linux/fs/buffer.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/buffer.c
   3 *
   4 *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
   5 */
   6
   7/*
   8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
   9 *
  10 * Removed a lot of unnecessary code and simplified things now that
  11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
  12 *
  13 * Speed up hash, lru, and free list operations.  Use gfp() for allocating
  14 * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
  15 *
  16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
  17 *
  18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
  19 */
  20
  21#include <linux/kernel.h>
  22#include <linux/syscalls.h>
  23#include <linux/fs.h>
  24#include <linux/mm.h>
  25#include <linux/percpu.h>
  26#include <linux/slab.h>
  27#include <linux/capability.h>
  28#include <linux/blkdev.h>
  29#include <linux/file.h>
  30#include <linux/quotaops.h>
  31#include <linux/highmem.h>
  32#include <linux/module.h>
  33#include <linux/writeback.h>
  34#include <linux/hash.h>
  35#include <linux/suspend.h>
  36#include <linux/buffer_head.h>
  37#include <linux/task_io_accounting_ops.h>
  38#include <linux/bio.h>
  39#include <linux/notifier.h>
  40#include <linux/cpu.h>
  41#include <linux/bitops.h>
  42#include <linux/mpage.h>
  43#include <linux/bit_spinlock.h>
  44
  45static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
  46
  47#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
  48
  49inline void
  50init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
  51{
  52        bh->b_end_io = handler;
  53        bh->b_private = private;
  54}
  55EXPORT_SYMBOL(init_buffer);
  56
  57static int sync_buffer(void *word)
  58{
  59        struct block_device *bd;
  60        struct buffer_head *bh
  61                = container_of(word, struct buffer_head, b_state);
  62
  63        smp_mb();
  64        bd = bh->b_bdev;
  65        if (bd)
  66                blk_run_address_space(bd->bd_inode->i_mapping);
  67        io_schedule();
  68        return 0;
  69}
  70
  71void __lock_buffer(struct buffer_head *bh)
  72{
  73        wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
  74                                                        TASK_UNINTERRUPTIBLE);
  75}
  76EXPORT_SYMBOL(__lock_buffer);
  77
  78void unlock_buffer(struct buffer_head *bh)
  79{
  80        clear_bit_unlock(BH_Lock, &bh->b_state);
  81        smp_mb__after_clear_bit();
  82        wake_up_bit(&bh->b_state, BH_Lock);
  83}
  84EXPORT_SYMBOL(unlock_buffer);
  85
  86/*
  87 * Block until a buffer comes unlocked.  This doesn't stop it
  88 * from becoming locked again - you have to lock it yourself
  89 * if you want to preserve its state.
  90 */
  91void __wait_on_buffer(struct buffer_head * bh)
  92{
  93        wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
  94}
  95EXPORT_SYMBOL(__wait_on_buffer);
  96
  97static void
  98__clear_page_buffers(struct page *page)
  99{
 100        ClearPagePrivate(page);
 101        set_page_private(page, 0);
 102        page_cache_release(page);
 103}
 104
 105
 106static int quiet_error(struct buffer_head *bh)
 107{
 108        if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
 109                return 0;
 110        return 1;
 111}
 112
 113
 114static void buffer_io_error(struct buffer_head *bh)
 115{
 116        char b[BDEVNAME_SIZE];
 117        printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
 118                        bdevname(bh->b_bdev, b),
 119                        (unsigned long long)bh->b_blocknr);
 120}
 121
 122/*
 123 * End-of-IO handler helper function which does not touch the bh after
 124 * unlocking it.
 125 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
 126 * a race there is benign: unlock_buffer() only use the bh's address for
 127 * hashing after unlocking the buffer, so it doesn't actually touch the bh
 128 * itself.
 129 */
 130static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
 131{
 132        if (uptodate) {
 133                set_buffer_uptodate(bh);
 134        } else {
 135                /* This happens, due to failed READA attempts. */
 136                clear_buffer_uptodate(bh);
 137        }
 138        unlock_buffer(bh);
 139}
 140
 141/*
 142 * Default synchronous end-of-IO handler..  Just mark it up-to-date and
 143 * unlock the buffer. This is what ll_rw_block uses too.
 144 */
 145void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
 146{
 147        __end_buffer_read_notouch(bh, uptodate);
 148        put_bh(bh);
 149}
 150EXPORT_SYMBOL(end_buffer_read_sync);
 151
 152void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
 153{
 154        char b[BDEVNAME_SIZE];
 155
 156        if (uptodate) {
 157                set_buffer_uptodate(bh);
 158        } else {
 159                if (!buffer_eopnotsupp(bh) && !quiet_error(bh)) {
 160                        buffer_io_error(bh);
 161                        printk(KERN_WARNING "lost page write due to "
 162                                        "I/O error on %s\n",
 163                                       bdevname(bh->b_bdev, b));
 164                }
 165                set_buffer_write_io_error(bh);
 166                clear_buffer_uptodate(bh);
 167        }
 168        unlock_buffer(bh);
 169        put_bh(bh);
 170}
 171EXPORT_SYMBOL(end_buffer_write_sync);
 172
 173/*
 174 * Various filesystems appear to want __find_get_block to be non-blocking.
 175 * But it's the page lock which protects the buffers.  To get around this,
 176 * we get exclusion from try_to_free_buffers with the blockdev mapping's
 177 * private_lock.
 178 *
 179 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
 180 * may be quite high.  This code could TryLock the page, and if that
 181 * succeeds, there is no need to take private_lock. (But if
 182 * private_lock is contended then so is mapping->tree_lock).
 183 */
 184static struct buffer_head *
 185__find_get_block_slow(struct block_device *bdev, sector_t block)
 186{
 187        struct inode *bd_inode = bdev->bd_inode;
 188        struct address_space *bd_mapping = bd_inode->i_mapping;
 189        struct buffer_head *ret = NULL;
 190        pgoff_t index;
 191        struct buffer_head *bh;
 192        struct buffer_head *head;
 193        struct page *page;
 194        int all_mapped = 1;
 195
 196        index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
 197        page = find_get_page(bd_mapping, index);
 198        if (!page)
 199                goto out;
 200
 201        spin_lock(&bd_mapping->private_lock);
 202        if (!page_has_buffers(page))
 203                goto out_unlock;
 204        head = page_buffers(page);
 205        bh = head;
 206        do {
 207                if (!buffer_mapped(bh))
 208                        all_mapped = 0;
 209                else if (bh->b_blocknr == block) {
 210                        ret = bh;
 211                        get_bh(bh);
 212                        goto out_unlock;
 213                }
 214                bh = bh->b_this_page;
 215        } while (bh != head);
 216
 217        /* we might be here because some of the buffers on this page are
 218         * not mapped.  This is due to various races between
 219         * file io on the block device and getblk.  It gets dealt with
 220         * elsewhere, don't buffer_error if we had some unmapped buffers
 221         */
 222        if (all_mapped) {
 223                printk("__find_get_block_slow() failed. "
 224                        "block=%llu, b_blocknr=%llu\n",
 225                        (unsigned long long)block,
 226                        (unsigned long long)bh->b_blocknr);
 227                printk("b_state=0x%08lx, b_size=%zu\n",
 228                        bh->b_state, bh->b_size);
 229                printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
 230        }
 231out_unlock:
 232        spin_unlock(&bd_mapping->private_lock);
 233        page_cache_release(page);
 234out:
 235        return ret;
 236}
 237
 238/* If invalidate_buffers() will trash dirty buffers, it means some kind
 239   of fs corruption is going on. Trashing dirty data always imply losing
 240   information that was supposed to be just stored on the physical layer
 241   by the user.
 242
 243   Thus invalidate_buffers in general usage is not allwowed to trash
 244   dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
 245   be preserved.  These buffers are simply skipped.
 246  
 247   We also skip buffers which are still in use.  For example this can
 248   happen if a userspace program is reading the block device.
 249
 250   NOTE: In the case where the user removed a removable-media-disk even if
 251   there's still dirty data not synced on disk (due a bug in the device driver
 252   or due an error of the user), by not destroying the dirty buffers we could
 253   generate corruption also on the next media inserted, thus a parameter is
 254   necessary to handle this case in the most safe way possible (trying
 255   to not corrupt also the new disk inserted with the data belonging to
 256   the old now corrupted disk). Also for the ramdisk the natural thing
 257   to do in order to release the ramdisk memory is to destroy dirty buffers.
 258
 259   These are two special cases. Normal usage imply the device driver
 260   to issue a sync on the device (without waiting I/O completion) and
 261   then an invalidate_buffers call that doesn't trash dirty buffers.
 262
 263   For handling cache coherency with the blkdev pagecache the 'update' case
 264   is been introduced. It is needed to re-read from disk any pinned
 265   buffer. NOTE: re-reading from disk is destructive so we can do it only
 266   when we assume nobody is changing the buffercache under our I/O and when
 267   we think the disk contains more recent information than the buffercache.
 268   The update == 1 pass marks the buffers we need to update, the update == 2
 269   pass does the actual I/O. */
 270void invalidate_bdev(struct block_device *bdev)
 271{
 272        struct address_space *mapping = bdev->bd_inode->i_mapping;
 273
 274        if (mapping->nrpages == 0)
 275                return;
 276
 277        invalidate_bh_lrus();
 278        invalidate_mapping_pages(mapping, 0, -1);
 279}
 280EXPORT_SYMBOL(invalidate_bdev);
 281
 282/*
 283 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
 284 */
 285static void free_more_memory(void)
 286{
 287        struct zone *zone;
 288        int nid;
 289
 290        wakeup_flusher_threads(1024);
 291        yield();
 292
 293        for_each_online_node(nid) {
 294                (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
 295                                                gfp_zone(GFP_NOFS), NULL,
 296                                                &zone);
 297                if (zone)
 298                        try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
 299                                                GFP_NOFS, NULL);
 300        }
 301}
 302
 303/*
 304 * I/O completion handler for block_read_full_page() - pages
 305 * which come unlocked at the end of I/O.
 306 */
 307static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
 308{
 309        unsigned long flags;
 310        struct buffer_head *first;
 311        struct buffer_head *tmp;
 312        struct page *page;
 313        int page_uptodate = 1;
 314
 315        BUG_ON(!buffer_async_read(bh));
 316
 317        page = bh->b_page;
 318        if (uptodate) {
 319                set_buffer_uptodate(bh);
 320        } else {
 321                clear_buffer_uptodate(bh);
 322                if (!quiet_error(bh))
 323                        buffer_io_error(bh);
 324                SetPageError(page);
 325        }
 326
 327        /*
 328         * Be _very_ careful from here on. Bad things can happen if
 329         * two buffer heads end IO at almost the same time and both
 330         * decide that the page is now completely done.
 331         */
 332        first = page_buffers(page);
 333        local_irq_save(flags);
 334        bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 335        clear_buffer_async_read(bh);
 336        unlock_buffer(bh);
 337        tmp = bh;
 338        do {
 339                if (!buffer_uptodate(tmp))
 340                        page_uptodate = 0;
 341                if (buffer_async_read(tmp)) {
 342                        BUG_ON(!buffer_locked(tmp));
 343                        goto still_busy;
 344                }
 345                tmp = tmp->b_this_page;
 346        } while (tmp != bh);
 347        bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 348        local_irq_restore(flags);
 349
 350        /*
 351         * If none of the buffers had errors and they are all
 352         * uptodate then we can set the page uptodate.
 353         */
 354        if (page_uptodate && !PageError(page))
 355                SetPageUptodate(page);
 356        unlock_page(page);
 357        return;
 358
 359still_busy:
 360        bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 361        local_irq_restore(flags);
 362        return;
 363}
 364
 365/*
 366 * Completion handler for block_write_full_page() - pages which are unlocked
 367 * during I/O, and which have PageWriteback cleared upon I/O completion.
 368 */
 369void end_buffer_async_write(struct buffer_head *bh, int uptodate)
 370{
 371        char b[BDEVNAME_SIZE];
 372        unsigned long flags;
 373        struct buffer_head *first;
 374        struct buffer_head *tmp;
 375        struct page *page;
 376
 377        BUG_ON(!buffer_async_write(bh));
 378
 379        page = bh->b_page;
 380        if (uptodate) {
 381                set_buffer_uptodate(bh);
 382        } else {
 383                if (!quiet_error(bh)) {
 384                        buffer_io_error(bh);
 385                        printk(KERN_WARNING "lost page write due to "
 386                                        "I/O error on %s\n",
 387                               bdevname(bh->b_bdev, b));
 388                }
 389                set_bit(AS_EIO, &page->mapping->flags);
 390                set_buffer_write_io_error(bh);
 391                clear_buffer_uptodate(bh);
 392                SetPageError(page);
 393        }
 394
 395        first = page_buffers(page);
 396        local_irq_save(flags);
 397        bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 398
 399        clear_buffer_async_write(bh);
 400        unlock_buffer(bh);
 401        tmp = bh->b_this_page;
 402        while (tmp != bh) {
 403                if (buffer_async_write(tmp)) {
 404                        BUG_ON(!buffer_locked(tmp));
 405                        goto still_busy;
 406                }
 407                tmp = tmp->b_this_page;
 408        }
 409        bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 410        local_irq_restore(flags);
 411        end_page_writeback(page);
 412        return;
 413
 414still_busy:
 415        bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 416        local_irq_restore(flags);
 417        return;
 418}
 419EXPORT_SYMBOL(end_buffer_async_write);
 420
 421/*
 422 * If a page's buffers are under async readin (end_buffer_async_read
 423 * completion) then there is a possibility that another thread of
 424 * control could lock one of the buffers after it has completed
 425 * but while some of the other buffers have not completed.  This
 426 * locked buffer would confuse end_buffer_async_read() into not unlocking
 427 * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
 428 * that this buffer is not under async I/O.
 429 *
 430 * The page comes unlocked when it has no locked buffer_async buffers
 431 * left.
 432 *
 433 * PageLocked prevents anyone starting new async I/O reads any of
 434 * the buffers.
 435 *
 436 * PageWriteback is used to prevent simultaneous writeout of the same
 437 * page.
