linux/fs/exec.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/exec.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7/*
   8 * #!-checking implemented by tytso.
   9 */
  10/*
  11 * Demand-loading implemented 01.12.91 - no need to read anything but
  12 * the header into memory. The inode of the executable is put into
  13 * "current->executable", and page faults do the actual loading. Clean.
  14 *
  15 * Once more I can proudly say that linux stood up to being changed: it
  16 * was less than 2 hours work to get demand-loading completely implemented.
  17 *
  18 * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
  19 * current->executable is only used by the procfs.  This allows a dispatch
  20 * table to check for several different types  of binary formats.  We keep
  21 * trying until we recognize the file or we run out of supported binary
  22 * formats. 
  23 */
  24
  25#include <linux/slab.h>
  26#include <linux/file.h>
  27#include <linux/fdtable.h>
  28#include <linux/mm.h>
  29#include <linux/stat.h>
  30#include <linux/fcntl.h>
  31#include <linux/smp_lock.h>
  32#include <linux/swap.h>
  33#include <linux/string.h>
  34#include <linux/init.h>
  35#include <linux/pagemap.h>
  36#include <linux/perf_event.h>
  37#include <linux/highmem.h>
  38#include <linux/spinlock.h>
  39#include <linux/key.h>
  40#include <linux/personality.h>
  41#include <linux/binfmts.h>
  42#include <linux/utsname.h>
  43#include <linux/pid_namespace.h>
  44#include <linux/module.h>
  45#include <linux/namei.h>
  46#include <linux/proc_fs.h>
  47#include <linux/mount.h>
  48#include <linux/security.h>
  49#include <linux/ima.h>
  50#include <linux/syscalls.h>
  51#include <linux/tsacct_kern.h>
  52#include <linux/cn_proc.h>
  53#include <linux/audit.h>
  54#include <linux/tracehook.h>
  55#include <linux/kmod.h>
  56#include <linux/fsnotify.h>
  57#include <linux/fs_struct.h>
  58#include <linux/pipe_fs_i.h>
  59
  60#include <asm/uaccess.h>
  61#include <asm/mmu_context.h>
  62#include <asm/tlb.h>
  63#include "internal.h"
  64
  65int core_uses_pid;
  66char core_pattern[CORENAME_MAX_SIZE] = "core";
  67unsigned int core_pipe_limit;
  68int suid_dumpable = 0;
  69
  70/* The maximal length of core_pattern is also specified in sysctl.c */
  71
  72static LIST_HEAD(formats);
  73static DEFINE_RWLOCK(binfmt_lock);
  74
  75int __register_binfmt(struct linux_binfmt * fmt, int insert)
  76{
  77        if (!fmt)
  78                return -EINVAL;
  79        write_lock(&binfmt_lock);
  80        insert ? list_add(&fmt->lh, &formats) :
  81                 list_add_tail(&fmt->lh, &formats);
  82        write_unlock(&binfmt_lock);
  83        return 0;       
  84}
  85
  86EXPORT_SYMBOL(__register_binfmt);
  87
  88void unregister_binfmt(struct linux_binfmt * fmt)
  89{
  90        write_lock(&binfmt_lock);
  91        list_del(&fmt->lh);
  92        write_unlock(&binfmt_lock);
  93}
  94
  95EXPORT_SYMBOL(unregister_binfmt);
  96
  97static inline void put_binfmt(struct linux_binfmt * fmt)
  98{
  99        module_put(fmt->module);
 100}
 101
 102/*
 103 * Note that a shared library must be both readable and executable due to
 104 * security reasons.
 105 *
 106 * Also note that we take the address to load from from the file itself.
