 334        if (device->pending_bios.head || device->pending_sync_bios.head)
 335                goto loop_lock;
 336        spin_unlock(&device->io_lock);
 337
 338        /*
 339         * IO has already been through a long path to get here.  Checksumming,
 340         * async helper threads, perhaps compression.  We've done a pretty
 341         * good job of collecting a batch of IO and should just unplug
 342         * the device right away.
 343         *
 344         * This will help anyone who is waiting on the IO, they might have
 345         * already unplugged, but managed to do so before the bio they
 346         * cared about found its way down here.
 347         */
 348        blk_run_backing_dev(bdi, NULL);
 349done:
 350        return 0;
 351}
 352
 353static void pending_bios_fn(struct btrfs_work *work)
 354{
 355        struct btrfs_device *device;
 356
 357        device = container_of(work, struct btrfs_device, work);
 358        run_scheduled_bios(device);
 359}
 360
 361static noinline int device_list_add(const char *path,
 362                           struct btrfs_super_block *disk_super,
 363                           u64 devid, struct btrfs_fs_devices **fs_devices_ret)
 364{
 365        struct btrfs_device *device;
 366        struct btrfs_fs_devices *fs_devices;
 367        u64 found_transid = btrfs_super_generation(disk_super);
 368
 369        fs_devices = find_fsid(disk_super->fsid);
 370        if (!fs_devices) {
 371                fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
 372                if (!fs_devices)
 373                        return -ENOMEM;
 374                INIT_LIST_HEAD(&fs_devices->devices);
 375                INIT_LIST_HEAD(&fs_devices->alloc_list);
 376                list_add(&fs_devices->list, &fs_uuids);
 377                memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
 378                fs_devices->latest_devid = devid;
 379                fs_devices->latest_trans = found_transid;
 380                mutex_init(&fs_devices->device_list_mutex);
 381                device = NULL;
 382        } else {
 383                device = __find_device(&fs_devices->devices, devid,
 384                                       disk_super->dev_item.uuid);
 385        }
 386        if (!device) {
 387                if (fs_devices->opened)
 388                        return -EBUSY;
 389
 390                device = kzalloc(sizeof(*device), GFP_NOFS);
 391                if (!device) {
 392                        /* we can safely leave the fs_devices entry around */
 393                        return -ENOMEM;
 394                }
 395                device->devid = devid;
 396                device->work.func = pending_bios_fn;
 397                memcpy(device->uuid, disk_super->dev_item.uuid,
 398                       BTRFS_UUID_SIZE);
 399                device->barriers = 1;
 400                spin_lock_init(&device->io_lock);
 401                device->name = kstrdup(path, GFP_NOFS);
 402                if (!device->name) {
 403                        kfree(device);
 404                        return -ENOMEM;
 405                }
 406                INIT_LIST_HEAD(&device->dev_alloc_list);
 407
 408                mutex_lock(&fs_devices->device_list_mutex);
 409                list_add(&device->dev_list, &fs_devices->devices);
 410                mutex_unlock(&fs_devices->device_list_mutex);
 411
 412                device->fs_devices = fs_devices;
 413                fs_devices->num_devices++;
 414        }
 415
 416        if (found_transid > fs_devices->latest_trans) {
 417                fs_devices->latest_devid = devid;
 418                fs_devices->latest_trans = found_transid;
 419        }
 420        *fs_devices_ret = fs_devices;
 421        return 0;
 422}
 423
 424static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
 425{
 426        struct btrfs_fs_devices *fs_devices;
 427        struct btrfs_device *device;
 428        struct btrfs_device *orig_dev;
 429
 430        fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
 431        if (!fs_devices)
 432                return ERR_PTR(-ENOMEM);
 433
 434        INIT_LIST_HEAD(&fs_devices->devices);
 435        INIT_LIST_HEAD(&fs_devices->alloc_list);
 436        INIT_LIST_HEAD(&fs_devices->list);
 437        mutex_init(&fs_devices->device_list_mutex);
 438        fs_devices->latest_devid = orig->latest_devid;
 439        fs_devices->latest_trans = orig->latest_trans;
 440        memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
 441
 442        mutex_lock(&orig->device_list_mutex);
 443        list_for_each_entry(orig_dev, &orig->devices, dev_list) {
 444                device = kzalloc(sizeof(*device), GFP_NOFS);
 445                if (!device)
 446                        goto error;
 447
 448                device->name = kstrdup(orig_dev->name, GFP_NOFS);
 449                if (!device->name) {
 450                        kfree(device);
 451                        goto error;
 452                }
 453
 454                device->devid = orig_dev->devid;
 455                device->work.func = pending_bios_fn;
 456                memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
 457                device->barriers = 1;
 458                spin_lock_init(&device->io_lock);
 459                INIT_LIST_HEAD(&device->dev_list);
 460                INIT_LIST_HEAD(&device->dev_alloc_list);
 461
 462                list_add(&device->dev_list, &fs_devices->devices);
 463                device->fs_devices = fs_devices;
 464                fs_devices->num_devices++;
 465        }
 466        mutex_unlock(&orig->device_list_mutex);
 467        return fs_devices;
 468error:
 469        mutex_unlock(&orig->device_list_mutex);
 470        free_fs_devices(fs_devices);
 471        return ERR_PTR(-ENOMEM);
 472}
 473
 474int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
 475{
 476        struct btrfs_device *device, *next;
 477
 478        mutex_lock(&uuid_mutex);
 479again:
 480        mutex_lock(&fs_devices->device_list_mutex);
 481        list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
 482                if (device->in_fs_metadata)
 483                        continue;
 484
 485                if (device->bdev) {
 486                        close_bdev_exclusive(device->bdev, device->mode);
 487                        device->bdev = NULL;
 488                        fs_devices->open_devices--;
 489                }
 490                if (device->writeable) {
 491                        list_del_init(&device->dev_alloc_list);
 492                        device->writeable = 0;
 493                        fs_devices->rw_devices--;
 494                }
 495                list_del_init(&device->dev_list);
 496                fs_devices->num_devices--;
 497                kfree(device->name);
 498                kfree(device);
 499        }
 500        mutex_unlock(&fs_devices->device_list_mutex);
 501
 502        if (fs_devices->seed) {
 503                fs_devices = fs_devices->seed;
 504                goto again;
 505        }
 506
 507        mutex_unlock(&uuid_mutex);
 508        return 0;
 509}
 510
 511static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
 512{
 513        struct btrfs_device *device;
 514
 515        if (--fs_devices->opened > 0)
 516                return 0;
 517
 518        list_for_each_entry(device, &fs_devices->devices, dev_list) {
 519                if (device->bdev) {
 520                        close_bdev_exclusive(device->bdev, device->mode);
 521                        fs_devices->open_devices--;
 522                }
 523                if (device->writeable) {
 524                        list_del_init(&device->dev_alloc_list);
 525                        fs_devices->rw_devices--;
 526                }
 527
 528                device->bdev = NULL;
 529                device->writeable = 0;
 530                device->in_fs_metadata = 0;
 531        }
 532        WARN_ON(fs_devices->open_devices);
 533        WARN_ON(fs_devices->rw_devices);
 534        fs_devices->opened = 0;
 535        fs_devices->seeding = 0;
 536
 537        return 0;
 538}
 539
 540int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
 541{
 542        struct btrfs_fs_devices *seed_devices = NULL;
 543        int ret;
 544
 545        mutex_lock(&uuid_mutex);
 546        ret = __btrfs_close_devices(fs_devices);
 547        if (!fs_devices->opened) {
 548                seed_devices = fs_devices->seed;
 549                fs_devices->seed = NULL;
 550        }
 551        mutex_unlock(&uuid_mutex);
 552
 553        while (seed_devices) {
 554                fs_devices = seed_devices;
 555                seed_devices = fs_devices->seed;
 556                __btrfs_close_devices(fs_devices);
 557                free_fs_devices(fs_devices);
 558        }
 559        return ret;
 560}
 561
 562static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
 563                                fmode_t flags, void *holder)
 564{
 565        struct block_device *bdev;
 566        struct list_head *head = &fs_devices->devices;
 567        struct btrfs_device *device;
 568        struct block_device *latest_bdev = NULL;
 569        struct buffer_head *bh;
 570        struct btrfs_super_block *disk_super;
 571        u64 latest_devid = 0;
 572        u64 latest_transid = 0;
 573        u64 devid;
 574        int seeding = 1;
 575        int ret = 0;
 576
 577        list_for_each_entry(device, head, dev_list) {
 578                if (device->bdev)
 579                        continue;
 580                if (!device->name)
 581                        continue;
 582
 583                bdev = open_bdev_exclusive(device->name, flags, holder);
 584                if (IS_ERR(bdev)) {
 585                        printk(KERN_INFO "open %s failed\n", device->name);
 586                        goto error;
 587                }
 588                set_blocksize(bdev, 4096);
 589
 590                bh = btrfs_read_dev_super(bdev);
 591                if (!bh)
 592                        goto error_close;
 593
 594                disk_super = (struct btrfs_super_block *)bh->b_data;
 595                devid = le64_to_cpu(disk_super->dev_item.devid);
 596                if (devid != device->devid)
 597                        goto error_brelse;
 598
 599                if (memcmp(device->uuid, disk_super->dev_item.uuid,
 600                           BTRFS_UUID_SIZE))
 601                        goto error_brelse;
 602
 603                device->generation = btrfs_super_generation(disk_super);
 604                if (!latest_transid || device->generation > latest_transid) {
 605                        latest_devid = devid;
 606                        latest_transid = device->generation;
 607                        latest_bdev = bdev;
 608                }
 609
 610                if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
 611                        device->writeable = 0;
 612                } else {
 613                        device->writeable = !bdev_read_only(bdev);
 614                        seeding = 0;
 615                }
 616
 617                device->bdev = bdev;
 618                device->in_fs_metadata = 0;
 619                device->mode = flags;
 620
 621                if (!blk_queue_nonrot(bdev_get_queue(bdev)))
 622                        fs_devices->rotating = 1;
 623
 624                fs_devices->open_devices++;
 625                if (device->writeable) {
 626                        fs_devices->rw_devices++;
 627                        list_add(&device->dev_alloc_list,
 628                                 &fs_devices->alloc_list);
 629                }
 630                continue;
 631
 632error_brelse:
 633                brelse(bh);
 634error_close:
 635                close_bdev_exclusive(bdev, FMODE_READ);
 636error:
 637                continue;
 638        }
 639        if (fs_devices->open_devices == 0) {
 640                ret = -EIO;
 641                goto out;
 642        }
 643        fs_devices->seeding = seeding;
 644        fs_devices->opened = 1;
 645        fs_devices->latest_bdev = latest_bdev;
 646        fs_devices->latest_devid = latest_devid;
 647        fs_devices->latest_trans = latest_transid;
 648        fs_devices->total_rw_bytes = 0;
 649out:
 650        return ret;
 651}
 652
 653int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
 654                       fmode_t flags, void *holder)
 655{
 656        int ret;
 657
 658        mutex_lock(&uuid_mutex);
 659        if (fs_devices->opened) {
 660                fs_devices->opened++;
 661                ret = 0;
 662        } else {
 663                ret = __btrfs_open_devices(fs_devices, flags, holder);
 664        }
 665        mutex_unlock(&uuid_mutex);
 666        return ret;
 667}
 668
 669int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
 670                          struct btrfs_fs_devices **fs_devices_ret)
 671{
 672        struct btrfs_super_block *disk_super;
 673        struct block_device *bdev;
 674        struct buffer_head *bh;
 675        int ret;
 676        u64 devid;
 677        u64 transid;
 678
 679        mutex_lock(&uuid_mutex);
 680
 681        bdev = open_bdev_exclusive(path, flags, holder);
 682
 683        if (IS_ERR(bdev)) {
 684                ret = PTR_ERR(bdev);
 685                goto error;
 686        }
 687
 688        ret = set_blocksize(bdev, 4096);
 689        if (ret)
 690                goto error_close;
 691        bh = btrfs_read_dev_super(bdev);
 692        if (!bh) {
 693                ret = -EIO;
 694                goto error_close;
 695        }
 696        disk_super = (struct btrfs_super_block *)bh->b_data;
 697        devid = le64_to_cpu(disk_super->dev_item.devid);
 698        transid = btrfs_super_generation(disk_super);
 699        if (disk_super->label[0])
 700                printk(KERN_INFO "device label %s ", disk_super->label);
 701        else {
 702                /* FIXME, make a readl uuid parser */
 703                printk(KERN_INFO "device fsid %llx-%llx ",
 704                       *(unsigned long long *)disk_super->fsid,
 705                       *(unsigned long long *)(disk_super->fsid + 8));
 706        }
 707        printk(KERN_CONT "devid %llu transid %llu %s\n",
 708               (unsigned long long)devid, (unsigned long long)transid, path);
 709        ret = device_list_add(path, disk_super, devid, fs_devices_ret);
 710
 711        brelse(bh);
 712error_close:
 713        close_bdev_exclusive(bdev, flags);
 714error:
 715        mutex_unlock(&uuid_mutex);
 716        return ret;
 717}
 718
 719/*
 720 * this uses a pretty simple search, the expectation is that it is
 721 * called very infrequently and that a given device has a small number
 722 * of extents
 723 */
 724int find_free_dev_extent(struct btrfs_trans_handle *trans,
 725                         struct btrfs_device *device, u64 num_bytes,
 726                         u64 *start, u64 *max_avail)
 727{
 728        struct btrfs_key key;
 729        struct btrfs_root *root = device->dev_root;
 730        struct btrfs_dev_extent *dev_extent = NULL;
 731        struct btrfs_path *path;
 732        u64 hole_size = 0;
 733        u64 last_byte = 0;
 734        u64 search_start = 0;
 735        u64 search_end = device->total_bytes;
 736        int ret;
 737        int slot = 0;
 738        int start_found;
 739        struct extent_buffer *l;
 740
 741        path = btrfs_alloc_path();
 742        if (!path)
 743                return -ENOMEM;
 744        path->reada = 2;
 745        start_found = 0;
 746
 747        /* FIXME use last free of some kind */
 748
 749        /* we don't want to overwrite the superblock on the drive,
 750         * so we make sure to start at an offset of at least 1MB
 751         */
 752        search_start = max((u64)1024 * 1024, search_start);
 753
 754        if (root->fs_info->alloc_start + num_bytes <= device->total_bytes)
 755                search_start = max(root->fs_info->alloc_start, search_start);
 756
 757        key.objectid = device->devid;
 758        key.offset = search_start;
 759        key.type = BTRFS_DEV_EXTENT_KEY;
 760        ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
 761        if (ret < 0)
 762                goto error;
 763        if (ret > 0) {
 764                ret = btrfs_previous_item(root, path, key.objectid, key.type);
 765                if (ret < 0)
 766                        goto error;
 767                if (ret > 0)
 768                        start_found = 1;
 769        }
 770        l = path->nodes[0];
 771        btrfs_item_key_to_cpu(l, &key, path->slots[0]);
 772        while (1) {
 773                l = path->nodes[0];
 774                slot = path->slots[0];
 775                if (slot >= btrfs_header_nritems(l)) {
 776                        ret = btrfs_next_leaf(root, path);
 777                        if (ret == 0)
 778                                continue;
 779                        if (ret < 0)
 780                                goto error;
 781no_more_items:
 782                        if (!start_found) {
 783                                if (search_start >= search_end) {
 784                                        ret = -ENOSPC;
 785                                        goto error;
 786                                }
 787                                *start = search_start;
 788                                start_found = 1;
 789                                goto check_pending;
 790                        }
 791                        *start = last_byte > search_start ?
