linux/fs/ecryptfs/read_write.c
<<
>>
Prefs
   1/**
   2 * eCryptfs: Linux filesystem encryption layer
   3 *
   4 * Copyright (C) 2007 International Business Machines Corp.
   5 *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License as
   9 * published by the Free Software Foundation; either version 2 of the
  10 * License, or (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful, but
  13 * WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  15 * General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program; if not, write to the Free Software
  19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
  20 * 02111-1307, USA.
  21 */
  22
  23#include <linux/fs.h>
  24#include <linux/pagemap.h>
  25#include "ecryptfs_kernel.h"
  26
  27/**
  28 * ecryptfs_write_lower
  29 * @ecryptfs_inode: The eCryptfs inode
  30 * @data: Data to write
  31 * @offset: Byte offset in the lower file to which to write the data
  32 * @size: Number of bytes from @data to write at @offset in the lower
  33 *        file
  34 *
  35 * Write data to the lower file.
  36 *
  37 * Returns bytes written on success; less than zero on error
  38 */
  39int ecryptfs_write_lower(struct inode *ecryptfs_inode, char *data,
  40                         loff_t offset, size_t size)
  41{
  42        struct ecryptfs_inode_info *inode_info;
  43        mm_segment_t fs_save;
  44        ssize_t rc;
  45
  46        inode_info = ecryptfs_inode_to_private(ecryptfs_inode);
  47        mutex_lock(&inode_info->lower_file_mutex);
  48        BUG_ON(!inode_info->lower_file);
  49        inode_info->lower_file->f_pos = offset;
  50        fs_save = get_fs();
  51        set_fs(get_ds());
  52        rc = vfs_write(inode_info->lower_file, data, size,
  53                       &inode_info->lower_file->f_pos);
  54        set_fs(fs_save);
  55        mutex_unlock(&inode_info->lower_file_mutex);
  56        mark_inode_dirty_sync(ecryptfs_inode);
  57        return rc;
  58}
  59
  60/**
  61 * ecryptfs_write_lower_page_segment
  62 * @ecryptfs_inode: The eCryptfs inode
  63 * @page_for_lower: The page containing the data to be written to the
  64 *                  lower file
  65 * @offset_in_page: The offset in the @page_for_lower from which to
  66 *                  start writing the data
  67 * @size: The amount of data from @page_for_lower to write to the
  68 *        lower file
  69 *
  70 * Determines the byte offset in the file for the given page and
  71 * offset within the page, maps the page, and makes the call to write
  72 * the contents of @page_for_lower to the lower inode.
  73 *
  74 * Returns zero on success; non-zero otherwise
  75 */
  76int ecryptfs_write_lower_page_segment(struct inode *ecryptfs_inode,
  77                                      struct page *page_for_lower,
  78                                      size_t offset_in_page, size_t size)
  79{
  80        char *virt;
  81        loff_t offset;
  82        int rc;
  83
  84        offset = ((((loff_t)page_for_lower->index) << PAGE_CACHE_SHIFT)
  85                  + offset_in_page);
  86        virt = kmap(page_for_lower);
  87        rc = ecryptfs_write_lower(ecryptfs_inode, virt, offset, size);
  88        if (rc > 0)
  89                rc = 0;
  90        kunmap(page_for_lower);
  91        return rc;
  92}
  93
  94/**
  95 * ecryptfs_write
  96 * @ecryptfs_file: The eCryptfs file into which to write
  97 * @data: Virtual address where data to write is located
  98 * @offset: Offset in the eCryptfs file at which to begin writing the
  99 *          data from @data
 100 * @size: The number of bytes to write from @data
 101 *
 102 * Write an arbitrary amount of data to an arbitrary location in the
 103 * eCryptfs inode page cache. This is done on a page-by-page, and then
 104 * by an extent-by-extent, basis; individual extents are encrypted and
 105 * written to the lower page cache (via VFS writes). This function
 106 * takes care of all the address translation to locations in the lower
 107 * filesystem; it also handles truncate events, writing out zeros
 108 * where necessary.
 109 *
 110 * Returns zero on success; non-zero otherwise
 111 */
 112int ecryptfs_write(struct file *ecryptfs_file, char *data, loff_t offset,
 113                   size_t size)
 114{
 115        struct page *ecryptfs_page;
 116        struct ecryptfs_crypt_stat *crypt_stat;
 117        struct inode *ecryptfs_inode = ecryptfs_file->f_dentry->d_inode;
 118        char *ecryptfs_page_virt;
 119        loff_t ecryptfs_file_size = i_size_read(ecryptfs_inode);
 120        loff_t data_offset = 0;
 121        loff_t pos;
 122        int rc = 0;
 123
 124        crypt_stat = &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
 125        /*
 126         * if we are writing beyond current size, then start pos
 127         * at the current size - we'll fill in zeros from there.