 438 *
 439 * PageLocked prevents anyone from starting writeback of a page which is
 440 * under read I/O (PageWriteback is only ever set against a locked page).
 441 */
 442static void mark_buffer_async_read(struct buffer_head *bh)
 443{
 444        bh->b_end_io = end_buffer_async_read;
 445        set_buffer_async_read(bh);
 446}
 447
 448static void mark_buffer_async_write_endio(struct buffer_head *bh,
 449                                          bh_end_io_t *handler)
 450{
 451        bh->b_end_io = handler;
 452        set_buffer_async_write(bh);
 453}
 454
 455void mark_buffer_async_write(struct buffer_head *bh)
 456{
 457        mark_buffer_async_write_endio(bh, end_buffer_async_write);
 458}
 459EXPORT_SYMBOL(mark_buffer_async_write);
 460
 461
 462/*
 463 * fs/buffer.c contains helper functions for buffer-backed address space's
 464 * fsync functions.  A common requirement for buffer-based filesystems is
 465 * that certain data from the backing blockdev needs to be written out for
 466 * a successful fsync().  For example, ext2 indirect blocks need to be
 467 * written back and waited upon before fsync() returns.
 468 *
 469 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
 470 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
 471 * management of a list of dependent buffers at ->i_mapping->private_list.
 472 *
 473 * Locking is a little subtle: try_to_free_buffers() will remove buffers
 474 * from their controlling inode's queue when they are being freed.  But
 475 * try_to_free_buffers() will be operating against the *blockdev* mapping
 476 * at the time, not against the S_ISREG file which depends on those buffers.
 477 * So the locking for private_list is via the private_lock in the address_space
 478 * which backs the buffers.  Which is different from the address_space 
 479 * against which the buffers are listed.  So for a particular address_space,
 480 * mapping->private_lock does *not* protect mapping->private_list!  In fact,
 481 * mapping->private_list will always be protected by the backing blockdev's
 482 * ->private_lock.
 483 *
 484 * Which introduces a requirement: all buffers on an address_space's
 485 * ->private_list must be from the same address_space: the blockdev's.
 486 *
 487 * address_spaces which do not place buffers at ->private_list via these
 488 * utility functions are free to use private_lock and private_list for
 489 * whatever they want.  The only requirement is that list_empty(private_list)
 490 * be true at clear_inode() time.
 491 *
 492 * FIXME: clear_inode should not call invalidate_inode_buffers().  The
 493 * filesystems should do that.  invalidate_inode_buffers() should just go
 494 * BUG_ON(!list_empty).
 495 *
 496 * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
 497 * take an address_space, not an inode.  And it should be called
 498 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
 499 * queued up.
 500 *
 501 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
 502 * list if it is already on a list.  Because if the buffer is on a list,
 503 * it *must* already be on the right one.  If not, the filesystem is being
 504 * silly.  This will save a ton of locking.  But first we have to ensure
 505 * that buffers are taken *off* the old inode's list when they are freed
 506 * (presumably in truncate).  That requires careful auditing of all
 507 * filesystems (do it inside bforget()).  It could also be done by bringing
 508 * b_inode back.
 509 */
 510
 511/*
 512 * The buffer's backing address_space's private_lock must be held
 513 */
 514static void __remove_assoc_queue(struct buffer_head *bh)
 515{
 516        list_del_init(&bh->b_assoc_buffers);
 517        WARN_ON(!bh->b_assoc_map);
 518        if (buffer_write_io_error(bh))
 519                set_bit(AS_EIO, &bh->b_assoc_map->flags);
 520        bh->b_assoc_map = NULL;
 521}
 522
 523int inode_has_buffers(struct inode *inode)
 524{
 525        return !list_empty(&inode->i_data.private_list);
 526}
 527
 528/*
 529 * osync is designed to support O_SYNC io.  It waits synchronously for
 530 * all already-submitted IO to complete, but does not queue any new
 531 * writes to the disk.
 532 *
 533 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
 534 * you dirty the buffers, and then use osync_inode_buffers to wait for
 535 * completion.  Any other dirty buffers which are not yet queued for
 536 * write will not be flushed to disk by the osync.
 537 */
 538static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
 539{
 540        struct buffer_head *bh;
 541        struct list_head *p;
 542        int err = 0;
 543
 544        spin_lock(lock);
 545repeat:
 546        list_for_each_prev(p, list) {
 547                bh = BH_ENTRY(p);
 548                if (buffer_locked(bh)) {
 549                        get_bh(bh);
 550                        spin_unlock(lock);
 551                        wait_on_buffer(bh);
 552                        if (!buffer_uptodate(bh))
 553                                err = -EIO;
 554                        brelse(bh);
 555                        spin_lock(lock);
 556                        goto repeat;
 557                }
 558        }
 559        spin_unlock(lock);
 560        return err;
 561}
 562
 563static void do_thaw_all(struct work_struct *work)
 564{
 565        struct super_block *sb;
 566        char b[BDEVNAME_SIZE];
 567
 568        spin_lock(&sb_lock);
 569restart:
 570        list_for_each_entry(sb, &super_blocks, s_list) {
 571                sb->s_count++;
 572                spin_unlock(&sb_lock);
 573                down_read(&sb->s_umount);
 574                while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
 575                        printk(KERN_WARNING "Emergency Thaw on %s\n",
 576                               bdevname(sb->s_bdev, b));
 577                up_read(&sb->s_umount);
 578                spin_lock(&sb_lock);
 579                if (__put_super_and_need_restart(sb))
 580                        goto restart;
 581        }
 582        spin_unlock(&sb_lock);
 583        kfree(work);
 584        printk(KERN_WARNING "Emergency Thaw complete\n");
 585}
 586
 587/**
 588 * emergency_thaw_all -- forcibly thaw every frozen filesystem
 589 *
 590 * Used for emergency unfreeze of all filesystems via SysRq
 591 */
 592void emergency_thaw_all(void)
 593{
 594        struct work_struct *work;
 595
 596        work = kmalloc(sizeof(*work), GFP_ATOMIC);
 597        if (work) {
 598                INIT_WORK(work, do_thaw_all);
 599                schedule_work(work);
 600        }
 601}
 602
 603/**
 604 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
 605 * @mapping: the mapping which wants those buffers written
 606 *
 607 * Starts I/O against the buffers at mapping->private_list, and waits upon
 608 * that I/O.
 609 *
 610 * Basically, this is a convenience function for fsync().
 611 * @mapping is a file or directory which needs those buffers to be written for
 612 * a successful fsync().
 613 */
 614int sync_mapping_buffers(struct address_space *mapping)
 615{
 616        struct address_space *buffer_mapping = mapping->assoc_mapping;
 617
 618        if (buffer_mapping == NULL || list_empty(&mapping->private_list))
 619                return 0;
 620
 621        return fsync_buffers_list(&buffer_mapping->private_lock,
 622                                        &mapping->private_list);
 623}
 624EXPORT_SYMBOL(sync_mapping_buffers);
 625
 626/*
 627 * Called when we've recently written block `bblock', and it is known that
 628 * `bblock' was for a buffer_boundary() buffer.  This means that the block at
 629 * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
 630 * dirty, schedule it for IO.  So that indirects merge nicely with their data.
 631 */
 632void write_boundary_block(struct block_device *bdev,
 633                        sector_t bblock, unsigned blocksize)
 634{
 635        struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
 636        if (bh) {
 637                if (buffer_dirty(bh))
 638                        ll_rw_block(WRITE, 1, &bh);
 639                put_bh(bh);
 640        }
 641}
 642
 643void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
 644{
 645        struct address_space *mapping = inode->i_mapping;
 646        struct address_space *buffer_mapping = bh->b_page->mapping;
 647
 648        mark_buffer_dirty(bh);
 649        if (!mapping->assoc_mapping) {
 650                mapping->assoc_mapping = buffer_mapping;
 651        } else {
 652                BUG_ON(mapping->assoc_mapping != buffer_mapping);
 653        }
 654        if (!bh->b_assoc_map) {
 655                spin_lock(&buffer_mapping->private_lock);
 656                list_move_tail(&bh->b_assoc_buffers,
 657                                &mapping->private_list);
 658                bh->b_assoc_map = mapping;
 659                spin_unlock(&buffer_mapping->private_lock);
 660        }
 661}
 662EXPORT_SYMBOL(mark_buffer_dirty_inode);
 663
 664/*
 665 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
 666 * dirty.
 667 *
 668 * If warn is true, then emit a warning if the page is not uptodate and has
 669 * not been truncated.
 670 */
 671static void __set_page_dirty(struct page *page,
 672                struct address_space *mapping, int warn)
 673{
 674        spin_lock_irq(&mapping->tree_lock);
 675        if (page->mapping) {    /* Race with truncate? */
 676                WARN_ON_ONCE(warn && !PageUptodate(page));
 677                account_page_dirtied(page, mapping);
 678                radix_tree_tag_set(&mapping->page_tree,
 679                                page_index(page), PAGECACHE_TAG_DIRTY);
 680        }
 681        spin_unlock_irq(&mapping->tree_lock);
 682        __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 683}
 684
 685/*
 686 * Add a page to the dirty page list.
 687 *
 688 * It is a sad fact of life that this function is called from several places
 689 * deeply under spinlocking.  It may not sleep.
 690 *
 691 * If the page has buffers, the uptodate buffers are set dirty, to preserve
 692 * dirty-state coherency between the page and the buffers.  It the page does
 693 * not have buffers then when they are later attached they will all be set
 694 * dirty.
 695 *
 696 * The buffers are dirtied before the page is dirtied.  There's a small race
 697 * window in which a writepage caller may see the page cleanness but not the
 698 * buffer dirtiness.  That's fine.  If this code were to set the page dirty
 699 * before the buffers, a concurrent writepage caller could clear the page dirty
 700 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
 701 * page on the dirty page list.
 702 *
 703 * We use private_lock to lock against try_to_free_buffers while using the
 704 * page's buffer list.  Also use this to protect against clean buffers being
 705 * added to the page after it was set dirty.
 706 *
 707 * FIXME: may need to call ->reservepage here as well.  That's rather up to the
 708 * address_space though.
 709 */
 710int __set_page_dirty_buffers(struct page *page)
 711{
 712        int newly_dirty;
 713        struct address_space *mapping = page_mapping(page);
 714
 715        if (unlikely(!mapping))
 716                return !TestSetPageDirty(page);
 717
 718        spin_lock(&mapping->private_lock);
 719        if (page_has_buffers(page)) {
 720                struct buffer_head *head = page_buffers(page);
 721                struct buffer_head *bh = head;
 722
 723                do {
 724                        set_buffer_dirty(bh);
 725                        bh = bh->b_this_page;
 726                } while (bh != head);
 727        }
 728        newly_dirty = !TestSetPageDirty(page);
 729        spin_unlock(&mapping->private_lock);
 730
 731        if (newly_dirty)
 732                __set_page_dirty(page, mapping, 1);
 733        return newly_dirty;
 734}
 735EXPORT_SYMBOL(__set_page_dirty_buffers);
 736
 737/*
 738 * Write out and wait upon a list of buffers.
 739 *
 740 * We have conflicting pressures: we want to make sure that all
 741 * initially dirty buffers get waited on, but that any subsequently
 742 * dirtied buffers don't.  After all, we don't want fsync to last
 743 * forever if somebody is actively writing to the file.
 744 *
 745 * Do this in two main stages: first we copy dirty buffers to a
 746 * temporary inode list, queueing the writes as we go.  Then we clean
 747 * up, waiting for those writes to complete.
 748 * 
 749 * During this second stage, any subsequent updates to the file may end
 750 * up refiling the buffer on the original inode's dirty list again, so
 751 * there is a chance we will end up with a buffer queued for write but
 752 * not yet completed on that list.  So, as a final cleanup we go through
 753 * the osync code to catch these locked, dirty buffers without requeuing
 754 * any newly dirty buffers for write.
 755 */
 756static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
 757{
 758        struct buffer_head *bh;
 759        struct list_head tmp;
 760        struct address_space *mapping, *prev_mapping = NULL;
 761        int err = 0, err2;
 762
 763        INIT_LIST_HEAD(&tmp);
 764
 765        spin_lock(lock);
 766        while (!list_empty(list)) {
 767                bh = BH_ENTRY(list->next);
 768                mapping = bh->b_assoc_map;
 769                __remove_assoc_queue(bh);
 770                /* Avoid race with mark_buffer_dirty_inode() which does
 771                 * a lockless check and we rely on seeing the dirty bit */
 772                smp_mb();
 773                if (buffer_dirty(bh) || buffer_locked(bh)) {
 774                        list_add(&bh->b_assoc_buffers, &tmp);
 775                        bh->b_assoc_map = mapping;
 776                        if (buffer_dirty(bh)) {
 777                                get_bh(bh);
 778                                spin_unlock(lock);
 779                                /*
 780                                 * Ensure any pending I/O completes so that
 781                                 * ll_rw_block() actually writes the current
 782                                 * contents - it is a noop if I/O is still in
 783                                 * flight on potentially older contents.
 784                                 */
 785                                ll_rw_block(SWRITE_SYNC_PLUG, 1, &bh);
 786
 787                                /*
 788                                 * Kick off IO for the previous mapping. Note
 789                                 * that we will not run the very last mapping,
 790                                 * wait_on_buffer() will do that for us
 791                                 * through sync_buffer().
