linux/fs/ecryptfs/main.c
<<
>>
Prefs
   1/**
   2 * eCryptfs: Linux filesystem encryption layer
   3 *
   4 * Copyright (C) 1997-2003 Erez Zadok
   5 * Copyright (C) 2001-2003 Stony Brook University
   6 * Copyright (C) 2004-2007 International Business Machines Corp.
   7 *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
   8 *              Michael C. Thompson <mcthomps@us.ibm.com>
   9 *              Tyler Hicks <tyhicks@ou.edu>
  10 *
  11 * This program is free software; you can redistribute it and/or
  12 * modify it under the terms of the GNU General Public License as
  13 * published by the Free Software Foundation; either version 2 of the
  14 * License, or (at your option) any later version.
  15 *
  16 * This program is distributed in the hope that it will be useful, but
  17 * WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  19 * General Public License for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, write to the Free Software
  23 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
  24 * 02111-1307, USA.
  25 */
  26
  27#include <linux/dcache.h>
  28#include <linux/file.h>
  29#include <linux/module.h>
  30#include <linux/namei.h>
  31#include <linux/skbuff.h>
  32#include <linux/crypto.h>
  33#include <linux/mount.h>
  34#include <linux/pagemap.h>
  35#include <linux/key.h>
  36#include <linux/parser.h>
  37#include <linux/fs_stack.h>
  38#include <linux/ima.h>
  39#include "ecryptfs_kernel.h"
  40
  41/**
  42 * Module parameter that defines the ecryptfs_verbosity level.
  43 */
  44int ecryptfs_verbosity = 0;
  45
  46module_param(ecryptfs_verbosity, int, 0);
  47MODULE_PARM_DESC(ecryptfs_verbosity,
  48                 "Initial verbosity level (0 or 1; defaults to "
  49                 "0, which is Quiet)");
  50
  51/**
  52 * Module parameter that defines the number of message buffer elements
  53 */
  54unsigned int ecryptfs_message_buf_len = ECRYPTFS_DEFAULT_MSG_CTX_ELEMS;
  55
  56module_param(ecryptfs_message_buf_len, uint, 0);
  57MODULE_PARM_DESC(ecryptfs_message_buf_len,
  58                 "Number of message buffer elements");
  59
  60/**
  61 * Module parameter that defines the maximum guaranteed amount of time to wait
  62 * for a response from ecryptfsd.  The actual sleep time will be, more than
  63 * likely, a small amount greater than this specified value, but only less if
  64 * the message successfully arrives.
  65 */
  66signed long ecryptfs_message_wait_timeout = ECRYPTFS_MAX_MSG_CTX_TTL / HZ;
  67
  68module_param(ecryptfs_message_wait_timeout, long, 0);
  69MODULE_PARM_DESC(ecryptfs_message_wait_timeout,
  70                 "Maximum number of seconds that an operation will "
  71                 "sleep while waiting for a message response from "
  72                 "userspace");
  73
  74/**
  75 * Module parameter that is an estimate of the maximum number of users
  76 * that will be concurrently using eCryptfs. Set this to the right
  77 * value to balance performance and memory use.
  78 */
  79unsigned int ecryptfs_number_of_users = ECRYPTFS_DEFAULT_NUM_USERS;
  80
  81module_param(ecryptfs_number_of_users, uint, 0);
  82MODULE_PARM_DESC(ecryptfs_number_of_users, "An estimate of the number of "
  83                 "concurrent users of eCryptfs");
  84
  85void __ecryptfs_printk(const char *fmt, ...)
  86{
  87        va_list args;
  88        va_start(args, fmt);
  89        if (fmt[1] == '7') { /* KERN_DEBUG */
  90                if (ecryptfs_verbosity >= 1)
  91                        vprintk(fmt, args);
  92        } else
  93                vprintk(fmt, args);
  94        va_end(args);
  95}
  96
  97/**
  98 * ecryptfs_init_persistent_file
  99 * @ecryptfs_dentry: Fully initialized eCryptfs dentry object, with
 100 *                   the lower dentry and the lower mount set
 101 *
 102 * eCryptfs only ever keeps a single open file for every lower
 103 * inode. All I/O operations to the lower inode occur through that
 104 * file. When the first eCryptfs dentry that interposes with the first
 105 * lower dentry for that inode is created, this function creates the
 106 * persistent file struct and associates it with the eCryptfs
 107 * inode. When the eCryptfs inode is destroyed, the file is closed.
 108 *
 109 * The persistent file will be opened with read/write permissions, if
 110 * possible. Otherwise, it is opened read-only.
 111 *
 112 * This function does nothing if a lower persistent file is already
 113 * associated with the eCryptfs inode.