 792                                last_byte : search_start;
 793                        if (search_end <= *start) {
 794                                ret = -ENOSPC;
 795                                goto error;
 796                        }
 797                        goto check_pending;
 798                }
 799                btrfs_item_key_to_cpu(l, &key, slot);
 800
 801                if (key.objectid < device->devid)
 802                        goto next;
 803
 804                if (key.objectid > device->devid)
 805                        goto no_more_items;
 806
 807                if (key.offset >= search_start && key.offset > last_byte &&
 808                    start_found) {
 809                        if (last_byte < search_start)
 810                                last_byte = search_start;
 811                        hole_size = key.offset - last_byte;
 812
 813                        if (hole_size > *max_avail)
 814                                *max_avail = hole_size;
 815
 816                        if (key.offset > last_byte &&
 817                            hole_size >= num_bytes) {
 818                                *start = last_byte;
 819                                goto check_pending;
 820                        }
 821                }
 822                if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
 823                        goto next;
 824
 825                start_found = 1;
 826                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
 827                last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
 828next:
 829                path->slots[0]++;
 830                cond_resched();
 831        }
 832check_pending:
 833        /* we have to make sure we didn't find an extent that has already
 834         * been allocated by the map tree or the original allocation
 835         */
 836        BUG_ON(*start < search_start);
 837
 838        if (*start + num_bytes > search_end) {
 839                ret = -ENOSPC;
 840                goto error;
 841        }
 842        /* check for pending inserts here */
 843        ret = 0;
 844
 845error:
 846        btrfs_free_path(path);
 847        return ret;
 848}
 849
 850static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
 851                          struct btrfs_device *device,
 852                          u64 start)
 853{
 854        int ret;
 855        struct btrfs_path *path;
 856        struct btrfs_root *root = device->dev_root;
 857        struct btrfs_key key;
 858        struct btrfs_key found_key;
 859        struct extent_buffer *leaf = NULL;
 860        struct btrfs_dev_extent *extent = NULL;
 861
 862        path = btrfs_alloc_path();
 863        if (!path)
 864                return -ENOMEM;
 865
 866        key.objectid = device->devid;
 867        key.offset = start;
 868        key.type = BTRFS_DEV_EXTENT_KEY;
 869
 870        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 871        if (ret > 0) {
 872                ret = btrfs_previous_item(root, path, key.objectid,
 873                                          BTRFS_DEV_EXTENT_KEY);
 874                BUG_ON(ret);
 875                leaf = path->nodes[0];
 876                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 877                extent = btrfs_item_ptr(leaf, path->slots[0],
 878                                        struct btrfs_dev_extent);
 879                BUG_ON(found_key.offset > start || found_key.offset +
 880                       btrfs_dev_extent_length(leaf, extent) < start);
 881                ret = 0;
 882        } else if (ret == 0) {
 883                leaf = path->nodes[0];
 884                extent = btrfs_item_ptr(leaf, path->slots[0],
 885                                        struct btrfs_dev_extent);
 886        }
 887        BUG_ON(ret);
 888
 889        if (device->bytes_used > 0)
 890                device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
 891        ret = btrfs_del_item(trans, root, path);
 892        BUG_ON(ret);
 893
 894        btrfs_free_path(path);
 895        return ret;
 896}
 897
 898int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
 899                           struct btrfs_device *device,
 900                           u64 chunk_tree, u64 chunk_objectid,
 901                           u64 chunk_offset, u64 start, u64 num_bytes)
 902{
 903        int ret;
 904        struct btrfs_path *path;
 905        struct btrfs_root *root = device->dev_root;
 906        struct btrfs_dev_extent *extent;
 907        struct extent_buffer *leaf;
 908        struct btrfs_key key;
 909
 910        WARN_ON(!device->in_fs_metadata);
 911        path = btrfs_alloc_path();
 912        if (!path)
 913                return -ENOMEM;
 914
 915        key.objectid = device->devid;
 916        key.offset = start;
 917        key.type = BTRFS_DEV_EXTENT_KEY;
 918        ret = btrfs_insert_empty_item(trans, root, path, &key,
 919                                      sizeof(*extent));
 920        BUG_ON(ret);
 921
 922        leaf = path->nodes[0];
 923        extent = btrfs_item_ptr(leaf, path->slots[0],
 924                                struct btrfs_dev_extent);
 925        btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
 926        btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
 927        btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
 928
 929        write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
 930                    (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
 931                    BTRFS_UUID_SIZE);
 932
 933        btrfs_set_dev_extent_length(leaf, extent, num_bytes);
 934        btrfs_mark_buffer_dirty(leaf);
 935        btrfs_free_path(path);
 936        return ret;
 937}
 938
 939static noinline int find_next_chunk(struct btrfs_root *root,
 940                                    u64 objectid, u64 *offset)
 941{
 942        struct btrfs_path *path;
 943        int ret;
 944        struct btrfs_key key;
 945        struct btrfs_chunk *chunk;
 946        struct btrfs_key found_key;
 947
 948        path = btrfs_alloc_path();
 949        BUG_ON(!path);
 950
 951        key.objectid = objectid;
 952        key.offset = (u64)-1;
 953        key.type = BTRFS_CHUNK_ITEM_KEY;
 954
 955        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 956        if (ret < 0)
 957                goto error;
 958
 959        BUG_ON(ret == 0);
 960
 961        ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
 962        if (ret) {
 963                *offset = 0;
 964        } else {
 965                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
 966                                      path->slots[0]);
 967                if (found_key.objectid != objectid)
 968                        *offset = 0;
 969                else {
 970                        chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
 971                                               struct btrfs_chunk);
 972                        *offset = found_key.offset +
 973                                btrfs_chunk_length(path->nodes[0], chunk);
 974                }
 975        }
 976        ret = 0;
 977error:
 978        btrfs_free_path(path);
 979        return ret;
 980}
 981
 982static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
 983{
 984        int ret;
 985        struct btrfs_key key;
 986        struct btrfs_key found_key;
 987        struct btrfs_path *path;
 988
 989        root = root->fs_info->chunk_root;
 990
 991        path = btrfs_alloc_path();
 992        if (!path)
 993                return -ENOMEM;
 994
 995        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
 996        key.type = BTRFS_DEV_ITEM_KEY;
 997        key.offset = (u64)-1;
 998
 999        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1000        if (ret < 0)
1001                goto error;
1002
1003        BUG_ON(ret == 0);
1004
1005        ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1006                                  BTRFS_DEV_ITEM_KEY);
1007        if (ret) {
1008                *objectid = 1;
1009        } else {
1010                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1011                                      path->slots[0]);
1012                *objectid = found_key.offset + 1;
1013        }
1014        ret = 0;
1015error:
1016        btrfs_free_path(path);
1017        return ret;
1018}
1019
1020/*
1021 * the device information is stored in the chunk root
1022 * the btrfs_device struct should be fully filled in
1023 */
1024int btrfs_add_device(struct btrfs_trans_handle *trans,
1025                     struct btrfs_root *root,
1026                     struct btrfs_device *device)
1027{
1028        int ret;
1029        struct btrfs_path *path;
1030        struct btrfs_dev_item *dev_item;
1031        struct extent_buffer *leaf;
1032        struct btrfs_key key;
1033        unsigned long ptr;
1034
1035        root = root->fs_info->chunk_root;
1036
1037        path = btrfs_alloc_path();
1038        if (!path)
1039                return -ENOMEM;
1040
1041        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1042        key.type = BTRFS_DEV_ITEM_KEY;
1043        key.offset = device->devid;
1044
1045        ret = btrfs_insert_empty_item(trans, root, path, &key,
1046                                      sizeof(*dev_item));
1047        if (ret)
1048                goto out;
1049
1050        leaf = path->nodes[0];
1051        dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1052
1053        btrfs_set_device_id(leaf, dev_item, device->devid);
1054        btrfs_set_device_generation(leaf, dev_item, 0);
1055        btrfs_set_device_type(leaf, dev_item, device->type);
1056        btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1057        btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1058        btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1059        btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1060        btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1061        btrfs_set_device_group(leaf, dev_item, 0);
1062        btrfs_set_device_seek_speed(leaf, dev_item, 0);
1063        btrfs_set_device_bandwidth(leaf, dev_item, 0);
1064        btrfs_set_device_start_offset(leaf, dev_item, 0);
1065
1066        ptr = (unsigned long)btrfs_device_uuid(dev_item);
1067        write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1068        ptr = (unsigned long)btrfs_device_fsid(dev_item);
1069        write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1070        btrfs_mark_buffer_dirty(leaf);
1071
1072        ret = 0;
1073out:
1074        btrfs_free_path(path);
1075        return ret;
1076}
1077
1078static int btrfs_rm_dev_item(struct btrfs_root *root,
1079                             struct btrfs_device *device)
1080{
1081        int ret;
1082        struct btrfs_path *path;
1083        struct btrfs_key key;
1084        struct btrfs_trans_handle *trans;
1085
1086        root = root->fs_info->chunk_root;
1087
1088        path = btrfs_alloc_path();
1089        if (!path)
1090                return -ENOMEM;
1091
1092        trans = btrfs_start_transaction(root, 1);
1093        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1094        key.type = BTRFS_DEV_ITEM_KEY;
1095        key.offset = device->devid;
1096        lock_chunks(root);
1097
1098        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1099        if (ret < 0)
1100                goto out;
1101
1102        if (ret > 0) {
1103                ret = -ENOENT;
1104                goto out;
1105        }
1106
1107        ret = btrfs_del_item(trans, root, path);
1108        if (ret)
1109                goto out;
1110out:
1111        btrfs_free_path(path);
1112        unlock_chunks(root);
1113        btrfs_commit_transaction(trans, root);
1114        return ret;
1115}
1116
1117int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1118{
1119        struct btrfs_device *device;
1120        struct btrfs_device *next_device;
1121        struct block_device *bdev;
1122        struct buffer_head *bh = NULL;
1123        struct btrfs_super_block *disk_super;
1124        u64 all_avail;
1125        u64 devid;
1126        u64 num_devices;
1127        u8 *dev_uuid;
1128        int ret = 0;
1129
1130        mutex_lock(&uuid_mutex);
1131        mutex_lock(&root->fs_info->volume_mutex);
1132
1133        all_avail = root->fs_info->avail_data_alloc_bits |
1134                root->fs_info->avail_system_alloc_bits |
1135                root->fs_info->avail_metadata_alloc_bits;
1136