 128         */
 129        if (offset > ecryptfs_file_size)
 130                pos = ecryptfs_file_size;
 131        else
 132                pos = offset;
 133        while (pos < (offset + size)) {
 134                pgoff_t ecryptfs_page_idx = (pos >> PAGE_CACHE_SHIFT);
 135                size_t start_offset_in_page = (pos & ~PAGE_CACHE_MASK);
 136                size_t num_bytes = (PAGE_CACHE_SIZE - start_offset_in_page);
 137                size_t total_remaining_bytes = ((offset + size) - pos);
 138
 139                if (num_bytes > total_remaining_bytes)
 140                        num_bytes = total_remaining_bytes;
 141                if (pos < offset) {
 142                        /* remaining zeros to write, up to destination offset */
 143                        size_t total_remaining_zeros = (offset - pos);
 144
 145                        if (num_bytes > total_remaining_zeros)
 146                                num_bytes = total_remaining_zeros;
 147                }
 148                ecryptfs_page = ecryptfs_get_locked_page(ecryptfs_file,
 149                                                         ecryptfs_page_idx);
 150                if (IS_ERR(ecryptfs_page)) {
 151                        rc = PTR_ERR(ecryptfs_page);
 152                        printk(KERN_ERR "%s: Error getting page at "
 153                               "index [%ld] from eCryptfs inode "
 154                               "mapping; rc = [%d]\n", __func__,
 155                               ecryptfs_page_idx, rc);
 156                        goto out;
 157                }
 158                ecryptfs_page_virt = kmap_atomic(ecryptfs_page, KM_USER0);
 159
 160                /*
 161                 * pos: where we're now writing, offset: where the request was
 162                 * If current pos is before request, we are filling zeros
 163                 * If we are at or beyond request, we are writing the *data*
 164                 * If we're in a fresh page beyond eof, zero it in either case
 165                 */
 166                if (pos < offset || !start_offset_in_page) {
 167                        /* We are extending past the previous end of the file.
 168                         * Fill in zero values to the end of the page */
 169                        memset(((char *)ecryptfs_page_virt
 170                                + start_offset_in_page), 0,
 171                                PAGE_CACHE_SIZE - start_offset_in_page);
 172                }
 173
 174                /* pos >= offset, we are now writing the data request */
 175                if (pos >= offset) {
 176                        memcpy(((char *)ecryptfs_page_virt
 177                                + start_offset_in_page),
 178                               (data + data_offset), num_bytes);
 179                        data_offset += num_bytes;
 180                }
 181                kunmap_atomic(ecryptfs_page_virt, KM_USER0);
 182                flush_dcache_page(ecryptfs_page);
 183                SetPageUptodate(ecryptfs_page);
 184                unlock_page(ecryptfs_page);
 185                if (crypt_stat->flags & ECRYPTFS_ENCRYPTED)
 186                        rc = ecryptfs_encrypt_page(ecryptfs_page);
 187                else
 188                        rc = ecryptfs_write_lower_page_segment(ecryptfs_inode,
 189                                                ecryptfs_page,
 190                                                start_offset_in_page,
 191                                                data_offset);
 192                page_cache_release(ecryptfs_page);
 193                if (rc) {
 194                        printk(KERN_ERR "%s: Error encrypting "
 195                               "page; rc = [%d]\n", __func__, rc);
 196                        goto out;
 197                }
 198                pos += num_bytes;
 199        }
 200        if ((offset + size) > ecryptfs_file_size) {
 201                i_size_write(ecryptfs_inode, (offset + size));
 202                if (crypt_stat->flags & ECRYPTFS_ENCRYPTED) {
 203                        rc = ecryptfs_write_inode_size_to_metadata(
 204                                                                ecryptfs_inode);
 205                        if (rc) {
 206                                printk(KERN_ERR "Problem with "
 207                                       "ecryptfs_write_inode_size_to_metadata; "
 208                                       "rc = [%d]\n", rc);
 209                                goto out;
 210                        }
 211                }
 212        }
 213out:
 214        return rc;
 215}
 216
 217/**
 218 * ecryptfs_read_lower
 219 * @data: The read data is stored here by this function
 220 * @offset: Byte offset in the lower file from which to read the data
 221 * @size: Number of bytes to read from @offset of the lower file and
 222 *        store into @data
 223 * @ecryptfs_inode: The eCryptfs inode
 224 *
 225 * Read @size bytes of data at byte offset @offset from the lower
 226 * inode into memory location @data.