 114 *
 115 * Returns zero on success; non-zero otherwise
 116 */
 117int ecryptfs_init_persistent_file(struct dentry *ecryptfs_dentry)
 118{
 119        const struct cred *cred = current_cred();
 120        struct ecryptfs_inode_info *inode_info =
 121                ecryptfs_inode_to_private(ecryptfs_dentry->d_inode);
 122        int opened_lower_file = 0;
 123        int rc = 0;
 124
 125        mutex_lock(&inode_info->lower_file_mutex);
 126        if (!inode_info->lower_file) {
 127                struct dentry *lower_dentry;
 128                struct vfsmount *lower_mnt =
 129                        ecryptfs_dentry_to_lower_mnt(ecryptfs_dentry);
 130
 131                lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
 132                rc = ecryptfs_privileged_open(&inode_info->lower_file,
 133                                              lower_dentry, lower_mnt, cred);
 134                if (rc) {
 135                        printk(KERN_ERR "Error opening lower persistent file "
 136                               "for lower_dentry [0x%p] and lower_mnt [0x%p]; "
 137                               "rc = [%d]\n", lower_dentry, lower_mnt, rc);
 138                        inode_info->lower_file = NULL;
 139                } else
 140                        opened_lower_file = 1;
 141        }
 142        mutex_unlock(&inode_info->lower_file_mutex);
 143        if (opened_lower_file)
 144                ima_counts_get(inode_info->lower_file);
 145        return rc;
 146}
 147
 148/**
 149 * ecryptfs_interpose
 150 * @lower_dentry: Existing dentry in the lower filesystem
 151 * @dentry: ecryptfs' dentry
 152 * @sb: ecryptfs's super_block
 153 * @flags: flags to govern behavior of interpose procedure
 154 *
 155 * Interposes upper and lower dentries.
 156 *
 157 * Returns zero on success; non-zero otherwise
 158 */
 159int ecryptfs_interpose(struct dentry *lower_dentry, struct dentry *dentry,
 160                       struct super_block *sb, u32 flags)
 161{
 162        struct inode *lower_inode;
 163        struct inode *inode;
 164        int rc = 0;
 165
 166        lower_inode = lower_dentry->d_inode;
 167        if (lower_inode->i_sb != ecryptfs_superblock_to_lower(sb)) {
 168                rc = -EXDEV;
 169                goto out;
 170        }
 171        if (!igrab(lower_inode)) {
 172                rc = -ESTALE;
 173                goto out;
 174        }
 175        inode = iget5_locked(sb, (unsigned long)lower_inode,
 176                             ecryptfs_inode_test, ecryptfs_inode_set,
 177                             lower_inode);
 178        if (!inode) {
 179                rc = -EACCES;
 180                iput(lower_inode);
 181                goto out;
 182        }
 183        if (inode->i_state & I_NEW)
 184                unlock_new_inode(inode);
 185        else
 186                iput(lower_inode);
 187        if (S_ISLNK(lower_inode->i_mode))
 188                inode->i_op = &ecryptfs_symlink_iops;
 189        else if (S_ISDIR(lower_inode->i_mode))
 190                inode->i_op = &ecryptfs_dir_iops;
 191        if (S_ISDIR(lower_inode->i_mode))
 192                inode->i_fop = &ecryptfs_dir_fops;
 193        if (special_file(lower_inode->i_mode))
 194                init_special_inode(inode, lower_inode->i_mode,
 195                                   lower_inode->i_rdev);
 196        dentry->d_op = &ecryptfs_dops;
 197        fsstack_copy_attr_all(inode, lower_inode, NULL);
 198        /* This size will be overwritten for real files w/ headers and
 199         * other metadata */
 200        fsstack_copy_inode_size(inode, lower_inode);
 201        if (flags & ECRYPTFS_INTERPOSE_FLAG_D_ADD)
 202                d_add(dentry, inode);
 203        else
 204                d_instantiate(dentry, inode);
 205out:
 206        return rc;
 207}
 208
 209enum { ecryptfs_opt_sig, ecryptfs_opt_ecryptfs_sig,
 210       ecryptfs_opt_cipher, ecryptfs_opt_ecryptfs_cipher,
 211       ecryptfs_opt_ecryptfs_key_bytes,
 212       ecryptfs_opt_passthrough, ecryptfs_opt_xattr_metadata,
 213       ecryptfs_opt_encrypted_view, ecryptfs_opt_fnek_sig,
 214       ecryptfs_opt_fn_cipher, ecryptfs_opt_fn_cipher_key_bytes,
 215       ecryptfs_opt_unlink_sigs, ecryptfs_opt_err };
 216
 217static const match_table_t tokens = {
 218        {ecryptfs_opt_sig, "sig=%s"},
 219        {ecryptfs_opt_ecryptfs_sig, "ecryptfs_sig=%s"},
 220        {ecryptfs_opt_cipher, "cipher=%s"},
 221        {ecryptfs_opt_ecryptfs_cipher, "ecryptfs_cipher=%s"},
 222        {ecryptfs_opt_ecryptfs_key_bytes, "ecryptfs_key_bytes=%u"},
 223        {ecryptfs_opt_passthrough, "ecryptfs_passthrough"},
 224        {ecryptfs_opt_xattr_metadata, "ecryptfs_xattr_metadata"},
 225        {ecryptfs_opt_encrypted_view, "ecryptfs_encrypted_view"},
 226        {ecryptfs_opt_fnek_sig, "ecryptfs_fnek_sig=%s"},
 227        {ecryptfs_opt_fn_cipher, "ecryptfs_fn_cipher=%s"},
 228        {ecryptfs_opt_fn_cipher_key_bytes, "ecryptfs_fn_key_bytes=%u"},
 229        {ecryptfs_opt_unlink_sigs, "ecryptfs_unlink_sigs"},
 230        {ecryptfs_opt_err, NULL}
 231};
 232
 233static int ecryptfs_init_global_auth_toks(