1137        if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1138            root->fs_info->fs_devices->rw_devices <= 4) {
1139                printk(KERN_ERR "btrfs: unable to go below four devices "
1140                       "on raid10\n");
1141                ret = -EINVAL;
1142                goto out;
1143        }
1144
1145        if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1146            root->fs_info->fs_devices->rw_devices <= 2) {
1147                printk(KERN_ERR "btrfs: unable to go below two "
1148                       "devices on raid1\n");
1149                ret = -EINVAL;
1150                goto out;
1151        }
1152
1153        if (strcmp(device_path, "missing") == 0) {
1154                struct list_head *devices;
1155                struct btrfs_device *tmp;
1156
1157                device = NULL;
1158                devices = &root->fs_info->fs_devices->devices;
1159                mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1160                list_for_each_entry(tmp, devices, dev_list) {
1161                        if (tmp->in_fs_metadata && !tmp->bdev) {
1162                                device = tmp;
1163                                break;
1164                        }
1165                }
1166                mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1167                bdev = NULL;
1168                bh = NULL;
1169                disk_super = NULL;
1170                if (!device) {
1171                        printk(KERN_ERR "btrfs: no missing devices found to "
1172                               "remove\n");
1173                        goto out;
1174                }
1175        } else {
1176                bdev = open_bdev_exclusive(device_path, FMODE_READ,
1177                                      root->fs_info->bdev_holder);
1178                if (IS_ERR(bdev)) {
1179                        ret = PTR_ERR(bdev);
1180                        goto out;
1181                }
1182
1183                set_blocksize(bdev, 4096);
1184                bh = btrfs_read_dev_super(bdev);
1185                if (!bh) {
1186                        ret = -EIO;
1187                        goto error_close;
1188                }
1189                disk_super = (struct btrfs_super_block *)bh->b_data;
1190                devid = le64_to_cpu(disk_super->dev_item.devid);
1191                dev_uuid = disk_super->dev_item.uuid;
1192                device = btrfs_find_device(root, devid, dev_uuid,
1193                                           disk_super->fsid);
1194                if (!device) {
1195                        ret = -ENOENT;
1196                        goto error_brelse;
1197                }
1198        }
1199
1200        if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1201                printk(KERN_ERR "btrfs: unable to remove the only writeable "
1202                       "device\n");
1203                ret = -EINVAL;
1204                goto error_brelse;
1205        }
1206
1207        if (device->writeable) {
1208                list_del_init(&device->dev_alloc_list);
1209                root->fs_info->fs_devices->rw_devices--;
1210        }
1211
1212        ret = btrfs_shrink_device(device, 0);
1213        if (ret)
1214                goto error_brelse;
1215
1216        ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1217        if (ret)
1218                goto error_brelse;
1219
1220        device->in_fs_metadata = 0;
1221
1222        /*
1223         * the device list mutex makes sure that we don't change
1224         * the device list while someone else is writing out all
1225         * the device supers.
1226         */
1227        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1228        list_del_init(&device->dev_list);
1229        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1230
1231        device->fs_devices->num_devices--;
1232
1233        next_device = list_entry(root->fs_info->fs_devices->devices.next,
1234                                 struct btrfs_device, dev_list);
1235        if (device->bdev == root->fs_info->sb->s_bdev)
1236                root->fs_info->sb->s_bdev = next_device->bdev;
1237        if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1238                root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1239
1240        if (device->bdev) {
1241                close_bdev_exclusive(device->bdev, device->mode);
1242                device->bdev = NULL;
1243                device->fs_devices->open_devices--;
1244        }
1245
1246        num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1247        btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
1248
1249        if (device->fs_devices->open_devices == 0) {
1250                struct btrfs_fs_devices *fs_devices;
1251                fs_devices = root->fs_info->fs_devices;
1252                while (fs_devices) {
1253                        if (fs_devices->seed == device->fs_devices)
1254                                break;
1255                        fs_devices = fs_devices->seed;
1256                }
1257                fs_devices->seed = device->fs_devices->seed;
1258                device->fs_devices->seed = NULL;
1259                __btrfs_close_devices(device->fs_devices);
1260                free_fs_devices(device->fs_devices);
1261        }
1262
1263        /*
1264         * at this point, the device is zero sized.  We want to
1265         * remove it from the devices list and zero out the old super
1266         */
1267        if (device->writeable) {
1268                /* make sure this device isn't detected as part of
1269                 * the FS anymore
1270                 */
1271                memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1272                set_buffer_dirty(bh);
1273                sync_dirty_buffer(bh);
1274        }
1275
1276        kfree(device->name);
1277        kfree(device);
1278        ret = 0;
1279
1280error_brelse:
1281        brelse(bh);
1282error_close:
1283        if (bdev)
1284                close_bdev_exclusive(bdev, FMODE_READ);
1285out:
1286        mutex_unlock(&root->fs_info->volume_mutex);
1287        mutex_unlock(&uuid_mutex);
1288        return ret;
1289}
1290
1291/*
1292 * does all the dirty work required for changing file system's UUID.
1293 */
1294static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1295                                struct btrfs_root *root)
1296{
1297        struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1298        struct btrfs_fs_devices *old_devices;
1299        struct btrfs_fs_devices *seed_devices;
1300        struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1301        struct btrfs_device *device;
1302        u64 super_flags;
1303
1304        BUG_ON(!mutex_is_locked(&uuid_mutex));
1305        if (!fs_devices->seeding)
1306                return -EINVAL;
1307
1308        seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1309        if (!seed_devices)
1310                return -ENOMEM;
1311
1312        old_devices = clone_fs_devices(fs_devices);
1313        if (IS_ERR(old_devices)) {
1314                kfree(seed_devices);
1315                return PTR_ERR(old_devices);
1316        }
1317
1318        list_add(&old_devices->list, &fs_uuids);
1319
1320        memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1321        seed_devices->opened = 1;
1322        INIT_LIST_HEAD(&seed_devices->devices);
1323        INIT_LIST_HEAD(&seed_devices->alloc_list);
1324        mutex_init(&seed_devices->device_list_mutex);
1325        list_splice_init(&fs_devices->devices, &seed_devices->devices);
1326        list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1327        list_for_each_entry(device, &seed_devices->devices, dev_list) {
1328                device->fs_devices = seed_devices;
1329        }
1330
1331        fs_devices->seeding = 0;
1332        fs_devices->num_devices = 0;
1333        fs_devices->open_devices = 0;
1334        fs_devices->seed = seed_devices;
1335
1336        generate_random_uuid(fs_devices->fsid);
1337        memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1338        memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1339        super_flags = btrfs_super_flags(disk_super) &
1340                      ~BTRFS_SUPER_FLAG_SEEDING;
1341        btrfs_set_super_flags(disk_super, super_flags);
1342
1343        return 0;
1344}
1345
1346/*
1347 * strore the expected generation for seed devices in device items.
1348 */
1349static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1350                               struct btrfs_root *root)
1351{
1352        struct btrfs_path *path;
1353        struct extent_buffer *leaf;
1354        struct btrfs_dev_item *dev_item;
1355        struct btrfs_device *device;
1356        struct btrfs_key key;
1357        u8 fs_uuid[BTRFS_UUID_SIZE];
1358        u8 dev_uuid[BTRFS_UUID_SIZE];
1359        u64 devid;
1360        int ret;
1361
1362        path = btrfs_alloc_path();
1363        if (!path)
1364                return -ENOMEM;
1365
1366        root = root->fs_info->chunk_root;
1367        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1368        key.offset = 0;
1369        key.type = BTRFS_DEV_ITEM_KEY;
1370
1371        while (1) {
1372                ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1373                if (ret < 0)
1374                        goto error;
1375
1376                leaf = path->nodes[0];
1377next_slot:
1378                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1379                        ret = btrfs_next_leaf(root, path);
1380                        if (ret > 0)
1381                                break;
1382                        if (ret < 0)
1383                                goto error;
1384                        leaf = path->nodes[0];
1385                        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1386                        btrfs_release_path(root, path);
1387                        continue;
1388                }
1389
1390                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1391                if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1392                    key.type != BTRFS_DEV_ITEM_KEY)
1393                        break;
1394
1395                dev_item = btrfs_item_ptr(leaf, path->slots[0],
1396                                          struct btrfs_dev_item);
1397                devid = btrfs_device_id(leaf, dev_item);
1398                read_extent_buffer(leaf, dev_uuid,
1399                                   (unsigned long)btrfs_device_uuid(dev_item),
1400                                   BTRFS_UUID_SIZE);
1401                read_extent_buffer(leaf, fs_uuid,
1402                                   (unsigned long)btrfs_device_fsid(dev_item),
1403                                   BTRFS_UUID_SIZE);
1404                device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1405                BUG_ON(!device);
1406
1407                if (device->fs_devices->seeding) {
1408                        btrfs_set_device_generation(leaf, dev_item,
1409                                                    device->generation);
1410                        btrfs_mark_buffer_dirty(leaf);
1411                }
1412
1413                path->slots[0]++;
1414                goto next_slot;
1415        }
1416        ret = 0;
1417error:
1418        btrfs_free_path(path);
1419        return ret;
1420}
1421
1422int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1423{
1424        struct btrfs_trans_handle *trans;
1425        struct btrfs_device *device;
1426        struct block_device *bdev;
1427        struct list_head *devices;
1428        struct super_block *sb = root->fs_info->sb;
1429        u64 total_bytes;
1430        int seeding_dev = 0;
1431        int ret = 0;
1432
1433        if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1434                return -EINVAL;
1435
1436        bdev = open_bdev_exclusive(device_path, 0, root->fs_info->bdev_holder);
1437        if (!bdev)
1438                return -EIO;
1439
1440        if (root->fs_info->fs_devices->seeding) {
1441                seeding_dev = 1;
1442                down_write(&sb->s_umount);
1443                mutex_lock(&uuid_mutex);
1444        }
1445
1446        filemap_write_and_wait(bdev->bd_inode->i_mapping);
1447        mutex_lock(&root->fs_info->volume_mutex);
1448
1449        devices = &root->fs_info->fs_devices->devices;
1450        /*
1451         * we have the volume lock, so we don't need the extra
1452         * device list mutex while reading the list here.
