linux/fs/eventpoll.c
<<
>>
Prefs
   1/*
   2 *  fs/eventpoll.c (Efficient event retrieval implementation)
   3 *  Copyright (C) 2001,...,2009  Davide Libenzi
   4 *
   5 *  This program is free software; you can redistribute it and/or modify
   6 *  it under the terms of the GNU General Public License as published by
   7 *  the Free Software Foundation; either version 2 of the License, or
   8 *  (at your option) any later version.
   9 *
  10 *  Davide Libenzi <davidel@xmailserver.org>
  11 *
  12 */
  13
  14#include <linux/init.h>
  15#include <linux/kernel.h>
  16#include <linux/sched.h>
  17#include <linux/fs.h>
  18#include <linux/file.h>
  19#include <linux/signal.h>
  20#include <linux/errno.h>
  21#include <linux/mm.h>
  22#include <linux/slab.h>
  23#include <linux/poll.h>
  24#include <linux/string.h>
  25#include <linux/list.h>
  26#include <linux/hash.h>
  27#include <linux/spinlock.h>
  28#include <linux/syscalls.h>
  29#include <linux/rbtree.h>
  30#include <linux/wait.h>
  31#include <linux/eventpoll.h>
  32#include <linux/mount.h>
  33#include <linux/bitops.h>
  34#include <linux/mutex.h>
  35#include <linux/anon_inodes.h>
  36#include <asm/uaccess.h>
  37#include <asm/system.h>
  38#include <asm/io.h>
  39#include <asm/mman.h>
  40#include <asm/atomic.h>
  41
  42/*
  43 * LOCKING:
  44 * There are three level of locking required by epoll :
  45 *
  46 * 1) epmutex (mutex)
  47 * 2) ep->mtx (mutex)
  48 * 3) ep->lock (spinlock)
  49 *
  50 * The acquire order is the one listed above, from 1 to 3.
  51 * We need a spinlock (ep->lock) because we manipulate objects
  52 * from inside the poll callback, that might be triggered from
  53 * a wake_up() that in turn might be called from IRQ context.
  54 * So we can't sleep inside the poll callback and hence we need
  55 * a spinlock. During the event transfer loop (from kernel to
  56 * user space) we could end up sleeping due a copy_to_user(), so
  57 * we need a lock that will allow us to sleep. This lock is a
  58 * mutex (ep->mtx). It is acquired during the event transfer loop,
  59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
  60 * Then we also need a global mutex to serialize eventpoll_release_file()
  61 * and ep_free().
  62 * This mutex is acquired by ep_free() during the epoll file
  63 * cleanup path and it is also acquired by eventpoll_release_file()
  64 * if a file has been pushed inside an epoll set and it is then
  65 * close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL).
  66 * It is possible to drop the "ep->mtx" and to use the global
  67 * mutex "epmutex" (together with "ep->lock") to have it working,
  68 * but having "ep->mtx" will make the interface more scalable.
  69 * Events that require holding "epmutex" are very rare, while for
  70 * normal operations the epoll private "ep->mtx" will guarantee
  71 * a better scalability.
  72 */
  73
  74/* Epoll private bits inside the event mask */
  75#define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
  76
  77/* Maximum number of nesting allowed inside epoll sets */
  78#define EP_MAX_NESTS 4
  79
  80/* Maximum msec timeout value storeable in a long int */
  81#define EP_MAX_MSTIMEO min(1000ULL * MAX_SCHEDULE_TIMEOUT / HZ, (LONG_MAX - 999ULL) / HZ)
  82
  83#define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
  84
  85#define EP_UNACTIVE_PTR ((void *) -1L)
  86
  87#define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
  88
  89struct epoll_filefd {
  90        struct file *file;
  91        int fd;
  92};
  93
  94/*
  95 * Structure used to track possible nested calls, for too deep recursions
  96 * and loop cycles.
  97 */
  98struct nested_call_node {
  99        struct list_head llink;
 100        void *cookie;
 101        void *ctx;
 102};
 103
 104/*
 105 * This structure is used as collector for nested calls, to check for
 106 * maximum recursion dept and loop cycles.
 107 */
 108struct nested_calls {
 109        struct list_head tasks_call_list;
 110        spinlock_t lock;
 111};
 112
 113/*
 114 * Each file descriptor added to the eventpoll interface will
 115 * have an entry of this type linked to the "rbr" RB tree.
 116 */
 117struct epitem {
 118        /* RB tree node used to link this structure to the eventpoll RB tree */
 119        struct rb_node rbn;
 120
 121        /* List header used to link this structure to the eventpoll ready list */
 122        struct list_head rdllink;
 123
 124        /*
 125         * Works together "struct eventpoll"->ovflist in keeping the
 126         * single linked chain of items.
 127         */
 128        struct epitem *next;
 129
 130        /* The file descriptor information this item refers to */
 131        struct epoll_filefd ffd;
 132
 133        /* Number of active wait queue attached to poll operations */
 134        int nwait;
 135
 136        /* List containing poll wait queues */
 137        struct list_head pwqlist;
 138
 139        /* The "container" of this item */
 140        struct eventpoll *ep;
 141
 142        /* List header used to link this item to the "struct file" items list */
 143        struct list_head fllink;
 144
 145        /* The structure that describe the interested events and the source fd */
 146        struct epoll_event event;
 147};
 148
 149/*
 150 * This structure is stored inside the "private_data" member of the file
 151 * structure and rapresent the main data sructure for the eventpoll
 152 * interface.
 153 */
 154struct eventpoll {
 155        /* Protect the this structure access */
 156        spinlock_t lock;
 157
 158        /*
 159         * This mutex is used to ensure that files are not removed
 160         * while epoll is using them. This is held during the event
 161         * collection loop, the file cleanup path, the epoll file exit
 162         * code and the ctl operations.
