linux/fs/direct-io.c
<<
>>
Prefs
   1/*
   2 * fs/direct-io.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 *
   6 * O_DIRECT
   7 *
   8 * 04Jul2002    Andrew Morton
   9 *              Initial version
  10 * 11Sep2002    janetinc@us.ibm.com
  11 *              added readv/writev support.
  12 * 29Oct2002    Andrew Morton
  13 *              rewrote bio_add_page() support.
  14 * 30Oct2002    pbadari@us.ibm.com
  15 *              added support for non-aligned IO.
  16 * 06Nov2002    pbadari@us.ibm.com
  17 *              added asynchronous IO support.
  18 * 21Jul2003    nathans@sgi.com
  19 *              added IO completion notifier.
  20 */
  21
  22#include <linux/kernel.h>
  23#include <linux/module.h>
  24#include <linux/types.h>
  25#include <linux/fs.h>
  26#include <linux/mm.h>
  27#include <linux/slab.h>
  28#include <linux/highmem.h>
  29#include <linux/pagemap.h>
  30#include <linux/task_io_accounting_ops.h>
  31#include <linux/bio.h>
  32#include <linux/wait.h>
  33#include <linux/err.h>
  34#include <linux/blkdev.h>
  35#include <linux/buffer_head.h>
  36#include <linux/rwsem.h>
  37#include <linux/uio.h>
  38#include <asm/atomic.h>
  39
  40/*
  41 * How many user pages to map in one call to get_user_pages().  This determines
  42 * the size of a structure on the stack.
  43 */
  44#define DIO_PAGES       64
  45
  46/*
  47 * This code generally works in units of "dio_blocks".  A dio_block is
  48 * somewhere between the hard sector size and the filesystem block size.  it
  49 * is determined on a per-invocation basis.   When talking to the filesystem
  50 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
  51 * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
  52 * to bio_block quantities by shifting left by blkfactor.
  53 *
  54 * If blkfactor is zero then the user's request was aligned to the filesystem's
  55 * blocksize.
  56 *
  57 * lock_type is DIO_LOCKING for regular files on direct-IO-naive filesystems.
  58 * This determines whether we need to do the fancy locking which prevents
  59 * direct-IO from being able to read uninitialised disk blocks.  If its zero
  60 * (blockdev) this locking is not done, and if it is DIO_OWN_LOCKING i_mutex is
  61 * not held for the entire direct write (taken briefly, initially, during a
  62 * direct read though, but its never held for the duration of a direct-IO).
  63 */
  64
  65struct dio {
  66        /* BIO submission state */
  67        struct bio *bio;                /* bio under assembly */
  68        struct inode *inode;
  69        int rw;
  70        loff_t i_size;                  /* i_size when submitted */
  71        int lock_type;                  /* doesn't change */
  72        unsigned blkbits;               /* doesn't change */
  73        unsigned blkfactor;             /* When we're using an alignment which
  74                                           is finer than the filesystem's soft
  75                                           blocksize, this specifies how much
  76                                           finer.  blkfactor=2 means 1/4-block
  77                                           alignment.  Does not change */
  78        unsigned start_zero_done;       /* flag: sub-blocksize zeroing has
  79                                           been performed at the start of a
  80                                           write */
  81        int pages_in_io;                /* approximate total IO pages */
  82        size_t  size;                   /* total request size (doesn't change)*/
  83        sector_t block_in_file;         /* Current offset into the underlying
  84                                           file in dio_block units. */
  85        unsigned blocks_available;      /* At block_in_file.  changes */
  86        sector_t final_block_in_request;/* doesn't change */
  87        unsigned first_block_in_page;   /* doesn't change, Used only once */
  88        int boundary;                   /* prev block is at a boundary */
  89        int reap_counter;               /* rate limit reaping */
  90        get_block_t *get_block;         /* block mapping function */
  91        dio_iodone_t *end_io;           /* IO completion function */
  92        sector_t final_block_in_bio;    /* current final block in bio + 1 */
  93        sector_t next_block_for_io;     /* next block to be put under IO,
  94                                           in dio_blocks units */
  95        struct buffer_head map_bh;      /* last get_block() result */
  96
  97        /*
  98         * Deferred addition of a page to the dio.  These variables are
  99         * private to dio_send_cur_page(), submit_page_section() and
 100         * dio_bio_add_page().
 101         */
 102        struct page *cur_page;          /* The page */
 103        unsigned cur_page_offset;       /* Offset into it, in bytes */
 104        unsigned cur_page_len;          /* Nr of bytes at cur_page_offset */
 105        sector_t cur_page_block;        /* Where it starts */
 106
 107        /*
 108         * Page fetching state. These variables belong to dio_refill_pages().
 109         */
 110        int curr_page;                  /* changes */
 111        int total_pages;                /* doesn't change */
 112        unsigned long curr_user_address;/* changes */
 113
 114        /*
 115         * Page queue.  These variables belong to dio_refill_pages() and
 116         * dio_get_page().
 117         */
 118        struct page *pages[DIO_PAGES];  /* page buffer */
 119        unsigned head;                  /* next page to process */
 120        unsigned tail;                  /* last valid page + 1 */
 121        int page_errors;                /* errno from get_user_pages() */
 122
 123        /* BIO completion state */
 124        spinlock_t bio_lock;            /* protects BIO fields below */
 125        unsigned long refcount;         /* direct_io_worker() and bios */
 126        struct bio *bio_list;           /* singly linked via bi_private */
 127        struct task_struct *waiter;     /* waiting task (NULL if none) */
 128
 129        /* AIO related stuff */
 130        struct kiocb *iocb;             /* kiocb */
 131        int is_async;                   /* is IO async ? */
 132        int io_error;                   /* IO error in completion path */
 133        ssize_t result;                 /* IO result */
 134};
 135
 136/*
 137 * How many pages are in the queue?