1453         */
1454        list_for_each_entry(device, devices, dev_list) {
1455                if (device->bdev == bdev) {
1456                        ret = -EEXIST;
1457                        goto error;
1458                }
1459        }
1460
1461        device = kzalloc(sizeof(*device), GFP_NOFS);
1462        if (!device) {
1463                /* we can safely leave the fs_devices entry around */
1464                ret = -ENOMEM;
1465                goto error;
1466        }
1467
1468        device->name = kstrdup(device_path, GFP_NOFS);
1469        if (!device->name) {
1470                kfree(device);
1471                ret = -ENOMEM;
1472                goto error;
1473        }
1474
1475        ret = find_next_devid(root, &device->devid);
1476        if (ret) {
1477                kfree(device);
1478                goto error;
1479        }
1480
1481        trans = btrfs_start_transaction(root, 1);
1482        lock_chunks(root);
1483
1484        device->barriers = 1;
1485        device->writeable = 1;
1486        device->work.func = pending_bios_fn;
1487        generate_random_uuid(device->uuid);
1488        spin_lock_init(&device->io_lock);
1489        device->generation = trans->transid;
1490        device->io_width = root->sectorsize;
1491        device->io_align = root->sectorsize;
1492        device->sector_size = root->sectorsize;
1493        device->total_bytes = i_size_read(bdev->bd_inode);
1494        device->disk_total_bytes = device->total_bytes;
1495        device->dev_root = root->fs_info->dev_root;
1496        device->bdev = bdev;
1497        device->in_fs_metadata = 1;
1498        device->mode = 0;
1499        set_blocksize(device->bdev, 4096);
1500
1501        if (seeding_dev) {
1502                sb->s_flags &= ~MS_RDONLY;
1503                ret = btrfs_prepare_sprout(trans, root);
1504                BUG_ON(ret);
1505        }
1506
1507        device->fs_devices = root->fs_info->fs_devices;
1508
1509        /*
1510         * we don't want write_supers to jump in here with our device
1511         * half setup
1512         */
1513        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1514        list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1515        list_add(&device->dev_alloc_list,
1516                 &root->fs_info->fs_devices->alloc_list);
1517        root->fs_info->fs_devices->num_devices++;
1518        root->fs_info->fs_devices->open_devices++;
1519        root->fs_info->fs_devices->rw_devices++;
1520        root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1521
1522        if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1523                root->fs_info->fs_devices->rotating = 1;
1524
1525        total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1526        btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1527                                    total_bytes + device->total_bytes);
1528
1529        total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1530        btrfs_set_super_num_devices(&root->fs_info->super_copy,
1531                                    total_bytes + 1);
1532        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1533
1534        if (seeding_dev) {
1535                ret = init_first_rw_device(trans, root, device);
1536                BUG_ON(ret);
1537                ret = btrfs_finish_sprout(trans, root);
1538                BUG_ON(ret);
1539        } else {
1540                ret = btrfs_add_device(trans, root, device);
1541        }
1542
1543        /*
1544         * we've got more storage, clear any full flags on the space
1545         * infos
1546         */
1547        btrfs_clear_space_info_full(root->fs_info);
1548
1549        unlock_chunks(root);
1550        btrfs_commit_transaction(trans, root);
1551
1552        if (seeding_dev) {
1553                mutex_unlock(&uuid_mutex);
1554                up_write(&sb->s_umount);
1555
1556                ret = btrfs_relocate_sys_chunks(root);
1557                BUG_ON(ret);
1558        }
1559out:
1560        mutex_unlock(&root->fs_info->volume_mutex);
1561        return ret;
1562error:
1563        close_bdev_exclusive(bdev, 0);
1564        if (seeding_dev) {
1565                mutex_unlock(&uuid_mutex);
1566                up_write(&sb->s_umount);
1567        }
1568        goto out;
1569}
1570
1571static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1572                                        struct btrfs_device *device)
1573{
1574        int ret;
1575        struct btrfs_path *path;
1576        struct btrfs_root *root;
1577        struct btrfs_dev_item *dev_item;
1578        struct extent_buffer *leaf;
1579        struct btrfs_key key;
1580
1581        root = device->dev_root->fs_info->chunk_root;
1582
1583        path = btrfs_alloc_path();
1584        if (!path)
1585                return -ENOMEM;
1586
1587        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1588        key.type = BTRFS_DEV_ITEM_KEY;
1589        key.offset = device->devid;
1590
1591        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1592        if (ret < 0)
1593                goto out;
1594
1595        if (ret > 0) {
1596                ret = -ENOENT;
1597                goto out;
1598        }
1599
1600        leaf = path->nodes[0];
1601        dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1602
1603        btrfs_set_device_id(leaf, dev_item, device->devid);
1604        btrfs_set_device_type(leaf, dev_item, device->type);
1605        btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1606        btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1607        btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1608        btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1609        btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1610        btrfs_mark_buffer_dirty(leaf);
1611
1612out:
1613        btrfs_free_path(path);
1614        return ret;
1615}
1616
1617static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1618                      struct btrfs_device *device, u64 new_size)
1619{
1620        struct btrfs_super_block *super_copy =
1621                &device->dev_root->fs_info->super_copy;
1622        u64 old_total = btrfs_super_total_bytes(super_copy);
1623        u64 diff = new_size - device->total_bytes;
1624
1625        if (!device->writeable)
1626                return -EACCES;
1627        if (new_size <= device->total_bytes)
1628                return -EINVAL;
1629
1630        btrfs_set_super_total_bytes(super_copy, old_total + diff);
1631        device->fs_devices->total_rw_bytes += diff;
1632
1633        device->total_bytes = new_size;
1634        device->disk_total_bytes = new_size;
1635        btrfs_clear_space_info_full(device->dev_root->fs_info);
1636
1637        return btrfs_update_device(trans, device);
1638}
1639
1640int btrfs_grow_device(struct btrfs_trans_handle *trans,
1641                      struct btrfs_device *device, u64 new_size)
1642{
1643        int ret;
1644        lock_chunks(device->dev_root);
1645        ret = __btrfs_grow_device(trans, device, new_size);
1646        unlock_chunks(device->dev_root);
1647        return ret;
1648}
1649
1650static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1651                            struct btrfs_root *root,
1652                            u64 chunk_tree, u64 chunk_objectid,
1653                            u64 chunk_offset)
1654{
1655        int ret;
1656        struct btrfs_path *path;
1657        struct btrfs_key key;
1658
1659        root = root->fs_info->chunk_root;
1660        path = btrfs_alloc_path();
1661        if (!path)
1662                return -ENOMEM;
1663
1664        key.objectid = chunk_objectid;
1665        key.offset = chunk_offset;
1666        key.type = BTRFS_CHUNK_ITEM_KEY;
1667
1668        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1669        BUG_ON(ret);
1670
1671        ret = btrfs_del_item(trans, root, path);
1672        BUG_ON(ret);
1673
1674        btrfs_free_path(path);
1675        return 0;
1676}
1677
1678static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1679                        chunk_offset)
1680{
1681        struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1682        struct btrfs_disk_key *disk_key;
1683        struct btrfs_chunk *chunk;
1684        u8 *ptr;
1685        int ret = 0;
1686        u32 num_stripes;
1687        u32 array_size;
1688        u32 len = 0;
1689        u32 cur;
1690        struct btrfs_key key;
1691
1692        array_size = btrfs_super_sys_array_size(super_copy);
1693
1694        ptr = super_copy->sys_chunk_array;
1695        cur = 0;
1696
1697        while (cur < array_size) {
1698                disk_key = (struct btrfs_disk_key *)ptr;
1699                btrfs_disk_key_to_cpu(&key, disk_key);
1700
1701                len = sizeof(*disk_key);
1702
1703                if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1704                        chunk = (struct btrfs_chunk *)(ptr + len);
1705                        num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1706                        len += btrfs_chunk_item_size(num_stripes);
1707                } else {
1708                        ret = -EIO;
1709                        break;
1710                }
1711                if (key.objectid == chunk_objectid &&
1712                    key.offset == chunk_offset) {
1713                        memmove(ptr, ptr + len, array_size - (cur + len));
1714                        array_size -= len;
1715                        btrfs_set_super_sys_array_size(super_copy, array_size);
1716                } else {
1717                        ptr += len;
1718                        cur += len;
1719                }
1720        }
1721        return ret;
1722}
1723
1724static int btrfs_relocate_chunk(struct btrfs_root *root,
1725                         u64 chunk_tree, u64 chunk_objectid,
1726                         u64 chunk_offset)
1727{
1728        struct extent_map_tree *em_tree;
1729        struct btrfs_root *extent_root;
1730        struct btrfs_trans_handle *trans;
1731        struct extent_map *em;
1732        struct map_lookup *map;
1733        int ret;
1734        int i;
1735
1736        root = root->fs_info->chunk_root;
1737        extent_root = root->fs_info->extent_root;
1738        em_tree = &root->fs_info->mapping_tree.map_tree;
1739
1740        ret = btrfs_can_relocate(extent_root, chunk_offset);
1741        if (ret)
1742                return -ENOSPC;
1743
1744        /* step one, relocate all the extents inside this chunk */
1745        ret = btrfs_relocate_block_group(extent_root, chunk_offset);
1746        BUG_ON(ret);
1747
1748        trans = btrfs_start_transaction(root, 1);
1749        BUG_ON(!trans);
1750
1751        lock_chunks(root);
1752
1753        /*
1754         * step two, delete the device extents and the
1755         * chunk tree entries
1756         */
1757        read_lock(&em_tree->lock);
1758        em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1759        read_unlock(&em_tree->lock);
1760
1761        BUG_ON(em->start > chunk_offset ||
1762               em->start + em->len < chunk_offset);
1763        map = (struct map_lookup *)em->bdev;
1764
1765        for (i = 0; i < map->num_stripes; i++) {
1766                ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1767                                            map->stripes[i].physical);
1768                BUG_ON(ret);
1769
1770                if (map->stripes[i].dev) {
1771                        ret = btrfs_update_device(trans, map->stripes[i].dev);
1772                        BUG_ON(ret);
1773                }
1774        }
1775        ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1776                               chunk_offset);
1777
1778        BUG_ON(ret);
1779
1780        if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1781                ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1782                BUG_ON(ret);
1783        }
1784
1785        ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1786        BUG_ON(ret);
1787
1788        write_lock(&em_tree->lock);
1789        remove_extent_mapping(em_tree, em);
1790        write_unlock(&em_tree->lock);
1791
1792        kfree(map);
1793        em->bdev = NULL;
1794
1795        /* once for the tree */
1796        free_extent_map(em);
1797        /* once for us */
1798        free_extent_map(em);
1799
1800        unlock_chunks(root);
1801        btrfs_end_transaction(trans, root);
1802        return 0;
1803}
1804
1805static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
1806{
1807        struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1808        struct btrfs_path *path;
1809        struct extent_buffer *leaf;
1810        struct btrfs_chunk *chunk;
1811        struct btrfs_key key;
1812        struct btrfs_key found_key;
1813        u64 chunk_tree = chunk_root->root_key.objectid;
1814        u64 chunk_type;
1815        bool retried = false;
1816        int failed = 0;
1817        int ret;
1818
1819        path = btrfs_alloc_path();
1820        if (!path)
1821                return -ENOMEM;
1822
1823again:
1824        key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1825        key.offset = (u64)-1;
1826        key.type = BTRFS_CHUNK_ITEM_KEY;
1827
1828        while (1) {
1829                ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1830                if (ret < 0)
1831                        goto error;
1832                BUG_ON(ret == 0);
1833
1834                ret = btrfs_previous_item(chunk_root, path, key.objectid,
1835                                          key.type);
1836                if (ret < 0)
1837                        goto error;
1838                if (ret > 0)
1839                        break;
1840
1841                leaf = path->nodes[0];
1842                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1843
1844                chunk = btrfs_item_ptr(leaf, path->slots[0],
1845                                       struct btrfs_chunk);
1846                chunk_type = btrfs_chunk_type(leaf, chunk);
1847                btrfs_release_path(chunk_root, path);
1848
1849                if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
1850                        ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
1851                                                   found_key.objectid,
1852                                                   found_key.offset);
1853                        if (ret == -ENOSPC)
1854                                failed++;
1855                        else if (ret)
1856                                BUG();
1857                }
1858
1859                if (found_key.offset == 0)
1860                        break;
1861                key.offset = found_key.offset - 1;
1862        }
1863        ret = 0;
1864        if (failed && !retried) {
1865                failed = 0;
1866                retried = true;
1867                goto again;
1868        } else if (failed && retried) {
1869                WARN_ON(1);
1870                ret = -ENOSPC;
1871        }
1872error:
1873        btrfs_free_path(path);
1874        return ret;
1875}
1876
1877static u64 div_factor(u64 num, int factor)
1878{
1879        if (factor == 10)
1880                return num;
1881        num *= factor;
1882        do_div(num, 10);
1883        return num;
1884}
1885
1886int btrfs_balance(struct btrfs_root *dev_root)
1887{
1888        int ret;
1889        struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
1890        struct btrfs_device *device;
1891        u64 old_size;
1892        u64 size_to_free;
1893        struct btrfs_path *path;
1894        struct btrfs_key key;
1895        struct btrfs_chunk *chunk;
1896        struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
1897        struct btrfs_trans_handle *trans;
1898        struct btrfs_key found_key;
1899
1900        if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
1901                return -EROFS;
1902
1903        mutex_lock(&dev_root->fs_info->volume_mutex);
1904        dev_root = dev_root->fs_info->dev_root;
1905
1906        /* step one make some room on all the devices */
1907        list_for_each_entry(device, devices, dev_list) {
1908                old_size = device->total_bytes;
1909                size_to_free = div_factor(old_size, 1);
1910                size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
1911                if (!device->writeable ||
1912                    device->total_bytes - device->bytes_used > size_to_free)
1913                        continue;
1914
1915                ret = btrfs_shrink_device(device, old_size - size_to_free);
1916                if (ret == -ENOSPC)
1917                        break;
1918                BUG_ON(ret);
1919
1920                trans = btrfs_start_transaction(dev_root, 1);
1921                BUG_ON(!trans);
1922
1923                ret = btrfs_grow_device(trans, device, old_size);
1924                BUG_ON(ret);
1925
1926                btrfs_end_transaction(trans, dev_root);
1927        }
1928
1929        /* step two, relocate all the chunks */
1930        path = btrfs_alloc_path();
1931        BUG_ON(!path);
1932
1933        key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1934        key.offset = (u64)-1;
1935        key.type = BTRFS_CHUNK_ITEM_KEY;
1936
1937        while (1) {
1938                ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1939                if (ret < 0)
1940                        goto error;
1941
1942                /*
1943                 * this shouldn't happen, it means the last relocate
1944                 * failed
1945                 */
1946                if (ret == 0)
1947                        break;
1948
1949                ret = btrfs_previous_item(chunk_root, path, 0,
1950                                          BTRFS_CHUNK_ITEM_KEY);
1951                if (ret)
1952                        break;
1953
1954                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1955                                      path->slots[0]);
1956                if (found_key.objectid != key.objectid)
1957                        break;
1958
1959                chunk = btrfs_item_ptr(path->nodes[0],
1960                                       path->slots[0],
1961                                       struct btrfs_chunk);
1962                /* chunk zero is special */
1963                if (found_key.offset == 0)
1964                        break;
1965
1966                btrfs_release_path(chunk_root, path);
1967                ret = btrfs_relocate_chunk(chunk_root,
1968                                           chunk_root->root_key.objectid,
1969                                           found_key.objectid,
1970                                           found_key.offset);
1971                BUG_ON(ret && ret != -ENOSPC);
1972                key.offset = found_key.offset - 1;
1973        }
1974        ret = 0;
1975error:
1976        btrfs_free_path(path);
1977        mutex_unlock(&dev_root->fs_info->volume_mutex);
1978        return ret;
1979}
1980
1981/*
1982 * shrinking a device means finding all of the device extents past
1983 * the new size, and then following the back refs to the chunks.