 163         */
 164        struct mutex mtx;
 165
 166        /* Wait queue used by sys_epoll_wait() */
 167        wait_queue_head_t wq;
 168
 169        /* Wait queue used by file->poll() */
 170        wait_queue_head_t poll_wait;
 171
 172        /* List of ready file descriptors */
 173        struct list_head rdllist;
 174
 175        /* RB tree root used to store monitored fd structs */
 176        struct rb_root rbr;
 177
 178        /*
 179         * This is a single linked list that chains all the "struct epitem" that
 180         * happened while transfering ready events to userspace w/out
 181         * holding ->lock.
 182         */
 183        struct epitem *ovflist;
 184
 185        /* The user that created the eventpoll descriptor */
 186        struct user_struct *user;
 187};
 188
 189/* Wait structure used by the poll hooks */
 190struct eppoll_entry {
 191        /* List header used to link this structure to the "struct epitem" */
 192        struct list_head llink;
 193
 194        /* The "base" pointer is set to the container "struct epitem" */
 195        struct epitem *base;
 196
 197        /*
 198         * Wait queue item that will be linked to the target file wait
 199         * queue head.
 200         */
 201        wait_queue_t wait;
 202
 203        /* The wait queue head that linked the "wait" wait queue item */
 204        wait_queue_head_t *whead;
 205};
 206
 207/* Wrapper struct used by poll queueing */
 208struct ep_pqueue {
 209        poll_table pt;
 210        struct epitem *epi;
 211};
 212
 213/* Used by the ep_send_events() function as callback private data */
 214struct ep_send_events_data {
 215        int maxevents;
 216        struct epoll_event __user *events;
 217};
 218
 219/*
 220 * Configuration options available inside /proc/sys/fs/epoll/
 221 */
 222/* Maximum number of epoll watched descriptors, per user */
 223static int max_user_watches __read_mostly;
 224
 225/*
 226 * This mutex is used to serialize ep_free() and eventpoll_release_file().
 227 */
 228static DEFINE_MUTEX(epmutex);
 229
 230/* Used for safe wake up implementation */
 231static struct nested_calls poll_safewake_ncalls;
 232
 233/* Used to call file's f_op->poll() under the nested calls boundaries */
 234static struct nested_calls poll_readywalk_ncalls;
 235
 236/* Slab cache used to allocate "struct epitem" */
 237static struct kmem_cache *epi_cache __read_mostly;
 238
 239/* Slab cache used to allocate "struct eppoll_entry" */
 240static struct kmem_cache *pwq_cache __read_mostly;
 241
 242#ifdef CONFIG_SYSCTL
 243
 244#include <linux/sysctl.h>
 245
 246static int zero;
 247
 248ctl_table epoll_table[] = {
 249        {
 250                .procname       = "max_user_watches",
 251                .data           = &max_user_watches,
 252                .maxlen         = sizeof(int),
 253                .mode           = 0644,
 254                .proc_handler   = &proc_dointvec_minmax,
 255                .extra1         = &zero,
 256        },
 257        { .ctl_name = 0 }
 258};
 259#endif /* CONFIG_SYSCTL */
 260
 261
 262/* Setup the structure that is used as key for the RB tree */
 263static inline void ep_set_ffd(struct epoll_filefd *ffd,
 264                              struct file *file, int fd)
 265{
 266        ffd->file = file;
 267        ffd->fd = fd;
 268}
 269
 270/* Compare RB tree keys */
 271static inline int ep_cmp_ffd(struct epoll_filefd *p1,
 272                             struct epoll_filefd *p2)
 273{
 274        return (p1->file > p2->file ? +1:
 275                (p1->file < p2->file ? -1 : p1->fd - p2->fd));
 276}
 277
 278/* Tells us if the item is currently linked */
 279static inline int ep_is_linked(struct list_head *p)
 280{
 281        return !list_empty(p);
 282}
 283
 284/* Get the "struct epitem" from a wait queue pointer */
 285static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
 286{
 287        return container_of(p, struct eppoll_entry, wait)->base;
 288}
 289
 290/* Get the "struct epitem" from an epoll queue wrapper */
 291static inline struct epitem *ep_item_from_epqueue(poll_table *p)
 292{
 293        return container_of(p, struct ep_pqueue, pt)->epi;
 294}
 295
 296/* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
 297static inline int ep_op_has_event(int op)
 298{
 299        return op != EPOLL_CTL_DEL;
 300}
 301
 302/* Initialize the poll safe wake up structure */
 303static void ep_nested_calls_init(struct nested_calls *ncalls)
 304{
 305        INIT_LIST_HEAD(&ncalls->tasks_call_list);
 306        spin_lock_init(&ncalls->lock);
 307}
 308
 309/**
 310 * ep_call_nested - Perform a bound (possibly) nested call, by checking
 311 *                  that the recursion limit is not exceeded, and that
 312 *                  the same nested call (by the meaning of same cookie) is
 313 *                  no re-entered.
 314 *
 315 * @ncalls: Pointer to the nested_calls structure to be used for this call.
 316 * @max_nests: Maximum number of allowed nesting calls.
 317 * @nproc: Nested call core function pointer.
 318 * @priv: Opaque data to be passed to the @nproc callback.
 319 * @cookie: Cookie to be used to identify this nested call.
 320 * @ctx: This instance context.
 321 *
 322 * Returns: Returns the code returned by the @nproc callback, or -1 if
 323 *          the maximum recursion limit has been exceeded.
 324 */
 325static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
 326                          int (*nproc)(void *, void *, int), void *priv,
 327                          void *cookie, void *ctx)
 328{
 329        int error, call_nests = 0;
 330        unsigned long flags;
 331        struct list_head *lsthead = &ncalls->tasks_call_list;
 332        struct nested_call_node *tncur;
 333        struct nested_call_node tnode;
 334
 335        spin_lock_irqsave(&ncalls->lock, flags);
 336
 337        /*
 338         * Try to see if the current task is already inside this wakeup call.
 339         * We use a list here, since the population inside this set is always
 340         * very much limited.
 341         */
 342        list_for_each_entry(tncur, lsthead, llink) {
 343                if (tncur->ctx == ctx &&
 344                    (tncur->cookie == cookie || ++call_nests > max_nests)) {
 345                        /*
 346                         * Ops ... loop detected or maximum nest level reached.
 347                         * We abort this wake by breaking the cycle itself.