 138 */
 139static inline unsigned dio_pages_present(struct dio *dio)
 140{
 141        return dio->tail - dio->head;
 142}
 143
 144/*
 145 * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
 146 */
 147static int dio_refill_pages(struct dio *dio)
 148{
 149        int ret;
 150        int nr_pages;
 151
 152        nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES);
 153        ret = get_user_pages_fast(
 154                dio->curr_user_address,         /* Where from? */
 155                nr_pages,                       /* How many pages? */
 156                dio->rw == READ,                /* Write to memory? */
 157                &dio->pages[0]);                /* Put results here */
 158
 159        if (ret < 0 && dio->blocks_available && (dio->rw & WRITE)) {
 160                struct page *page = ZERO_PAGE(0);
 161                /*
 162                 * A memory fault, but the filesystem has some outstanding
 163                 * mapped blocks.  We need to use those blocks up to avoid
 164                 * leaking stale data in the file.
 165                 */
 166                if (dio->page_errors == 0)
 167                        dio->page_errors = ret;
 168                page_cache_get(page);
 169                dio->pages[0] = page;
 170                dio->head = 0;
 171                dio->tail = 1;
 172                ret = 0;
 173                goto out;
 174        }
 175
 176        if (ret >= 0) {
 177                dio->curr_user_address += ret * PAGE_SIZE;
 178                dio->curr_page += ret;
 179                dio->head = 0;
 180                dio->tail = ret;
 181                ret = 0;
 182        }
 183out:
 184        return ret;     
 185}
 186
 187/*
 188 * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
 189 * buffered inside the dio so that we can call get_user_pages() against a
 190 * decent number of pages, less frequently.  To provide nicer use of the
 191 * L1 cache.
 192 */
 193static struct page *dio_get_page(struct dio *dio)
 194{
 195        if (dio_pages_present(dio) == 0) {
 196                int ret;
 197
 198                ret = dio_refill_pages(dio);
 199                if (ret)
 200                        return ERR_PTR(ret);
 201                BUG_ON(dio_pages_present(dio) == 0);
 202        }
 203        return dio->pages[dio->head++];
 204}
 205
 206/**
 207 * dio_complete() - called when all DIO BIO I/O has been completed
 208 * @offset: the byte offset in the file of the completed operation
 209 *
 210 * This releases locks as dictated by the locking type, lets interested parties
 211 * know that a DIO operation has completed, and calculates the resulting return
 212 * code for the operation.
 213 *
 214 * It lets the filesystem know if it registered an interest earlier via
 215 * get_block.  Pass the private field of the map buffer_head so that
 216 * filesystems can use it to hold additional state between get_block calls and
 217 * dio_complete.
 218 */
 219static int dio_complete(struct dio *dio, loff_t offset, int ret)
 220{
 221        ssize_t transferred = 0;
 222
 223        /*
 224         * AIO submission can race with bio completion to get here while
 225         * expecting to have the last io completed by bio completion.
 226         * In that case -EIOCBQUEUED is in fact not an error we want
 227         * to preserve through this call.
 228         */
 229        if (ret == -EIOCBQUEUED)
 230                ret = 0;
 231
 232        if (dio->result) {
 233                transferred = dio->result;
 234
 235                /* Check for short read case */
 236                if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
 237                        transferred = dio->i_size - offset;
 238        }
 239
 240        if (dio->end_io && dio->result)
 241                dio->end_io(dio->iocb, offset, transferred,
 242                            dio->map_bh.b_private);
 243        if (dio->lock_type == DIO_LOCKING)
 244                /* lockdep: non-owner release */
 245                up_read_non_owner(&dio->inode->i_alloc_sem);
 246
 247        if (ret == 0)
 248                ret = dio->page_errors;
 249        if (ret == 0)
 250                ret = dio->io_error;
 251        if (ret == 0)
 252                ret = transferred;
 253
 254        return ret;
 255}
 256
 257static int dio_bio_complete(struct dio *dio, struct bio *bio);
 258/*
 259 * Asynchronous IO callback. 
 260 */
 261static void dio_bio_end_aio(struct bio *bio, int error)
 262{
 263        struct dio *dio = bio->bi_private;
 264        unsigned long remaining;
 265        unsigned long flags;
 266
 267        /* cleanup the bio */
 268        dio_bio_complete(dio, bio);
 269
 270        spin_lock_irqsave(&dio->bio_lock, flags);
 271        remaining = --dio->refcount;
 272        if (remaining == 1 && dio->waiter)
 273                wake_up_process(dio->waiter);
 274        spin_unlock_irqrestore(&dio->bio_lock, flags);
 275
 276        if (remaining == 0) {
 277                int ret = dio_complete(dio, dio->iocb->ki_pos, 0);
 278                aio_complete(dio->iocb, ret, 0);
 279                kfree(dio);
 280        }
 281}
 282
 283/*
 284 * The BIO completion handler simply queues the BIO up for the process-context
 285 * handler.
 286 *
 287 * During I/O bi_private points at the dio.  After I/O, bi_private is used to
 288 * implement a singly-linked list of completed BIOs, at dio->bio_list.