1984 * The chunk relocation code actually frees the device extent
1985 */
1986int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
1987{
1988        struct btrfs_trans_handle *trans;
1989        struct btrfs_root *root = device->dev_root;
1990        struct btrfs_dev_extent *dev_extent = NULL;
1991        struct btrfs_path *path;
1992        u64 length;
1993        u64 chunk_tree;
1994        u64 chunk_objectid;
1995        u64 chunk_offset;
1996        int ret;
1997        int slot;
1998        int failed = 0;
1999        bool retried = false;
2000        struct extent_buffer *l;
2001        struct btrfs_key key;
2002        struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2003        u64 old_total = btrfs_super_total_bytes(super_copy);
2004        u64 old_size = device->total_bytes;
2005        u64 diff = device->total_bytes - new_size;
2006
2007        if (new_size >= device->total_bytes)
2008                return -EINVAL;
2009
2010        path = btrfs_alloc_path();
2011        if (!path)
2012                return -ENOMEM;
2013
2014        path->reada = 2;
2015
2016        lock_chunks(root);
2017
2018        device->total_bytes = new_size;
2019        if (device->writeable)
2020                device->fs_devices->total_rw_bytes -= diff;
2021        unlock_chunks(root);
2022
2023again:
2024        key.objectid = device->devid;
2025        key.offset = (u64)-1;
2026        key.type = BTRFS_DEV_EXTENT_KEY;
2027
2028        while (1) {
2029                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2030                if (ret < 0)
2031                        goto done;
2032
2033                ret = btrfs_previous_item(root, path, 0, key.type);
2034                if (ret < 0)
2035                        goto done;
2036                if (ret) {
2037                        ret = 0;
2038                        btrfs_release_path(root, path);
2039                        break;
2040                }
2041
2042                l = path->nodes[0];
2043                slot = path->slots[0];
2044                btrfs_item_key_to_cpu(l, &key, path->slots[0]);
2045
2046                if (key.objectid != device->devid) {
2047                        btrfs_release_path(root, path);
2048                        break;
2049                }
2050
2051                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2052                length = btrfs_dev_extent_length(l, dev_extent);
2053
2054                if (key.offset + length <= new_size) {
2055                        btrfs_release_path(root, path);
2056                        break;
2057                }
2058
2059                chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2060                chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2061                chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2062                btrfs_release_path(root, path);
2063
2064                ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
2065                                           chunk_offset);
2066                if (ret && ret != -ENOSPC)
2067                        goto done;
2068                if (ret == -ENOSPC)
2069                        failed++;
2070                key.offset -= 1;
2071        }
2072
2073        if (failed && !retried) {
2074                failed = 0;
2075                retried = true;
2076                goto again;
2077        } else if (failed && retried) {
2078                ret = -ENOSPC;
2079                lock_chunks(root);
2080
2081                device->total_bytes = old_size;
2082                if (device->writeable)
2083                        device->fs_devices->total_rw_bytes += diff;
2084                unlock_chunks(root);
2085                goto done;
2086        }
2087
2088        /* Shrinking succeeded, else we would be at "done". */
2089        trans = btrfs_start_transaction(root, 1);
2090        if (!trans) {
2091                ret = -ENOMEM;
2092                goto done;
2093        }
2094        lock_chunks(root);
2095
2096        device->disk_total_bytes = new_size;
2097        /* Now btrfs_update_device() will change the on-disk size. */
2098        ret = btrfs_update_device(trans, device);
2099        if (ret) {
2100                unlock_chunks(root);
2101                btrfs_end_transaction(trans, root);
2102                goto done;
2103        }
2104        WARN_ON(diff > old_total);
2105        btrfs_set_super_total_bytes(super_copy, old_total - diff);
2106        unlock_chunks(root);
2107        btrfs_end_transaction(trans, root);
2108done:
2109        btrfs_free_path(path);
2110        return ret;
2111}
2112
2113static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
2114                           struct btrfs_root *root,
2115                           struct btrfs_key *key,
2116                           struct btrfs_chunk *chunk, int item_size)
2117{
2118        struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2119        struct btrfs_disk_key disk_key;
2120        u32 array_size;
2121        u8 *ptr;
2122
2123        array_size = btrfs_super_sys_array_size(super_copy);
2124        if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
2125                return -EFBIG;
2126
2127        ptr = super_copy->sys_chunk_array + array_size;
2128        btrfs_cpu_key_to_disk(&disk_key, key);
2129        memcpy(ptr, &disk_key, sizeof(disk_key));
2130        ptr += sizeof(disk_key);
2131        memcpy(ptr, chunk, item_size);
2132        item_size += sizeof(disk_key);
2133        btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
2134        return 0;
2135}
2136
2137static noinline u64 chunk_bytes_by_type(u64 type, u64 calc_size,
2138                                        int num_stripes, int sub_stripes)
2139{
2140        if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
2141                return calc_size;
2142        else if (type & BTRFS_BLOCK_GROUP_RAID10)
2143                return calc_size * (num_stripes / sub_stripes);
2144        else
2145                return calc_size * num_stripes;
2146}
2147
2148static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2149                               struct btrfs_root *extent_root,
2150                               struct map_lookup **map_ret,
2151                               u64 *num_bytes, u64 *stripe_size,
2152                               u64 start, u64 type)
2153{
2154        struct btrfs_fs_info *info = extent_root->fs_info;
2155        struct btrfs_device *device = NULL;
2156        struct btrfs_fs_devices *fs_devices = info->fs_devices;
2157        struct list_head *cur;
2158        struct map_lookup *map = NULL;
2159        struct extent_map_tree *em_tree;
2160        struct extent_map *em;
2161        struct list_head private_devs;
2162        int min_stripe_size = 1 * 1024 * 1024;
2163        u64 calc_size = 1024 * 1024 * 1024;
2164        u64 max_chunk_size = calc_size;
2165        u64 min_free;
2166        u64 avail;
2167        u64 max_avail = 0;
2168        u64 dev_offset;
2169        int num_stripes = 1;
2170        int min_stripes = 1;
2171        int sub_stripes = 0;
2172        int looped = 0;
2173        int ret;
2174        int index;
2175        int stripe_len = 64 * 1024;
2176
2177        if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
2178            (type & BTRFS_BLOCK_GROUP_DUP)) {
2179                WARN_ON(1);
2180                type &= ~BTRFS_BLOCK_GROUP_DUP;
2181        }
2182        if (list_empty(&fs_devices->alloc_list))
2183                return -ENOSPC;
2184
2185        if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
2186                num_stripes = fs_devices->rw_devices;
2187                min_stripes = 2;
2188        }
2189        if (type & (BTRFS_BLOCK_GROUP_DUP)) {
2190                num_stripes = 2;
2191                min_stripes = 2;
2192        }
2193        if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
2194                num_stripes = min_t(u64, 2, fs_devices->rw_devices);
2195                if (num_stripes < 2)
2196                        return -ENOSPC;
2197                min_stripes = 2;
2198        }
2199        if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2200                num_stripes = fs_devices->rw_devices;
2201                if (num_stripes < 4)
2202                        return -ENOSPC;
2203                num_stripes &= ~(u32)1;
2204                sub_stripes = 2;
2205                min_stripes = 4;
2206        }
2207
2208        if (type & BTRFS_BLOCK_GROUP_DATA) {
2209                max_chunk_size = 10 * calc_size;
2210                min_stripe_size = 64 * 1024 * 1024;
2211        } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
2212                max_chunk_size = 4 * calc_size;
2213                min_stripe_size = 32 * 1024 * 1024;
2214        } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
2215                calc_size = 8 * 1024 * 1024;
2216                max_chunk_size = calc_size * 2;
2217                min_stripe_size = 1 * 1024 * 1024;
2218        }
2219
2220        /* we don't want a chunk larger than 10% of writeable space */
2221        max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
2222                             max_chunk_size);
2223
2224again:
2225        max_avail = 0;
2226        if (!map || map->num_stripes != num_stripes) {
2227                kfree(map);
2228                map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2229                if (!map)
2230                        return -ENOMEM;
2231                map->num_stripes = num_stripes;
2232        }
2233
2234        if (calc_size * num_stripes > max_chunk_size) {
2235                calc_size = max_chunk_size;
2236                do_div(calc_size, num_stripes);
2237                do_div(calc_size, stripe_len);
2238                calc_size *= stripe_len;
2239        }
2240        /* we don't want tiny stripes */
2241        calc_size = max_t(u64, min_stripe_size, calc_size);
2242
2243        do_div(calc_size, stripe_len);
2244        calc_size *= stripe_len;
2245
2246        cur = fs_devices->alloc_list.next;
2247        index = 0;
2248
2249        if (type & BTRFS_BLOCK_GROUP_DUP)
2250                min_free = calc_size * 2;
2251        else
2252                min_free = calc_size;
2253
2254        /*
2255         * we add 1MB because we never use the first 1MB of the device, unless
2256         * we've looped, then we are likely allocating the maximum amount of
2257         * space left already
2258         */
2259        if (!looped)
2260                min_free += 1024 * 1024;
2261
2262        INIT_LIST_HEAD(&private_devs);
2263        while (index < num_stripes) {
2264                device = list_entry(cur, struct btrfs_device, dev_alloc_list);
2265                BUG_ON(!device->writeable);
2266                if (device->total_bytes > device->bytes_used)
2267                        avail = device->total_bytes - device->bytes_used;
2268                else
2269                        avail = 0;
2270                cur = cur->next;
2271
2272                if (device->in_fs_metadata && avail >= min_free) {
2273                        ret = find_free_dev_extent(trans, device,
2274                                                   min_free, &dev_offset,
2275                                                   &max_avail);
2276                        if (ret == 0) {
2277                                list_move_tail(&device->dev_alloc_list,
2278                                               &private_devs);
2279                                map->stripes[index].dev = device;
2280                                map->stripes[index].physical = dev_offset;
2281                                index++;
2282                                if (type & BTRFS_BLOCK_GROUP_DUP) {
2283                                        map->stripes[index].dev = device;
2284                                        map->stripes[index].physical =
2285                                                dev_offset + calc_size;
2286                                        index++;
2287                                }
2288                        }
2289                } else if (device->in_fs_metadata && avail > max_avail)
2290                        max_avail = avail;
2291                if (cur == &fs_devices->alloc_list)
2292                        break;
2293        }
2294        list_splice(&private_devs, &fs_devices->alloc_list);
2295        if (index < num_stripes) {
2296                if (index >= min_stripes) {
2297                        num_stripes = index;
2298                        if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2299                                num_stripes /= sub_stripes;
2300                                num_stripes *= sub_stripes;
2301                        }
2302                        looped = 1;
2303                        goto again;
2304                }
2305                if (!looped && max_avail > 0) {
2306                        looped = 1;
2307                        calc_size = max_avail;
2308                        goto again;
2309                }
2310                kfree(map);
2311                return -ENOSPC;
2312        }
2313        map->sector_size = extent_root->sectorsize;
2314        map->stripe_len = stripe_len;
2315        map->io_align = stripe_len;
2316        map->io_width = stripe_len;
2317        map->type = type;
2318        map->num_stripes = num_stripes;
2319        map->sub_stripes = sub_stripes;
2320
2321        *map_ret = map;
2322        *stripe_size = calc_size;
2323        *num_bytes = chunk_bytes_by_type(type, calc_size,
2324                                         num_stripes, sub_stripes);
2325
2326        em = alloc_extent_map(GFP_NOFS);
2327        if (!em) {
2328                kfree(map);
2329                return -ENOMEM;
2330        }
2331        em->bdev = (struct block_device *)map;
2332        em->start = start;
2333        em->len = *num_bytes;
2334        em->block_start = 0;
2335        em->block_len = em->len;
2336
2337        em_tree = &extent_root->fs_info->mapping_tree.map_tree;
2338        write_lock(&em_tree->lock);
2339        ret = add_extent_mapping(em_tree, em);