 348                         */
 349                        error = -1;
 350                        goto out_unlock;
 351                }
 352        }
 353
 354        /* Add the current task and cookie to the list */
 355        tnode.ctx = ctx;
 356        tnode.cookie = cookie;
 357        list_add(&tnode.llink, lsthead);
 358
 359        spin_unlock_irqrestore(&ncalls->lock, flags);
 360
 361        /* Call the nested function */
 362        error = (*nproc)(priv, cookie, call_nests);
 363
 364        /* Remove the current task from the list */
 365        spin_lock_irqsave(&ncalls->lock, flags);
 366        list_del(&tnode.llink);
 367out_unlock:
 368        spin_unlock_irqrestore(&ncalls->lock, flags);
 369
 370        return error;
 371}
 372
 373#ifdef CONFIG_DEBUG_LOCK_ALLOC
 374static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
 375                                     unsigned long events, int subclass)
 376{
 377        unsigned long flags;
 378
 379        spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
 380        wake_up_locked_poll(wqueue, events);
 381        spin_unlock_irqrestore(&wqueue->lock, flags);
 382}
 383#else
 384static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
 385                                     unsigned long events, int subclass)
 386{
 387        wake_up_poll(wqueue, events);
 388}
 389#endif
 390
 391static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
 392{
 393        ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
 394                          1 + call_nests);
 395        return 0;
 396}
 397
 398/*
 399 * Perform a safe wake up of the poll wait list. The problem is that
 400 * with the new callback'd wake up system, it is possible that the
 401 * poll callback is reentered from inside the call to wake_up() done
 402 * on the poll wait queue head. The rule is that we cannot reenter the
 403 * wake up code from the same task more than EP_MAX_NESTS times,
 404 * and we cannot reenter the same wait queue head at all. This will
 405 * enable to have a hierarchy of epoll file descriptor of no more than
 406 * EP_MAX_NESTS deep.
 407 */
 408static void ep_poll_safewake(wait_queue_head_t *wq)
 409{
 410        int this_cpu = get_cpu();
 411
 412        ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
 413                       ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
 414
 415        put_cpu();
 416}
 417
 418/*
 419 * This function unregisters poll callbacks from the associated file
 420 * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
 421 * ep_free).
 422 */
 423static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
 424{
 425        struct list_head *lsthead = &epi->pwqlist;
 426        struct eppoll_entry *pwq;
 427
 428        while (!list_empty(lsthead)) {
 429                pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
 430
 431                list_del(&pwq->llink);
 432                remove_wait_queue(pwq->whead, &pwq->wait);
 433                kmem_cache_free(pwq_cache, pwq);
 434        }
 435}
 436
 437/**
 438 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
 439 *                      the scan code, to call f_op->poll(). Also allows for
 440 *                      O(NumReady) performance.
 441 *
 442 * @ep: Pointer to the epoll private data structure.
 443 * @sproc: Pointer to the scan callback.
 444 * @priv: Private opaque data passed to the @sproc callback.
 445 *
 446 * Returns: The same integer error code returned by the @sproc callback.
 447 */
 448static int ep_scan_ready_list(struct eventpoll *ep,
 449                              int (*sproc)(struct eventpoll *,
 450                                           struct list_head *, void *),
 451                              void *priv)
 452{
 453        int error, pwake = 0;
 454        unsigned long flags;
 455        struct epitem *epi, *nepi;
 456        LIST_HEAD(txlist);
 457
 458        /*
 459         * We need to lock this because we could be hit by
 460         * eventpoll_release_file() and epoll_ctl().
 461         */
 462        mutex_lock(&ep->mtx);
 463
 464        /*
 465         * Steal the ready list, and re-init the original one to the
 466         * empty list. Also, set ep->ovflist to NULL so that events
 467         * happening while looping w/out locks, are not lost. We cannot
 468         * have the poll callback to queue directly on ep->rdllist,
 469         * because we want the "sproc" callback to be able to do it
 470         * in a lockless way.
 471         */
 472        spin_lock_irqsave(&ep->lock, flags);
 473        list_splice_init(&ep->rdllist, &txlist);
 474        ep->ovflist = NULL;
 475        spin_unlock_irqrestore(&ep->lock, flags);
 476
 477        /*
 478         * Now call the callback function.
 479         */
 480        error = (*sproc)(ep, &txlist, priv);
 481
 482        spin_lock_irqsave(&ep->lock, flags);
 483        /*
 484         * During the time we spent inside the "sproc" callback, some
 485         * other events might have been queued by the poll callback.
 486         * We re-insert them inside the main ready-list here.
 487         */
 488        for (nepi = ep->ovflist; (epi = nepi) != NULL;
 489             nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
 490                /*
 491                 * We need to check if the item is already in the list.
 492                 * During the "sproc" callback execution time, items are
 493                 * queued into ->ovflist but the "txlist" might already
 494                 * contain them, and the list_splice() below takes care of them.
 495                 */
 496                if (!ep_is_linked(&epi->rdllink))
 497                        list_add_tail(&epi->rdllink, &ep->rdllist);
 498        }
 499        /*
 500         * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
 501         * releasing the lock, events will be queued in the normal way inside
 502         * ep->rdllist.
 503         */
 504        ep->ovflist = EP_UNACTIVE_PTR;
 505
 506        /*
 507         * Quickly re-inject items left on "txlist".
 508         */
 509        list_splice(&txlist, &ep->rdllist);
 510
 511        if (!list_empty(&ep->rdllist)) {
 512                /*
 513                 * Wake up (if active) both the eventpoll wait list and
 514                 * the ->poll() wait list (delayed after we release the lock).
 515                 */
 516                if (waitqueue_active(&ep->wq))
 517                        wake_up_locked(&ep->wq);
 518                if (waitqueue_active(&ep->poll_wait))
 519                        pwake++;
 520        }
 521        spin_unlock_irqrestore(&ep->lock, flags);
 522
 523        mutex_unlock(&ep->mtx);
 524
 525        /* We have to call this outside the lock */
 526        if (pwake)
 527                ep_poll_safewake(&ep->poll_wait);
 528
 529        return error;
 530}
 531
 532/*
 533 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
 534 * all the associated resources. Must be called with "mtx" held.