 792                                 */
 793                                if (prev_mapping && prev_mapping != mapping)
 794                                        blk_run_address_space(prev_mapping);
 795                                prev_mapping = mapping;
 796
 797                                brelse(bh);
 798                                spin_lock(lock);
 799                        }
 800                }
 801        }
 802
 803        while (!list_empty(&tmp)) {
 804                bh = BH_ENTRY(tmp.prev);
 805                get_bh(bh);
 806                mapping = bh->b_assoc_map;
 807                __remove_assoc_queue(bh);
 808                /* Avoid race with mark_buffer_dirty_inode() which does
 809                 * a lockless check and we rely on seeing the dirty bit */
 810                smp_mb();
 811                if (buffer_dirty(bh)) {
 812                        list_add(&bh->b_assoc_buffers,
 813                                 &mapping->private_list);
 814                        bh->b_assoc_map = mapping;
 815                }
 816                spin_unlock(lock);
 817                wait_on_buffer(bh);
 818                if (!buffer_uptodate(bh))
 819                        err = -EIO;
 820                brelse(bh);
 821                spin_lock(lock);
 822        }
 823        
 824        spin_unlock(lock);
 825        err2 = osync_buffers_list(lock, list);
 826        if (err)
 827                return err;
 828        else
 829                return err2;
 830}
 831
 832/*
 833 * Invalidate any and all dirty buffers on a given inode.  We are
 834 * probably unmounting the fs, but that doesn't mean we have already
 835 * done a sync().  Just drop the buffers from the inode list.
 836 *
 837 * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
 838 * assumes that all the buffers are against the blockdev.  Not true
 839 * for reiserfs.
 840 */
 841void invalidate_inode_buffers(struct inode *inode)
 842{
 843        if (inode_has_buffers(inode)) {
 844                struct address_space *mapping = &inode->i_data;
 845                struct list_head *list = &mapping->private_list;
 846                struct address_space *buffer_mapping = mapping->assoc_mapping;
 847
 848                spin_lock(&buffer_mapping->private_lock);
 849                while (!list_empty(list))
 850                        __remove_assoc_queue(BH_ENTRY(list->next));
 851                spin_unlock(&buffer_mapping->private_lock);
 852        }
 853}
 854EXPORT_SYMBOL(invalidate_inode_buffers);
 855
 856/*
 857 * Remove any clean buffers from the inode's buffer list.  This is called
 858 * when we're trying to free the inode itself.  Those buffers can pin it.
 859 *
 860 * Returns true if all buffers were removed.
 861 */
 862int remove_inode_buffers(struct inode *inode)
 863{
 864        int ret = 1;
 865
 866        if (inode_has_buffers(inode)) {
 867                struct address_space *mapping = &inode->i_data;
 868                struct list_head *list = &mapping->private_list;
 869                struct address_space *buffer_mapping = mapping->assoc_mapping;
 870
 871                spin_lock(&buffer_mapping->private_lock);
 872                while (!list_empty(list)) {
 873                        struct buffer_head *bh = BH_ENTRY(list->next);
 874                        if (buffer_dirty(bh)) {
 875                                ret = 0;
 876                                break;
 877                        }
 878                        __remove_assoc_queue(bh);
 879                }
 880                spin_unlock(&buffer_mapping->private_lock);
 881        }
 882        return ret;
 883}
 884
 885/*
 886 * Create the appropriate buffers when given a page for data area and
 887 * the size of each buffer.. Use the bh->b_this_page linked list to
 888 * follow the buffers created.  Return NULL if unable to create more
 889 * buffers.
 890 *
 891 * The retry flag is used to differentiate async IO (paging, swapping)
 892 * which may not fail from ordinary buffer allocations.
 893 */
 894struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
 895                int retry)
 896{
 897        struct buffer_head *bh, *head;
 898        long offset;
 899
 900try_again:
 901        head = NULL;
 902        offset = PAGE_SIZE;
 903        while ((offset -= size) >= 0) {
 904                bh = alloc_buffer_head(GFP_NOFS);
 905                if (!bh)
 906                        goto no_grow;
 907
 908                bh->b_bdev = NULL;
 909                bh->b_this_page = head;
 910                bh->b_blocknr = -1;
 911                head = bh;
 912
 913                bh->b_state = 0;
 914                atomic_set(&bh->b_count, 0);
 915                bh->b_private = NULL;
 916                bh->b_size = size;
 917
 918                /* Link the buffer to its page */
 919                set_bh_page(bh, page, offset);
 920
 921                init_buffer(bh, NULL, NULL);
 922        }
 923        return head;
 924/*
 925 * In case anything failed, we just free everything we got.
 926 */
 927no_grow:
 928        if (head) {
 929                do {
 930                        bh = head;
 931                        head = head->b_this_page;
 932                        free_buffer_head(bh);
 933                } while (head);
 934        }
 935
 936        /*
 937         * Return failure for non-async IO requests.  Async IO requests
 938         * are not allowed to fail, so we have to wait until buffer heads
 939         * become available.  But we don't want tasks sleeping with 
 940         * partially complete buffers, so all were released above.
 941         */
 942        if (!retry)
 943                return NULL;
 944
 945        /* We're _really_ low on memory. Now we just
 946         * wait for old buffer heads to become free due to
 947         * finishing IO.  Since this is an async request and
 948         * the reserve list is empty, we're sure there are 
 949         * async buffer heads in use.
 950         */
 951        free_more_memory();
 952        goto try_again;
 953}
 954EXPORT_SYMBOL_GPL(alloc_page_buffers);
 955
 956static inline void
 957link_dev_buffers(struct page *page, struct buffer_head *head)
 958{
 959        struct buffer_head *bh, *tail;
 960
 961        bh = head;
 962        do {
 963                tail = bh;
 964                bh = bh->b_this_page;
 965        } while (bh);
 966        tail->b_this_page = head;
 967        attach_page_buffers(page, head);
 968}
 969
 970/*
 971 * Initialise the state of a blockdev page's buffers.
 972 */ 
 973static void
 974init_page_buffers(struct page *page, struct block_device *bdev,
 975                        sector_t block, int size)
 976{
 977        struct buffer_head *head = page_buffers(page);
 978        struct buffer_head *bh = head;
 979        int uptodate = PageUptodate(page);
 980
 981        do {
 982                if (!buffer_mapped(bh)) {
 983                        init_buffer(bh, NULL, NULL);
 984                        bh->b_bdev = bdev;
 985                        bh->b_blocknr = block;
 986                        if (uptodate)
 987                                set_buffer_uptodate(bh);
 988                        set_buffer_mapped(bh);
 989                }
 990                block++;
 991                bh = bh->b_this_page;
 992        } while (bh != head);
 993}
 994
 995/*
 996 * Create the page-cache page that contains the requested block.
 997 *
 998 * This is user purely for blockdev mappings.
 999 */
1000static struct page *
1001grow_dev_page(struct block_device *bdev, sector_t block,
1002                pgoff_t index, int size)
1003{
1004        struct inode *inode = bdev->bd_inode;
1005        struct page *page;
1006        struct buffer_head *bh;
1007
1008        page = find_or_create_page(inode->i_mapping, index,
1009                (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1010        if (!page)
1011                return NULL;
1012
1013        BUG_ON(!PageLocked(page));
1014
1015        if (page_has_buffers(page)) {
1016                bh = page_buffers(page);
1017                if (bh->b_size == size) {
1018                        init_page_buffers(page, bdev, block, size);
1019                        return page;
1020                }
1021                if (!try_to_free_buffers(page))
1022                        goto failed;
1023        }
1024
1025        /*
1026         * Allocate some buffers for this page
1027         */
1028        bh = alloc_page_buffers(page, size, 0);
1029        if (!bh)
1030                goto failed;
1031
1032        /*
1033         * Link the page to the buffers and initialise them.  Take the
1034         * lock to be atomic wrt __find_get_block(), which does not
1035         * run under the page lock.
1036         */
1037        spin_lock(&inode->i_mapping->private_lock);
1038        link_dev_buffers(page, bh);
1039        init_page_buffers(page, bdev, block, size);
1040        spin_unlock(&inode->i_mapping->private_lock);
1041        return page;
1042
1043failed:
1044        BUG();
1045        unlock_page(page);
1046        page_cache_release(page);
1047        return NULL;
1048}
1049
1050/*
1051 * Create buffers for the specified block device block's page.  If
1052 * that page was dirty, the buffers are set dirty also.
1053 */
1054static int
1055grow_buffers(struct block_device *bdev, sector_t block, int size)
1056{
1057        struct page *page;
1058        pgoff_t index;
1059        int sizebits;
1060
1061        sizebits = -1;
1062        do {
1063                sizebits++;
1064        } while ((size << sizebits) < PAGE_SIZE);
1065
1066        index = block >> sizebits;
1067
1068        /*
1069         * Check for a block which wants to lie outside our maximum possible
1070         * pagecache index.  (this comparison is done using sector_t types).
1071         */
1072        if (unlikely(index != block >> sizebits)) {
1073                char b[BDEVNAME_SIZE];
1074
1075                printk(KERN_ERR "%s: requested out-of-range block %llu for "
1076                        "device %s\n",
1077                        __func__, (unsigned long long)block,
1078                        bdevname(bdev, b));
1079                return -EIO;
1080        }
1081        block = index << sizebits;
1082        /* Create a page with the proper size buffers.. */
1083        page = grow_dev_page(bdev, block, index, size);
1084        if (!page)
1085                return 0;
1086        unlock_page(page);
1087        page_cache_release(page);
1088        return 1;
1089}
1090
1091static struct buffer_head *
1092__getblk_slow(struct block_device *bdev, sector_t block, int size)
1093{
1094        /* Size must be multiple of hard sectorsize */
1095        if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1096                        (size < 512 || size > PAGE_SIZE))) {
1097                printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1098                                        size);
1099                printk(KERN_ERR "logical block size: %d\n",
1100                                        bdev_logical_block_size(bdev));
1101
1102                dump_stack();
1103                return NULL;
1104        }
1105
1106        for (;;) {
1107                struct buffer_head * bh;
1108                int ret;
1109
1110                bh = __find_get_block(bdev, block, size);
1111                if (bh)
1112                        return bh;
1113
1114                ret = grow_buffers(bdev, block, size);
1115                if (ret < 0)
1116                        return NULL;
1117                if (ret == 0)
1118                        free_more_memory();
1119        }
1120}
1121
1122/*
1123 * The relationship between dirty buffers and dirty pages:
1124 *
1125 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1126 * the page is tagged dirty in its radix tree.
1127 *
1128 * At all times, the dirtiness of the buffers represents the dirtiness of
1129 * subsections of the page.  If the page has buffers, the page dirty bit is
1130 * merely a hint about the true dirty state.
1131 *
1132 * When a page is set dirty in its entirety, all its buffers are marked dirty
1133 * (if the page has buffers).
1134 *
1135 * When a buffer is marked dirty, its page is dirtied, but the page's other
1136 * buffers are not.
1137 *
1138 * Also.  When blockdev buffers are explicitly read with bread(), they
1139 * individually become uptodate.  But their backing page remains not
1140 * uptodate - even if all of its buffers are uptodate.  A subsequent
1141 * block_read_full_page() against that page will discover all the uptodate
1142 * buffers, will set the page uptodate and will perform no I/O.
1143 */
1144
1145/**
1146 * mark_buffer_dirty - mark a buffer_head as needing writeout
1147 * @bh: the buffer_head to mark dirty
1148 *
1149 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1150 * backing page dirty, then tag the page as dirty in its address_space's radix
1151 * tree and then attach the address_space's inode to its superblock's dirty
1152 * inode list.
1153 *
1154 * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1155 * mapping->tree_lock and the global inode_lock.
1156 */
1157void mark_buffer_dirty(struct buffer_head *bh)
1158{
1159        WARN_ON_ONCE(!buffer_uptodate(bh));
1160
1161        /*
1162         * Very *carefully* optimize the it-is-already-dirty case.
1163         *
1164         * Don't let the final "is it dirty" escape to before we
1165         * perhaps modified the buffer.
1166         */
1167        if (buffer_dirty(bh)) {
1168                smp_mb();
1169                if (buffer_dirty(bh))
1170                        return;
1171        }
1172
1173        if (!test_set_buffer_dirty(bh)) {
1174                struct page *page = bh->b_page;
1175                if (!TestSetPageDirty(page)) {
1176                        struct address_space *mapping = page_mapping(page);
1177                        if (mapping)
1178                                __set_page_dirty(page, mapping, 0);
1179                }
1180        }
1181}
1182EXPORT_SYMBOL(mark_buffer_dirty);
1183
1184/*
1185 * Decrement a buffer_head's reference count.  If all buffers against a page
1186 * have zero reference count, are clean and unlocked, and if the page is clean
1187 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1188 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1189 * a page but it ends up not being freed, and buffers may later be reattached).
1190 */
1191void __brelse(struct buffer_head * buf)
1192{
1193        if (atomic_read(&buf->b_count)) {
1194                put_bh(buf);
1195                return;
1196        }
1197        WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1198}
1199EXPORT_SYMBOL(__brelse);
1200
1201/*
1202 * bforget() is like brelse(), except it discards any
1203 * potentially dirty data.
1204 */
1205void __bforget(struct buffer_head *bh)
1206{
1207        clear_buffer_dirty(bh);
1208        if (bh->b_assoc_map) {
1209                struct address_space *buffer_mapping = bh->b_page->mapping;
1210
1211                spin_lock(&buffer_mapping->private_lock);
1212                list_del_init(&bh->b_assoc_buffers);
1213                bh->b_assoc_map = NULL;
1214                spin_unlock(&buffer_mapping->private_lock);
1215        }
1216        __brelse(bh);
1217}
1218EXPORT_SYMBOL(__bforget);
1219
1220static struct buffer_head *__bread_slow(struct buffer_head *bh)
1221{
1222        lock_buffer(bh);
1223        if (buffer_uptodate(bh)) {
1224                unlock_buffer(bh);
1225                return bh;
1226        } else {
1227                get_bh(bh);
1228                bh->b_end_io = end_buffer_read_sync;
1229                submit_bh(READ, bh);
1230                wait_on_buffer(bh);
1231                if (buffer_uptodate(bh))
1232                        return bh;
1233        }
1234        brelse(bh);
1235        return NULL;
1236}
1237
1238/*
1239 * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1240 * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1241 * refcount elevated by one when they're in an LRU.  A buffer can only appear
1242 * once in a particular CPU's LRU.  A single buffer can be present in multiple
1243 * CPU's LRUs at the same time.
1244 *
1245 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1246 * sb_find_get_block().
1247 *
1248 * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1249 * a local interrupt disable for that.