2340        write_unlock(&em_tree->lock);
2341        BUG_ON(ret);
2342        free_extent_map(em);
2343
2344        ret = btrfs_make_block_group(trans, extent_root, 0, type,
2345                                     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2346                                     start, *num_bytes);
2347        BUG_ON(ret);
2348
2349        index = 0;
2350        while (index < map->num_stripes) {
2351                device = map->stripes[index].dev;
2352                dev_offset = map->stripes[index].physical;
2353
2354                ret = btrfs_alloc_dev_extent(trans, device,
2355                                info->chunk_root->root_key.objectid,
2356                                BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2357                                start, dev_offset, calc_size);
2358                BUG_ON(ret);
2359                index++;
2360        }
2361
2362        return 0;
2363}
2364
2365static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2366                                struct btrfs_root *extent_root,
2367                                struct map_lookup *map, u64 chunk_offset,
2368                                u64 chunk_size, u64 stripe_size)
2369{
2370        u64 dev_offset;
2371        struct btrfs_key key;
2372        struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2373        struct btrfs_device *device;
2374        struct btrfs_chunk *chunk;
2375        struct btrfs_stripe *stripe;
2376        size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2377        int index = 0;
2378        int ret;
2379
2380        chunk = kzalloc(item_size, GFP_NOFS);
2381        if (!chunk)
2382                return -ENOMEM;
2383
2384        index = 0;
2385        while (index < map->num_stripes) {
2386                device = map->stripes[index].dev;
2387                device->bytes_used += stripe_size;
2388                ret = btrfs_update_device(trans, device);
2389                BUG_ON(ret);
2390                index++;
2391        }
2392
2393        index = 0;
2394        stripe = &chunk->stripe;
2395        while (index < map->num_stripes) {
2396                device = map->stripes[index].dev;
2397                dev_offset = map->stripes[index].physical;
2398
2399                btrfs_set_stack_stripe_devid(stripe, device->devid);
2400                btrfs_set_stack_stripe_offset(stripe, dev_offset);
2401                memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2402                stripe++;
2403                index++;
2404        }
2405
2406        btrfs_set_stack_chunk_length(chunk, chunk_size);
2407        btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2408        btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2409        btrfs_set_stack_chunk_type(chunk, map->type);
2410        btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2411        btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2412        btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
2413        btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2414        btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
2415
2416        key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2417        key.type = BTRFS_CHUNK_ITEM_KEY;
2418        key.offset = chunk_offset;
2419
2420        ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2421        BUG_ON(ret);
2422
2423        if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2424                ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2425                                             item_size);
2426                BUG_ON(ret);
2427        }
2428        kfree(chunk);
2429        return 0;
2430}
2431
2432/*
2433 * Chunk allocation falls into two parts. The first part does works
2434 * that make the new allocated chunk useable, but not do any operation
2435 * that modifies the chunk tree. The second part does the works that
2436 * require modifying the chunk tree. This division is important for the
2437 * bootstrap process of adding storage to a seed btrfs.
2438 */
2439int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2440                      struct btrfs_root *extent_root, u64 type)
2441{
2442        u64 chunk_offset;
2443        u64 chunk_size;
2444        u64 stripe_size;
2445        struct map_lookup *map;
2446        struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2447        int ret;
2448
2449        ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2450                              &chunk_offset);
2451        if (ret)
2452                return ret;
2453
2454        ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2455                                  &stripe_size, chunk_offset, type);
2456        if (ret)
2457                return ret;
2458
2459        ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2460                                   chunk_size, stripe_size);
2461        BUG_ON(ret);
2462        return 0;
2463}
2464
2465static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2466                                         struct btrfs_root *root,
2467                                         struct btrfs_device *device)
2468{
2469        u64 chunk_offset;
2470        u64 sys_chunk_offset;
2471        u64 chunk_size;
2472        u64 sys_chunk_size;
2473        u64 stripe_size;
2474        u64 sys_stripe_size;
2475        u64 alloc_profile;
2476        struct map_lookup *map;
2477        struct map_lookup *sys_map;
2478        struct btrfs_fs_info *fs_info = root->fs_info;
2479        struct btrfs_root *extent_root = fs_info->extent_root;
2480        int ret;
2481
2482        ret = find_next_chunk(fs_info->chunk_root,
2483                              BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
2484        BUG_ON(ret);
2485
2486        alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
2487                        (fs_info->metadata_alloc_profile &
2488                         fs_info->avail_metadata_alloc_bits);
2489        alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2490
2491        ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2492                                  &stripe_size, chunk_offset, alloc_profile);
2493        BUG_ON(ret);
2494
2495        sys_chunk_offset = chunk_offset + chunk_size;
2496
2497        alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
2498                        (fs_info->system_alloc_profile &
2499                         fs_info->avail_system_alloc_bits);
2500        alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2501
2502        ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2503                                  &sys_chunk_size, &sys_stripe_size,
2504                                  sys_chunk_offset, alloc_profile);
2505        BUG_ON(ret);
2506
2507        ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2508        BUG_ON(ret);
2509
2510        /*
2511         * Modifying chunk tree needs allocating new blocks from both
2512         * system block group and metadata block group. So we only can
2513         * do operations require modifying the chunk tree after both
2514         * block groups were created.
2515         */
2516        ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2517                                   chunk_size, stripe_size);
2518        BUG_ON(ret);
2519
2520        ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2521                                   sys_chunk_offset, sys_chunk_size,
2522                                   sys_stripe_size);
2523        BUG_ON(ret);
2524        return 0;
2525}
2526
2527int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2528{
2529        struct extent_map *em;
2530        struct map_lookup *map;
2531        struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2532        int readonly = 0;
2533        int i;
2534
2535        read_lock(&map_tree->map_tree.lock);
2536        em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2537        read_unlock(&map_tree->map_tree.lock);
2538        if (!em)
2539                return 1;
2540
2541        map = (struct map_lookup *)em->bdev;
2542        for (i = 0; i < map->num_stripes; i++) {
2543                if (!map->stripes[i].dev->writeable) {
2544                        readonly = 1;
2545                        break;
2546                }
2547        }
2548        free_extent_map(em);
2549        return readonly;
2550}
2551
2552void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2553{
2554        extent_map_tree_init(&tree->map_tree, GFP_NOFS);
2555}
2556
2557void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2558{
2559        struct extent_map *em;
2560
2561        while (1) {
2562                write_lock(&tree->map_tree.lock);
2563                em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2564                if (em)
2565                        remove_extent_mapping(&tree->map_tree, em);
2566                write_unlock(&tree->map_tree.lock);
2567                if (!em)
2568                        break;
2569                kfree(em->bdev);
2570                /* once for us */
2571                free_extent_map(em);
2572                /* once for the tree */
2573                free_extent_map(em);
2574        }
2575}
2576
2577int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2578{
2579        struct extent_map *em;
2580        struct map_lookup *map;
2581        struct extent_map_tree *em_tree = &map_tree->map_tree;
2582        int ret;
2583
2584        read_lock(&em_tree->lock);
2585        em = lookup_extent_mapping(em_tree, logical, len);
2586        read_unlock(&em_tree->lock);
2587        BUG_ON(!em);
2588
2589        BUG_ON(em->start > logical || em->start + em->len < logical);
2590        map = (struct map_lookup *)em->bdev;
2591        if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2592                ret = map->num_stripes;
2593        else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2594                ret = map->sub_stripes;
2595        else
2596                ret = 1;
2597        free_extent_map(em);
2598        return ret;
2599}
2600
2601static int find_live_mirror(struct map_lookup *map, int first, int num,
2602                            int optimal)
2603{
2604        int i;
2605        if (map->stripes[optimal].dev->bdev)
2606                return optimal;
2607        for (i = first; i < first + num; i++) {
2608                if (map->stripes[i].dev->bdev)
2609                        return i;
2610        }
2611        /* we couldn't find one that doesn't fail.  Just return something
2612         * and the io error handling code will clean up eventually
2613         */
2614        return optimal;
2615}
2616
2617static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2618                             u64 logical, u64 *length,
2619                             struct btrfs_multi_bio **multi_ret,
2620                             int mirror_num, struct page *unplug_page)
2621{
2622        struct extent_map *em;
2623        struct map_lookup *map;
2624        struct extent_map_tree *em_tree = &map_tree->map_tree;
2625        u64 offset;
2626        u64 stripe_offset;
2627        u64 stripe_nr;
2628        int stripes_allocated = 8;
2629        int stripes_required = 1;
2630        int stripe_index;
2631        int i;
2632        int num_stripes;
2633        int max_errors = 0;
2634        struct btrfs_multi_bio *multi = NULL;
2635
2636        if (multi_ret && !(rw & (1 << BIO_RW)))
2637                stripes_allocated = 1;
2638again:
2639        if (multi_ret) {
2640                multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
2641                                GFP_NOFS);
2642                if (!multi)
2643                        return -ENOMEM;
2644
2645                atomic_set(&multi->error, 0);
2646        }
2647
2648        read_lock(&em_tree->lock);
2649        em = lookup_extent_mapping(em_tree, logical, *length);
2650        read_unlock(&em_tree->lock);
2651
2652        if (!em && unplug_page)
2653                return 0;
2654
2655        if (!em) {
2656                printk(KERN_CRIT "unable to find logical %llu len %llu\n",
2657                       (unsigned long long)logical,
2658                       (unsigned long long)*length);
2659                BUG();
2660        }
2661
2662        BUG_ON(em->start > logical || em->start + em->len < logical);
2663        map = (struct map_lookup *)em->bdev;
2664        offset = logical - em->start;
2665
2666        if (mirror_num > map->num_stripes)
2667                mirror_num = 0;
2668
2669        /* if our multi bio struct is too small, back off and try again */
2670        if (rw & (1 << BIO_RW)) {
2671                if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
2672                                 BTRFS_BLOCK_GROUP_DUP)) {
2673                        stripes_required = map->num_stripes;
2674                        max_errors = 1;
2675                } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2676                        stripes_required = map->sub_stripes;
2677                        max_errors = 1;
2678                }
2679        }
2680        if (multi_ret && (rw & (1 << BIO_RW)) &&
2681            stripes_allocated < stripes_required) {
2682                stripes_allocated = map->num_stripes;
2683                free_extent_map(em);
2684                kfree(multi);
2685                goto again;
2686        }
2687        stripe_nr = offset;
2688        /*
2689         * stripe_nr counts the total number of stripes we have to stride
2690         * to get to this block
2691         */
2692        do_div(stripe_nr, map->stripe_len);
2693
2694        stripe_offset = stripe_nr * map->stripe_len;
2695        BUG_ON(offset < stripe_offset);
2696
2697        /* stripe_offset is the offset of this block in its stripe*/
2698        stripe_offset = offset - stripe_offset;
2699
2700        if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
2701                         BTRFS_BLOCK_GROUP_RAID10 |
2702                         BTRFS_BLOCK_GROUP_DUP)) {
2703                /* we limit the length of each bio to what fits in a stripe */