 535 */
 536static int ep_remove(struct eventpoll *ep, struct epitem *epi)
 537{
 538        unsigned long flags;
 539        struct file *file = epi->ffd.file;
 540
 541        /*
 542         * Removes poll wait queue hooks. We _have_ to do this without holding
 543         * the "ep->lock" otherwise a deadlock might occur. This because of the
 544         * sequence of the lock acquisition. Here we do "ep->lock" then the wait
 545         * queue head lock when unregistering the wait queue. The wakeup callback
 546         * will run by holding the wait queue head lock and will call our callback
 547         * that will try to get "ep->lock".
 548         */
 549        ep_unregister_pollwait(ep, epi);
 550
 551        /* Remove the current item from the list of epoll hooks */
 552        spin_lock(&file->f_lock);
 553        if (ep_is_linked(&epi->fllink))
 554                list_del_init(&epi->fllink);
 555        spin_unlock(&file->f_lock);
 556
 557        rb_erase(&epi->rbn, &ep->rbr);
 558
 559        spin_lock_irqsave(&ep->lock, flags);
 560        if (ep_is_linked(&epi->rdllink))
 561                list_del_init(&epi->rdllink);
 562        spin_unlock_irqrestore(&ep->lock, flags);
 563
 564        /* At this point it is safe to free the eventpoll item */
 565        kmem_cache_free(epi_cache, epi);
 566
 567        atomic_dec(&ep->user->epoll_watches);
 568
 569        return 0;
 570}
 571
 572static void ep_free(struct eventpoll *ep)
 573{
 574        struct rb_node *rbp;
 575        struct epitem *epi;
 576
 577        /* We need to release all tasks waiting for these file */
 578        if (waitqueue_active(&ep->poll_wait))
 579                ep_poll_safewake(&ep->poll_wait);
 580
 581        /*
 582         * We need to lock this because we could be hit by
 583         * eventpoll_release_file() while we're freeing the "struct eventpoll".
 584         * We do not need to hold "ep->mtx" here because the epoll file
 585         * is on the way to be removed and no one has references to it
 586         * anymore. The only hit might come from eventpoll_release_file() but
 587         * holding "epmutex" is sufficent here.
 588         */
 589        mutex_lock(&epmutex);
 590
 591        /*
 592         * Walks through the whole tree by unregistering poll callbacks.
 593         */
 594        for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
 595                epi = rb_entry(rbp, struct epitem, rbn);
 596
 597                ep_unregister_pollwait(ep, epi);
 598        }
 599
 600        /*
 601         * Walks through the whole tree by freeing each "struct epitem". At this
 602         * point we are sure no poll callbacks will be lingering around, and also by
 603         * holding "epmutex" we can be sure that no file cleanup code will hit
 604         * us during this operation. So we can avoid the lock on "ep->lock".
 605         */
 606        while ((rbp = rb_first(&ep->rbr)) != NULL) {
 607                epi = rb_entry(rbp, struct epitem, rbn);
 608                ep_remove(ep, epi);
 609        }
 610
 611        mutex_unlock(&epmutex);
 612        mutex_destroy(&ep->mtx);
 613        free_uid(ep->user);
 614        kfree(ep);
 615}
 616
 617static int ep_eventpoll_release(struct inode *inode, struct file *file)
 618{
 619        struct eventpoll *ep = file->private_data;
 620
 621        if (ep)
 622                ep_free(ep);
 623
 624        return 0;
 625}
 626
 627static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
 628                               void *priv)
 629{
 630        struct epitem *epi, *tmp;
 631
 632        list_for_each_entry_safe(epi, tmp, head, rdllink) {
 633                if (epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
 634                    epi->event.events)
 635                        return POLLIN | POLLRDNORM;
 636                else {
 637                        /*
 638                         * Item has been dropped into the ready list by the poll
 639                         * callback, but it's not actually ready, as far as
 640                         * caller requested events goes. We can remove it here.
 641                         */
 642                        list_del_init(&epi->rdllink);
 643                }
 644        }
 645
 646        return 0;
 647}
 648
 649static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
 650{
 651        return ep_scan_ready_list(priv, ep_read_events_proc, NULL);
 652}
 653
 654static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
 655{
 656        int pollflags;
 657        struct eventpoll *ep = file->private_data;
 658
 659        /* Insert inside our poll wait queue */
 660        poll_wait(file, &ep->poll_wait, wait);
 661
 662        /*
 663         * Proceed to find out if wanted events are really available inside
 664         * the ready list. This need to be done under ep_call_nested()
 665         * supervision, since the call to f_op->poll() done on listed files
 666         * could re-enter here.
 667         */
 668        pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
 669                                   ep_poll_readyevents_proc, ep, ep, current);
 670
 671        return pollflags != -1 ? pollflags : 0;
 672}
 673
 674/* File callbacks that implement the eventpoll file behaviour */
 675static const struct file_operations eventpoll_fops = {
 676        .release        = ep_eventpoll_release,
 677        .poll           = ep_eventpoll_poll
 678};
 679
 680/* Fast test to see if the file is an evenpoll file */
 681static inline int is_file_epoll(struct file *f)
 682{
 683        return f->f_op == &eventpoll_fops;
 684}
 685
 686/*
 687 * This is called from eventpoll_release() to unlink files from the eventpoll
 688 * interface. We need to have this facility to cleanup correctly files that are
 689 * closed without being removed from the eventpoll interface.
 690 */
 691void eventpoll_release_file(struct file *file)
 692{
 693        struct list_head *lsthead = &file->f_ep_links;
 694        struct eventpoll *ep;
 695        struct epitem *epi;
 696
 697        /*
 698         * We don't want to get "file->f_lock" because it is not
 699         * necessary. It is not necessary because we're in the "struct file"
 700         * cleanup path, and this means that noone is using this file anymore.
 701         * So, for example, epoll_ctl() cannot hit here since if we reach this
 702         * point, the file counter already went to zero and fget() would fail.