 289 */
 290static void dio_bio_end_io(struct bio *bio, int error)
 291{
 292        struct dio *dio = bio->bi_private;
 293        unsigned long flags;
 294
 295        spin_lock_irqsave(&dio->bio_lock, flags);
 296        bio->bi_private = dio->bio_list;
 297        dio->bio_list = bio;
 298        if (--dio->refcount == 1 && dio->waiter)
 299                wake_up_process(dio->waiter);
 300        spin_unlock_irqrestore(&dio->bio_lock, flags);
 301}
 302
 303static int
 304dio_bio_alloc(struct dio *dio, struct block_device *bdev,
 305                sector_t first_sector, int nr_vecs)
 306{
 307        struct bio *bio;
 308
 309        bio = bio_alloc(GFP_KERNEL, nr_vecs);
 310
 311        bio->bi_bdev = bdev;
 312        bio->bi_sector = first_sector;
 313        if (dio->is_async)
 314                bio->bi_end_io = dio_bio_end_aio;
 315        else
 316                bio->bi_end_io = dio_bio_end_io;
 317
 318        dio->bio = bio;
 319        return 0;
 320}
 321
 322/*
 323 * In the AIO read case we speculatively dirty the pages before starting IO.
 324 * During IO completion, any of these pages which happen to have been written
 325 * back will be redirtied by bio_check_pages_dirty().
 326 *
 327 * bios hold a dio reference between submit_bio and ->end_io.
 328 */
 329static void dio_bio_submit(struct dio *dio)
 330{
 331        struct bio *bio = dio->bio;
 332        unsigned long flags;
 333
 334        bio->bi_private = dio;
 335
 336        spin_lock_irqsave(&dio->bio_lock, flags);
 337        dio->refcount++;
 338        spin_unlock_irqrestore(&dio->bio_lock, flags);
 339
 340        if (dio->is_async && dio->rw == READ)
 341                bio_set_pages_dirty(bio);
 342
 343        submit_bio(dio->rw, bio);
 344
 345        dio->bio = NULL;
 346        dio->boundary = 0;
 347}
 348
 349/*
 350 * Release any resources in case of a failure
 351 */
 352static void dio_cleanup(struct dio *dio)
 353{
 354        while (dio_pages_present(dio))
 355                page_cache_release(dio_get_page(dio));
 356}
 357
 358/*
 359 * Wait for the next BIO to complete.  Remove it and return it.  NULL is
 360 * returned once all BIOs have been completed.  This must only be called once
 361 * all bios have been issued so that dio->refcount can only decrease.  This
 362 * requires that that the caller hold a reference on the dio.
 363 */
 364static struct bio *dio_await_one(struct dio *dio)
 365{
 366        unsigned long flags;
 367        struct bio *bio = NULL;
 368
 369        spin_lock_irqsave(&dio->bio_lock, flags);
 370
 371        /*
 372         * Wait as long as the list is empty and there are bios in flight.  bio
 373         * completion drops the count, maybe adds to the list, and wakes while
 374         * holding the bio_lock so we don't need set_current_state()'s barrier
 375         * and can call it after testing our condition.
 376         */
 377        while (dio->refcount > 1 && dio->bio_list == NULL) {
 378                __set_current_state(TASK_UNINTERRUPTIBLE);
 379                dio->waiter = current;
 380                spin_unlock_irqrestore(&dio->bio_lock, flags);
 381                io_schedule();
 382                /* wake up sets us TASK_RUNNING */
 383                spin_lock_irqsave(&dio->bio_lock, flags);
 384                dio->waiter = NULL;
 385        }
 386        if (dio->bio_list) {
 387                bio = dio->bio_list;
 388                dio->bio_list = bio->bi_private;
 389        }
 390        spin_unlock_irqrestore(&dio->bio_lock, flags);
 391        return bio;
 392}
 393
 394/*
 395 * Process one completed BIO.  No locks are held.
 396 */
 397static int dio_bio_complete(struct dio *dio, struct bio *bio)
 398{
 399        const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 400        struct bio_vec *bvec = bio->bi_io_vec;
 401        int page_no;
 402
 403        if (!uptodate)
 404                dio->io_error = -EIO;
 405
 406        if (dio->is_async && dio->rw == READ) {
 407                bio_check_pages_dirty(bio);     /* transfers ownership */
 408        } else {
 409                for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
 410                        struct page *page = bvec[page_no].bv_page;
 411
 412                        if (dio->rw == READ && !PageCompound(page))
 413                                set_page_dirty_lock(page);
 414                        page_cache_release(page);
 415                }
 416                bio_put(bio);
 417        }
 418        return uptodate ? 0 : -EIO;
 419}
 420
 421/*
 422 * Wait on and process all in-flight BIOs.  This must only be called once
 423 * all bios have been issued so that the refcount can only decrease.
 424 * This just waits for all bios to make it through dio_bio_complete.  IO
 425 * errors are propagated through dio->io_error and should be propagated via
 426 * dio_complete().
 427 */
 428static void dio_await_completion(struct dio *dio)
 429{
 430        struct bio *bio;
 431        do {
 432                bio = dio_await_one(dio);
 433                if (bio)
 434                        dio_bio_complete(dio, bio);
 435        } while (bio);
 436}
 437
 438/*
 439 * A really large O_DIRECT read or write can generate a lot of BIOs.  So
 440 * to keep the memory consumption sane we periodically reap any completed BIOs
 441 * during the BIO generation phase.
 442 *
 443 * This also helps to limit the peak amount of pinned userspace memory.
 444 */
 445static int dio_bio_reap(struct dio *dio)
 446{
 447        int ret = 0;
 448
 449        if (dio->reap_counter++ >= 64) {
 450                while (dio->bio_list) {
 451                        unsigned long flags;
 452                        struct bio *bio;
 453                        int ret2;
 454
 455                        spin_lock_irqsave(&dio->bio_lock, flags);
 456                        bio = dio->bio_list;
 457                        dio->bio_list = bio->bi_private;
 458                        spin_unlock_irqrestore(&dio->bio_lock, flags);
 459                        ret2 = dio_bio_complete(dio, bio);
 460                        if (ret == 0)
 461                                ret = ret2;
 462                }
 463                dio->reap_counter = 0;
 464        }
 465        return ret;
 466}
 467
 468/*
 469 * Call into the fs to map some more disk blocks.  We record the current number
 470 * of available blocks at dio->blocks_available.  These are in units of the
 471 * fs blocksize, (1 << inode->i_blkbits).