2704                *length = min_t(u64, em->len - offset,
2705                              map->stripe_len - stripe_offset);
2706        } else {
2707                *length = em->len - offset;
2708        }
2709
2710        if (!multi_ret && !unplug_page)
2711                goto out;
2712
2713        num_stripes = 1;
2714        stripe_index = 0;
2715        if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2716                if (unplug_page || (rw & (1 << BIO_RW)))
2717                        num_stripes = map->num_stripes;
2718                else if (mirror_num)
2719                        stripe_index = mirror_num - 1;
2720                else {
2721                        stripe_index = find_live_mirror(map, 0,
2722                                            map->num_stripes,
2723                                            current->pid % map->num_stripes);
2724                }
2725
2726        } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2727                if (rw & (1 << BIO_RW))
2728                        num_stripes = map->num_stripes;
2729                else if (mirror_num)
2730                        stripe_index = mirror_num - 1;
2731
2732        } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2733                int factor = map->num_stripes / map->sub_stripes;
2734
2735                stripe_index = do_div(stripe_nr, factor);
2736                stripe_index *= map->sub_stripes;
2737
2738                if (unplug_page || (rw & (1 << BIO_RW)))
2739                        num_stripes = map->sub_stripes;
2740                else if (mirror_num)
2741                        stripe_index += mirror_num - 1;
2742                else {
2743                        stripe_index = find_live_mirror(map, stripe_index,
2744                                              map->sub_stripes, stripe_index +
2745                                              current->pid % map->sub_stripes);
2746                }
2747        } else {
2748                /*
2749                 * after this do_div call, stripe_nr is the number of stripes
2750                 * on this device we have to walk to find the data, and
2751                 * stripe_index is the number of our device in the stripe array
2752                 */
2753                stripe_index = do_div(stripe_nr, map->num_stripes);
2754        }
2755        BUG_ON(stripe_index >= map->num_stripes);
2756
2757        for (i = 0; i < num_stripes; i++) {
2758                if (unplug_page) {
2759                        struct btrfs_device *device;
2760                        struct backing_dev_info *bdi;
2761
2762                        device = map->stripes[stripe_index].dev;
2763                        if (device->bdev) {
2764                                bdi = blk_get_backing_dev_info(device->bdev);
2765                                if (bdi->unplug_io_fn)
2766                                        bdi->unplug_io_fn(bdi, unplug_page);
2767                        }
2768                } else {
2769                        multi->stripes[i].physical =
2770                                map->stripes[stripe_index].physical +
2771                                stripe_offset + stripe_nr * map->stripe_len;
2772                        multi->stripes[i].dev = map->stripes[stripe_index].dev;
2773                }
2774                stripe_index++;
2775        }
2776        if (multi_ret) {
2777                *multi_ret = multi;
2778                multi->num_stripes = num_stripes;
2779                multi->max_errors = max_errors;
2780        }
2781out:
2782        free_extent_map(em);
2783        return 0;
2784}
2785
2786int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2787                      u64 logical, u64 *length,
2788                      struct btrfs_multi_bio **multi_ret, int mirror_num)
2789{
2790        return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
2791                                 mirror_num, NULL);
2792}
2793
2794int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
2795                     u64 chunk_start, u64 physical, u64 devid,
2796                     u64 **logical, int *naddrs, int *stripe_len)
2797{
2798        struct extent_map_tree *em_tree = &map_tree->map_tree;
2799        struct extent_map *em;
2800        struct map_lookup *map;
2801        u64 *buf;
2802        u64 bytenr;
2803        u64 length;
2804        u64 stripe_nr;
2805        int i, j, nr = 0;
2806
2807        read_lock(&em_tree->lock);
2808        em = lookup_extent_mapping(em_tree, chunk_start, 1);
2809        read_unlock(&em_tree->lock);
2810
2811        BUG_ON(!em || em->start != chunk_start);
2812        map = (struct map_lookup *)em->bdev;
2813
2814        length = em->len;
2815        if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2816                do_div(length, map->num_stripes / map->sub_stripes);
2817        else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
2818                do_div(length, map->num_stripes);
2819
2820        buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
2821        BUG_ON(!buf);
2822
2823        for (i = 0; i < map->num_stripes; i++) {
2824                if (devid && map->stripes[i].dev->devid != devid)
2825                        continue;
2826                if (map->stripes[i].physical > physical ||
2827                    map->stripes[i].physical + length <= physical)
2828                        continue;
2829
2830                stripe_nr = physical - map->stripes[i].physical;
2831                do_div(stripe_nr, map->stripe_len);
2832
2833                if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2834                        stripe_nr = stripe_nr * map->num_stripes + i;
2835                        do_div(stripe_nr, map->sub_stripes);
2836                } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2837                        stripe_nr = stripe_nr * map->num_stripes + i;
2838                }
2839                bytenr = chunk_start + stripe_nr * map->stripe_len;
2840                WARN_ON(nr >= map->num_stripes);
2841                for (j = 0; j < nr; j++) {
2842                        if (buf[j] == bytenr)
2843                                break;
2844                }
2845                if (j == nr) {
2846                        WARN_ON(nr >= map->num_stripes);
2847                        buf[nr++] = bytenr;
2848                }
2849        }
2850
2851        *logical = buf;
2852        *naddrs = nr;
2853        *stripe_len = map->stripe_len;
2854
2855        free_extent_map(em);
2856        return 0;
2857}
2858
2859int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
2860                      u64 logical, struct page *page)
2861{
2862        u64 length = PAGE_CACHE_SIZE;
2863        return __btrfs_map_block(map_tree, READ, logical, &length,
2864                                 NULL, 0, page);
2865}
2866
2867static void end_bio_multi_stripe(struct bio *bio, int err)
2868{
2869        struct btrfs_multi_bio *multi = bio->bi_private;
2870        int is_orig_bio = 0;
2871
2872        if (err)
2873                atomic_inc(&multi->error);
2874
2875        if (bio == multi->orig_bio)
2876                is_orig_bio = 1;
2877
2878        if (atomic_dec_and_test(&multi->stripes_pending)) {
2879                if (!is_orig_bio) {
2880                        bio_put(bio);
2881                        bio = multi->orig_bio;
2882                }
2883                bio->bi_private = multi->private;
2884                bio->bi_end_io = multi->end_io;
2885                /* only send an error to the higher layers if it is
2886                 * beyond the tolerance of the multi-bio
2887                 */
2888                if (atomic_read(&multi->error) > multi->max_errors) {
2889                        err = -EIO;
2890                } else if (err) {
2891                        /*
2892                         * this bio is actually up to date, we didn't
2893                         * go over the max number of errors
2894                         */
2895                        set_bit(BIO_UPTODATE, &bio->bi_flags);
2896                        err = 0;
2897                }
2898                kfree(multi);
2899
2900                bio_endio(bio, err);
2901        } else if (!is_orig_bio) {
2902                bio_put(bio);
2903        }
2904}
2905
2906struct async_sched {
2907        struct bio *bio;
2908        int rw;
2909        struct btrfs_fs_info *info;
2910        struct btrfs_work work;
2911};
2912
2913/*
2914 * see run_scheduled_bios for a description of why bios are collected for
2915 * async submit.
2916 *
2917 * This will add one bio to the pending list for a device and make sure
2918 * the work struct is scheduled.
2919 */
2920static noinline int schedule_bio(struct btrfs_root *root,
2921                                 struct btrfs_device *device,
2922                                 int rw, struct bio *bio)
2923{
2924        int should_queue = 1;
2925        struct btrfs_pending_bios *pending_bios;
2926
2927        /* don't bother with additional async steps for reads, right now */
2928        if (!(rw & (1 << BIO_RW))) {
2929                bio_get(bio);
2930                submit_bio(rw, bio);
2931                bio_put(bio);
2932                return 0;
2933        }
2934
2935        /*
2936         * nr_async_bios allows us to reliably return congestion to the
2937         * higher layers.  Otherwise, the async bio makes it appear we have
2938         * made progress against dirty pages when we've really just put it
2939         * on a queue for later
2940         */
2941        atomic_inc(&root->fs_info->nr_async_bios);
2942        WARN_ON(bio->bi_next);
2943        bio->bi_next = NULL;
2944        bio->bi_rw |= rw;
2945
2946        spin_lock(&device->io_lock);
2947        if (bio_rw_flagged(bio, BIO_RW_SYNCIO))
2948                pending_bios = &device->pending_sync_bios;
2949        else
2950                pending_bios = &device->pending_bios;
2951
2952        if (pending_bios->tail)
2953                pending_bios->tail->bi_next = bio;
2954
2955        pending_bios->tail = bio;
2956        if (!pending_bios->head)
2957                pending_bios->head = bio;
2958        if (device->running_pending)
2959                should_queue = 0;
2960
2961        spin_unlock(&device->io_lock);
2962
2963        if (should_queue)
2964                btrfs_queue_worker(&root->fs_info->submit_workers,
2965                                   &device->work);
2966        return 0;
2967}
2968
2969int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
2970                  int mirror_num, int async_submit)
2971{
2972        struct btrfs_mapping_tree *map_tree;
2973        struct btrfs_device *dev;
2974        struct bio *first_bio = bio;
2975        u64 logical = (u64)bio->bi_sector << 9;
2976        u64 length = 0;
2977        u64 map_length;
2978        struct btrfs_multi_bio *multi = NULL;
2979        int ret;
2980        int dev_nr = 0;
2981        int total_devs = 1;
2982
2983        length = bio->bi_size;
2984        map_tree = &root->fs_info->mapping_tree;
2985        map_length = length;
2986
2987        ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
2988                              mirror_num);
2989        BUG_ON(ret);
2990
2991        total_devs = multi->num_stripes;
2992        if (map_length < length) {
2993                printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
2994                       "len %llu\n", (unsigned long long)logical,
2995                       (unsigned long long)length,
2996                       (unsigned long long)map_length);
2997                BUG();
2998        }
2999        multi->end_io = first_bio->bi_end_io;
3000        multi->private = first_bio->bi_private;
3001        multi->orig_bio = first_bio;
3002        atomic_set(&multi->stripes_pending, multi->num_stripes);
3003
3004        while (dev_nr < total_devs) {
3005                if (total_devs > 1) {
3006                        if (dev_nr < total_devs - 1) {
3007                                bio = bio_clone(first_bio, GFP_NOFS);
3008                                BUG_ON(!bio);
3009                        } else {
3010                                bio = first_bio;
3011                        }
3012                        bio->bi_private = multi;
3013                        bio->bi_end_io = end_bio_multi_stripe;
3014                }
3015                bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
3016                dev = multi->stripes[dev_nr].dev;
3017                BUG_ON(rw == WRITE && !dev->writeable);
3018                if (dev && dev->bdev) {
3019                        bio->bi_bdev = dev->bdev;
3020                        if (async_submit)
3021                                schedule_bio(root, dev, rw, bio);
3022                        else
3023                                submit_bio(rw, bio);
3024                } else {
3025                        bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
3026                        bio->bi_sector = logical >> 9;
3027                        bio_endio(bio, -EIO);
3028                }
3029                dev_nr++;
3030        }
3031        if (total_devs == 1)
3032                kfree(multi);
3033        return 0;
3034}
3035
3036struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
3037                                       u8 *uuid, u8 *fsid)
3038{
3039        struct btrfs_device *device;
3040        struct btrfs_fs_devices *cur_devices;
3041
3042        cur_devices = root->fs_info->fs_devices;
3043        while (cur_devices) {
3044                if (!fsid ||
3045                    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3046                        device = __find_device(&cur_devices->devices,
3047                                               devid, uuid);
3048                        if (device)
3049                                return device;
3050                }
3051                cur_devices = cur_devices->seed;
3052        }
3053        return NULL;
3054}
3055
3056static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
3057                                            u64 devid, u8 *dev_uuid)
3058{
3059        struct btrfs_device *device;