 107 */
 108SYSCALL_DEFINE1(uselib, const char __user *, library)
 109{
 110        struct file *file;
 111        char *tmp = getname(library);
 112        int error = PTR_ERR(tmp);
 113
 114        if (IS_ERR(tmp))
 115                goto out;
 116
 117        file = do_filp_open(AT_FDCWD, tmp,
 118                                O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
 119                                MAY_READ | MAY_EXEC | MAY_OPEN);
 120        putname(tmp);
 121        error = PTR_ERR(file);
 122        if (IS_ERR(file))
 123                goto out;
 124
 125        error = -EINVAL;
 126        if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
 127                goto exit;
 128
 129        error = -EACCES;
 130        if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
 131                goto exit;
 132
 133        fsnotify_open(file->f_path.dentry);
 134
 135        error = -ENOEXEC;
 136        if(file->f_op) {
 137                struct linux_binfmt * fmt;
 138
 139                read_lock(&binfmt_lock);
 140                list_for_each_entry(fmt, &formats, lh) {
 141                        if (!fmt->load_shlib)
 142                                continue;
 143                        if (!try_module_get(fmt->module))
 144                                continue;
 145                        read_unlock(&binfmt_lock);
 146                        error = fmt->load_shlib(file);
 147                        read_lock(&binfmt_lock);
 148                        put_binfmt(fmt);
 149                        if (error != -ENOEXEC)
 150                                break;
 151                }
 152                read_unlock(&binfmt_lock);
 153        }
 154exit:
 155        fput(file);
 156out:
 157        return error;
 158}
 159
 160#ifdef CONFIG_MMU
 161
 162static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
 163                int write)
 164{
 165        struct page *page;
 166        int ret;
 167
 168#ifdef CONFIG_STACK_GROWSUP
 169        if (write) {
 170                ret = expand_stack_downwards(bprm->vma, pos);
 171                if (ret < 0)
 172                        return NULL;
 173        }
 174#endif
 175        ret = get_user_pages(current, bprm->mm, pos,
 176                        1, write, 1, &page, NULL);
 177        if (ret <= 0)
 178                return NULL;
 179
 180        if (write) {
 181                unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
 182                struct rlimit *rlim;
 183
 184                /*
 185                 * We've historically supported up to 32 pages (ARG_MAX)
 186                 * of argument strings even with small stacks
 187                 */
 188                if (size <= ARG_MAX)
 189                        return page;
 190
 191                /*
 192                 * Limit to 1/4-th the stack size for the argv+env strings.
 193                 * This ensures that:
 194                 *  - the remaining binfmt code will not run out of stack space,
 195                 *  - the program will have a reasonable amount of stack left
 196                 *    to work from.
 197                 */
 198                rlim = current->signal->rlim;
 199                if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
 200                        put_page(page);
 201                        return NULL;
 202                }
 203        }
 204
 205        return page;
 206}
 207
 208static void put_arg_page(struct page *page)
 209{
 210        put_page(page);
 211}
 212
 213static void free_arg_page(struct linux_binprm *bprm, int i)
 214{
 215}
 216
 217static void free_arg_pages(struct linux_binprm *bprm)
 218{
 219}
 220
 221static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
 222                struct page *page)
 223{
 224        flush_cache_page(bprm->vma, pos, page_to_pfn(page));
 225}
 226
 227static int __bprm_mm_init(struct linux_binprm *bprm)
 228{
 229        int err;
 230        struct vm_area_struct *vma = NULL;
 231        struct mm_struct *mm = bprm->mm;
 232
 233        bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
 234        if (!vma)
 235                return -ENOMEM;
 236
 237        down_write(&mm->mmap_sem);
 238        vma->vm_mm = mm;
 239
 240        /*
 241         * Place the stack at the largest stack address the architecture
 242         * supports. Later, we'll move this to an appropriate place. We don't
 243         * use STACK_TOP because that can depend on attributes which aren't
 244         * configured yet.