 234        struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 235{
 236        struct ecryptfs_global_auth_tok *global_auth_tok;
 237        int rc = 0;
 238
 239        list_for_each_entry(global_auth_tok,
 240                            &mount_crypt_stat->global_auth_tok_list,
 241                            mount_crypt_stat_list) {
 242                rc = ecryptfs_keyring_auth_tok_for_sig(
 243                        &global_auth_tok->global_auth_tok_key,
 244                        &global_auth_tok->global_auth_tok,
 245                        global_auth_tok->sig);
 246                if (rc) {
 247                        printk(KERN_ERR "Could not find valid key in user "
 248                               "session keyring for sig specified in mount "
 249                               "option: [%s]\n", global_auth_tok->sig);
 250                        global_auth_tok->flags |= ECRYPTFS_AUTH_TOK_INVALID;
 251                        goto out;
 252                } else
 253                        global_auth_tok->flags &= ~ECRYPTFS_AUTH_TOK_INVALID;
 254        }
 255out:
 256        return rc;
 257}
 258
 259static void ecryptfs_init_mount_crypt_stat(
 260        struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 261{
 262        memset((void *)mount_crypt_stat, 0,
 263               sizeof(struct ecryptfs_mount_crypt_stat));
 264        INIT_LIST_HEAD(&mount_crypt_stat->global_auth_tok_list);
 265        mutex_init(&mount_crypt_stat->global_auth_tok_list_mutex);
 266        mount_crypt_stat->flags |= ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED;
 267}
 268
 269/**
 270 * ecryptfs_parse_options
 271 * @sb: The ecryptfs super block
 272 * @options: The options pased to the kernel
 273 *
 274 * Parse mount options:
 275 * debug=N         - ecryptfs_verbosity level for debug output
 276 * sig=XXX         - description(signature) of the key to use
 277 *
 278 * Returns the dentry object of the lower-level (lower/interposed)
 279 * directory; We want to mount our stackable file system on top of
 280 * that lower directory.
 281 *
 282 * The signature of the key to use must be the description of a key
 283 * already in the keyring. Mounting will fail if the key can not be
 284 * found.
 285 *
 286 * Returns zero on success; non-zero on error
 287 */
 288static int ecryptfs_parse_options(struct super_block *sb, char *options)
 289{
 290        char *p;
 291        int rc = 0;
 292        int sig_set = 0;
 293        int cipher_name_set = 0;
 294        int fn_cipher_name_set = 0;
 295        int cipher_key_bytes;
 296        int cipher_key_bytes_set = 0;
 297        int fn_cipher_key_bytes;
 298        int fn_cipher_key_bytes_set = 0;
 299        struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
 300                &ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
 301        substring_t args[MAX_OPT_ARGS];
 302        int token;
 303        char *sig_src;
 304        char *cipher_name_dst;
 305        char *cipher_name_src;
 306        char *fn_cipher_name_dst;
 307        char *fn_cipher_name_src;
 308        char *fnek_dst;
 309        char *fnek_src;
 310        char *cipher_key_bytes_src;
 311        char *fn_cipher_key_bytes_src;
 312
 313        if (!options) {
 314                rc = -EINVAL;
 315                goto out;
 316        }
 317        ecryptfs_init_mount_crypt_stat(mount_crypt_stat);
 318        while ((p = strsep(&options, ",")) != NULL) {
 319                if (!*p)
 320                        continue;
 321                token = match_token(p, tokens, args);
 322                switch (token) {
 323                case ecryptfs_opt_sig:
 324                case ecryptfs_opt_ecryptfs_sig:
 325                        sig_src = args[0].from;
 326                        rc = ecryptfs_add_global_auth_tok(mount_crypt_stat,
 327                                                          sig_src, 0);
 328                        if (rc) {
 329                                printk(KERN_ERR "Error attempting to register "
 330                                       "global sig; rc = [%d]\n", rc);
 331                                goto out;
 332                        }
 333                        sig_set = 1;
 334                        break;
 335                case ecryptfs_opt_cipher:
 336                case ecryptfs_opt_ecryptfs_cipher:
 337                        cipher_name_src = args[0].from;
 338                        cipher_name_dst =
 339                                mount_crypt_stat->
 340                                global_default_cipher_name;
 341                        strncpy(cipher_name_dst, cipher_name_src,
 342                                ECRYPTFS_MAX_CIPHER_NAME_SIZE);
 343                        cipher_name_dst[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
 344                        cipher_name_set = 1;
 345                        break;
 346                case ecryptfs_opt_ecryptfs_key_bytes:
 347                        cipher_key_bytes_src = args[0].from;
 348                        cipher_key_bytes =
 349                                (int)simple_strtol(cipher_key_bytes_src,