1250 */
1251
1252#define BH_LRU_SIZE     8
1253
1254struct bh_lru {
1255        struct buffer_head *bhs[BH_LRU_SIZE];
1256};
1257
1258static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1259
1260#ifdef CONFIG_SMP
1261#define bh_lru_lock()   local_irq_disable()
1262#define bh_lru_unlock() local_irq_enable()
1263#else
1264#define bh_lru_lock()   preempt_disable()
1265#define bh_lru_unlock() preempt_enable()
1266#endif
1267
1268static inline void check_irqs_on(void)
1269{
1270#ifdef irqs_disabled
1271        BUG_ON(irqs_disabled());
1272#endif
1273}
1274
1275/*
1276 * The LRU management algorithm is dopey-but-simple.  Sorry.
1277 */
1278static void bh_lru_install(struct buffer_head *bh)
1279{
1280        struct buffer_head *evictee = NULL;
1281        struct bh_lru *lru;
1282
1283        check_irqs_on();
1284        bh_lru_lock();
1285        lru = &__get_cpu_var(bh_lrus);
1286        if (lru->bhs[0] != bh) {
1287                struct buffer_head *bhs[BH_LRU_SIZE];
1288                int in;
1289                int out = 0;
1290
1291                get_bh(bh);
1292                bhs[out++] = bh;
1293                for (in = 0; in < BH_LRU_SIZE; in++) {
1294                        struct buffer_head *bh2 = lru->bhs[in];
1295
1296                        if (bh2 == bh) {
1297                                __brelse(bh2);
1298                        } else {
1299                                if (out >= BH_LRU_SIZE) {
1300                                        BUG_ON(evictee != NULL);
1301                                        evictee = bh2;
1302                                } else {
1303                                        bhs[out++] = bh2;
1304                                }
1305                        }
1306                }
1307                while (out < BH_LRU_SIZE)
1308                        bhs[out++] = NULL;
1309                memcpy(lru->bhs, bhs, sizeof(bhs));
1310        }
1311        bh_lru_unlock();
1312
1313        if (evictee)
1314                __brelse(evictee);
1315}
1316
1317/*
1318 * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1319 */
1320static struct buffer_head *
1321lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1322{
1323        struct buffer_head *ret = NULL;
1324        struct bh_lru *lru;
1325        unsigned int i;
1326
1327        check_irqs_on();
1328        bh_lru_lock();
1329        lru = &__get_cpu_var(bh_lrus);
1330        for (i = 0; i < BH_LRU_SIZE; i++) {
1331                struct buffer_head *bh = lru->bhs[i];
1332
1333                if (bh && bh->b_bdev == bdev &&
1334                                bh->b_blocknr == block && bh->b_size == size) {
1335                        if (i) {
1336                                while (i) {
1337                                        lru->bhs[i] = lru->bhs[i - 1];
1338                                        i--;
1339                                }
1340                                lru->bhs[0] = bh;
1341                        }
1342                        get_bh(bh);
1343                        ret = bh;
1344                        break;
1345                }
1346        }
1347        bh_lru_unlock();
1348        return ret;
1349}
1350
1351/*
1352 * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1353 * it in the LRU and mark it as accessed.  If it is not present then return
1354 * NULL
1355 */
1356struct buffer_head *
1357__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1358{
1359        struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1360
1361        if (bh == NULL) {
1362                bh = __find_get_block_slow(bdev, block);
1363                if (bh)
1364                        bh_lru_install(bh);
1365        }
1366        if (bh)
1367                touch_buffer(bh);
1368        return bh;
1369}
1370EXPORT_SYMBOL(__find_get_block);
1371
1372/*
1373 * __getblk will locate (and, if necessary, create) the buffer_head
1374 * which corresponds to the passed block_device, block and size. The
1375 * returned buffer has its reference count incremented.
1376 *
1377 * __getblk() cannot fail - it just keeps trying.  If you pass it an
1378 * illegal block number, __getblk() will happily return a buffer_head
1379 * which represents the non-existent block.  Very weird.
1380 *
1381 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1382 * attempt is failing.  FIXME, perhaps?
1383 */
1384struct buffer_head *
1385__getblk(struct block_device *bdev, sector_t block, unsigned size)
1386{
1387        struct buffer_head *bh = __find_get_block(bdev, block, size);
1388
1389        might_sleep();
1390        if (bh == NULL)
1391                bh = __getblk_slow(bdev, block, size);
1392        return bh;
1393}
1394EXPORT_SYMBOL(__getblk);
1395
1396/*
1397 * Do async read-ahead on a buffer..
1398 */
1399void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1400{
1401        struct buffer_head *bh = __getblk(bdev, block, size);
1402        if (likely(bh)) {
1403                ll_rw_block(READA, 1, &bh);
1404                brelse(bh);
1405        }
1406}
1407EXPORT_SYMBOL(__breadahead);
1408
1409/**
1410 *  __bread() - reads a specified block and returns the bh
1411 *  @bdev: the block_device to read from
1412 *  @block: number of block
1413 *  @size: size (in bytes) to read
1414 * 
1415 *  Reads a specified block, and returns buffer head that contains it.
1416 *  It returns NULL if the block was unreadable.
1417 */
1418struct buffer_head *
1419__bread(struct block_device *bdev, sector_t block, unsigned size)
1420{
1421        struct buffer_head *bh = __getblk(bdev, block, size);
1422
1423        if (likely(bh) && !buffer_uptodate(bh))
1424                bh = __bread_slow(bh);
1425        return bh;
1426}
1427EXPORT_SYMBOL(__bread);
1428
1429/*
1430 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1431 * This doesn't race because it runs in each cpu either in irq
1432 * or with preempt disabled.
1433 */
1434static void invalidate_bh_lru(void *arg)
1435{
1436        struct bh_lru *b = &get_cpu_var(bh_lrus);
1437        int i;
1438
1439        for (i = 0; i < BH_LRU_SIZE; i++) {
1440                brelse(b->bhs[i]);
1441                b->bhs[i] = NULL;
1442        }
1443        put_cpu_var(bh_lrus);
1444}
1445        
1446void invalidate_bh_lrus(void)
1447{
1448        on_each_cpu(invalidate_bh_lru, NULL, 1);
1449}
1450EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1451
1452void set_bh_page(struct buffer_head *bh,
1453                struct page *page, unsigned long offset)
1454{
1455        bh->b_page = page;
1456        BUG_ON(offset >= PAGE_SIZE);
1457        if (PageHighMem(page))
1458                /*
1459                 * This catches illegal uses and preserves the offset:
1460                 */
1461                bh->b_data = (char *)(0 + offset);
1462        else
1463                bh->b_data = page_address(page) + offset;
1464}
1465EXPORT_SYMBOL(set_bh_page);
1466
1467/*
1468 * Called when truncating a buffer on a page completely.
1469 */
1470static void discard_buffer(struct buffer_head * bh)
1471{
1472        lock_buffer(bh);
1473        clear_buffer_dirty(bh);
1474        bh->b_bdev = NULL;
1475        clear_buffer_mapped(bh);
1476        clear_buffer_req(bh);
1477        clear_buffer_new(bh);
1478        clear_buffer_delay(bh);
1479        clear_buffer_unwritten(bh);
1480        unlock_buffer(bh);
1481}
1482
1483/**
1484 * block_invalidatepage - invalidate part of all of a buffer-backed page
1485 *
1486 * @page: the page which is affected
1487 * @offset: the index of the truncation point
1488 *
1489 * block_invalidatepage() is called when all or part of the page has become
1490 * invalidatedby a truncate operation.
1491 *
1492 * block_invalidatepage() does not have to release all buffers, but it must
1493 * ensure that no dirty buffer is left outside @offset and that no I/O
1494 * is underway against any of the blocks which are outside the truncation
1495 * point.  Because the caller is about to free (and possibly reuse) those
1496 * blocks on-disk.
1497 */
1498void block_invalidatepage(struct page *page, unsigned long offset)
1499{
1500        struct buffer_head *head, *bh, *next;
1501        unsigned int curr_off = 0;
1502
1503        BUG_ON(!PageLocked(page));
1504        if (!page_has_buffers(page))
1505                goto out;
1506
1507        head = page_buffers(page);
1508        bh = head;
1509        do {
1510                unsigned int next_off = curr_off + bh->b_size;
1511                next = bh->b_this_page;
1512
1513                /*
1514                 * is this block fully invalidated?
1515                 */
1516                if (offset <= curr_off)
1517                        discard_buffer(bh);
1518                curr_off = next_off;
1519                bh = next;
1520        } while (bh != head);
1521
1522        /*
1523         * We release buffers only if the entire page is being invalidated.
1524         * The get_block cached value has been unconditionally invalidated,
1525         * so real IO is not possible anymore.
1526         */
1527        if (offset == 0)
1528                try_to_release_page(page, 0);
1529out:
1530        return;
1531}
1532EXPORT_SYMBOL(block_invalidatepage);
1533
1534/*
1535 * We attach and possibly dirty the buffers atomically wrt
1536 * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1537 * is already excluded via the page lock.
1538 */
1539void create_empty_buffers(struct page *page,
1540                        unsigned long blocksize, unsigned long b_state)
1541{
1542        struct buffer_head *bh, *head, *tail;
1543
1544        head = alloc_page_buffers(page, blocksize, 1);
1545        bh = head;
1546        do {
1547                bh->b_state |= b_state;
1548                tail = bh;
1549                bh = bh->b_this_page;
1550        } while (bh);
1551        tail->b_this_page = head;
1552
1553        spin_lock(&page->mapping->private_lock);
1554        if (PageUptodate(page) || PageDirty(page)) {
1555                bh = head;
1556                do {
1557                        if (PageDirty(page))
1558                                set_buffer_dirty(bh);
1559                        if (PageUptodate(page))
1560                                set_buffer_uptodate(bh);
1561                        bh = bh->b_this_page;
1562                } while (bh != head);
1563        }
1564        attach_page_buffers(page, head);
1565        spin_unlock(&page->mapping->private_lock);
1566}
1567EXPORT_SYMBOL(create_empty_buffers);
1568
1569/*
1570 * We are taking a block for data and we don't want any output from any
1571 * buffer-cache aliases starting from return from that function and
1572 * until the moment when something will explicitly mark the buffer
1573 * dirty (hopefully that will not happen until we will free that block ;-)
1574 * We don't even need to mark it not-uptodate - nobody can expect
1575 * anything from a newly allocated buffer anyway. We used to used
1576 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1577 * don't want to mark the alias unmapped, for example - it would confuse
1578 * anyone who might pick it with bread() afterwards...
1579 *
1580 * Also..  Note that bforget() doesn't lock the buffer.  So there can
1581 * be writeout I/O going on against recently-freed buffers.  We don't
1582 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1583 * only if we really need to.  That happens here.
1584 */
1585void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1586{
1587        struct buffer_head *old_bh;
1588
1589        might_sleep();
1590
1591        old_bh = __find_get_block_slow(bdev, block);
1592        if (old_bh) {
1593                clear_buffer_dirty(old_bh);
1594                wait_on_buffer(old_bh);
1595                clear_buffer_req(old_bh);
1596                __brelse(old_bh);
1597        }
1598}
1599EXPORT_SYMBOL(unmap_underlying_metadata);
1600
1601/*
1602 * NOTE! All mapped/uptodate combinations are valid:
1603 *
1604 *      Mapped  Uptodate        Meaning
1605 *
1606 *      No      No              "unknown" - must do get_block()
1607 *      No      Yes             "hole" - zero-filled
1608 *      Yes     No              "allocated" - allocated on disk, not read in
1609 *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1610 *
1611 * "Dirty" is valid only with the last case (mapped+uptodate).
1612 */
1613
1614/*
1615 * While block_write_full_page is writing back the dirty buffers under
1616 * the page lock, whoever dirtied the buffers may decide to clean them
1617 * again at any time.  We handle that by only looking at the buffer
1618 * state inside lock_buffer().
1619 *
1620 * If block_write_full_page() is called for regular writeback
1621 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1622 * locked buffer.   This only can happen if someone has written the buffer
1623 * directly, with submit_bh().  At the address_space level PageWriteback
1624 * prevents this contention from occurring.
1625 *
1626 * If block_write_full_page() is called with wbc->sync_mode ==
1627 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC_PLUG; this
1628 * causes the writes to be flagged as synchronous writes, but the
1629 * block device queue will NOT be unplugged, since usually many pages
1630 * will be pushed to the out before the higher-level caller actually
1631 * waits for the writes to be completed.  The various wait functions,
1632 * such as wait_on_writeback_range() will ultimately call sync_page()
1633 * which will ultimately call blk_run_backing_dev(), which will end up
1634 * unplugging the device queue.
1635 */
1636static int __block_write_full_page(struct inode *inode, struct page *page,
1637                        get_block_t *get_block, struct writeback_control *wbc,
1638                        bh_end_io_t *handler)
1639{
1640        int err;
1641        sector_t block;
1642        sector_t last_block;
1643        struct buffer_head *bh, *head;
1644        const unsigned blocksize = 1 << inode->i_blkbits;
1645        int nr_underway = 0;
1646        int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1647                        WRITE_SYNC_PLUG : WRITE);
1648
1649        BUG_ON(!PageLocked(page));
1650
1651        last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1652
1653        if (!page_has_buffers(page)) {
1654                create_empty_buffers(page, blocksize,
1655                                        (1 << BH_Dirty)|(1 << BH_Uptodate));
1656        }
1657
1658        /*
1659         * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1660         * here, and the (potentially unmapped) buffers may become dirty at
1661         * any time.  If a buffer becomes dirty here after we've inspected it
1662         * then we just miss that fact, and the page stays dirty.
1663         *
1664         * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1665         * handle that here by just cleaning them.
1666         */
1667
1668        block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1669        head = page_buffers(page);
1670        bh = head;
1671
1672        /*
1673         * Get all the dirty buffers mapped to disk addresses and
1674         * handle any aliases from the underlying blockdev's mapping.
1675         */
1676        do {
1677                if (block > last_block) {
1678                        /*
1679                         * mapped buffers outside i_size will occur, because
1680                         * this page can be outside i_size when there is a
1681                         * truncate in progress.