 245         */
 246        vma->vm_end = STACK_TOP_MAX;
 247        vma->vm_start = vma->vm_end - PAGE_SIZE;
 248        vma->vm_flags = VM_STACK_FLAGS;
 249        vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
 250        err = insert_vm_struct(mm, vma);
 251        if (err)
 252                goto err;
 253
 254        mm->stack_vm = mm->total_vm = 1;
 255        up_write(&mm->mmap_sem);
 256        bprm->p = vma->vm_end - sizeof(void *);
 257        return 0;
 258err:
 259        up_write(&mm->mmap_sem);
 260        bprm->vma = NULL;
 261        kmem_cache_free(vm_area_cachep, vma);
 262        return err;
 263}
 264
 265static bool valid_arg_len(struct linux_binprm *bprm, long len)
 266{
 267        return len <= MAX_ARG_STRLEN;
 268}
 269
 270#else
 271
 272static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
 273                int write)
 274{
 275        struct page *page;
 276
 277        page = bprm->page[pos / PAGE_SIZE];
 278        if (!page && write) {
 279                page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
 280                if (!page)
 281                        return NULL;
 282                bprm->page[pos / PAGE_SIZE] = page;
 283        }
 284
 285        return page;
 286}
 287
 288static void put_arg_page(struct page *page)
 289{
 290}
 291
 292static void free_arg_page(struct linux_binprm *bprm, int i)
 293{
 294        if (bprm->page[i]) {
 295                __free_page(bprm->page[i]);
 296                bprm->page[i] = NULL;
 297        }
 298}
 299
 300static void free_arg_pages(struct linux_binprm *bprm)
 301{
 302        int i;
 303
 304        for (i = 0; i < MAX_ARG_PAGES; i++)
 305                free_arg_page(bprm, i);
 306}
 307
 308static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
 309                struct page *page)
 310{
 311}
 312
 313static int __bprm_mm_init(struct linux_binprm *bprm)
 314{
 315        bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
 316        return 0;
 317}
 318
 319static bool valid_arg_len(struct linux_binprm *bprm, long len)
 320{
 321        return len <= bprm->p;
 322}
 323
 324#endif /* CONFIG_MMU */
 325
 326/*
 327 * Create a new mm_struct and populate it with a temporary stack
 328 * vm_area_struct.  We don't have enough context at this point to set the stack
 329 * flags, permissions, and offset, so we use temporary values.  We'll update
 330 * them later in setup_arg_pages().
 331 */
 332int bprm_mm_init(struct linux_binprm *bprm)
 333{
 334        int err;
 335        struct mm_struct *mm = NULL;
 336
 337        bprm->mm = mm = mm_alloc();
 338        err = -ENOMEM;
 339        if (!mm)
 340                goto err;
 341
 342        err = init_new_context(current, mm);
 343        if (err)
 344                goto err;
 345
 346        err = __bprm_mm_init(bprm);
 347        if (err)
 348                goto err;
 349
 350        return 0;
 351
 352err:
 353        if (mm) {
 354                bprm->mm = NULL;
 355                mmdrop(mm);
 356        }
 357
 358        return err;
 359}
 360
 361/*
 362 * count() counts the number of strings in array ARGV.
 363 */
 364static int count(char __user * __user * argv, int max)
 365{
 366        int i = 0;
 367
 368        if (argv != NULL) {
 369                for (;;) {
 370                        char __user * p;
 371
 372                        if (get_user(p, argv))
 373                                return -EFAULT;
 374                        if (!p)
 375                                break;
 376                        argv++;
 377                        if (i++ >= max)
 378                                return -E2BIG;
 379                        cond_resched();
 380                }
 381        }
 382        return i;
 383}
 384
 385/*
 386 * 'copy_strings()' copies argument/environment strings from the old
 387 * processes's memory to the new process's stack.  The call to get_user_pages()
 388 * ensures the destination page is created and not swapped out.