 350                                                   &cipher_key_bytes_src, 0);
 351                        mount_crypt_stat->global_default_cipher_key_size =
 352                                cipher_key_bytes;
 353                        cipher_key_bytes_set = 1;
 354                        break;
 355                case ecryptfs_opt_passthrough:
 356                        mount_crypt_stat->flags |=
 357                                ECRYPTFS_PLAINTEXT_PASSTHROUGH_ENABLED;
 358                        break;
 359                case ecryptfs_opt_xattr_metadata:
 360                        mount_crypt_stat->flags |=
 361                                ECRYPTFS_XATTR_METADATA_ENABLED;
 362                        break;
 363                case ecryptfs_opt_encrypted_view:
 364                        mount_crypt_stat->flags |=
 365                                ECRYPTFS_XATTR_METADATA_ENABLED;
 366                        mount_crypt_stat->flags |=
 367                                ECRYPTFS_ENCRYPTED_VIEW_ENABLED;
 368                        break;
 369                case ecryptfs_opt_fnek_sig:
 370                        fnek_src = args[0].from;
 371                        fnek_dst =
 372                                mount_crypt_stat->global_default_fnek_sig;
 373                        strncpy(fnek_dst, fnek_src, ECRYPTFS_SIG_SIZE_HEX);
 374                        mount_crypt_stat->global_default_fnek_sig[
 375                                ECRYPTFS_SIG_SIZE_HEX] = '\0';
 376                        rc = ecryptfs_add_global_auth_tok(
 377                                mount_crypt_stat,
 378                                mount_crypt_stat->global_default_fnek_sig,
 379                                ECRYPTFS_AUTH_TOK_FNEK);
 380                        if (rc) {
 381                                printk(KERN_ERR "Error attempting to register "
 382                                       "global fnek sig [%s]; rc = [%d]\n",
 383                                       mount_crypt_stat->global_default_fnek_sig,
 384                                       rc);
 385                                goto out;
 386                        }
 387                        mount_crypt_stat->flags |=
 388                                (ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
 389                                 | ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK);
 390                        break;
 391                case ecryptfs_opt_fn_cipher:
 392                        fn_cipher_name_src = args[0].from;
 393                        fn_cipher_name_dst =
 394                                mount_crypt_stat->global_default_fn_cipher_name;
 395                        strncpy(fn_cipher_name_dst, fn_cipher_name_src,
 396                                ECRYPTFS_MAX_CIPHER_NAME_SIZE);
 397                        mount_crypt_stat->global_default_fn_cipher_name[
 398                                ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
 399                        fn_cipher_name_set = 1;
 400                        break;
 401                case ecryptfs_opt_fn_cipher_key_bytes:
 402                        fn_cipher_key_bytes_src = args[0].from;
 403                        fn_cipher_key_bytes =
 404                                (int)simple_strtol(fn_cipher_key_bytes_src,
 405                                                   &fn_cipher_key_bytes_src, 0);
 406                        mount_crypt_stat->global_default_fn_cipher_key_bytes =
 407                                fn_cipher_key_bytes;
 408                        fn_cipher_key_bytes_set = 1;
 409                        break;
 410                case ecryptfs_opt_unlink_sigs:
 411                        mount_crypt_stat->flags |= ECRYPTFS_UNLINK_SIGS;
 412                        break;
 413                case ecryptfs_opt_err:
 414                default:
 415                        printk(KERN_WARNING
 416                               "%s: eCryptfs: unrecognized option [%s]\n",
 417                               __func__, p);
 418                }
 419        }
 420        if (!sig_set) {
 421                rc = -EINVAL;
 422                ecryptfs_printk(KERN_ERR, "You must supply at least one valid "
 423                                "auth tok signature as a mount "
 424                                "parameter; see the eCryptfs README\n");
 425                goto out;
 426        }
 427        if (!cipher_name_set) {
 428                int cipher_name_len = strlen(ECRYPTFS_DEFAULT_CIPHER);
 429
 430                BUG_ON(cipher_name_len >= ECRYPTFS_MAX_CIPHER_NAME_SIZE);
 431                strcpy(mount_crypt_stat->global_default_cipher_name,
 432                       ECRYPTFS_DEFAULT_CIPHER);
 433        }
 434        if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
 435            && !fn_cipher_name_set)
 436                strcpy(mount_crypt_stat->global_default_fn_cipher_name,
 437                       mount_crypt_stat->global_default_cipher_name);
 438        if (!cipher_key_bytes_set)
 439                mount_crypt_stat->global_default_cipher_key_size = 0;