 472 *
 473 * The fs is allowed to map lots of blocks at once.  If it wants to do that,
 474 * it uses the passed inode-relative block number as the file offset, as usual.
 475 *
 476 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
 477 * has remaining to do.  The fs should not map more than this number of blocks.
 478 *
 479 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
 480 * indicate how much contiguous disk space has been made available at
 481 * bh->b_blocknr.
 482 *
 483 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
 484 * This isn't very efficient...
 485 *
 486 * In the case of filesystem holes: the fs may return an arbitrarily-large
 487 * hole by returning an appropriate value in b_size and by clearing
 488 * buffer_mapped().  However the direct-io code will only process holes one
 489 * block at a time - it will repeatedly call get_block() as it walks the hole.
 490 */
 491static int get_more_blocks(struct dio *dio)
 492{
 493        int ret;
 494        struct buffer_head *map_bh = &dio->map_bh;
 495        sector_t fs_startblk;   /* Into file, in filesystem-sized blocks */
 496        unsigned long fs_count; /* Number of filesystem-sized blocks */
 497        unsigned long dio_count;/* Number of dio_block-sized blocks */
 498        unsigned long blkmask;
 499        int create;
 500
 501        /*
 502         * If there was a memory error and we've overwritten all the
 503         * mapped blocks then we can now return that memory error
 504         */
 505        ret = dio->page_errors;
 506        if (ret == 0) {
 507                BUG_ON(dio->block_in_file >= dio->final_block_in_request);
 508                fs_startblk = dio->block_in_file >> dio->blkfactor;
 509                dio_count = dio->final_block_in_request - dio->block_in_file;
 510                fs_count = dio_count >> dio->blkfactor;
 511                blkmask = (1 << dio->blkfactor) - 1;
 512                if (dio_count & blkmask)        
 513                        fs_count++;
 514
 515                map_bh->b_state = 0;
 516                map_bh->b_size = fs_count << dio->inode->i_blkbits;
 517
 518                create = dio->rw & WRITE;
 519                if (dio->lock_type == DIO_LOCKING) {
 520                        if (dio->block_in_file < (i_size_read(dio->inode) >>
 521                                                        dio->blkbits))
 522                                create = 0;
 523                } else if (dio->lock_type == DIO_NO_LOCKING) {
 524                        create = 0;
 525                }
 526
 527                /*
 528                 * For writes inside i_size we forbid block creations: only
 529                 * overwrites are permitted.  We fall back to buffered writes
 530                 * at a higher level for inside-i_size block-instantiating
 531                 * writes.
 532                 */
 533                ret = (*dio->get_block)(dio->inode, fs_startblk,
 534                                                map_bh, create);
 535        }
 536        return ret;
 537}
 538
 539/*
 540 * There is no bio.  Make one now.
 541 */
 542static int dio_new_bio(struct dio *dio, sector_t start_sector)
 543{
 544        sector_t sector;
 545        int ret, nr_pages;
 546
 547        ret = dio_bio_reap(dio);
 548        if (ret)
 549                goto out;
 550        sector = start_sector << (dio->blkbits - 9);
 551        nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev));
 552        BUG_ON(nr_pages <= 0);
 553        ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages);
 554        dio->boundary = 0;
 555out:
 556        return ret;
 557}
 558
 559/*
 560 * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
 561 * that was successful then update final_block_in_bio and take a ref against
 562 * the just-added page.
 563 *
 564 * Return zero on success.  Non-zero means the caller needs to start a new BIO.
 565 */
 566static int dio_bio_add_page(struct dio *dio)
 567{
 568        int ret;
 569
 570        ret = bio_add_page(dio->bio, dio->cur_page,
 571                        dio->cur_page_len, dio->cur_page_offset);
 572        if (ret == dio->cur_page_len) {
 573                /*
 574                 * Decrement count only, if we are done with this page
 575                 */
 576                if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE)
 577                        dio->pages_in_io--;
 578                page_cache_get(dio->cur_page);
 579                dio->final_block_in_bio = dio->cur_page_block +
 580                        (dio->cur_page_len >> dio->blkbits);
 581                ret = 0;
 582        } else {
 583                ret = 1;
 584        }
 585        return ret;
 586}
 587                
 588/*
 589 * Put cur_page under IO.  The section of cur_page which is described by
 590 * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
 591 * starts on-disk at cur_page_block.
 592 *
 593 * We take a ref against the page here (on behalf of its presence in the bio).
 594 *
 595 * The caller of this function is responsible for removing cur_page from the
 596 * dio, and for dropping the refcount which came from that presence.
 597 */
 598static int dio_send_cur_page(struct dio *dio)
 599{
 600        int ret = 0;
 601
 602        if (dio->bio) {
 603                /*
 604                 * See whether this new request is contiguous with the old
 605                 */
 606                if (dio->final_block_in_bio != dio->cur_page_block)
 607                        dio_bio_submit(dio);
 608                /*
 609                 * Submit now if the underlying fs is about to perform a
 610                 * metadata read
 611                 */
 612                if (dio->boundary)
 613                        dio_bio_submit(dio);
 614        }
 615
 616        if (dio->bio == NULL) {
 617                ret = dio_new_bio(dio, dio->cur_page_block);
 618                if (ret)
 619                        goto out;
 620        }
 621
 622        if (dio_bio_add_page(dio) != 0) {
 623                dio_bio_submit(dio);
 624                ret = dio_new_bio(dio, dio->cur_page_block);
 625                if (ret == 0) {
 626                        ret = dio_bio_add_page(dio);
 627                        BUG_ON(ret != 0);
 628                }
 629        }
 630out:
 631        return ret;
 632}
 633
 634/*
 635 * An autonomous function to put a chunk of a page under deferred IO.