 389 */
 390static int copy_strings(int argc, char __user * __user * argv,
 391                        struct linux_binprm *bprm)
 392{
 393        struct page *kmapped_page = NULL;
 394        char *kaddr = NULL;
 395        unsigned long kpos = 0;
 396        int ret;
 397
 398        while (argc-- > 0) {
 399                char __user *str;
 400                int len;
 401                unsigned long pos;
 402
 403                if (get_user(str, argv+argc) ||
 404                                !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
 405                        ret = -EFAULT;
 406                        goto out;
 407                }
 408
 409                if (!valid_arg_len(bprm, len)) {
 410                        ret = -E2BIG;
 411                        goto out;
 412                }
 413
 414                /* We're going to work our way backwords. */
 415                pos = bprm->p;
 416                str += len;
 417                bprm->p -= len;
 418
 419                while (len > 0) {
 420                        int offset, bytes_to_copy;
 421
 422                        offset = pos % PAGE_SIZE;
 423                        if (offset == 0)
 424                                offset = PAGE_SIZE;
 425
 426                        bytes_to_copy = offset;
 427                        if (bytes_to_copy > len)
 428                                bytes_to_copy = len;
 429
 430                        offset -= bytes_to_copy;
 431                        pos -= bytes_to_copy;
 432                        str -= bytes_to_copy;
 433                        len -= bytes_to_copy;
 434
 435                        if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
 436                                struct page *page;
 437
 438                                page = get_arg_page(bprm, pos, 1);
 439                                if (!page) {
 440                                        ret = -E2BIG;
 441                                        goto out;
 442                                }
 443
 444                                if (kmapped_page) {
 445                                        flush_kernel_dcache_page(kmapped_page);
 446                                        kunmap(kmapped_page);
 447                                        put_arg_page(kmapped_page);
 448                                }
 449                                kmapped_page = page;
 450                                kaddr = kmap(kmapped_page);
 451                                kpos = pos & PAGE_MASK;
 452                                flush_arg_page(bprm, kpos, kmapped_page);
 453                        }
 454                        if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
 455                                ret = -EFAULT;
 456                                goto out;
 457                        }
 458                }
 459        }
 460        ret = 0;
 461out:
 462        if (kmapped_page) {
 463                flush_kernel_dcache_page(kmapped_page);
 464                kunmap(kmapped_page);
 465                put_arg_page(kmapped_page);
 466        }
 467        return ret;
 468}
 469
 470/*
 471 * Like copy_strings, but get argv and its values from kernel memory.
 472 */
 473int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
 474{
 475        int r;
 476        mm_segment_t oldfs = get_fs();
 477        set_fs(KERNEL_DS);
 478        r = copy_strings(argc, (char __user * __user *)argv, bprm);
 479        set_fs(oldfs);
 480        return r;
 481}
 482EXPORT_SYMBOL(copy_strings_kernel);
 483
 484#ifdef CONFIG_MMU
 485
 486/*
 487 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
 488 * the binfmt code determines where the new stack should reside, we shift it to
 489 * its final location.  The process proceeds as follows:
 490 *
 491 * 1) Use shift to calculate the new vma endpoints.
 492 * 2) Extend vma to cover both the old and new ranges.  This ensures the
 493 *    arguments passed to subsequent functions are consistent.
 494 * 3) Move vma's page tables to the new range.
 495 * 4) Free up any cleared pgd range.
 496 * 5) Shrink the vma to cover only the new range.
 497 */
 498static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
 499{
 500        struct mm_struct *mm = vma->vm_mm;
 501        unsigned long old_start = vma->vm_start;
 502        unsigned long old_end = vma->vm_end;
 503        unsigned long length = old_end - old_start;
 504        unsigned long new_start = old_start - shift;
 505        unsigned long new_end = old_end - shift;
 506        struct mmu_gather *tlb;
 507
 508        BUG_ON(new_start > new_end);
 509
 510        /*
 511         * ensure there are no vmas between where we want to go
 512         * and where we are
 513         */
 514        if (vma != find_vma(mm, new_start))
 515                return -EFAULT;
 516
 517        /*
 518         * cover the whole range: [new_start, old_end)
 519         */
 520        vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
 521
 522        /*
 523         * move the page tables downwards, on failure we rely on
 524         * process cleanup to remove whatever mess we made.