 703         * The only hit might come from ep_free() but by holding the mutex
 704         * will correctly serialize the operation. We do need to acquire
 705         * "ep->mtx" after "epmutex" because ep_remove() requires it when called
 706         * from anywhere but ep_free().
 707         *
 708         * Besides, ep_remove() acquires the lock, so we can't hold it here.
 709         */
 710        mutex_lock(&epmutex);
 711
 712        while (!list_empty(lsthead)) {
 713                epi = list_first_entry(lsthead, struct epitem, fllink);
 714
 715                ep = epi->ep;
 716                list_del_init(&epi->fllink);
 717                mutex_lock(&ep->mtx);
 718                ep_remove(ep, epi);
 719                mutex_unlock(&ep->mtx);
 720        }
 721
 722        mutex_unlock(&epmutex);
 723}
 724
 725static int ep_alloc(struct eventpoll **pep)
 726{
 727        int error;
 728        struct user_struct *user;
 729        struct eventpoll *ep;
 730
 731        user = get_current_user();
 732        error = -ENOMEM;
 733        ep = kzalloc(sizeof(*ep), GFP_KERNEL);
 734        if (unlikely(!ep))
 735                goto free_uid;
 736
 737        spin_lock_init(&ep->lock);
 738        mutex_init(&ep->mtx);
 739        init_waitqueue_head(&ep->wq);
 740        init_waitqueue_head(&ep->poll_wait);
 741        INIT_LIST_HEAD(&ep->rdllist);
 742        ep->rbr = RB_ROOT;
 743        ep->ovflist = EP_UNACTIVE_PTR;
 744        ep->user = user;
 745
 746        *pep = ep;
 747
 748        return 0;
 749
 750free_uid:
 751        free_uid(user);
 752        return error;
 753}
 754
 755/*
 756 * Search the file inside the eventpoll tree. The RB tree operations
 757 * are protected by the "mtx" mutex, and ep_find() must be called with
 758 * "mtx" held.
 759 */
 760static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
 761{
 762        int kcmp;
 763        struct rb_node *rbp;
 764        struct epitem *epi, *epir = NULL;
 765        struct epoll_filefd ffd;
 766
 767        ep_set_ffd(&ffd, file, fd);
 768        for (rbp = ep->rbr.rb_node; rbp; ) {
 769                epi = rb_entry(rbp, struct epitem, rbn);
 770                kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
 771                if (kcmp > 0)
 772                        rbp = rbp->rb_right;
 773                else if (kcmp < 0)
 774                        rbp = rbp->rb_left;
 775                else {
 776                        epir = epi;
 777                        break;
 778                }
 779        }
 780
 781        return epir;
 782}
 783
 784/*
 785 * This is the callback that is passed to the wait queue wakeup
 786 * machanism. It is called by the stored file descriptors when they
 787 * have events to report.
 788 */
 789static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
 790{
 791        int pwake = 0;
 792        unsigned long flags;
 793        struct epitem *epi = ep_item_from_wait(wait);
 794        struct eventpoll *ep = epi->ep;
 795
 796        spin_lock_irqsave(&ep->lock, flags);
 797
 798        /*
 799         * If the event mask does not contain any poll(2) event, we consider the
 800         * descriptor to be disabled. This condition is likely the effect of the
 801         * EPOLLONESHOT bit that disables the descriptor when an event is received,
 802         * until the next EPOLL_CTL_MOD will be issued.
 803         */
 804        if (!(epi->event.events & ~EP_PRIVATE_BITS))
 805                goto out_unlock;
 806
 807        /*
 808         * Check the events coming with the callback. At this stage, not
 809         * every device reports the events in the "key" parameter of the
 810         * callback. We need to be able to handle both cases here, hence the
 811         * test for "key" != NULL before the event match test.
 812         */
 813        if (key && !((unsigned long) key & epi->event.events))
 814                goto out_unlock;
 815
 816        /*
 817         * If we are trasfering events to userspace, we can hold no locks
 818         * (because we're accessing user memory, and because of linux f_op->poll()
 819         * semantics). All the events that happens during that period of time are
 820         * chained in ep->ovflist and requeued later on.
 821         */
 822        if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
 823                if (epi->next == EP_UNACTIVE_PTR) {
 824                        epi->next = ep->ovflist;
 825                        ep->ovflist = epi;
 826                }
 827                goto out_unlock;
 828        }
 829
 830        /* If this file is already in the ready list we exit soon */
 831        if (!ep_is_linked(&epi->rdllink))
 832                list_add_tail(&epi->rdllink, &ep->rdllist);
 833
 834        /*
 835         * Wake up ( if active ) both the eventpoll wait list and the ->poll()
 836         * wait list.
 837         */
 838        if (waitqueue_active(&ep->wq))
 839                wake_up_locked(&ep->wq);
 840        if (waitqueue_active(&ep->poll_wait))
 841                pwake++;
 842
 843out_unlock:
 844        spin_unlock_irqrestore(&ep->lock, flags);
 845
 846        /* We have to call this outside the lock */
 847        if (pwake)
 848                ep_poll_safewake(&ep->poll_wait);
 849
 850        return 1;
 851}
 852
 853/*
 854 * This is the callback that is used to add our wait queue to the
 855 * target file wakeup lists.
 856 */
 857static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
 858                                 poll_table *pt)
 859{
 860        struct epitem *epi = ep_item_from_epqueue(pt);
 861        struct eppoll_entry *pwq;
 862
 863        if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
 864                init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
 865                pwq->whead = whead;
 866                pwq->base = epi;
 867                add_wait_queue(whead, &pwq->wait);
 868                list_add_tail(&pwq->llink, &epi->pwqlist);
 869                epi->nwait++;
 870        } else {
 871                /* We have to signal that an error occurred */
 872                epi->nwait = -1;
 873        }
 874}
 875
 876static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
 877{
 878        int kcmp;
 879        struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
 880        struct epitem *epic;
 881
 882        while (*p) {
 883                parent = *p;
 884                epic = rb_entry(parent, struct epitem, rbn);
 885                kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
 886                if (kcmp > 0)
 887                        p = &parent->rb_right;
 888                else
 889                        p = &parent->rb_left;
 890        }
 891        rb_link_node(&epi->rbn, parent, p);
 892        rb_insert_color(&epi->rbn, &ep->rbr);
 893}
 894
 895/*
 896 * Must be called with "mtx" held.