1682                         */
1683                        /*
1684                         * The buffer was zeroed by block_write_full_page()
1685                         */
1686                        clear_buffer_dirty(bh);
1687                        set_buffer_uptodate(bh);
1688                } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1689                           buffer_dirty(bh)) {
1690                        WARN_ON(bh->b_size != blocksize);
1691                        err = get_block(inode, block, bh, 1);
1692                        if (err)
1693                                goto recover;
1694                        clear_buffer_delay(bh);
1695                        if (buffer_new(bh)) {
1696                                /* blockdev mappings never come here */
1697                                clear_buffer_new(bh);
1698                                unmap_underlying_metadata(bh->b_bdev,
1699                                                        bh->b_blocknr);
1700                        }
1701                }
1702                bh = bh->b_this_page;
1703                block++;
1704        } while (bh != head);
1705
1706        do {
1707                if (!buffer_mapped(bh))
1708                        continue;
1709                /*
1710                 * If it's a fully non-blocking write attempt and we cannot
1711                 * lock the buffer then redirty the page.  Note that this can
1712                 * potentially cause a busy-wait loop from writeback threads
1713                 * and kswapd activity, but those code paths have their own
1714                 * higher-level throttling.
1715                 */
1716                if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1717                        lock_buffer(bh);
1718                } else if (!trylock_buffer(bh)) {
1719                        redirty_page_for_writepage(wbc, page);
1720                        continue;
1721                }
1722                if (test_clear_buffer_dirty(bh)) {
1723                        mark_buffer_async_write_endio(bh, handler);
1724                } else {
1725                        unlock_buffer(bh);
1726                }
1727        } while ((bh = bh->b_this_page) != head);
1728
1729        /*
1730         * The page and its buffers are protected by PageWriteback(), so we can
1731         * drop the bh refcounts early.
1732         */
1733        BUG_ON(PageWriteback(page));
1734        set_page_writeback(page);
1735
1736        do {
1737                struct buffer_head *next = bh->b_this_page;
1738                if (buffer_async_write(bh)) {
1739                        submit_bh(write_op, bh);
1740                        nr_underway++;
1741                }
1742                bh = next;
1743        } while (bh != head);
1744        unlock_page(page);
1745
1746        err = 0;
1747done:
1748        if (nr_underway == 0) {
1749                /*
1750                 * The page was marked dirty, but the buffers were
1751                 * clean.  Someone wrote them back by hand with
1752                 * ll_rw_block/submit_bh.  A rare case.
1753                 */
1754                end_page_writeback(page);
1755
1756                /*
1757                 * The page and buffer_heads can be released at any time from
1758                 * here on.
1759                 */
1760        }
1761        return err;
1762
1763recover:
1764        /*
1765         * ENOSPC, or some other error.  We may already have added some
1766         * blocks to the file, so we need to write these out to avoid
1767         * exposing stale data.
1768         * The page is currently locked and not marked for writeback
1769         */
1770        bh = head;
1771        /* Recovery: lock and submit the mapped buffers */
1772        do {
1773                if (buffer_mapped(bh) && buffer_dirty(bh) &&
1774                    !buffer_delay(bh)) {
1775                        lock_buffer(bh);
1776                        mark_buffer_async_write_endio(bh, handler);
1777                } else {
1778                        /*
1779                         * The buffer may have been set dirty during
1780                         * attachment to a dirty page.
1781                         */
1782                        clear_buffer_dirty(bh);
1783                }
1784        } while ((bh = bh->b_this_page) != head);
1785        SetPageError(page);
1786        BUG_ON(PageWriteback(page));
1787        mapping_set_error(page->mapping, err);
1788        set_page_writeback(page);
1789        do {
1790                struct buffer_head *next = bh->b_this_page;
1791                if (buffer_async_write(bh)) {
1792                        clear_buffer_dirty(bh);
1793                        submit_bh(write_op, bh);
1794                        nr_underway++;
1795                }
1796                bh = next;
1797        } while (bh != head);
1798        unlock_page(page);
1799        goto done;
1800}
1801
1802/*
1803 * If a page has any new buffers, zero them out here, and mark them uptodate
1804 * and dirty so they'll be written out (in order to prevent uninitialised
1805 * block data from leaking). And clear the new bit.
1806 */
1807void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1808{
1809        unsigned int block_start, block_end;
1810        struct buffer_head *head, *bh;
1811
1812        BUG_ON(!PageLocked(page));
1813        if (!page_has_buffers(page))
1814                return;
1815
1816        bh = head = page_buffers(page);
1817        block_start = 0;
1818        do {
1819                block_end = block_start + bh->b_size;
1820
1821                if (buffer_new(bh)) {
1822                        if (block_end > from && block_start < to) {
1823                                if (!PageUptodate(page)) {
1824                                        unsigned start, size;
1825
1826                                        start = max(from, block_start);
1827                                        size = min(to, block_end) - start;
1828
1829                                        zero_user(page, start, size);
1830                                        set_buffer_uptodate(bh);
1831                                }
1832
1833                                clear_buffer_new(bh);
1834                                mark_buffer_dirty(bh);
1835                        }
1836                }
1837
1838                block_start = block_end;
1839                bh = bh->b_this_page;
1840        } while (bh != head);
1841}
1842EXPORT_SYMBOL(page_zero_new_buffers);
1843
1844static int __block_prepare_write(struct inode *inode, struct page *page,
1845                unsigned from, unsigned to, get_block_t *get_block)
1846{
1847        unsigned block_start, block_end;
1848        sector_t block;
1849        int err = 0;
1850        unsigned blocksize, bbits;
1851        struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1852
1853        BUG_ON(!PageLocked(page));
1854        BUG_ON(from > PAGE_CACHE_SIZE);
1855        BUG_ON(to > PAGE_CACHE_SIZE);
1856        BUG_ON(from > to);
1857
1858        blocksize = 1 << inode->i_blkbits;
1859        if (!page_has_buffers(page))
1860                create_empty_buffers(page, blocksize, 0);
1861        head = page_buffers(page);
1862
1863        bbits = inode->i_blkbits;
1864        block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1865
1866        for(bh = head, block_start = 0; bh != head || !block_start;
1867            block++, block_start=block_end, bh = bh->b_this_page) {
1868                block_end = block_start + blocksize;
1869                if (block_end <= from || block_start >= to) {
1870                        if (PageUptodate(page)) {
1871                                if (!buffer_uptodate(bh))
1872                                        set_buffer_uptodate(bh);
1873                        }
1874                        continue;
1875                }
1876                if (buffer_new(bh))
1877                        clear_buffer_new(bh);
1878                if (!buffer_mapped(bh)) {
1879                        WARN_ON(bh->b_size != blocksize);
1880                        err = get_block(inode, block, bh, 1);
1881                        if (err)
1882                                break;
1883                        if (buffer_new(bh)) {
1884                                unmap_underlying_metadata(bh->b_bdev,
1885                                                        bh->b_blocknr);
1886                                if (PageUptodate(page)) {
1887                                        clear_buffer_new(bh);
1888                                        set_buffer_uptodate(bh);
1889                                        mark_buffer_dirty(bh);
1890                                        continue;
1891                                }
1892                                if (block_end > to || block_start < from)
1893                                        zero_user_segments(page,
1894                                                to, block_end,
1895                                                block_start, from);
1896                                continue;
1897                        }
1898                }
1899                if (PageUptodate(page)) {
1900                        if (!buffer_uptodate(bh))
1901                                set_buffer_uptodate(bh);
1902                        continue; 
1903                }
1904                if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1905                    !buffer_unwritten(bh) &&
1906                     (block_start < from || block_end > to)) {
1907                        ll_rw_block(READ, 1, &bh);
1908                        *wait_bh++=bh;
1909                }
1910        }
1911        /*
1912         * If we issued read requests - let them complete.
1913         */
1914        while(wait_bh > wait) {
1915                wait_on_buffer(*--wait_bh);
1916                if (!buffer_uptodate(*wait_bh))
1917                        err = -EIO;
1918        }
1919        if (unlikely(err))
1920                page_zero_new_buffers(page, from, to);
1921        return err;
1922}
1923
1924static int __block_commit_write(struct inode *inode, struct page *page,
1925                unsigned from, unsigned to)
1926{
1927        unsigned block_start, block_end;
1928        int partial = 0;
1929        unsigned blocksize;
1930        struct buffer_head *bh, *head;
1931
1932        blocksize = 1 << inode->i_blkbits;
1933
1934        for(bh = head = page_buffers(page), block_start = 0;
1935            bh != head || !block_start;
1936            block_start=block_end, bh = bh->b_this_page) {
1937                block_end = block_start + blocksize;
1938                if (block_end <= from || block_start >= to) {
1939                        if (!buffer_uptodate(bh))
1940                                partial = 1;
1941                } else {
1942                        set_buffer_uptodate(bh);
1943                        mark_buffer_dirty(bh);
1944                }
1945                clear_buffer_new(bh);
1946        }
1947
1948        /*
1949         * If this is a partial write which happened to make all buffers
1950         * uptodate then we can optimize away a bogus readpage() for
1951         * the next read(). Here we 'discover' whether the page went
1952         * uptodate as a result of this (potentially partial) write.
1953         */
1954        if (!partial)
1955                SetPageUptodate(page);
1956        return 0;
1957}
1958
1959/*
1960 * block_write_begin takes care of the basic task of block allocation and
1961 * bringing partial write blocks uptodate first.
1962 *
1963 * If *pagep is not NULL, then block_write_begin uses the locked page
1964 * at *pagep rather than allocating its own. In this case, the page will
1965 * not be unlocked or deallocated on failure.
1966 */
1967int block_write_begin(struct file *file, struct address_space *mapping,
1968                        loff_t pos, unsigned len, unsigned flags,
1969                        struct page **pagep, void **fsdata,
1970                        get_block_t *get_block)
1971{
1972        struct inode *inode = mapping->host;
1973        int status = 0;
1974        struct page *page;
1975        pgoff_t index;
1976        unsigned start, end;
1977        int ownpage = 0;
1978
1979        index = pos >> PAGE_CACHE_SHIFT;
1980        start = pos & (PAGE_CACHE_SIZE - 1);
1981        end = start + len;
1982
1983        page = *pagep;
1984        if (page == NULL) {
1985                ownpage = 1;
1986                page = grab_cache_page_write_begin(mapping, index, flags);
1987                if (!page) {
1988                        status = -ENOMEM;
1989                        goto out;
1990                }
1991                *pagep = page;
1992        } else
1993                BUG_ON(!PageLocked(page));
1994
1995        status = __block_prepare_write(inode, page, start, end, get_block);
1996        if (unlikely(status)) {
1997                ClearPageUptodate(page);
1998
1999                if (ownpage) {
2000                        unlock_page(page);
2001                        page_cache_release(page);
2002                        *pagep = NULL;
2003
2004                        /*
2005                         * prepare_write() may have instantiated a few blocks
2006                         * outside i_size.  Trim these off again. Don't need
2007                         * i_size_read because we hold i_mutex.
2008                         */
2009                        if (pos + len > inode->i_size)
2010                                vmtruncate(inode, inode->i_size);
2011                }
2012        }
2013
2014out:
2015        return status;
2016}
2017EXPORT_SYMBOL(block_write_begin);
2018
2019int block_write_end(struct file *file, struct address_space *mapping,
2020                        loff_t pos, unsigned len, unsigned copied,
2021                        struct page *page, void *fsdata)
2022{
2023        struct inode *inode = mapping->host;
2024        unsigned start;
2025
2026        start = pos & (PAGE_CACHE_SIZE - 1);
2027
2028        if (unlikely(copied < len)) {
2029                /*
2030                 * The buffers that were written will now be uptodate, so we
2031                 * don't have to worry about a readpage reading them and
2032                 * overwriting a partial write. However if we have encountered
2033                 * a short write and only partially written into a buffer, it
2034                 * will not be marked uptodate, so a readpage might come in and
2035                 * destroy our partial write.
2036                 *
2037                 * Do the simplest thing, and just treat any short write to a
2038                 * non uptodate page as a zero-length write, and force the
2039                 * caller to redo the whole thing.
2040                 */
2041                if (!PageUptodate(page))
2042                        copied = 0;
2043
2044                page_zero_new_buffers(page, start+copied, start+len);
2045        }
2046        flush_dcache_page(page);
2047
2048        /* This could be a short (even 0-length) commit */
2049        __block_commit_write(inode, page, start, start+copied);
2050
2051        return copied;
2052}
2053EXPORT_SYMBOL(block_write_end);
2054
2055int generic_write_end(struct file *file, struct address_space *mapping,
2056                        loff_t pos, unsigned len, unsigned copied,
2057                        struct page *page, void *fsdata)
2058{
2059        struct inode *inode = mapping->host;
2060        int i_size_changed = 0;
2061
2062        copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2063
2064        /*
2065         * No need to use i_size_read() here, the i_size
2066         * cannot change under us because we hold i_mutex.
2067         *
2068         * But it's important to update i_size while still holding page lock:
2069         * page writeout could otherwise come in and zero beyond i_size.
2070         */
2071        if (pos+copied > inode->i_size) {
2072                i_size_write(inode, pos+copied);
2073                i_size_changed = 1;
2074        }
2075
2076        unlock_page(page);
2077        page_cache_release(page);
2078
2079        /*
2080         * Don't mark the inode dirty under page lock. First, it unnecessarily
2081         * makes the holding time of page lock longer. Second, it forces lock
2082         * ordering of page lock and transaction start for journaling
2083         * filesystems.
2084         */
2085        if (i_size_changed)
2086                mark_inode_dirty(inode);
2087
2088        return copied;
2089}
2090EXPORT_SYMBOL(generic_write_end);
2091
2092/*
2093 * block_is_partially_uptodate checks whether buffers within a page are
2094 * uptodate or not.
2095 *
2096 * Returns true if all buffers which correspond to a file portion
2097 * we want to read are uptodate.