 636 *
 637 * The caller doesn't actually know (or care) whether this piece of page is in
 638 * a BIO, or is under IO or whatever.  We just take care of all possible 
 639 * situations here.  The separation between the logic of do_direct_IO() and
 640 * that of submit_page_section() is important for clarity.  Please don't break.
 641 *
 642 * The chunk of page starts on-disk at blocknr.
 643 *
 644 * We perform deferred IO, by recording the last-submitted page inside our
 645 * private part of the dio structure.  If possible, we just expand the IO
 646 * across that page here.
 647 *
 648 * If that doesn't work out then we put the old page into the bio and add this
 649 * page to the dio instead.
 650 */
 651static int
 652submit_page_section(struct dio *dio, struct page *page,
 653                unsigned offset, unsigned len, sector_t blocknr)
 654{
 655        int ret = 0;
 656
 657        if (dio->rw & WRITE) {
 658                /*
 659                 * Read accounting is performed in submit_bio()
 660                 */
 661                task_io_account_write(len);
 662        }
 663
 664        /*
 665         * Can we just grow the current page's presence in the dio?
 666         */
 667        if (    (dio->cur_page == page) &&
 668                (dio->cur_page_offset + dio->cur_page_len == offset) &&
 669                (dio->cur_page_block +
 670                        (dio->cur_page_len >> dio->blkbits) == blocknr)) {
 671                dio->cur_page_len += len;
 672
 673                /*
 674                 * If dio->boundary then we want to schedule the IO now to
 675                 * avoid metadata seeks.
 676                 */
 677                if (dio->boundary) {
 678                        ret = dio_send_cur_page(dio);
 679                        page_cache_release(dio->cur_page);
 680                        dio->cur_page = NULL;
 681                }
 682                goto out;
 683        }
 684
 685        /*
 686         * If there's a deferred page already there then send it.
 687         */
 688        if (dio->cur_page) {
 689                ret = dio_send_cur_page(dio);
 690                page_cache_release(dio->cur_page);
 691                dio->cur_page = NULL;
 692                if (ret)
 693                        goto out;
 694        }
 695
 696        page_cache_get(page);           /* It is in dio */
 697        dio->cur_page = page;
 698        dio->cur_page_offset = offset;
 699        dio->cur_page_len = len;
 700        dio->cur_page_block = blocknr;
 701out:
 702        return ret;
 703}
 704
 705/*
 706 * Clean any dirty buffers in the blockdev mapping which alias newly-created
 707 * file blocks.  Only called for S_ISREG files - blockdevs do not set
 708 * buffer_new
 709 */
 710static void clean_blockdev_aliases(struct dio *dio)
 711{
 712        unsigned i;
 713        unsigned nblocks;
 714
 715        nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits;
 716
 717        for (i = 0; i < nblocks; i++) {
 718                unmap_underlying_metadata(dio->map_bh.b_bdev,
 719                                        dio->map_bh.b_blocknr + i);
 720        }
 721}
 722
 723/*
 724 * If we are not writing the entire block and get_block() allocated
 725 * the block for us, we need to fill-in the unused portion of the
 726 * block with zeros. This happens only if user-buffer, fileoffset or
 727 * io length is not filesystem block-size multiple.
 728 *
 729 * `end' is zero if we're doing the start of the IO, 1 at the end of the
 730 * IO.
 731 */
 732static void dio_zero_block(struct dio *dio, int end)
 733{
 734        unsigned dio_blocks_per_fs_block;
 735        unsigned this_chunk_blocks;     /* In dio_blocks */
 736        unsigned this_chunk_bytes;
 737        struct page *page;
 738
 739        dio->start_zero_done = 1;
 740        if (!dio->blkfactor || !buffer_new(&dio->map_bh))
 741                return;
 742
 743        dio_blocks_per_fs_block = 1 << dio->blkfactor;
 744        this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1);
 745
 746        if (!this_chunk_blocks)
 747                return;
 748
 749        /*
 750         * We need to zero out part of an fs block.  It is either at the
 751         * beginning or the end of the fs block.
 752         */
 753        if (end) 
 754                this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
 755
 756        this_chunk_bytes = this_chunk_blocks << dio->blkbits;
 757
 758        page = ZERO_PAGE(0);
 759        if (submit_page_section(dio, page, 0, this_chunk_bytes, 
 760                                dio->next_block_for_io))
 761                return;
 762
 763        dio->next_block_for_io += this_chunk_blocks;
 764}
 765
 766/*
 767 * Walk the user pages, and the file, mapping blocks to disk and generating
 768 * a sequence of (page,offset,len,block) mappings.  These mappings are injected
 769 * into submit_page_section(), which takes care of the next stage of submission
 770 *
 771 * Direct IO against a blockdev is different from a file.  Because we can
 772 * happily perform page-sized but 512-byte aligned IOs.  It is important that
 773 * blockdev IO be able to have fine alignment and large sizes.
 774 *
 775 * So what we do is to permit the ->get_block function to populate bh.b_size
 776 * with the size of IO which is permitted at this offset and this i_blkbits.
 777 *
 778 * For best results, the blockdev should be set up with 512-byte i_blkbits and
 779 * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
 780 * fine alignment but still allows this function to work in PAGE_SIZE units.