 897 */
 898static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
 899                     struct file *tfile, int fd)
 900{
 901        int error, revents, pwake = 0;
 902        unsigned long flags;
 903        struct epitem *epi;
 904        struct ep_pqueue epq;
 905
 906        if (unlikely(atomic_read(&ep->user->epoll_watches) >=
 907                     max_user_watches))
 908                return -ENOSPC;
 909        if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
 910                return -ENOMEM;
 911
 912        /* Item initialization follow here ... */
 913        INIT_LIST_HEAD(&epi->rdllink);
 914        INIT_LIST_HEAD(&epi->fllink);
 915        INIT_LIST_HEAD(&epi->pwqlist);
 916        epi->ep = ep;
 917        ep_set_ffd(&epi->ffd, tfile, fd);
 918        epi->event = *event;
 919        epi->nwait = 0;
 920        epi->next = EP_UNACTIVE_PTR;
 921
 922        /* Initialize the poll table using the queue callback */
 923        epq.epi = epi;
 924        init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
 925
 926        /*
 927         * Attach the item to the poll hooks and get current event bits.
 928         * We can safely use the file* here because its usage count has
 929         * been increased by the caller of this function. Note that after
 930         * this operation completes, the poll callback can start hitting
 931         * the new item.
 932         */
 933        revents = tfile->f_op->poll(tfile, &epq.pt);
 934
 935        /*
 936         * We have to check if something went wrong during the poll wait queue
 937         * install process. Namely an allocation for a wait queue failed due
 938         * high memory pressure.
 939         */
 940        error = -ENOMEM;
 941        if (epi->nwait < 0)
 942                goto error_unregister;
 943
 944        /* Add the current item to the list of active epoll hook for this file */
 945        spin_lock(&tfile->f_lock);
 946        list_add_tail(&epi->fllink, &tfile->f_ep_links);
 947        spin_unlock(&tfile->f_lock);
 948
 949        /*
 950         * Add the current item to the RB tree. All RB tree operations are
 951         * protected by "mtx", and ep_insert() is called with "mtx" held.
 952         */
 953        ep_rbtree_insert(ep, epi);
 954
 955        /* We have to drop the new item inside our item list to keep track of it */
 956        spin_lock_irqsave(&ep->lock, flags);
 957
 958        /* If the file is already "ready" we drop it inside the ready list */
 959        if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
 960                list_add_tail(&epi->rdllink, &ep->rdllist);
 961
 962                /* Notify waiting tasks that events are available */
 963                if (waitqueue_active(&ep->wq))
 964                        wake_up_locked(&ep->wq);
 965                if (waitqueue_active(&ep->poll_wait))
 966                        pwake++;
 967        }
 968
 969        spin_unlock_irqrestore(&ep->lock, flags);
 970
 971        atomic_inc(&ep->user->epoll_watches);
 972
 973        /* We have to call this outside the lock */
 974        if (pwake)
 975                ep_poll_safewake(&ep->poll_wait);
 976
 977        return 0;
 978
 979error_unregister:
 980        ep_unregister_pollwait(ep, epi);
 981
 982        /*
 983         * We need to do this because an event could have been arrived on some
 984         * allocated wait queue. Note that we don't care about the ep->ovflist
 985         * list, since that is used/cleaned only inside a section bound by "mtx".
 986         * And ep_insert() is called with "mtx" held.
 987         */
 988        spin_lock_irqsave(&ep->lock, flags);
 989        if (ep_is_linked(&epi->rdllink))
 990                list_del_init(&epi->rdllink);
 991        spin_unlock_irqrestore(&ep->lock, flags);
 992
 993        kmem_cache_free(epi_cache, epi);
 994
 995        return error;
 996}
 997
 998/*
 999 * Modify the interest event mask by dropping an event if the new mask
1000 * has a match in the current file status. Must be called with "mtx" held.
1001 */
1002static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1003{
1004        int pwake = 0;
1005        unsigned int revents;
1006
1007        /*
1008         * Set the new event interest mask before calling f_op->poll();
1009         * otherwise we might miss an event that happens between the
1010         * f_op->poll() call and the new event set registering.
1011         */
1012        epi->event.events = event->events;
1013        epi->event.data = event->data; /* protected by mtx */
1014
1015        /*
1016         * Get current event bits. We can safely use the file* here because
1017         * its usage count has been increased by the caller of this function.
1018         */
1019        revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
1020
1021        /*
1022         * If the item is "hot" and it is not registered inside the ready
1023         * list, push it inside.
1024         */
1025        if (revents & event->events) {
1026                spin_lock_irq(&ep->lock);
1027                if (!ep_is_linked(&epi->rdllink)) {
1028                        list_add_tail(&epi->rdllink, &ep->rdllist);
1029
1030                        /* Notify waiting tasks that events are available */
1031                        if (waitqueue_active(&ep->wq))
1032                                wake_up_locked(&ep->wq);
1033                        if (waitqueue_active(&ep->poll_wait))
1034                                pwake++;
1035                }
1036                spin_unlock_irq(&ep->lock);
1037        }
1038
1039        /* We have to call this outside the lock */
1040        if (pwake)
1041                ep_poll_safewake(&ep->poll_wait);
1042
1043        return 0;
1044}
1045
1046static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1047                               void *priv)
1048{
1049        struct ep_send_events_data *esed = priv;
1050        int eventcnt;
1051        unsigned int revents;
1052        struct epitem *epi;
1053        struct epoll_event __user *uevent;
1054
1055        /*
1056         * We can loop without lock because we are passed a task private list.
1057         * Items cannot vanish during the loop because ep_scan_ready_list() is
1058         * holding "mtx" during this call.