 440        if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
 441            && !fn_cipher_key_bytes_set)
 442                mount_crypt_stat->global_default_fn_cipher_key_bytes =
 443                        mount_crypt_stat->global_default_cipher_key_size;
 444        mutex_lock(&key_tfm_list_mutex);
 445        if (!ecryptfs_tfm_exists(mount_crypt_stat->global_default_cipher_name,
 446                                 NULL)) {
 447                rc = ecryptfs_add_new_key_tfm(
 448                        NULL, mount_crypt_stat->global_default_cipher_name,
 449                        mount_crypt_stat->global_default_cipher_key_size);
 450                if (rc) {
 451                        printk(KERN_ERR "Error attempting to initialize "
 452                               "cipher with name = [%s] and key size = [%td]; "
 453                               "rc = [%d]\n",
 454                               mount_crypt_stat->global_default_cipher_name,
 455                               mount_crypt_stat->global_default_cipher_key_size,
 456                               rc);
 457                        rc = -EINVAL;
 458                        mutex_unlock(&key_tfm_list_mutex);
 459                        goto out;
 460                }
 461        }
 462        if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
 463            && !ecryptfs_tfm_exists(
 464                    mount_crypt_stat->global_default_fn_cipher_name, NULL)) {
 465                rc = ecryptfs_add_new_key_tfm(
 466                        NULL, mount_crypt_stat->global_default_fn_cipher_name,
 467                        mount_crypt_stat->global_default_fn_cipher_key_bytes);
 468                if (rc) {
 469                        printk(KERN_ERR "Error attempting to initialize "
 470                               "cipher with name = [%s] and key size = [%td]; "
 471                               "rc = [%d]\n",
 472                               mount_crypt_stat->global_default_fn_cipher_name,
 473                               mount_crypt_stat->global_default_fn_cipher_key_bytes,
 474                               rc);
 475                        rc = -EINVAL;
 476                        mutex_unlock(&key_tfm_list_mutex);
 477                        goto out;
 478                }
 479        }
 480        mutex_unlock(&key_tfm_list_mutex);
 481        rc = ecryptfs_init_global_auth_toks(mount_crypt_stat);
 482        if (rc)
 483                printk(KERN_WARNING "One or more global auth toks could not "
 484                       "properly register; rc = [%d]\n", rc);
 485out:
 486        return rc;
 487}
 488
 489struct kmem_cache *ecryptfs_sb_info_cache;
 490
 491/**
 492 * ecryptfs_fill_super
 493 * @sb: The ecryptfs super block
 494 * @raw_data: The options passed to mount
 495 * @silent: Not used but required by function prototype
 496 *
 497 * Sets up what we can of the sb, rest is done in ecryptfs_read_super
 498 *
 499 * Returns zero on success; non-zero otherwise
 500 */
 501static int
 502ecryptfs_fill_super(struct super_block *sb, void *raw_data, int silent)
 503{
 504        int rc = 0;
 505
 506        /* Released in ecryptfs_put_super() */
 507        ecryptfs_set_superblock_private(sb,
 508                                        kmem_cache_zalloc(ecryptfs_sb_info_cache,
 509                                                         GFP_KERNEL));
 510        if (!ecryptfs_superblock_to_private(sb)) {
 511                ecryptfs_printk(KERN_WARNING, "Out of memory\n");
 512                rc = -ENOMEM;
 513                goto out;
 514        }
 515        sb->s_op = &ecryptfs_sops;
 516        /* Released through deactivate_super(sb) from get_sb_nodev */
 517        sb->s_root = d_alloc(NULL, &(const struct qstr) {
 518                             .hash = 0,.name = "/",.len = 1});
 519        if (!sb->s_root) {
 520                ecryptfs_printk(KERN_ERR, "d_alloc failed\n");
 521                rc = -ENOMEM;
 522                goto out;
 523        }
 524        sb->s_root->d_op = &ecryptfs_dops;
 525        sb->s_root->d_sb = sb;
 526        sb->s_root->d_parent = sb->s_root;
 527        /* Released in d_release when dput(sb->s_root) is called */
 528        /* through deactivate_super(sb) from get_sb_nodev() */
 529        ecryptfs_set_dentry_private(sb->s_root,
 530                                    kmem_cache_zalloc(ecryptfs_dentry_info_cache,
 531                                                     GFP_KERNEL));
 532        if (!ecryptfs_dentry_to_private(sb->s_root)) {
 533                ecryptfs_printk(KERN_ERR,
 534                                "dentry_info_cache alloc failed\n");
 535                rc = -ENOMEM;
 536                goto out;
 537        }
 538        rc = 0;
 539out:
 540        /* Should be able to rely on deactivate_super called from
 541         * get_sb_nodev */
 542        return rc;
 543}
 544
 545/**
 546 * ecryptfs_read_super
 547 * @sb: The ecryptfs super block
 548 * @dev_name: The path to mount over
 549 *
 550 * Read the super block of the lower filesystem, and use
 551 * ecryptfs_interpose to create our initial inode and super block
 552 * struct.