2098 */
2099int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2100                                        unsigned long from)
2101{
2102        struct inode *inode = page->mapping->host;
2103        unsigned block_start, block_end, blocksize;
2104        unsigned to;
2105        struct buffer_head *bh, *head;
2106        int ret = 1;
2107
2108        if (!page_has_buffers(page))
2109                return 0;
2110
2111        blocksize = 1 << inode->i_blkbits;
2112        to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2113        to = from + to;
2114        if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2115                return 0;
2116
2117        head = page_buffers(page);
2118        bh = head;
2119        block_start = 0;
2120        do {
2121                block_end = block_start + blocksize;
2122                if (block_end > from && block_start < to) {
2123                        if (!buffer_uptodate(bh)) {
2124                                ret = 0;
2125                                break;
2126                        }
2127                        if (block_end >= to)
2128                                break;
2129                }
2130                block_start = block_end;
2131                bh = bh->b_this_page;
2132        } while (bh != head);
2133
2134        return ret;
2135}
2136EXPORT_SYMBOL(block_is_partially_uptodate);
2137
2138/*
2139 * Generic "read page" function for block devices that have the normal
2140 * get_block functionality. This is most of the block device filesystems.
2141 * Reads the page asynchronously --- the unlock_buffer() and
2142 * set/clear_buffer_uptodate() functions propagate buffer state into the
2143 * page struct once IO has completed.
2144 */
2145int block_read_full_page(struct page *page, get_block_t *get_block)
2146{
2147        struct inode *inode = page->mapping->host;
2148        sector_t iblock, lblock;
2149        struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2150        unsigned int blocksize;
2151        int nr, i;
2152        int fully_mapped = 1;
2153
2154        BUG_ON(!PageLocked(page));
2155        blocksize = 1 << inode->i_blkbits;
2156        if (!page_has_buffers(page))
2157                create_empty_buffers(page, blocksize, 0);
2158        head = page_buffers(page);
2159
2160        iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2161        lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2162        bh = head;
2163        nr = 0;
2164        i = 0;
2165
2166        do {
2167                if (buffer_uptodate(bh))
2168                        continue;
2169
2170                if (!buffer_mapped(bh)) {
2171                        int err = 0;
2172
2173                        fully_mapped = 0;
2174                        if (iblock < lblock) {
2175                                WARN_ON(bh->b_size != blocksize);
2176                                err = get_block(inode, iblock, bh, 0);
2177                                if (err)
2178                                        SetPageError(page);
2179                        }
2180                        if (!buffer_mapped(bh)) {
2181                                zero_user(page, i * blocksize, blocksize);
2182                                if (!err)
2183                                        set_buffer_uptodate(bh);
2184                                continue;
2185                        }
2186                        /*
2187                         * get_block() might have updated the buffer
2188                         * synchronously
2189                         */
2190                        if (buffer_uptodate(bh))
2191                                continue;
2192                }
2193                arr[nr++] = bh;
2194        } while (i++, iblock++, (bh = bh->b_this_page) != head);
2195
2196        if (fully_mapped)
2197                SetPageMappedToDisk(page);
2198
2199        if (!nr) {
2200                /*
2201                 * All buffers are uptodate - we can set the page uptodate
2202                 * as well. But not if get_block() returned an error.
2203                 */
2204                if (!PageError(page))
2205                        SetPageUptodate(page);
2206                unlock_page(page);
2207                return 0;
2208        }
2209
2210        /* Stage two: lock the buffers */
2211        for (i = 0; i < nr; i++) {
2212                bh = arr[i];
2213                lock_buffer(bh);
2214                mark_buffer_async_read(bh);
2215        }
2216
2217        /*
2218         * Stage 3: start the IO.  Check for uptodateness
2219         * inside the buffer lock in case another process reading
2220         * the underlying blockdev brought it uptodate (the sct fix).
2221         */
2222        for (i = 0; i < nr; i++) {
2223                bh = arr[i];
2224                if (buffer_uptodate(bh))
2225                        end_buffer_async_read(bh, 1);
2226                else
2227                        submit_bh(READ, bh);
2228        }
2229        return 0;
2230}
2231EXPORT_SYMBOL(block_read_full_page);
2232
2233/* utility function for filesystems that need to do work on expanding
2234 * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2235 * deal with the hole.  
2236 */
2237int generic_cont_expand_simple(struct inode *inode, loff_t size)
2238{
2239        struct address_space *mapping = inode->i_mapping;
2240        struct page *page;
2241        void *fsdata;
2242        int err;
2243
2244        err = inode_newsize_ok(inode, size);
2245        if (err)
2246                goto out;
2247
2248        err = pagecache_write_begin(NULL, mapping, size, 0,
2249                                AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2250                                &page, &fsdata);
2251        if (err)
2252                goto out;
2253
2254        err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2255        BUG_ON(err > 0);
2256
2257out:
2258        return err;
2259}
2260EXPORT_SYMBOL(generic_cont_expand_simple);
2261
2262static int cont_expand_zero(struct file *file, struct address_space *mapping,
2263                            loff_t pos, loff_t *bytes)
2264{
2265        struct inode *inode = mapping->host;
2266        unsigned blocksize = 1 << inode->i_blkbits;
2267        struct page *page;
2268        void *fsdata;
2269        pgoff_t index, curidx;
2270        loff_t curpos;
2271        unsigned zerofrom, offset, len;
2272        int err = 0;
2273
2274        index = pos >> PAGE_CACHE_SHIFT;
2275        offset = pos & ~PAGE_CACHE_MASK;
2276
2277        while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2278                zerofrom = curpos & ~PAGE_CACHE_MASK;
2279                if (zerofrom & (blocksize-1)) {
2280                        *bytes |= (blocksize-1);
2281                        (*bytes)++;
2282                }
2283                len = PAGE_CACHE_SIZE - zerofrom;
2284
2285                err = pagecache_write_begin(file, mapping, curpos, len,
2286                                                AOP_FLAG_UNINTERRUPTIBLE,
2287                                                &page, &fsdata);
2288                if (err)
2289                        goto out;
2290                zero_user(page, zerofrom, len);
2291                err = pagecache_write_end(file, mapping, curpos, len, len,
2292                                                page, fsdata);
2293                if (err < 0)
2294                        goto out;
2295                BUG_ON(err != len);
2296                err = 0;
2297
2298                balance_dirty_pages_ratelimited(mapping);
2299        }
2300
2301        /* page covers the boundary, find the boundary offset */
2302        if (index == curidx) {
2303                zerofrom = curpos & ~PAGE_CACHE_MASK;
2304                /* if we will expand the thing last block will be filled */
2305                if (offset <= zerofrom) {
2306                        goto out;
2307                }
2308                if (zerofrom & (blocksize-1)) {
2309                        *bytes |= (blocksize-1);
2310                        (*bytes)++;
2311                }
2312                len = offset - zerofrom;
2313
2314                err = pagecache_write_begin(file, mapping, curpos, len,
2315                                                AOP_FLAG_UNINTERRUPTIBLE,
2316                                                &page, &fsdata);
2317                if (err)
2318                        goto out;
2319                zero_user(page, zerofrom, len);
2320                err = pagecache_write_end(file, mapping, curpos, len, len,
2321                                                page, fsdata);
2322                if (err < 0)
2323                        goto out;
2324                BUG_ON(err != len);
2325                err = 0;
2326        }
2327out:
2328        return err;
2329}
2330
2331/*
2332 * For moronic filesystems that do not allow holes in file.
2333 * We may have to extend the file.
2334 */
2335int cont_write_begin(struct file *file, struct address_space *mapping,
2336                        loff_t pos, unsigned len, unsigned flags,
2337                        struct page **pagep, void **fsdata,
2338                        get_block_t *get_block, loff_t *bytes)
2339{
2340        struct inode *inode = mapping->host;
2341        unsigned blocksize = 1 << inode->i_blkbits;
2342        unsigned zerofrom;
2343        int err;
2344
2345        err = cont_expand_zero(file, mapping, pos, bytes);
2346        if (err)
2347                goto out;
2348
2349        zerofrom = *bytes & ~PAGE_CACHE_MASK;
2350        if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2351                *bytes |= (blocksize-1);
2352                (*bytes)++;
2353        }
2354
2355        *pagep = NULL;
2356        err = block_write_begin(file, mapping, pos, len,
2357                                flags, pagep, fsdata, get_block);
2358out:
2359        return err;
2360}
2361EXPORT_SYMBOL(cont_write_begin);
2362
2363int block_prepare_write(struct page *page, unsigned from, unsigned to,
2364                        get_block_t *get_block)
2365{
2366        struct inode *inode = page->mapping->host;
2367        int err = __block_prepare_write(inode, page, from, to, get_block);
2368        if (err)
2369                ClearPageUptodate(page);
2370        return err;
2371}
2372EXPORT_SYMBOL(block_prepare_write);
2373
2374int block_commit_write(struct page *page, unsigned from, unsigned to)
2375{
2376        struct inode *inode = page->mapping->host;
2377        __block_commit_write(inode,page,from,to);
2378        return 0;
2379}
2380EXPORT_SYMBOL(block_commit_write);
2381
2382/*
2383 * block_page_mkwrite() is not allowed to change the file size as it gets
2384 * called from a page fault handler when a page is first dirtied. Hence we must
2385 * be careful to check for EOF conditions here. We set the page up correctly
2386 * for a written page which means we get ENOSPC checking when writing into
2387 * holes and correct delalloc and unwritten extent mapping on filesystems that
2388 * support these features.
2389 *
2390 * We are not allowed to take the i_mutex here so we have to play games to
2391 * protect against truncate races as the page could now be beyond EOF.  Because
2392 * vmtruncate() writes the inode size before removing pages, once we have the
2393 * page lock we can determine safely if the page is beyond EOF. If it is not
2394 * beyond EOF, then the page is guaranteed safe against truncation until we
2395 * unlock the page.
2396 */
2397int
2398block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2399                   get_block_t get_block)
2400{
2401        struct page *page = vmf->page;
2402        struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2403        unsigned long end;
2404        loff_t size;
2405        int ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
2406
2407        lock_page(page);
2408        size = i_size_read(inode);
2409        if ((page->mapping != inode->i_mapping) ||
2410            (page_offset(page) > size)) {
2411                /* page got truncated out from underneath us */
2412                unlock_page(page);
2413                goto out;
2414        }
2415
2416        /* page is wholly or partially inside EOF */
2417        if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2418                end = size & ~PAGE_CACHE_MASK;
2419        else
2420                end = PAGE_CACHE_SIZE;
2421
2422        ret = block_prepare_write(page, 0, end, get_block);
2423        if (!ret)
2424                ret = block_commit_write(page, 0, end);
2425
2426        if (unlikely(ret)) {
2427                unlock_page(page);
2428                if (ret == -ENOMEM)
2429                        ret = VM_FAULT_OOM;
2430                else /* -ENOSPC, -EIO, etc */
2431                        ret = VM_FAULT_SIGBUS;
2432        } else
2433                ret = VM_FAULT_LOCKED;
2434
2435out:
2436        return ret;
2437}
2438EXPORT_SYMBOL(block_page_mkwrite);
2439
2440/*
2441 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2442 * immediately, while under the page lock.  So it needs a special end_io
2443 * handler which does not touch the bh after unlocking it.
2444 */
2445static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2446{
2447        __end_buffer_read_notouch(bh, uptodate);
2448}
2449
2450/*
2451 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2452 * the page (converting it to circular linked list and taking care of page
2453 * dirty races).
2454 */
2455static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2456{
2457        struct buffer_head *bh;
2458
2459        BUG_ON(!PageLocked(page));
2460
2461        spin_lock(&page->mapping->private_lock);
2462        bh = head;
2463        do {
2464                if (PageDirty(page))
2465                        set_buffer_dirty(bh);
2466                if (!bh->b_this_page)
2467                        bh->b_this_page = head;
2468                bh = bh->b_this_page;
2469        } while (bh != head);
2470        attach_page_buffers(page, head);
2471        spin_unlock(&page->mapping->private_lock);
2472}
2473
2474/*
2475 * On entry, the page is fully not uptodate.
2476 * On exit the page is fully uptodate in the areas outside (from,to)
2477 */
2478int nobh_write_begin(struct file *file, struct address_space *mapping,
2479                        loff_t pos, unsigned len, unsigned flags,
2480                        struct page **pagep, void **fsdata,
2481                        get_block_t *get_block)
2482{
2483        struct inode *inode = mapping->host;
2484        const unsigned blkbits = inode->i_blkbits;
2485        const unsigned blocksize = 1 << blkbits;
2486        struct buffer_head *head, *bh;
2487        struct page *page;
2488        pgoff_t index;
2489        unsigned from, to;
2490        unsigned block_in_page;
2491        unsigned block_start, block_end;
2492        sector_t block_in_file;
2493        int nr_reads = 0;
2494        int ret = 0;
2495        int is_mapped_to_disk = 1;
2496
2497        index = pos >> PAGE_CACHE_SHIFT;
2498        from = pos & (PAGE_CACHE_SIZE - 1);
2499        to = from + len;
2500
2501        page = grab_cache_page_write_begin(mapping, index, flags);
2502        if (!page)
2503                return -ENOMEM;
2504        *pagep = page;
2505        *fsdata = NULL;
2506
2507        if (page_has_buffers(page)) {
2508                unlock_page(page);
2509                page_cache_release(page);
2510                *pagep = NULL;
2511                return block_write_begin(file, mapping, pos, len, flags, pagep,
2512                                        fsdata, get_block);
2513        }
2514
2515        if (PageMappedToDisk(page))
2516                return 0;
2517
2518        /*
2519         * Allocate buffers so that we can keep track of state, and potentially
2520         * attach them to the page if an error occurs. In the common case of
2521         * no error, they will just be freed again without ever being attached
2522         * to the page (which is all OK, because we're under the page lock).
2523         *
2524         * Be careful: the buffer linked list is a NULL terminated one, rather
2525         * than the circular one we're used to.