1059         */
1060        for (eventcnt = 0, uevent = esed->events;
1061             !list_empty(head) && eventcnt < esed->maxevents;) {
1062                epi = list_first_entry(head, struct epitem, rdllink);
1063
1064                list_del_init(&epi->rdllink);
1065
1066                revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
1067                        epi->event.events;
1068
1069                /*
1070                 * If the event mask intersect the caller-requested one,
1071                 * deliver the event to userspace. Again, ep_scan_ready_list()
1072                 * is holding "mtx", so no operations coming from userspace
1073                 * can change the item.
1074                 */
1075                if (revents) {
1076                        if (__put_user(revents, &uevent->events) ||
1077                            __put_user(epi->event.data, &uevent->data)) {
1078                                list_add(&epi->rdllink, head);
1079                                return eventcnt ? eventcnt : -EFAULT;
1080                        }
1081                        eventcnt++;
1082                        uevent++;
1083                        if (epi->event.events & EPOLLONESHOT)
1084                                epi->event.events &= EP_PRIVATE_BITS;
1085                        else if (!(epi->event.events & EPOLLET)) {
1086                                /*
1087                                 * If this file has been added with Level
1088                                 * Trigger mode, we need to insert back inside
1089                                 * the ready list, so that the next call to
1090                                 * epoll_wait() will check again the events
1091                                 * availability. At this point, noone can insert
1092                                 * into ep->rdllist besides us. The epoll_ctl()
1093                                 * callers are locked out by
1094                                 * ep_scan_ready_list() holding "mtx" and the
1095                                 * poll callback will queue them in ep->ovflist.
1096                                 */
1097                                list_add_tail(&epi->rdllink, &ep->rdllist);
1098                        }
1099                }
1100        }
1101
1102        return eventcnt;
1103}
1104
1105static int ep_send_events(struct eventpoll *ep,
1106                          struct epoll_event __user *events, int maxevents)
1107{
1108        struct ep_send_events_data esed;
1109
1110        esed.maxevents = maxevents;
1111        esed.events = events;
1112
1113        return ep_scan_ready_list(ep, ep_send_events_proc, &esed);
1114}
1115
1116static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1117                   int maxevents, long timeout)
1118{
1119        int res, eavail;
1120        unsigned long flags;
1121        long jtimeout;
1122        wait_queue_t wait;
1123
1124        /*
1125         * Calculate the timeout by checking for the "infinite" value (-1)
1126         * and the overflow condition. The passed timeout is in milliseconds,
1127         * that why (t * HZ) / 1000.
1128         */
1129        jtimeout = (timeout < 0 || timeout >= EP_MAX_MSTIMEO) ?
1130                MAX_SCHEDULE_TIMEOUT : (timeout * HZ + 999) / 1000;
1131
1132retry:
1133        spin_lock_irqsave(&ep->lock, flags);
1134
1135        res = 0;
1136        if (list_empty(&ep->rdllist)) {
1137                /*
1138                 * We don't have any available event to return to the caller.
1139                 * We need to sleep here, and we will be wake up by
1140                 * ep_poll_callback() when events will become available.
1141                 */
1142                init_waitqueue_entry(&wait, current);
1143                wait.flags |= WQ_FLAG_EXCLUSIVE;
1144                __add_wait_queue(&ep->wq, &wait);
1145
1146                for (;;) {
1147                        /*
1148                         * We don't want to sleep if the ep_poll_callback() sends us
1149                         * a wakeup in between. That's why we set the task state
1150                         * to TASK_INTERRUPTIBLE before doing the checks.
1151                         */
1152                        set_current_state(TASK_INTERRUPTIBLE);
1153                        if (!list_empty(&ep->rdllist) || !jtimeout)
1154                                break;
1155                        if (signal_pending(current)) {
1156                                res = -EINTR;
1157                                break;
1158                        }
1159
1160                        spin_unlock_irqrestore(&ep->lock, flags);
1161                        jtimeout = schedule_timeout(jtimeout);
1162                        spin_lock_irqsave(&ep->lock, flags);
1163                }
1164                __remove_wait_queue(&ep->wq, &wait);
1165
1166                set_current_state(TASK_RUNNING);
1167        }
1168        /* Is it worth to try to dig for events ? */
1169        eavail = !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
1170
1171        spin_unlock_irqrestore(&ep->lock, flags);
1172
1173        /*
1174         * Try to transfer events to user space. In case we get 0 events and
1175         * there's still timeout left over, we go trying again in search of
1176         * more luck.
1177         */
1178        if (!res && eavail &&
1179            !(res = ep_send_events(ep, events, maxevents)) && jtimeout)
1180                goto retry;
1181
1182        return res;
1183}
1184
1185/*
1186 * Open an eventpoll file descriptor.
1187 */
1188SYSCALL_DEFINE1(epoll_create1, int, flags)
1189{
1190        int error;
1191        struct eventpoll *ep = NULL;
1192
1193        /* Check the EPOLL_* constant for consistency.  */
1194        BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1195
1196        if (flags & ~EPOLL_CLOEXEC)
1197                return -EINVAL;
1198        /*
1199         * Create the internal data structure ("struct eventpoll").
1200         */
1201        error = ep_alloc(&ep);
1202        if (error < 0)
1203                return error;
1204        /*
1205         * Creates all the items needed to setup an eventpoll file. That is,
1206         * a file structure and a free file descriptor.
1207         */
1208        error = anon_inode_getfd("[eventpoll]", &eventpoll_fops, ep,
1209                                 flags & O_CLOEXEC);
1210        if (error < 0)
1211                ep_free(ep);
1212
1213        return error;
1214}
1215
1216SYSCALL_DEFINE1(epoll_create, int, size)
1217{
1218        if (size <= 0)
1219                return -EINVAL;
1220
1221        return sys_epoll_create1(0);
1222}
1223
1224/*
1225 * The following function implements the controller interface for
1226 * the eventpoll file that enables the insertion/removal/change of
1227 * file descriptors inside the interest set.