 781 */
 782static int do_direct_IO(struct dio *dio)
 783{
 784        const unsigned blkbits = dio->blkbits;
 785        const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
 786        struct page *page;
 787        unsigned block_in_page;
 788        struct buffer_head *map_bh = &dio->map_bh;
 789        int ret = 0;
 790
 791        /* The I/O can start at any block offset within the first page */
 792        block_in_page = dio->first_block_in_page;
 793
 794        while (dio->block_in_file < dio->final_block_in_request) {
 795                page = dio_get_page(dio);
 796                if (IS_ERR(page)) {
 797                        ret = PTR_ERR(page);
 798                        goto out;
 799                }
 800
 801                while (block_in_page < blocks_per_page) {
 802                        unsigned offset_in_page = block_in_page << blkbits;
 803                        unsigned this_chunk_bytes;      /* # of bytes mapped */
 804                        unsigned this_chunk_blocks;     /* # of blocks */
 805                        unsigned u;
 806
 807                        if (dio->blocks_available == 0) {
 808                                /*
 809                                 * Need to go and map some more disk
 810                                 */
 811                                unsigned long blkmask;
 812                                unsigned long dio_remainder;
 813
 814                                ret = get_more_blocks(dio);
 815                                if (ret) {
 816                                        page_cache_release(page);
 817                                        goto out;
 818                                }
 819                                if (!buffer_mapped(map_bh))
 820                                        goto do_holes;
 821
 822                                dio->blocks_available =
 823                                                map_bh->b_size >> dio->blkbits;
 824                                dio->next_block_for_io =
 825                                        map_bh->b_blocknr << dio->blkfactor;
 826                                if (buffer_new(map_bh))
 827                                        clean_blockdev_aliases(dio);
 828
 829                                if (!dio->blkfactor)
 830                                        goto do_holes;
 831
 832                                blkmask = (1 << dio->blkfactor) - 1;
 833                                dio_remainder = (dio->block_in_file & blkmask);
 834
 835                                /*
 836                                 * If we are at the start of IO and that IO
 837                                 * starts partway into a fs-block,
 838                                 * dio_remainder will be non-zero.  If the IO
 839                                 * is a read then we can simply advance the IO
 840                                 * cursor to the first block which is to be
 841                                 * read.  But if the IO is a write and the
 842                                 * block was newly allocated we cannot do that;
 843                                 * the start of the fs block must be zeroed out
 844                                 * on-disk
 845                                 */
 846                                if (!buffer_new(map_bh))
 847                                        dio->next_block_for_io += dio_remainder;
 848                                dio->blocks_available -= dio_remainder;
 849                        }
 850do_holes:
 851                        /* Handle holes */
 852                        if (!buffer_mapped(map_bh)) {
 853                                loff_t i_size_aligned;
 854
 855                                /* AKPM: eargh, -ENOTBLK is a hack */
 856                                if (dio->rw & WRITE) {
 857                                        page_cache_release(page);
 858                                        return -ENOTBLK;
 859                                }
 860
 861                                /*
 862                                 * Be sure to account for a partial block as the
 863                                 * last block in the file
 864                                 */
 865                                i_size_aligned = ALIGN(i_size_read(dio->inode),
 866                                                        1 << blkbits);
 867                                if (dio->block_in_file >=
 868                                                i_size_aligned >> blkbits) {
 869                                        /* We hit eof */
 870                                        page_cache_release(page);
 871                                        goto out;
 872                                }
 873                                zero_user(page, block_in_page << blkbits,
 874                                                1 << blkbits);
 875                                dio->block_in_file++;
 876                                block_in_page++;
 877                                goto next_block;
 878                        }
 879
 880                        /*
 881                         * If we're performing IO which has an alignment which
 882                         * is finer than the underlying fs, go check to see if
 883                         * we must zero out the start of this block.
 884                         */
 885                        if (unlikely(dio->blkfactor && !dio->start_zero_done))
 886                                dio_zero_block(dio, 0);
 887
 888                        /*
 889                         * Work out, in this_chunk_blocks, how much disk we
 890                         * can add to this page
 891                         */
 892                        this_chunk_blocks = dio->blocks_available;
 893                        u = (PAGE_SIZE - offset_in_page) >> blkbits;
 894                        if (this_chunk_blocks > u)
 895                                this_chunk_blocks = u;
 896                        u = dio->final_block_in_request - dio->block_in_file;
 897                        if (this_chunk_blocks > u)
 898                                this_chunk_blocks = u;
 899                        this_chunk_bytes = this_chunk_blocks << blkbits;
 900                        BUG_ON(this_chunk_bytes == 0);
 901
 902                        dio->boundary = buffer_boundary(map_bh);
 903                        ret = submit_page_section(dio, page, offset_in_page,
 904                                this_chunk_bytes, dio->next_block_for_io);
 905                        if (ret) {
 906                                page_cache_release(page);
 907                                goto out;
 908                        }
 909                        dio->next_block_for_io += this_chunk_blocks;
 910
 911                        dio->block_in_file += this_chunk_blocks;
 912                        block_in_page += this_chunk_blocks;
 913                        dio->blocks_available -= this_chunk_blocks;
 914next_block:
 915                        BUG_ON(dio->block_in_file > dio->final_block_in_request);
 916                        if (dio->block_in_file == dio->final_block_in_request)
 917                                break;
 918                }
 919
 920                /* Drop the ref which was taken in get_user_pages() */
 921                page_cache_release(page);
 922                block_in_page = 0;
 923        }
 924out:
 925        return ret;
 926}
 927
 928/*
 929 * Releases both i_mutex and i_alloc_sem
 930 */
 931static ssize_t
 932direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode, 
 933        const struct iovec *iov, loff_t offset, unsigned long nr_segs, 
 934        unsigned blkbits, get_block_t get_block, dio_iodone_t end_io,
 935        struct dio *dio)
 936{
 937        unsigned long user_addr; 
 938        unsigned long flags;
 939        int seg;
 940        ssize_t ret = 0;
 941        ssize_t ret2;
 942        size_t bytes;
 943
 944        dio->inode = inode;
 945        dio->rw = rw;
 946        dio->blkbits = blkbits;
 947        dio->blkfactor = inode->i_blkbits - blkbits;
 948        dio->block_in_file = offset >> blkbits;
 949
 950        dio->get_block = get_block;
 951        dio->end_io = end_io;
 952        dio->final_block_in_bio = -1;
 953        dio->next_block_for_io = -1;
 954
 955        dio->iocb = iocb;
 956        dio->i_size = i_size_read(inode);
 957
 958        spin_lock_init(&dio->bio_lock);
 959        dio->refcount = 1;
 960
 961        /*
 962         * In case of non-aligned buffers, we may need 2 more
 963         * pages since we need to zero out first and last block.