2526         */
2527        head = alloc_page_buffers(page, blocksize, 0);
2528        if (!head) {
2529                ret = -ENOMEM;
2530                goto out_release;
2531        }
2532
2533        block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2534
2535        /*
2536         * We loop across all blocks in the page, whether or not they are
2537         * part of the affected region.  This is so we can discover if the
2538         * page is fully mapped-to-disk.
2539         */
2540        for (block_start = 0, block_in_page = 0, bh = head;
2541                  block_start < PAGE_CACHE_SIZE;
2542                  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2543                int create;
2544
2545                block_end = block_start + blocksize;
2546                bh->b_state = 0;
2547                create = 1;
2548                if (block_start >= to)
2549                        create = 0;
2550                ret = get_block(inode, block_in_file + block_in_page,
2551                                        bh, create);
2552                if (ret)
2553                        goto failed;
2554                if (!buffer_mapped(bh))
2555                        is_mapped_to_disk = 0;
2556                if (buffer_new(bh))
2557                        unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2558                if (PageUptodate(page)) {
2559                        set_buffer_uptodate(bh);
2560                        continue;
2561                }
2562                if (buffer_new(bh) || !buffer_mapped(bh)) {
2563                        zero_user_segments(page, block_start, from,
2564                                                        to, block_end);
2565                        continue;
2566                }
2567                if (buffer_uptodate(bh))
2568                        continue;       /* reiserfs does this */
2569                if (block_start < from || block_end > to) {
2570                        lock_buffer(bh);
2571                        bh->b_end_io = end_buffer_read_nobh;
2572                        submit_bh(READ, bh);
2573                        nr_reads++;
2574                }
2575        }
2576
2577        if (nr_reads) {
2578                /*
2579                 * The page is locked, so these buffers are protected from
2580                 * any VM or truncate activity.  Hence we don't need to care
2581                 * for the buffer_head refcounts.
2582                 */
2583                for (bh = head; bh; bh = bh->b_this_page) {
2584                        wait_on_buffer(bh);
2585                        if (!buffer_uptodate(bh))
2586                                ret = -EIO;
2587                }
2588                if (ret)
2589                        goto failed;
2590        }
2591
2592        if (is_mapped_to_disk)
2593                SetPageMappedToDisk(page);
2594
2595        *fsdata = head; /* to be released by nobh_write_end */
2596
2597        return 0;
2598
2599failed:
2600        BUG_ON(!ret);
2601        /*
2602         * Error recovery is a bit difficult. We need to zero out blocks that
2603         * were newly allocated, and dirty them to ensure they get written out.
2604         * Buffers need to be attached to the page at this point, otherwise
2605         * the handling of potential IO errors during writeout would be hard
2606         * (could try doing synchronous writeout, but what if that fails too?)
2607         */
2608        attach_nobh_buffers(page, head);
2609        page_zero_new_buffers(page, from, to);
2610
2611out_release:
2612        unlock_page(page);
2613        page_cache_release(page);
2614        *pagep = NULL;
2615
2616        if (pos + len > inode->i_size)
2617                vmtruncate(inode, inode->i_size);
2618
2619        return ret;
2620}
2621EXPORT_SYMBOL(nobh_write_begin);
2622
2623int nobh_write_end(struct file *file, struct address_space *mapping,
2624                        loff_t pos, unsigned len, unsigned copied,
2625                        struct page *page, void *fsdata)
2626{
2627        struct inode *inode = page->mapping->host;
2628        struct buffer_head *head = fsdata;
2629        struct buffer_head *bh;
2630        BUG_ON(fsdata != NULL && page_has_buffers(page));
2631
2632        if (unlikely(copied < len) && head)
2633                attach_nobh_buffers(page, head);
2634        if (page_has_buffers(page))
2635                return generic_write_end(file, mapping, pos, len,
2636                                        copied, page, fsdata);
2637
2638        SetPageUptodate(page);
2639        set_page_dirty(page);
2640        if (pos+copied > inode->i_size) {
2641                i_size_write(inode, pos+copied);
2642                mark_inode_dirty(inode);
2643        }
2644
2645        unlock_page(page);
2646        page_cache_release(page);
2647
2648        while (head) {
2649                bh = head;
2650                head = head->b_this_page;
2651                free_buffer_head(bh);
2652        }
2653
2654        return copied;
2655}
2656EXPORT_SYMBOL(nobh_write_end);
2657
2658/*
2659 * nobh_writepage() - based on block_full_write_page() except
2660 * that it tries to operate without attaching bufferheads to
2661 * the page.
2662 */
2663int nobh_writepage(struct page *page, get_block_t *get_block,
2664                        struct writeback_control *wbc)
2665{
2666        struct inode * const inode = page->mapping->host;
2667        loff_t i_size = i_size_read(inode);
2668        const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2669        unsigned offset;
2670        int ret;
2671
2672        /* Is the page fully inside i_size? */
2673        if (page->index < end_index)
2674                goto out;
2675
2676        /* Is the page fully outside i_size? (truncate in progress) */
2677        offset = i_size & (PAGE_CACHE_SIZE-1);
2678        if (page->index >= end_index+1 || !offset) {
2679                /*
2680                 * The page may have dirty, unmapped buffers.  For example,
2681                 * they may have been added in ext3_writepage().  Make them
2682                 * freeable here, so the page does not leak.
2683                 */
2684#if 0
2685                /* Not really sure about this  - do we need this ? */
2686                if (page->mapping->a_ops->invalidatepage)
2687                        page->mapping->a_ops->invalidatepage(page, offset);
2688#endif
2689                unlock_page(page);
2690                return 0; /* don't care */
2691        }
2692
2693        /*
2694         * The page straddles i_size.  It must be zeroed out on each and every
2695         * writepage invocation because it may be mmapped.  "A file is mapped
2696         * in multiples of the page size.  For a file that is not a multiple of
2697         * the  page size, the remaining memory is zeroed when mapped, and
2698         * writes to that region are not written out to the file."
2699         */
2700        zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2701out:
2702        ret = mpage_writepage(page, get_block, wbc);
2703        if (ret == -EAGAIN)
2704                ret = __block_write_full_page(inode, page, get_block, wbc,
2705                                              end_buffer_async_write);
2706        return ret;
2707}
2708EXPORT_SYMBOL(nobh_writepage);
2709
2710int nobh_truncate_page(struct address_space *mapping,
2711                        loff_t from, get_block_t *get_block)
2712{
2713        pgoff_t index = from >> PAGE_CACHE_SHIFT;
2714        unsigned offset = from & (PAGE_CACHE_SIZE-1);
2715        unsigned blocksize;
2716        sector_t iblock;
2717        unsigned length, pos;
2718        struct inode *inode = mapping->host;
2719        struct page *page;
2720        struct buffer_head map_bh;
2721        int err;
2722
2723        blocksize = 1 << inode->i_blkbits;
2724        length = offset & (blocksize - 1);
2725
2726        /* Block boundary? Nothing to do */
2727        if (!length)
2728                return 0;
2729
2730        length = blocksize - length;
2731        iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2732
2733        page = grab_cache_page(mapping, index);
2734        err = -ENOMEM;
2735        if (!page)
2736                goto out;
2737
2738        if (page_has_buffers(page)) {
2739has_buffers:
2740                unlock_page(page);
2741                page_cache_release(page);
2742                return block_truncate_page(mapping, from, get_block);
2743        }
2744
2745        /* Find the buffer that contains "offset" */
2746        pos = blocksize;
2747        while (offset >= pos) {
2748                iblock++;
2749                pos += blocksize;
2750        }
2751
2752        map_bh.b_size = blocksize;
2753        map_bh.b_state = 0;
2754        err = get_block(inode, iblock, &map_bh, 0);
2755        if (err)
2756                goto unlock;
2757        /* unmapped? It's a hole - nothing to do */
2758        if (!buffer_mapped(&map_bh))
2759                goto unlock;
2760
2761        /* Ok, it's mapped. Make sure it's up-to-date */
2762        if (!PageUptodate(page)) {
2763                err = mapping->a_ops->readpage(NULL, page);
2764                if (err) {
2765                        page_cache_release(page);
2766                        goto out;
2767                }
2768                lock_page(page);
2769                if (!PageUptodate(page)) {
2770                        err = -EIO;
2771                        goto unlock;
2772                }
2773                if (page_has_buffers(page))
2774                        goto has_buffers;
2775        }
2776        zero_user(page, offset, length);
2777        set_page_dirty(page);
2778        err = 0;
2779
2780unlock:
2781        unlock_page(page);
2782        page_cache_release(page);
2783out:
2784        return err;
2785}
2786EXPORT_SYMBOL(nobh_truncate_page);
2787
2788int block_truncate_page(struct address_space *mapping,
2789                        loff_t from, get_block_t *get_block)
2790{
2791        pgoff_t index = from >> PAGE_CACHE_SHIFT;
2792        unsigned offset = from & (PAGE_CACHE_SIZE-1);
2793        unsigned blocksize;
2794        sector_t iblock;
2795        unsigned length, pos;
2796        struct inode *inode = mapping->host;
2797        struct page *page;
2798        struct buffer_head *bh;
2799        int err;
2800
2801        blocksize = 1 << inode->i_blkbits;
2802        length = offset & (blocksize - 1);
2803
2804        /* Block boundary? Nothing to do */
2805        if (!length)
2806                return 0;
2807
2808        length = blocksize - length;
2809        iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2810        
2811        page = grab_cache_page(mapping, index);
2812        err = -ENOMEM;
2813        if (!page)
2814                goto out;
2815
2816        if (!page_has_buffers(page))
2817                create_empty_buffers(page, blocksize, 0);
2818
2819        /* Find the buffer that contains "offset" */
2820        bh = page_buffers(page);
2821        pos = blocksize;
2822        while (offset >= pos) {
2823                bh = bh->b_this_page;
2824                iblock++;
2825                pos += blocksize;
2826        }
2827
2828        err = 0;
2829        if (!buffer_mapped(bh)) {
2830                WARN_ON(bh->b_size != blocksize);
2831                err = get_block(inode, iblock, bh, 0);
2832                if (err)
2833                        goto unlock;
2834                /* unmapped? It's a hole - nothing to do */
2835                if (!buffer_mapped(bh))
2836                        goto unlock;
2837        }
2838
2839        /* Ok, it's mapped. Make sure it's up-to-date */
2840        if (PageUptodate(page))
2841                set_buffer_uptodate(bh);
2842
2843        if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2844                err = -EIO;
2845                ll_rw_block(READ, 1, &bh);
2846                wait_on_buffer(bh);
2847                /* Uhhuh. Read error. Complain and punt. */
2848                if (!buffer_uptodate(bh))
2849                        goto unlock;
2850        }
2851
2852        zero_user(page, offset, length);
2853        mark_buffer_dirty(bh);
2854        err = 0;
2855
2856unlock:
2857        unlock_page(page);
2858        page_cache_release(page);
2859out:
2860        return err;
2861}
2862EXPORT_SYMBOL(block_truncate_page);
2863
2864/*
2865 * The generic ->writepage function for buffer-backed address_spaces
2866 * this form passes in the end_io handler used to finish the IO.
2867 */
2868int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2869                        struct writeback_control *wbc, bh_end_io_t *handler)
2870{
2871        struct inode * const inode = page->mapping->host;
2872        loff_t i_size = i_size_read(inode);
2873        const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2874        unsigned offset;
2875
2876        /* Is the page fully inside i_size? */
2877        if (page->index < end_index)
2878                return __block_write_full_page(inode, page, get_block, wbc,
2879                                               handler);
2880
2881        /* Is the page fully outside i_size? (truncate in progress) */
2882        offset = i_size & (PAGE_CACHE_SIZE-1);
2883        if (page->index >= end_index+1 || !offset) {
2884                /*
2885                 * The page may have dirty, unmapped buffers.  For example,
2886                 * they may have been added in ext3_writepage().  Make them
2887                 * freeable here, so the page does not leak.
2888                 */
2889                do_invalidatepage(page, 0);
2890                unlock_page(page);
2891                return 0; /* don't care */
2892        }
2893
2894        /*
2895         * The page straddles i_size.  It must be zeroed out on each and every
2896         * writepage invokation because it may be mmapped.  "A file is mapped
2897         * in multiples of the page size.  For a file that is not a multiple of
2898         * the  page size, the remaining memory is zeroed when mapped, and
2899         * writes to that region are not written out to the file."