 525         */
 526        if (length != move_page_tables(vma, old_start,
 527                                       vma, new_start, length))
 528                return -ENOMEM;
 529
 530        lru_add_drain();
 531        tlb = tlb_gather_mmu(mm, 0);
 532        if (new_end > old_start) {
 533                /*
 534                 * when the old and new regions overlap clear from new_end.
 535                 */
 536                free_pgd_range(tlb, new_end, old_end, new_end,
 537                        vma->vm_next ? vma->vm_next->vm_start : 0);
 538        } else {
 539                /*
 540                 * otherwise, clean from old_start; this is done to not touch
 541                 * the address space in [new_end, old_start) some architectures
 542                 * have constraints on va-space that make this illegal (IA64) -
 543                 * for the others its just a little faster.
 544                 */
 545                free_pgd_range(tlb, old_start, old_end, new_end,
 546                        vma->vm_next ? vma->vm_next->vm_start : 0);
 547        }
 548        tlb_finish_mmu(tlb, new_end, old_end);
 549
 550        /*
 551         * shrink the vma to just the new range.
 552         */
 553        vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
 554
 555        return 0;
 556}
 557
 558#define EXTRA_STACK_VM_PAGES    20      /* random */
 559
 560/*
 561 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
 562 * the stack is optionally relocated, and some extra space is added.
 563 */
 564int setup_arg_pages(struct linux_binprm *bprm,
 565                    unsigned long stack_top,
 566                    int executable_stack)
 567{
 568        unsigned long ret;
 569        unsigned long stack_shift;
 570        struct mm_struct *mm = current->mm;
 571        struct vm_area_struct *vma = bprm->vma;
 572        struct vm_area_struct *prev = NULL;
 573        unsigned long vm_flags;
 574        unsigned long stack_base;
 575
 576#ifdef CONFIG_STACK_GROWSUP
 577        /* Limit stack size to 1GB */
 578        stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
 579        if (stack_base > (1 << 30))
 580                stack_base = 1 << 30;
 581
 582        /* Make sure we didn't let the argument array grow too large. */
 583        if (vma->vm_end - vma->vm_start > stack_base)
 584                return -ENOMEM;
 585
 586        stack_base = PAGE_ALIGN(stack_top - stack_base);
 587
 588        stack_shift = vma->vm_start - stack_base;
 589        mm->arg_start = bprm->p - stack_shift;
 590        bprm->p = vma->vm_end - stack_shift;
 591#else
 592        stack_top = arch_align_stack(stack_top);
 593        stack_top = PAGE_ALIGN(stack_top);
 594        stack_shift = vma->vm_end - stack_top;
 595
 596        bprm->p -= stack_shift;
 597        mm->arg_start = bprm->p;
 598#endif
 599
 600        if (bprm->loader)
 601                bprm->loader -= stack_shift;
 602        bprm->exec -= stack_shift;
 603
 604        down_write(&mm->mmap_sem);
 605        vm_flags = VM_STACK_FLAGS;
 606
 607        /*
 608         * Adjust stack execute permissions; explicitly enable for
 609         * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
 610         * (arch default) otherwise.