3060        struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
3061
3062        device = kzalloc(sizeof(*device), GFP_NOFS);
3063        if (!device)
3064                return NULL;
3065        list_add(&device->dev_list,
3066                 &fs_devices->devices);
3067        device->barriers = 1;
3068        device->dev_root = root->fs_info->dev_root;
3069        device->devid = devid;
3070        device->work.func = pending_bios_fn;
3071        device->fs_devices = fs_devices;
3072        fs_devices->num_devices++;
3073        spin_lock_init(&device->io_lock);
3074        INIT_LIST_HEAD(&device->dev_alloc_list);
3075        memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
3076        return device;
3077}
3078
3079static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
3080                          struct extent_buffer *leaf,
3081                          struct btrfs_chunk *chunk)
3082{
3083        struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3084        struct map_lookup *map;
3085        struct extent_map *em;
3086        u64 logical;
3087        u64 length;
3088        u64 devid;
3089        u8 uuid[BTRFS_UUID_SIZE];
3090        int num_stripes;
3091        int ret;
3092        int i;
3093
3094        logical = key->offset;
3095        length = btrfs_chunk_length(leaf, chunk);
3096
3097        read_lock(&map_tree->map_tree.lock);
3098        em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
3099        read_unlock(&map_tree->map_tree.lock);
3100
3101        /* already mapped? */
3102        if (em && em->start <= logical && em->start + em->len > logical) {
3103                free_extent_map(em);
3104                return 0;
3105        } else if (em) {
3106                free_extent_map(em);
3107        }
3108
3109        em = alloc_extent_map(GFP_NOFS);
3110        if (!em)
3111                return -ENOMEM;
3112        num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3113        map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3114        if (!map) {
3115                free_extent_map(em);
3116                return -ENOMEM;
3117        }
3118
3119        em->bdev = (struct block_device *)map;
3120        em->start = logical;
3121        em->len = length;
3122        em->block_start = 0;
3123        em->block_len = em->len;
3124
3125        map->num_stripes = num_stripes;
3126        map->io_width = btrfs_chunk_io_width(leaf, chunk);
3127        map->io_align = btrfs_chunk_io_align(leaf, chunk);
3128        map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
3129        map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
3130        map->type = btrfs_chunk_type(leaf, chunk);
3131        map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
3132        for (i = 0; i < num_stripes; i++) {
3133                map->stripes[i].physical =
3134                        btrfs_stripe_offset_nr(leaf, chunk, i);
3135                devid = btrfs_stripe_devid_nr(leaf, chunk, i);
3136                read_extent_buffer(leaf, uuid, (unsigned long)
3137                                   btrfs_stripe_dev_uuid_nr(chunk, i),
3138                                   BTRFS_UUID_SIZE);
3139                map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
3140                                                        NULL);
3141                if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
3142                        kfree(map);
3143                        free_extent_map(em);
3144                        return -EIO;
3145                }
3146                if (!map->stripes[i].dev) {
3147                        map->stripes[i].dev =
3148                                add_missing_dev(root, devid, uuid);
3149                        if (!map->stripes[i].dev) {
3150                                kfree(map);
3151                                free_extent_map(em);
3152                                return -EIO;
3153                        }
3154                }
3155                map->stripes[i].dev->in_fs_metadata = 1;
3156        }
3157
3158        write_lock(&map_tree->map_tree.lock);
3159        ret = add_extent_mapping(&map_tree->map_tree, em);
3160        write_unlock(&map_tree->map_tree.lock);
3161        BUG_ON(ret);
3162        free_extent_map(em);
3163
3164        return 0;
3165}
3166
3167static int fill_device_from_item(struct extent_buffer *leaf,
3168                                 struct btrfs_dev_item *dev_item,
3169                                 struct btrfs_device *device)
3170{
3171        unsigned long ptr;
3172
3173        device->devid = btrfs_device_id(leaf, dev_item);
3174        device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
3175        device->total_bytes = device->disk_total_bytes;
3176        device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
3177        device->type = btrfs_device_type(leaf, dev_item);
3178        device->io_align = btrfs_device_io_align(leaf, dev_item);
3179        device->io_width = btrfs_device_io_width(leaf, dev_item);
3180        device->sector_size = btrfs_device_sector_size(leaf, dev_item);
3181
3182        ptr = (unsigned long)btrfs_device_uuid(dev_item);
3183        read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
3184
3185        return 0;
3186}
3187
3188static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
3189{
3190        struct btrfs_fs_devices *fs_devices;
3191        int ret;
3192
3193        mutex_lock(&uuid_mutex);
3194
3195        fs_devices = root->fs_info->fs_devices->seed;
3196        while (fs_devices) {
3197                if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3198                        ret = 0;
3199                        goto out;
3200                }
3201                fs_devices = fs_devices->seed;
3202        }
3203
3204        fs_devices = find_fsid(fsid);
3205        if (!fs_devices) {
3206                ret = -ENOENT;
3207                goto out;
3208        }
3209
3210        fs_devices = clone_fs_devices(fs_devices);
3211        if (IS_ERR(fs_devices)) {
3212                ret = PTR_ERR(fs_devices);
3213                goto out;
3214        }
3215
3216        ret = __btrfs_open_devices(fs_devices, FMODE_READ,
3217                                   root->fs_info->bdev_holder);
3218        if (ret)
3219                goto out;
3220
3221        if (!fs_devices->seeding) {
3222                __btrfs_close_devices(fs_devices);
3223                free_fs_devices(fs_devices);
3224                ret = -EINVAL;
3225                goto out;
3226        }
3227
3228        fs_devices->seed = root->fs_info->fs_devices->seed;
3229        root->fs_info->fs_devices->seed = fs_devices;
3230out:
3231        mutex_unlock(&uuid_mutex);
3232        return ret;
3233}
3234
3235static int read_one_dev(struct btrfs_root *root,
3236                        struct extent_buffer *leaf,
3237                        struct btrfs_dev_item *dev_item)
3238{
3239        struct btrfs_device *device;
3240        u64 devid;
3241        int ret;
3242        u8 fs_uuid[BTRFS_UUID_SIZE];
3243        u8 dev_uuid[BTRFS_UUID_SIZE];
3244
3245        devid = btrfs_device_id(leaf, dev_item);
3246        read_extent_buffer(leaf, dev_uuid,
3247                           (unsigned long)btrfs_device_uuid(dev_item),
3248                           BTRFS_UUID_SIZE);
3249        read_extent_buffer(leaf, fs_uuid,
3250                           (unsigned long)btrfs_device_fsid(dev_item),
3251                           BTRFS_UUID_SIZE);
3252
3253        if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
3254                ret = open_seed_devices(root, fs_uuid);
3255                if (ret && !btrfs_test_opt(root, DEGRADED))
3256                        return ret;
3257        }
3258
3259        device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
3260        if (!device || !device->bdev) {
3261                if (!btrfs_test_opt(root, DEGRADED))
3262                        return -EIO;
3263
3264                if (!device) {
3265                        printk(KERN_WARNING "warning devid %llu missing\n",
3266                               (unsigned long long)devid);
3267                        device = add_missing_dev(root, devid, dev_uuid);
3268                        if (!device)
3269                                return -ENOMEM;
3270                }
3271        }
3272
3273        if (device->fs_devices != root->fs_info->fs_devices) {
3274                BUG_ON(device->writeable);
3275                if (device->generation !=
3276                    btrfs_device_generation(leaf, dev_item))
3277                        return -EINVAL;
3278        }
3279
3280        fill_device_from_item(leaf, dev_item, device);
3281        device->dev_root = root->fs_info->dev_root;
3282        device->in_fs_metadata = 1;
3283        if (device->writeable)
3284                device->fs_devices->total_rw_bytes += device->total_bytes;
3285        ret = 0;
3286        return ret;
3287}
3288
3289int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
3290{
3291        struct btrfs_dev_item *dev_item;
3292
3293        dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
3294                                                     dev_item);
3295        return read_one_dev(root, buf, dev_item);
3296}
3297
3298int btrfs_read_sys_array(struct btrfs_root *root)
3299{
3300        struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
3301        struct extent_buffer *sb;
3302        struct btrfs_disk_key *disk_key;
3303        struct btrfs_chunk *chunk;
3304        u8 *ptr;
3305        unsigned long sb_ptr;
3306        int ret = 0;
3307        u32 num_stripes;
3308        u32 array_size;
3309        u32 len = 0;
3310        u32 cur;
3311        struct btrfs_key key;
3312
3313        sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
3314                                          BTRFS_SUPER_INFO_SIZE);
3315        if (!sb)
3316                return -ENOMEM;
3317        btrfs_set_buffer_uptodate(sb);
3318        btrfs_set_buffer_lockdep_class(sb, 0);
3319
3320        write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
3321        array_size = btrfs_super_sys_array_size(super_copy);
3322
3323        ptr = super_copy->sys_chunk_array;
3324        sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
3325        cur = 0;
3326
3327        while (cur < array_size) {
3328                disk_key = (struct btrfs_disk_key *)ptr;
3329                btrfs_disk_key_to_cpu(&key, disk_key);
3330
3331                len = sizeof(*disk_key); ptr += len;
3332                sb_ptr += len;
3333                cur += len;
3334
3335                if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3336                        chunk = (struct btrfs_chunk *)sb_ptr;
3337                        ret = read_one_chunk(root, &key, sb, chunk);
3338                        if (ret)
3339                                break;
3340                        num_stripes = btrfs_chunk_num_stripes(sb, chunk);
3341                        len = btrfs_chunk_item_size(num_stripes);
3342                } else {
3343                        ret = -EIO;
3344                        break;
3345                }
3346                ptr += len;
3347                sb_ptr += len;
3348                cur += len;
3349        }
3350        free_extent_buffer(sb);
3351        return ret;
3352}
3353
3354int btrfs_read_chunk_tree(struct btrfs_root *root)
3355{
3356        struct btrfs_path *path;
3357        struct extent_buffer *leaf;
3358        struct btrfs_key key;
3359        struct btrfs_key found_key;
3360        int ret;
3361        int slot;
3362
3363        root = root->fs_info->chunk_root;
3364
3365        path = btrfs_alloc_path();
3366        if (!path)
3367                return -ENOMEM;
3368
3369        /* first we search for all of the device items, and then we
3370         * read in all of the chunk items.  This way we can create chunk
3371         * mappings that reference all of the devices that are afound
3372         */
3373        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3374        key.offset = 0;
3375        key.type = 0;
3376again:
3377        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3378        while (1) {
3379                leaf = path->nodes[0];
3380                slot = path->slots[0];
3381                if (slot >= btrfs_header_nritems(leaf)) {
3382                        ret = btrfs_next_leaf(root, path);
3383                        if (ret == 0)
3384                                continue;
3385                        if (ret < 0)
3386                                goto error;
3387                        break;
3388                }
3389                btrfs_item_key_to_cpu(leaf, &found_key, slot);
3390                if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3391                        if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
3392                                break;
3393                        if (found_key.type == BTRFS_DEV_ITEM_KEY) {
3394                                struct btrfs_dev_item *dev_item;
3395                                dev_item = btrfs_item_ptr(leaf, slot,
3396                                                  struct btrfs_dev_item);
3397                                ret = read_one_dev(root, leaf, dev_item);
3398                                if (ret)
3399                                        goto error;
3400                        }
3401                } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
3402                        struct btrfs_chunk *chunk;
3403                        chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3404                        ret = read_one_chunk(root, &found_key, leaf, chunk);
3405                        if (ret)
3406                                goto error;
3407                }
3408                path->slots[0]++;
3409        }
3410        if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3411                key.objectid = 0;
3412                btrfs_release_path(root, path);
3413                goto again;
3414        }
3415        ret = 0;
3416error:
3417        btrfs_free_path(path);
3418        return ret;
3419}
3420