 553 */
 554static int ecryptfs_read_super(struct super_block *sb, const char *dev_name)
 555{
 556        struct path path;
 557        int rc;
 558
 559        rc = kern_path(dev_name, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &path);
 560        if (rc) {
 561                ecryptfs_printk(KERN_WARNING, "path_lookup() failed\n");
 562                goto out;
 563        }
 564        ecryptfs_set_superblock_lower(sb, path.dentry->d_sb);
 565        sb->s_maxbytes = path.dentry->d_sb->s_maxbytes;
 566        sb->s_blocksize = path.dentry->d_sb->s_blocksize;
 567        ecryptfs_set_dentry_lower(sb->s_root, path.dentry);
 568        ecryptfs_set_dentry_lower_mnt(sb->s_root, path.mnt);
 569        rc = ecryptfs_interpose(path.dentry, sb->s_root, sb, 0);
 570        if (rc)
 571                goto out_free;
 572        rc = 0;
 573        goto out;
 574out_free:
 575        path_put(&path);
 576out:
 577        return rc;
 578}
 579
 580/**
 581 * ecryptfs_get_sb
 582 * @fs_type
 583 * @flags
 584 * @dev_name: The path to mount over
 585 * @raw_data: The options passed into the kernel
 586 *
 587 * The whole ecryptfs_get_sb process is broken into 4 functions:
 588 * ecryptfs_parse_options(): handle options passed to ecryptfs, if any
 589 * ecryptfs_fill_super(): used by get_sb_nodev, fills out the super_block
 590 *                        with as much information as it can before needing
 591 *                        the lower filesystem.
 592 * ecryptfs_read_super(): this accesses the lower filesystem and uses
 593 *                        ecryptfs_interpolate to perform most of the linking
 594 * ecryptfs_interpolate(): links the lower filesystem into ecryptfs
 595 */
 596static int ecryptfs_get_sb(struct file_system_type *fs_type, int flags,
 597                        const char *dev_name, void *raw_data,
 598                        struct vfsmount *mnt)
 599{
 600        int rc;
 601        struct super_block *sb;
 602
 603        rc = get_sb_nodev(fs_type, flags, raw_data, ecryptfs_fill_super, mnt);
 604        if (rc < 0) {
 605                printk(KERN_ERR "Getting sb failed; rc = [%d]\n", rc);
 606                goto out;
 607        }
 608        sb = mnt->mnt_sb;
 609        rc = ecryptfs_parse_options(sb, raw_data);
 610        if (rc) {
 611                printk(KERN_ERR "Error parsing options; rc = [%d]\n", rc);
 612                goto out_abort;
 613        }
 614        rc = ecryptfs_read_super(sb, dev_name);
 615        if (rc) {
 616                printk(KERN_ERR "Reading sb failed; rc = [%d]\n", rc);
 617                goto out_abort;
 618        }
 619        goto out;
 620out_abort:
 621        dput(sb->s_root); /* aka mnt->mnt_root, as set by get_sb_nodev() */
 622        deactivate_locked_super(sb);
 623out:
 624        return rc;
 625}
 626
 627/**
 628 * ecryptfs_kill_block_super
 629 * @sb: The ecryptfs super block
 630 *
 631 * Used to bring the superblock down and free the private data.