 227 *
 228 * Returns bytes read on success; 0 on EOF; less than zero on error
 229 */
 230int ecryptfs_read_lower(char *data, loff_t offset, size_t size,
 231                        struct inode *ecryptfs_inode)
 232{
 233        struct ecryptfs_inode_info *inode_info =
 234                ecryptfs_inode_to_private(ecryptfs_inode);
 235        mm_segment_t fs_save;
 236        ssize_t rc;
 237
 238        mutex_lock(&inode_info->lower_file_mutex);
 239        BUG_ON(!inode_info->lower_file);
 240        inode_info->lower_file->f_pos = offset;
 241        fs_save = get_fs();
 242        set_fs(get_ds());
 243        rc = vfs_read(inode_info->lower_file, data, size,
 244                      &inode_info->lower_file->f_pos);
 245        set_fs(fs_save);
 246        mutex_unlock(&inode_info->lower_file_mutex);
 247        return rc;
 248}
 249
 250/**
 251 * ecryptfs_read_lower_page_segment
 252 * @page_for_ecryptfs: The page into which data for eCryptfs will be
 253 *                     written
 254 * @offset_in_page: Offset in @page_for_ecryptfs from which to start
 255 *                  writing
 256 * @size: The number of bytes to write into @page_for_ecryptfs
 257 * @ecryptfs_inode: The eCryptfs inode
 258 *
 259 * Determines the byte offset in the file for the given page and
 260 * offset within the page, maps the page, and makes the call to read
 261 * the contents of @page_for_ecryptfs from the lower inode.
 262 *
 263 * Returns zero on success; non-zero otherwise
 264 */
 265int ecryptfs_read_lower_page_segment(struct page *page_for_ecryptfs,
 266                                     pgoff_t page_index,
 267                                     size_t offset_in_page, size_t size,
 268                                     struct inode *ecryptfs_inode)
 269{
 270        char *virt;
 271        loff_t offset;
 272        int rc;
 273
 274        offset = ((((loff_t)page_index) << PAGE_CACHE_SHIFT) + offset_in_page);
 275        virt = kmap(page_for_ecryptfs);
 276        rc = ecryptfs_read_lower(virt, offset, size, ecryptfs_inode);
 277        if (rc > 0)
 278                rc = 0;
 279        kunmap(page_for_ecryptfs);
 280        flush_dcache_page(page_for_ecryptfs);
 281        return rc;
 282}
 283
 284#if 0
 285/**
 286 * ecryptfs_read
 287 * @data: The virtual address into which to write the data read (and
 288 *        possibly decrypted) from the lower file
 289 * @offset: The offset in the decrypted view of the file from which to
 290 *          read into @data
 291 * @size: The number of bytes to read into @data
 292 * @ecryptfs_file: The eCryptfs file from which to read
 293 *
 294 * Read an arbitrary amount of data from an arbitrary location in the
 295 * eCryptfs page cache. This is done on an extent-by-extent basis;
 296 * individual extents are decrypted and read from the lower page
 297 * cache (via VFS reads). This function takes care of all the
 298 * address translation to locations in the lower filesystem.
 299 *
 300 * Returns zero on success; non-zero otherwise
 301 */
 302int ecryptfs_read(char *data, loff_t offset, size_t size,
 303                  struct file *ecryptfs_file)
 304{
 305        struct page *ecryptfs_page;
 306        char *ecryptfs_page_virt;
 307        loff_t ecryptfs_file_size =
 308                i_size_read(ecryptfs_file->f_dentry->d_inode);
 309        loff_t data_offset = 0;
 310        loff_t pos;
 311        int rc = 0;
 312
 313        if ((offset + size) > ecryptfs_file_size) {
 314                rc = -EINVAL;
 315                printk(KERN_ERR "%s: Attempt to read data past the end of the "
 316                        "file; offset = [%lld]; size = [%td]; "
 317                       "ecryptfs_file_size = [%lld]\n",
 318                       __func__, offset, size, ecryptfs_file_size);
 319                goto out;
 320        }
 321        pos = offset;
 322        while (pos < (offset + size)) {
 323                pgoff_t ecryptfs_page_idx = (pos >> PAGE_CACHE_SHIFT);
 324                size_t start_offset_in_page = (pos & ~PAGE_CACHE_MASK);
 325                size_t num_bytes = (PAGE_CACHE_SIZE - start_offset_in_page);
 326                size_t total_remaining_bytes = ((offset + size) - pos);
 327
 328                if (num_bytes > total_remaining_bytes)
 329                        num_bytes = total_remaining_bytes;
 330                ecryptfs_page = ecryptfs_get_locked_page(ecryptfs_file,
 331                                                         ecryptfs_page_idx);
 332                if (IS_ERR(ecryptfs_page)) {
 333                        rc = PTR_ERR(ecryptfs_page);
 334                        printk(KERN_ERR "%s: Error getting page at "
 335                               "index [%ld] from eCryptfs inode "
 336                               "mapping; rc = [%d]\n", __func__,
 337                               ecryptfs_page_idx, rc);
 338                        goto out;
 339                }
 340                ecryptfs_page_virt = kmap_atomic(ecryptfs_page, KM_USER0);
 341                memcpy((data + data_offset),
 342                       ((char *)ecryptfs_page_virt + start_offset_in_page),
 343                       num_bytes);
 344                kunmap_atomic(ecryptfs_page_virt, KM_USER0);
 345                flush_dcache_page(ecryptfs_page);
 346                SetPageUptodate(ecryptfs_page);
 347                unlock_page(ecryptfs_page);
 348                page_cache_release(ecryptfs_page);
 349                pos += num_bytes;
 350                data_offset += num_bytes;
 351        }
 352out:
 353        return rc;
 354}
 355#endif  /*  0  */
 356