 964         */
 965        if (unlikely(dio->blkfactor))
 966                dio->pages_in_io = 2;
 967
 968        for (seg = 0; seg < nr_segs; seg++) {
 969                user_addr = (unsigned long)iov[seg].iov_base;
 970                dio->pages_in_io +=
 971                        ((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE
 972                                - user_addr/PAGE_SIZE);
 973        }
 974
 975        for (seg = 0; seg < nr_segs; seg++) {
 976                user_addr = (unsigned long)iov[seg].iov_base;
 977                dio->size += bytes = iov[seg].iov_len;
 978
 979                /* Index into the first page of the first block */
 980                dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
 981                dio->final_block_in_request = dio->block_in_file +
 982                                                (bytes >> blkbits);
 983                /* Page fetching state */
 984                dio->head = 0;
 985                dio->tail = 0;
 986                dio->curr_page = 0;
 987
 988                dio->total_pages = 0;
 989                if (user_addr & (PAGE_SIZE-1)) {
 990                        dio->total_pages++;
 991                        bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
 992                }
 993                dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
 994                dio->curr_user_address = user_addr;
 995        
 996                ret = do_direct_IO(dio);
 997
 998                dio->result += iov[seg].iov_len -
 999                        ((dio->final_block_in_request - dio->block_in_file) <<
1000                                        blkbits);
1001
1002                if (ret) {
1003                        dio_cleanup(dio);
1004                        break;
1005                }
1006        } /* end iovec loop */
1007
1008        if (ret == -ENOTBLK && (rw & WRITE)) {
1009                /*
1010                 * The remaining part of the request will be
1011                 * be handled by buffered I/O when we return
1012                 */
1013                ret = 0;
1014        }
1015        /*
1016         * There may be some unwritten disk at the end of a part-written
1017         * fs-block-sized block.  Go zero that now.
1018         */
1019        dio_zero_block(dio, 1);
1020
1021        if (dio->cur_page) {
1022                ret2 = dio_send_cur_page(dio);
1023                if (ret == 0)
1024                        ret = ret2;
1025                page_cache_release(dio->cur_page);
1026                dio->cur_page = NULL;
1027        }
1028        if (dio->bio)
1029                dio_bio_submit(dio);
1030
1031        /* All IO is now issued, send it on its way */
1032        blk_run_address_space(inode->i_mapping);
1033
1034        /*
1035         * It is possible that, we return short IO due to end of file.
1036         * In that case, we need to release all the pages we got hold on.
1037         */
1038        dio_cleanup(dio);
1039
1040        /*
1041         * All block lookups have been performed. For READ requests
1042         * we can let i_mutex go now that its achieved its purpose
1043         * of protecting us from looking up uninitialized blocks.
1044         */
1045        if ((rw == READ) && (dio->lock_type == DIO_LOCKING))
1046                mutex_unlock(&dio->inode->i_mutex);
1047
1048        /*
1049         * The only time we want to leave bios in flight is when a successful
1050         * partial aio read or full aio write have been setup.  In that case
1051         * bio completion will call aio_complete.  The only time it's safe to
1052         * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1053         * This had *better* be the only place that raises -EIOCBQUEUED.
1054         */
1055        BUG_ON(ret == -EIOCBQUEUED);
1056        if (dio->is_async && ret == 0 && dio->result &&
1057            ((rw & READ) || (dio->result == dio->size)))
1058                ret = -EIOCBQUEUED;
1059
1060        if (ret != -EIOCBQUEUED)
1061                dio_await_completion(dio);
1062
1063        /*
1064         * Sync will always be dropping the final ref and completing the
1065         * operation.  AIO can if it was a broken operation described above or
1066         * in fact if all the bios race to complete before we get here.  In
1067         * that case dio_complete() translates the EIOCBQUEUED into the proper
1068         * return code that the caller will hand to aio_complete().
1069         *
1070         * This is managed by the bio_lock instead of being an atomic_t so that
1071         * completion paths can drop their ref and use the remaining count to
1072         * decide to wake the submission path atomically.
1073         */
1074        spin_lock_irqsave(&dio->bio_lock, flags);
1075        ret2 = --dio->refcount;
1076        spin_unlock_irqrestore(&dio->bio_lock, flags);
1077
1078        if (ret2 == 0) {
1079                ret = dio_complete(dio, offset, ret);
1080                kfree(dio);
1081        } else
1082                BUG_ON(ret != -EIOCBQUEUED);
1083
1084        return ret;
1085}
1086
1087/*
1088 * This is a library function for use by filesystem drivers.
1089 * The locking rules are governed by the dio_lock_type parameter.