 632 * Private data is free'd in ecryptfs_put_super()
 633 */
 634static void ecryptfs_kill_block_super(struct super_block *sb)
 635{
 636        generic_shutdown_super(sb);
 637}
 638
 639static struct file_system_type ecryptfs_fs_type = {
 640        .owner = THIS_MODULE,
 641        .name = "ecryptfs",
 642        .get_sb = ecryptfs_get_sb,
 643        .kill_sb = ecryptfs_kill_block_super,
 644        .fs_flags = 0
 645};
 646
 647/**
 648 * inode_info_init_once
 649 *
 650 * Initializes the ecryptfs_inode_info_cache when it is created
 651 */
 652static void
 653inode_info_init_once(void *vptr)
 654{
 655        struct ecryptfs_inode_info *ei = (struct ecryptfs_inode_info *)vptr;
 656
 657        inode_init_once(&ei->vfs_inode);
 658}
 659
 660static struct ecryptfs_cache_info {
 661        struct kmem_cache **cache;
 662        const char *name;
 663        size_t size;
 664        void (*ctor)(void *obj);
 665} ecryptfs_cache_infos[] = {
 666        {
 667                .cache = &ecryptfs_auth_tok_list_item_cache,
 668                .name = "ecryptfs_auth_tok_list_item",
 669                .size = sizeof(struct ecryptfs_auth_tok_list_item),
 670        },
 671        {
 672                .cache = &ecryptfs_file_info_cache,
 673                .name = "ecryptfs_file_cache",
 674                .size = sizeof(struct ecryptfs_file_info),
 675        },
 676        {
 677                .cache = &ecryptfs_dentry_info_cache,
 678                .name = "ecryptfs_dentry_info_cache",
 679                .size = sizeof(struct ecryptfs_dentry_info),
 680        },
 681        {
 682                .cache = &ecryptfs_inode_info_cache,
 683                .name = "ecryptfs_inode_cache",
 684                .size = sizeof(struct ecryptfs_inode_info),
 685                .ctor = inode_info_init_once,
 686        },
 687        {
 688                .cache = &ecryptfs_sb_info_cache,
 689                .name = "ecryptfs_sb_cache",
 690                .size = sizeof(struct ecryptfs_sb_info),
 691        },
 692        {
 693                .cache = &ecryptfs_header_cache_1,
 694                .name = "ecryptfs_headers_1",
 695                .size = PAGE_CACHE_SIZE,
 696        },
 697        {
 698                .cache = &ecryptfs_header_cache_2,
 699                .name = "ecryptfs_headers_2",
 700                .size = PAGE_CACHE_SIZE,
 701        },
 702        {
 703                .cache = &ecryptfs_xattr_cache,
 704                .name = "ecryptfs_xattr_cache",
 705                .size = PAGE_CACHE_SIZE,
 706        },
 707        {
 708                .cache = &ecryptfs_key_record_cache,
 709                .name = "ecryptfs_key_record_cache",
 710                .size = sizeof(struct ecryptfs_key_record),
 711        },
 712        {
 713                .cache = &ecryptfs_key_sig_cache,
 714                .name = "ecryptfs_key_sig_cache",
 715                .size = sizeof(struct ecryptfs_key_sig),
 716        },
 717        {
 718                .cache = &ecryptfs_global_auth_tok_cache,
 719                .name = "ecryptfs_global_auth_tok_cache",
 720                .size = sizeof(struct ecryptfs_global_auth_tok),
 721        },
 722        {
 723                .cache = &ecryptfs_key_tfm_cache,
 724                .name = "ecryptfs_key_tfm_cache",
 725                .size = sizeof(struct ecryptfs_key_tfm),
 726        },
 727        {
 728                .cache = &ecryptfs_open_req_cache,
 729                .name = "ecryptfs_open_req_cache",
 730                .size = sizeof(struct ecryptfs_open_req),
 731        },
 732};
 733
 734static void ecryptfs_free_kmem_caches(void)
 735{
 736        int i;
 737
 738        for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) {
 739                struct ecryptfs_cache_info *info;
 740
 741                info = &ecryptfs_cache_infos[i];
 742                if (*(info->cache))
 743                        kmem_cache_destroy(*(info->cache));
 744        }
 745}
 746
 747/**
 748 * ecryptfs_init_kmem_caches
 749 *
 750 * Returns zero on success; non-zero otherwise
 751 */
 752static int ecryptfs_init_kmem_caches(void)
 753{
 754        int i;
 755
 756        for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) {
 757                struct ecryptfs_cache_info *info;
 758
 759                info = &ecryptfs_cache_infos[i];
 760                *(info->cache) = kmem_cache_create(info->name, info->size,
 761                                0, SLAB_HWCACHE_ALIGN, info->ctor);
 762                if (!*(info->cache)) {
 763                        ecryptfs_free_kmem_caches();
 764                        ecryptfs_printk(KERN_WARNING, "%s: "
 765                                        "kmem_cache_create failed\n",
 766                                        info->name);
 767                        return -ENOMEM;
 768                }
 769        }