 611         */
 612        if (unlikely(executable_stack == EXSTACK_ENABLE_X))
 613                vm_flags |= VM_EXEC;
 614        else if (executable_stack == EXSTACK_DISABLE_X)
 615                vm_flags &= ~VM_EXEC;
 616        vm_flags |= mm->def_flags;
 617
 618        ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
 619                        vm_flags);
 620        if (ret)
 621                goto out_unlock;
 622        BUG_ON(prev != vma);
 623
 624        /* Move stack pages down in memory. */
 625        if (stack_shift) {
 626                ret = shift_arg_pages(vma, stack_shift);
 627                if (ret)
 628                        goto out_unlock;
 629        }
 630
 631#ifdef CONFIG_STACK_GROWSUP
 632        stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
 633#else
 634        stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
 635#endif
 636        ret = expand_stack(vma, stack_base);
 637        if (ret)
 638                ret = -EFAULT;
 639
 640out_unlock:
 641        up_write(&mm->mmap_sem);
 642        return ret;
 643}
 644EXPORT_SYMBOL(setup_arg_pages);
 645
 646#endif /* CONFIG_MMU */
 647
 648struct file *open_exec(const char *name)
 649{
 650        struct file *file;
 651        int err;
 652
 653        file = do_filp_open(AT_FDCWD, name,
 654                                O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
 655                                MAY_EXEC | MAY_OPEN);
 656        if (IS_ERR(file))
 657                goto out;
 658
 659        err = -EACCES;
 660        if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
 661                goto exit;
 662
 663        if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
 664                goto exit;
 665
 666        fsnotify_open(file->f_path.dentry);
 667
 668        err = deny_write_access(file);
 669        if (err)
 670                goto exit;
 671
 672out:
 673        return file;
 674
 675exit:
 676        fput(file);
 677        return ERR_PTR(err);
 678}
 679EXPORT_SYMBOL(open_exec);
 680
 681int kernel_read(struct file *file, loff_t offset,
 682                char *addr, unsigned long count)
 683{
 684        mm_segment_t old_fs;
 685        loff_t pos = offset;
 686        int result;
 687
 688        old_fs = get_fs();
 689        set_fs(get_ds());
 690        /* The cast to a user pointer is valid due to the set_fs() */
 691        result = vfs_read(file, (void __user *)addr, count, &pos);
 692        set_fs(old_fs);
 693        return result;
 694}
 695
 696EXPORT_SYMBOL(kernel_read);
 697
 698static int exec_mmap(struct mm_struct *mm)
 699{
 700        struct task_struct *tsk;
 701        struct mm_struct * old_mm, *active_mm;
 702
 703        /* Notify parent that we're no longer interested in the old VM */
 704        tsk = current;
 705        old_mm = current->mm;
 706        mm_release(tsk, old_mm);
 707
 708        if (old_mm) {
 709                /*
 710                 * Make sure that if there is a core dump in progress
 711                 * for the old mm, we get out and die instead of going
 712                 * through with the exec.  We must hold mmap_sem around
 713                 * checking core_state and changing tsk->mm.
 714                 */
 715                down_read(&old_mm->mmap_sem);
 716                if (unlikely(old_mm->core_state)) {
 717                        up_read(&old_mm->mmap_sem);
 718                        return -EINTR;
 719                }
 720        }
 721        task_lock(tsk);
 722        active_mm = tsk->active_mm;
 723        tsk->mm = mm;
 724        tsk->active_mm = mm;
 725        activate_mm(active_mm, mm);
 726        task_unlock(tsk);
 727        arch_pick_mmap_layout(mm);
 728        if (old_mm) {
 729                up_read(&old_mm->mmap_sem);
 730                BUG_ON(active_mm != old_mm);
 731                mm_update_next_owner(old_mm);
 732                mmput(old_mm);
 733                return 0;
 734        }
 735        mmdrop(active_mm);
 736        return 0;
 737}
 738
 739/*
 740 * This function makes sure the current process has its own signal table,
 741 * so that flush_signal_handlers can later reset the handlers without
 742 * disturbing other processes.  (Other processes might share the signal
 743 * table via the CLONE_SIGHAND option to clone().)
 744 */
 745static int de_thread(struct task_struct *tsk)
 746{
 747        struct signal_struct *sig = tsk->signal;
 748        struct sighand_struct *oldsighand = tsk->sighand;
 749        spinlock_t *lock = &oldsighand->siglock;
 750        int count;
 751
 752        if (thread_group_empty(tsk))
 753                goto no_thread_group;
 754
 755        /*
 756         * Kill all other threads in the thread group.