1090 *
1091 * DIO_NO_LOCKING (no locking, for raw block device access)
1092 * For writes, i_mutex is not held on entry; it is never taken.
1093 *
1094 * DIO_LOCKING (simple locking for regular files)
1095 * For writes we are called under i_mutex and return with i_mutex held, even
1096 * though it is internally dropped.
1097 * For reads, i_mutex is not held on entry, but it is taken and dropped before
1098 * returning.
1099 *
1100 * DIO_OWN_LOCKING (filesystem provides synchronisation and handling of
1101 *      uninitialised data, allowing parallel direct readers and writers)
1102 * For writes we are called without i_mutex, return without it, never touch it.
1103 * For reads we are called under i_mutex and return with i_mutex held, even
1104 * though it may be internally dropped.
1105 *
1106 * Additional i_alloc_sem locking requirements described inline below.
1107 */
1108ssize_t
1109__blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1110        struct block_device *bdev, const struct iovec *iov, loff_t offset, 
1111        unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1112        int dio_lock_type)
1113{
1114        int seg;
1115        size_t size;
1116        unsigned long addr;
1117        unsigned blkbits = inode->i_blkbits;
1118        unsigned bdev_blkbits = 0;
1119        unsigned blocksize_mask = (1 << blkbits) - 1;
1120        ssize_t retval = -EINVAL;
1121        loff_t end = offset;
1122        struct dio *dio;
1123        int release_i_mutex = 0;
1124        int acquire_i_mutex = 0;
1125
1126        if (rw & WRITE)
1127                rw = WRITE_ODIRECT;
1128
1129        if (bdev)
1130                bdev_blkbits = blksize_bits(bdev_logical_block_size(bdev));
1131
1132        if (offset & blocksize_mask) {
1133                if (bdev)
1134                         blkbits = bdev_blkbits;
1135                blocksize_mask = (1 << blkbits) - 1;
1136                if (offset & blocksize_mask)
1137                        goto out;
1138        }
1139
1140        /* Check the memory alignment.  Blocks cannot straddle pages */
1141        for (seg = 0; seg < nr_segs; seg++) {
1142                addr = (unsigned long)iov[seg].iov_base;
1143                size = iov[seg].iov_len;
1144                end += size;
1145                if ((addr & blocksize_mask) || (size & blocksize_mask))  {
1146                        if (bdev)
1147                                 blkbits = bdev_blkbits;
1148                        blocksize_mask = (1 << blkbits) - 1;
1149                        if ((addr & blocksize_mask) || (size & blocksize_mask))  
1150                                goto out;
1151                }
1152        }
1153
1154        dio = kzalloc(sizeof(*dio), GFP_KERNEL);
1155        retval = -ENOMEM;
1156        if (!dio)
1157                goto out;
1158
1159        /*
1160         * For block device access DIO_NO_LOCKING is used,
1161         *      neither readers nor writers do any locking at all
1162         * For regular files using DIO_LOCKING,
1163         *      readers need to grab i_mutex and i_alloc_sem
1164         *      writers need to grab i_alloc_sem only (i_mutex is already held)
1165         * For regular files using DIO_OWN_LOCKING,
1166         *      neither readers nor writers take any locks here
1167         */
1168        dio->lock_type = dio_lock_type;
1169        if (dio_lock_type != DIO_NO_LOCKING) {
1170                /* watch out for a 0 len io from a tricksy fs */
1171                if (rw == READ && end > offset) {
1172                        struct address_space *mapping;
1173
1174                        mapping = iocb->ki_filp->f_mapping;
1175                        if (dio_lock_type != DIO_OWN_LOCKING) {
1176                                mutex_lock(&inode->i_mutex);
1177                                release_i_mutex = 1;
1178                        }
1179
1180                        retval = filemap_write_and_wait_range(mapping, offset,
1181                                                              end - 1);
1182                        if (retval) {
1183                                kfree(dio);
1184                                goto out;
1185                        }
1186
1187                        if (dio_lock_type == DIO_OWN_LOCKING) {
1188                                mutex_unlock(&inode->i_mutex);
1189                                acquire_i_mutex = 1;
1190                        }
1191                }
1192
1193                if (dio_lock_type == DIO_LOCKING)
1194                        /* lockdep: not the owner will release it */
1195                        down_read_non_owner(&inode->i_alloc_sem);
1196        }
1197
1198        /*
1199         * For file extending writes updating i_size before data
1200         * writeouts complete can expose uninitialized blocks. So
1201         * even for AIO, we need to wait for i/o to complete before
1202         * returning in this case.
1203         */
1204        dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
1205                (end > i_size_read(inode)));
1206
1207        retval = direct_io_worker(rw, iocb, inode, iov, offset,
1208                                nr_segs, blkbits, get_block, end_io, dio);
1209
1210        /*
1211         * In case of error extending write may have instantiated a few
1212         * blocks outside i_size. Trim these off again for DIO_LOCKING.
1213         * NOTE: DIO_NO_LOCK/DIO_OWN_LOCK callers have to handle this by
1214         * it's own meaner.
1215         */
1216        if (unlikely(retval < 0 && (rw & WRITE))) {
1217                loff_t isize = i_size_read(inode);
1218
1219                if (end > isize && dio_lock_type == DIO_LOCKING)
1220                        vmtruncate(inode, isize);
1221        }
1222
1223        if (rw == READ && dio_lock_type == DIO_LOCKING)
1224                release_i_mutex = 0;
1225
1226out:
1227        if (release_i_mutex)
1228                mutex_unlock(&inode->i_mutex);
1229        else if (acquire_i_mutex)
1230                mutex_lock(&inode->i_mutex);
1231        return retval;
1232}
1233EXPORT_SYMBOL(__blockdev_direct_IO);
1234