2900         */
2901        zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2902        return __block_write_full_page(inode, page, get_block, wbc, handler);
2903}
2904EXPORT_SYMBOL(block_write_full_page_endio);
2905
2906/*
2907 * The generic ->writepage function for buffer-backed address_spaces
2908 */
2909int block_write_full_page(struct page *page, get_block_t *get_block,
2910                        struct writeback_control *wbc)
2911{
2912        return block_write_full_page_endio(page, get_block, wbc,
2913                                           end_buffer_async_write);
2914}
2915EXPORT_SYMBOL(block_write_full_page);
2916
2917sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2918                            get_block_t *get_block)
2919{
2920        struct buffer_head tmp;
2921        struct inode *inode = mapping->host;
2922        tmp.b_state = 0;
2923        tmp.b_blocknr = 0;
2924        tmp.b_size = 1 << inode->i_blkbits;
2925        get_block(inode, block, &tmp, 0);
2926        return tmp.b_blocknr;
2927}
2928EXPORT_SYMBOL(generic_block_bmap);
2929
2930static void end_bio_bh_io_sync(struct bio *bio, int err)
2931{
2932        struct buffer_head *bh = bio->bi_private;
2933
2934        if (err == -EOPNOTSUPP) {
2935                set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2936                set_bit(BH_Eopnotsupp, &bh->b_state);
2937        }
2938
2939        if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2940                set_bit(BH_Quiet, &bh->b_state);
2941
2942        bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2943        bio_put(bio);
2944}
2945
2946int submit_bh(int rw, struct buffer_head * bh)
2947{
2948        struct bio *bio;
2949        int ret = 0;
2950
2951        BUG_ON(!buffer_locked(bh));
2952        BUG_ON(!buffer_mapped(bh));
2953        BUG_ON(!bh->b_end_io);
2954        BUG_ON(buffer_delay(bh));
2955        BUG_ON(buffer_unwritten(bh));
2956
2957        /*
2958         * Mask in barrier bit for a write (could be either a WRITE or a
2959         * WRITE_SYNC
2960         */
2961        if (buffer_ordered(bh) && (rw & WRITE))
2962                rw |= WRITE_BARRIER;
2963
2964        /*
2965         * Only clear out a write error when rewriting
2966         */
2967        if (test_set_buffer_req(bh) && (rw & WRITE))
2968                clear_buffer_write_io_error(bh);
2969
2970        /*
2971         * from here on down, it's all bio -- do the initial mapping,
2972         * submit_bio -> generic_make_request may further map this bio around
2973         */
2974        bio = bio_alloc(GFP_NOIO, 1);
2975
2976        bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2977        bio->bi_bdev = bh->b_bdev;
2978        bio->bi_io_vec[0].bv_page = bh->b_page;
2979        bio->bi_io_vec[0].bv_len = bh->b_size;
2980        bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2981
2982        bio->bi_vcnt = 1;
2983        bio->bi_idx = 0;
2984        bio->bi_size = bh->b_size;
2985
2986        bio->bi_end_io = end_bio_bh_io_sync;
2987        bio->bi_private = bh;
2988
2989        bio_get(bio);
2990        submit_bio(rw, bio);
2991
2992        if (bio_flagged(bio, BIO_EOPNOTSUPP))
2993                ret = -EOPNOTSUPP;
2994
2995        bio_put(bio);
2996        return ret;
2997}
2998EXPORT_SYMBOL(submit_bh);
2999
3000/**
3001 * ll_rw_block: low-level access to block devices (DEPRECATED)
3002 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
3003 * @nr: number of &struct buffer_heads in the array
3004 * @bhs: array of pointers to &struct buffer_head
3005 *
3006 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3007 * requests an I/O operation on them, either a %READ or a %WRITE.  The third
3008 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
3009 * are sent to disk. The fourth %READA option is described in the documentation
3010 * for generic_make_request() which ll_rw_block() calls.
3011 *
3012 * This function drops any buffer that it cannot get a lock on (with the
3013 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
3014 * clean when doing a write request, and any buffer that appears to be
3015 * up-to-date when doing read request.  Further it marks as clean buffers that
3016 * are processed for writing (the buffer cache won't assume that they are
3017 * actually clean until the buffer gets unlocked).
3018 *
3019 * ll_rw_block sets b_end_io to simple completion handler that marks
3020 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3021 * any waiters. 
3022 *
3023 * All of the buffers must be for the same device, and must also be a
3024 * multiple of the current approved size for the device.
3025 */
3026void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3027{
3028        int i;
3029
3030        for (i = 0; i < nr; i++) {
3031                struct buffer_head *bh = bhs[i];
3032
3033                if (rw == SWRITE || rw == SWRITE_SYNC || rw == SWRITE_SYNC_PLUG)
3034                        lock_buffer(bh);
3035                else if (!trylock_buffer(bh))
3036                        continue;
3037
3038                if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC ||
3039                    rw == SWRITE_SYNC_PLUG) {
3040                        if (test_clear_buffer_dirty(bh)) {
3041                                bh->b_end_io = end_buffer_write_sync;
3042                                get_bh(bh);
3043                                if (rw == SWRITE_SYNC)
3044                                        submit_bh(WRITE_SYNC, bh);
3045                                else
3046                                        submit_bh(WRITE, bh);
3047                                continue;
3048                        }
3049                } else {
3050                        if (!buffer_uptodate(bh)) {
3051                                bh->b_end_io = end_buffer_read_sync;
3052                                get_bh(bh);
3053                                submit_bh(rw, bh);
3054                                continue;
3055                        }
3056                }
3057                unlock_buffer(bh);
3058        }
3059}
3060EXPORT_SYMBOL(ll_rw_block);
3061
3062/*
3063 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3064 * and then start new I/O and then wait upon it.  The caller must have a ref on
3065 * the buffer_head.
3066 */
3067int sync_dirty_buffer(struct buffer_head *bh)
3068{
3069        int ret = 0;
3070
3071        WARN_ON(atomic_read(&bh->b_count) < 1);
3072        lock_buffer(bh);
3073        if (test_clear_buffer_dirty(bh)) {
3074                get_bh(bh);
3075                bh->b_end_io = end_buffer_write_sync;
3076                ret = submit_bh(WRITE_SYNC, bh);
3077                wait_on_buffer(bh);
3078                if (buffer_eopnotsupp(bh)) {
3079                        clear_buffer_eopnotsupp(bh);
3080                        ret = -EOPNOTSUPP;
3081                }
3082                if (!ret && !buffer_uptodate(bh))
3083                        ret = -EIO;
3084        } else {
3085                unlock_buffer(bh);
3086        }
3087        return ret;
3088}
3089EXPORT_SYMBOL(sync_dirty_buffer);
3090
3091/*
3092 * try_to_free_buffers() checks if all the buffers on this particular page
3093 * are unused, and releases them if so.
3094 *
3095 * Exclusion against try_to_free_buffers may be obtained by either
3096 * locking the page or by holding its mapping's private_lock.
3097 *
3098 * If the page is dirty but all the buffers are clean then we need to
3099 * be sure to mark the page clean as well.  This is because the page
3100 * may be against a block device, and a later reattachment of buffers
3101 * to a dirty page will set *all* buffers dirty.  Which would corrupt
3102 * filesystem data on the same device.
3103 *
3104 * The same applies to regular filesystem pages: if all the buffers are
3105 * clean then we set the page clean and proceed.  To do that, we require
3106 * total exclusion from __set_page_dirty_buffers().  That is obtained with
3107 * private_lock.
3108 *
3109 * try_to_free_buffers() is non-blocking.
3110 */
3111static inline int buffer_busy(struct buffer_head *bh)
3112{
3113        return atomic_read(&bh->b_count) |
3114                (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3115}
3116
3117static int
3118drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3119{
3120        struct buffer_head *head = page_buffers(page);
3121        struct buffer_head *bh;
3122
3123        bh = head;
3124        do {
3125                if (buffer_write_io_error(bh) && page->mapping)
3126                        set_bit(AS_EIO, &page->mapping->flags);
3127                if (buffer_busy(bh))
3128                        goto failed;
3129                bh = bh->b_this_page;
3130        } while (bh != head);
3131
3132        do {
3133                struct buffer_head *next = bh->b_this_page;
3134
3135                if (bh->b_assoc_map)
3136                        __remove_assoc_queue(bh);
3137                bh = next;
3138        } while (bh != head);
3139        *buffers_to_free = head;
3140        __clear_page_buffers(page);
3141        return 1;
3142failed:
3143        return 0;
3144}
3145
3146int try_to_free_buffers(struct page *page)
3147{
3148        struct address_space * const mapping = page->mapping;
3149        struct buffer_head *buffers_to_free = NULL;
3150        int ret = 0;
3151
3152        BUG_ON(!PageLocked(page));
3153        if (PageWriteback(page))
3154                return 0;
3155
3156        if (mapping == NULL) {          /* can this still happen? */
3157                ret = drop_buffers(page, &buffers_to_free);
3158                goto out;
3159        }
3160
3161        spin_lock(&mapping->private_lock);
3162        ret = drop_buffers(page, &buffers_to_free);
3163
3164        /*
3165         * If the filesystem writes its buffers by hand (eg ext3)
3166         * then we can have clean buffers against a dirty page.  We
3167         * clean the page here; otherwise the VM will never notice
3168         * that the filesystem did any IO at all.
3169         *
3170         * Also, during truncate, discard_buffer will have marked all
3171         * the page's buffers clean.  We discover that here and clean
3172         * the page also.
3173         *
3174         * private_lock must be held over this entire operation in order
3175         * to synchronise against __set_page_dirty_buffers and prevent the
3176         * dirty bit from being lost.
3177         */
3178        if (ret)
3179                cancel_dirty_page(page, PAGE_CACHE_SIZE);
3180        spin_unlock(&mapping->private_lock);
3181out:
3182        if (buffers_to_free) {
3183                struct buffer_head *bh = buffers_to_free;
3184
3185                do {
3186                        struct buffer_head *next = bh->b_this_page;
3187                        free_buffer_head(bh);
3188                        bh = next;
3189                } while (bh != buffers_to_free);
3190        }
3191        return ret;
3192}
3193EXPORT_SYMBOL(try_to_free_buffers);
3194
3195void block_sync_page(struct page *page)
3196{
3197        struct address_space *mapping;
3198
3199        smp_mb();
3200        mapping = page_mapping(page);
3201        if (mapping)
3202                blk_run_backing_dev(mapping->backing_dev_info, page);
3203}
3204EXPORT_SYMBOL(block_sync_page);
3205
3206/*
3207 * There are no bdflush tunables left.  But distributions are
3208 * still running obsolete flush daemons, so we terminate them here.
3209 *
3210 * Use of bdflush() is deprecated and will be removed in a future kernel.
3211 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3212 */
3213SYSCALL_DEFINE2(bdflush, int, func, long, data)
3214{
3215        static int msg_count;
3216
3217        if (!capable(CAP_SYS_ADMIN))
3218                return -EPERM;
3219
3220        if (msg_count < 5) {
3221                msg_count++;
3222                printk(KERN_INFO
3223                        "warning: process `%s' used the obsolete bdflush"
3224                        " system call\n", current->comm);
3225                printk(KERN_INFO "Fix your initscripts?\n");
3226        }
3227
3228        if (func == 1)
3229                do_exit(0);
3230        return 0;
3231}
3232
3233/*
3234 * Buffer-head allocation
3235 */
3236static struct kmem_cache *bh_cachep;
3237
3238/*
3239 * Once the number of bh's in the machine exceeds this level, we start
3240 * stripping them in writeback.
3241 */
3242static int max_buffer_heads;
3243
3244int buffer_heads_over_limit;
3245
3246struct bh_accounting {
3247        int nr;                 /* Number of live bh's */
3248        int ratelimit;          /* Limit cacheline bouncing */
3249};
3250
3251static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3252
3253static void recalc_bh_state(void)
3254{
3255        int i;
3256        int tot = 0;
3257
3258        if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3259                return;
3260        __get_cpu_var(bh_accounting).ratelimit = 0;
3261        for_each_online_cpu(i)
3262                tot += per_cpu(bh_accounting, i).nr;
3263        buffer_heads_over_limit = (tot > max_buffer_heads);
3264}
3265        
3266struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3267{
3268        struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3269        if (ret) {
3270                INIT_LIST_HEAD(&ret->b_assoc_buffers);
3271                get_cpu_var(bh_accounting).nr++;
3272                recalc_bh_state();
3273                put_cpu_var(bh_accounting);
3274        }
3275        return ret;
3276}
3277EXPORT_SYMBOL(alloc_buffer_head);
3278
3279void free_buffer_head(struct buffer_head *bh)
3280{
3281        BUG_ON(!list_empty(&bh->b_assoc_buffers));
3282        kmem_cache_free(bh_cachep, bh);
3283        get_cpu_var(bh_accounting).nr--;
3284        recalc_bh_state();
3285        put_cpu_var(bh_accounting);
3286}
3287EXPORT_SYMBOL(free_buffer_head);
3288
3289static void buffer_exit_cpu(int cpu)
3290{
3291        int i;
3292        struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3293
3294        for (i = 0; i < BH_LRU_SIZE; i++) {
3295                brelse(b->bhs[i]);
3296                b->bhs[i] = NULL;
3297        }
3298        get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3299        per_cpu(bh_accounting, cpu).nr = 0;
3300        put_cpu_var(bh_accounting);
3301}
3302
3303static int buffer_cpu_notify(struct notifier_block *self,
3304                              unsigned long action, void *hcpu)
3305{
3306        if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3307                buffer_exit_cpu((unsigned long)hcpu);
3308        return NOTIFY_OK;
3309}
3310
3311/**
3312 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3313 * @bh: struct buffer_head
3314 *
3315 * Return true if the buffer is up-to-date and false,
3316 * with the buffer locked, if not.
3317 */
3318int bh_uptodate_or_lock(struct buffer_head *bh)
3319{
3320        if (!buffer_uptodate(bh)) {
3321                lock_buffer(bh);
3322                if (!buffer_uptodate(bh))
3323                        return 0;
3324                unlock_buffer(bh);
3325        }
3326        return 1;
3327}
3328EXPORT_SYMBOL(bh_uptodate_or_lock);
3329
3330/**
3331 * bh_submit_read - Submit a locked buffer for reading
3332 * @bh: struct buffer_head
3333 *
3334 * Returns zero on success and -EIO on error.
3335 */
3336int bh_submit_read(struct buffer_head *bh)
3337{
3338        BUG_ON(!buffer_locked(bh));
3339
3340        if (buffer_uptodate(bh)) {
3341                unlock_buffer(bh);
3342                return 0;
3343        }
3344
3345        get_bh(bh);
3346        bh->b_end_io = end_buffer_read_sync;
3347        submit_bh(READ, bh);
3348        wait_on_buffer(bh);
3349        if (buffer_uptodate(bh))
3350                return 0;
3351        return -EIO;
3352}
3353EXPORT_SYMBOL(bh_submit_read);
3354
3355static void
3356init_buffer_head(void *data)
3357{
3358        struct buffer_head *bh = data;
3359
3360        memset(bh, 0, sizeof(*bh));
3361        INIT_LIST_HEAD(&bh->b_assoc_buffers);
3362}
3363
3364void __init buffer_init(void)
3365{
3366        int nrpages;
3367
3368        bh_cachep = kmem_cache_create("buffer_head",
3369                        sizeof(struct buffer_head), 0,
3370                                (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3371                                SLAB_MEM_SPREAD),
3372                                init_buffer_head);
3373
3374        /*
3375         * Limit the bh occupancy to 10% of ZONE_NORMAL
3376         */
3377        nrpages = (nr_free_buffer_pages() * 10) / 100;
3378        max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3379        hotcpu_notifier(buffer_cpu_notify, 0);
3380}
3381