 770        return 0;
 771}
 772
 773static struct kobject *ecryptfs_kobj;
 774
 775static ssize_t version_show(struct kobject *kobj,
 776                            struct kobj_attribute *attr, char *buff)
 777{
 778        return snprintf(buff, PAGE_SIZE, "%d\n", ECRYPTFS_VERSIONING_MASK);
 779}
 780
 781static struct kobj_attribute version_attr = __ATTR_RO(version);
 782
 783static struct attribute *attributes[] = {
 784        &version_attr.attr,
 785        NULL,
 786};
 787
 788static struct attribute_group attr_group = {
 789        .attrs = attributes,
 790};
 791
 792static int do_sysfs_registration(void)
 793{
 794        int rc;
 795
 796        ecryptfs_kobj = kobject_create_and_add("ecryptfs", fs_kobj);
 797        if (!ecryptfs_kobj) {
 798                printk(KERN_ERR "Unable to create ecryptfs kset\n");
 799                rc = -ENOMEM;
 800                goto out;
 801        }
 802        rc = sysfs_create_group(ecryptfs_kobj, &attr_group);
 803        if (rc) {
 804                printk(KERN_ERR
 805                       "Unable to create ecryptfs version attributes\n");
 806                kobject_put(ecryptfs_kobj);
 807        }
 808out:
 809        return rc;
 810}
 811
 812static void do_sysfs_unregistration(void)
 813{
 814        sysfs_remove_group(ecryptfs_kobj, &attr_group);
 815        kobject_put(ecryptfs_kobj);
 816}
 817
 818static int __init ecryptfs_init(void)
 819{
 820        int rc;
 821
 822        if (ECRYPTFS_DEFAULT_EXTENT_SIZE > PAGE_CACHE_SIZE) {
 823                rc = -EINVAL;
 824                ecryptfs_printk(KERN_ERR, "The eCryptfs extent size is "
 825                                "larger than the host's page size, and so "
 826                                "eCryptfs cannot run on this system. The "
 827                                "default eCryptfs extent size is [%d] bytes; "
 828                                "the page size is [%d] bytes.\n",
 829                                ECRYPTFS_DEFAULT_EXTENT_SIZE, PAGE_CACHE_SIZE);
 830                goto out;
 831        }
 832        rc = ecryptfs_init_kmem_caches();
 833        if (rc) {
 834                printk(KERN_ERR
 835                       "Failed to allocate one or more kmem_cache objects\n");
 836                goto out;
 837        }
 838        rc = register_filesystem(&ecryptfs_fs_type);
 839        if (rc) {
 840                printk(KERN_ERR "Failed to register filesystem\n");
 841                goto out_free_kmem_caches;
 842        }
 843        rc = do_sysfs_registration();
 844        if (rc) {
 845                printk(KERN_ERR "sysfs registration failed\n");
 846                goto out_unregister_filesystem;
 847        }
 848        rc = ecryptfs_init_kthread();
 849        if (rc) {
 850                printk(KERN_ERR "%s: kthread initialization failed; "
 851                       "rc = [%d]\n", __func__, rc);
 852                goto out_do_sysfs_unregistration;
 853        }
 854        rc = ecryptfs_init_messaging();
 855        if (rc) {
 856                printk(KERN_ERR "Failure occured while attempting to "
 857                                "initialize the communications channel to "
 858                                "ecryptfsd\n");
 859                goto out_destroy_kthread;
 860        }
 861        rc = ecryptfs_init_crypto();
 862        if (rc) {
 863                printk(KERN_ERR "Failure whilst attempting to init crypto; "
 864                       "rc = [%d]\n", rc);
 865                goto out_release_messaging;
 866        }
 867        if (ecryptfs_verbosity > 0)
 868                printk(KERN_CRIT "eCryptfs verbosity set to %d. Secret values "
 869                        "will be written to the syslog!\n", ecryptfs_verbosity);
 870
 871        goto out;
 872out_release_messaging:
 873        ecryptfs_release_messaging();
 874out_destroy_kthread:
 875        ecryptfs_destroy_kthread();
 876out_do_sysfs_unregistration:
 877        do_sysfs_unregistration();
 878out_unregister_filesystem:
 879        unregister_filesystem(&ecryptfs_fs_type);
 880out_free_kmem_caches:
 881        ecryptfs_free_kmem_caches();
 882out:
 883        return rc;
 884}
 885
 886static void __exit ecryptfs_exit(void)
 887{
 888        int rc;
 889
 890        rc = ecryptfs_destroy_crypto();
 891        if (rc)
 892                printk(KERN_ERR "Failure whilst attempting to destroy crypto; "
 893                       "rc = [%d]\n", rc);
 894        ecryptfs_release_messaging();
 895        ecryptfs_destroy_kthread();
 896        do_sysfs_unregistration();
 897        unregister_filesystem(&ecryptfs_fs_type);
 898        ecryptfs_free_kmem_caches();
 899}
 900
 901MODULE_AUTHOR("Michael A. Halcrow <mhalcrow@us.ibm.com>");
 902MODULE_DESCRIPTION("eCryptfs");
 903
 904MODULE_LICENSE("GPL");
 905
 906module_init(ecryptfs_init)
 907module_exit(ecryptfs_exit)
 908