1228 */
1229SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1230                struct epoll_event __user *, event)
1231{
1232        int error;
1233        struct file *file, *tfile;
1234        struct eventpoll *ep;
1235        struct epitem *epi;
1236        struct epoll_event epds;
1237
1238        error = -EFAULT;
1239        if (ep_op_has_event(op) &&
1240            copy_from_user(&epds, event, sizeof(struct epoll_event)))
1241                goto error_return;
1242
1243        /* Get the "struct file *" for the eventpoll file */
1244        error = -EBADF;
1245        file = fget(epfd);
1246        if (!file)
1247                goto error_return;
1248
1249        /* Get the "struct file *" for the target file */
1250        tfile = fget(fd);
1251        if (!tfile)
1252                goto error_fput;
1253
1254        /* The target file descriptor must support poll */
1255        error = -EPERM;
1256        if (!tfile->f_op || !tfile->f_op->poll)
1257                goto error_tgt_fput;
1258
1259        /*
1260         * We have to check that the file structure underneath the file descriptor
1261         * the user passed to us _is_ an eventpoll file. And also we do not permit
1262         * adding an epoll file descriptor inside itself.
1263         */
1264        error = -EINVAL;
1265        if (file == tfile || !is_file_epoll(file))
1266                goto error_tgt_fput;
1267
1268        /*
1269         * At this point it is safe to assume that the "private_data" contains
1270         * our own data structure.
1271         */
1272        ep = file->private_data;
1273
1274        mutex_lock(&ep->mtx);
1275
1276        /*
1277         * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1278         * above, we can be sure to be able to use the item looked up by
1279         * ep_find() till we release the mutex.
1280         */
1281        epi = ep_find(ep, tfile, fd);
1282
1283        error = -EINVAL;
1284        switch (op) {
1285        case EPOLL_CTL_ADD:
1286                if (!epi) {
1287                        epds.events |= POLLERR | POLLHUP;
1288                        error = ep_insert(ep, &epds, tfile, fd);
1289                } else
1290                        error = -EEXIST;
1291                break;
1292        case EPOLL_CTL_DEL:
1293                if (epi)
1294                        error = ep_remove(ep, epi);
1295                else
1296                        error = -ENOENT;
1297                break;
1298        case EPOLL_CTL_MOD:
1299                if (epi) {
1300                        epds.events |= POLLERR | POLLHUP;
1301                        error = ep_modify(ep, epi, &epds);
1302                } else
1303                        error = -ENOENT;
1304                break;
1305        }
1306        mutex_unlock(&ep->mtx);
1307
1308error_tgt_fput:
1309        fput(tfile);
1310error_fput:
1311        fput(file);
1312error_return:
1313
1314        return error;
1315}
1316
1317/*
1318 * Implement the event wait interface for the eventpoll file. It is the kernel
1319 * part of the user space epoll_wait(2).
1320 */
1321SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1322                int, maxevents, int, timeout)
1323{
1324        int error;
1325        struct file *file;
1326        struct eventpoll *ep;
1327
1328        /* The maximum number of event must be greater than zero */
1329        if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1330                return -EINVAL;
1331
1332        /* Verify that the area passed by the user is writeable */
1333        if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) {
1334                error = -EFAULT;
1335                goto error_return;
1336        }
1337
1338        /* Get the "struct file *" for the eventpoll file */
1339        error = -EBADF;
1340        file = fget(epfd);
1341        if (!file)
1342                goto error_return;
1343
1344        /*
1345         * We have to check that the file structure underneath the fd
1346         * the user passed to us _is_ an eventpoll file.
1347         */
1348        error = -EINVAL;
1349        if (!is_file_epoll(file))
1350                goto error_fput;
1351
1352        /*
1353         * At this point it is safe to assume that the "private_data" contains
1354         * our own data structure.
1355         */
1356        ep = file->private_data;
1357
1358        /* Time to fish for events ... */
1359        error = ep_poll(ep, events, maxevents, timeout);
1360
1361error_fput:
1362        fput(file);
1363error_return:
1364
1365        return error;
1366}
1367
1368#ifdef HAVE_SET_RESTORE_SIGMASK
1369
1370/*
1371 * Implement the event wait interface for the eventpoll file. It is the kernel
1372 * part of the user space epoll_pwait(2).
1373 */
1374SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1375                int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1376                size_t, sigsetsize)
1377{
1378        int error;
1379        sigset_t ksigmask, sigsaved;
1380
1381        /*
1382         * If the caller wants a certain signal mask to be set during the wait,
1383         * we apply it here.
1384         */
1385        if (sigmask) {
1386                if (sigsetsize != sizeof(sigset_t))
1387                        return -EINVAL;
1388                if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1389                        return -EFAULT;
1390                sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1391                sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1392        }
1393
1394        error = sys_epoll_wait(epfd, events, maxevents, timeout);
1395
1396        /*
1397         * If we changed the signal mask, we need to restore the original one.
1398         * In case we've got a signal while waiting, we do not restore the
1399         * signal mask yet, and we allow do_signal() to deliver the signal on
1400         * the way back to userspace, before the signal mask is restored.
1401         */
1402        if (sigmask) {
1403                if (error == -EINTR) {
1404                        memcpy(&current->saved_sigmask, &sigsaved,
1405                               sizeof(sigsaved));
1406                        set_restore_sigmask();
1407                } else
1408                        sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1409        }
1410
1411        return error;
1412}
1413
1414#endif /* HAVE_SET_RESTORE_SIGMASK */
1415
1416static int __init eventpoll_init(void)
1417{
1418        struct sysinfo si;
1419
1420        si_meminfo(&si);
1421        /*
1422         * Allows top 4% of lomem to be allocated for epoll watches (per user).
1423         */
1424        max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
1425                EP_ITEM_COST;
1426
1427        /* Initialize the structure used to perform safe poll wait head wake ups */
1428        ep_nested_calls_init(&poll_safewake_ncalls);
1429
1430        /* Initialize the structure used to perform file's f_op->poll() calls */
1431        ep_nested_calls_init(&poll_readywalk_ncalls);
1432
1433        /* Allocates slab cache used to allocate "struct epitem" items */
1434        epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
1435                        0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1436
1437        /* Allocates slab cache used to allocate "struct eppoll_entry" */
1438        pwq_cache = kmem_cache_create("eventpoll_pwq",
1439                        sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
1440
1441        return 0;
1442}
1443fs_initcall(eventpoll_init);
1444