 757         */
 758        spin_lock_irq(lock);
 759        if (signal_group_exit(sig)) {
 760                /*
 761                 * Another group action in progress, just
 762                 * return so that the signal is processed.
 763                 */
 764                spin_unlock_irq(lock);
 765                return -EAGAIN;
 766        }
 767        sig->group_exit_task = tsk;
 768        zap_other_threads(tsk);
 769
 770        /* Account for the thread group leader hanging around: */
 771        count = thread_group_leader(tsk) ? 1 : 2;
 772        sig->notify_count = count;
 773        while (atomic_read(&sig->count) > count) {
 774                __set_current_state(TASK_UNINTERRUPTIBLE);
 775                spin_unlock_irq(lock);
 776                schedule();
 777                spin_lock_irq(lock);
 778        }
 779        spin_unlock_irq(lock);
 780
 781        /*
 782         * At this point all other threads have exited, all we have to
 783         * do is to wait for the thread group leader to become inactive,
 784         * and to assume its PID:
 785         */
 786        if (!thread_group_leader(tsk)) {
 787                struct task_struct *leader = tsk->group_leader;
 788
 789                sig->notify_count = -1; /* for exit_notify() */
 790                for (;;) {
 791                        write_lock_irq(&tasklist_lock);
 792                        if (likely(leader->exit_state))
 793                                break;
 794                        __set_current_state(TASK_UNINTERRUPTIBLE);
 795                        write_unlock_irq(&tasklist_lock);
 796                        schedule();
 797                }
 798
 799                /*
 800                 * The only record we have of the real-time age of a
 801                 * process, regardless of execs it's done, is start_time.
 802                 * All the past CPU time is accumulated in signal_struct
 803                 * from sister threads now dead.  But in this non-leader
 804                 * exec, nothing survives from the original leader thread,
 805                 * whose birth marks the true age of this process now.
 806                 * When we take on its identity by switching to its PID, we
 807                 * also take its birthdate (always earlier than our own).
 808                 */
 809                tsk->start_time = leader->start_time;
 810
 811                BUG_ON(!same_thread_group(leader, tsk));
 812                BUG_ON(has_group_leader_pid(tsk));
 813                /*
 814                 * An exec() starts a new thread group with the
 815                 * TGID of the previous thread group. Rehash the
 816                 * two threads with a switched PID, and release
 817                 * the former thread group leader:
 818                 */
 819
 820                /* Become a process group leader with the old leader's pid.
 821                 * The old leader becomes a thread of the this thread group.
 822                 * Note: The old leader also uses this pid until release_task
 823                 *       is called.  Odd but simple and correct.
 824                 */
 825                detach_pid(tsk, PIDTYPE_PID);
 826                tsk->pid = leader->pid;
 827                attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
 828                transfer_pid(leader, tsk, PIDTYPE_PGID);
 829                transfer_pid(leader, tsk, PIDTYPE_SID);
 830                list_replace_rcu(&leader->tasks, &tsk->tasks);
 831
 832                tsk->group_leader = tsk;
 833                leader->group_leader = tsk;
 834
 835                tsk->exit_signal = SIGCHLD;
 836
 837                BUG_ON(leader->exit_state != EXIT_ZOMBIE);
 838                leader->exit_state = EXIT_DEAD;
 839                write_unlock_irq(&tasklist_lock);
 840
 841                release_task(leader);
 842        }
 843
 844        sig->group_exit_task = NULL;
 845        sig->notify_count = 0;
 846
 847no_thread_group:
 848        if (current->mm)
 849                setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
 850
 851        exit_itimers(sig);
 852        flush_itimer_signals();
 853
 854        if (atomic_read(&oldsighand->count) != 1) {
 855                struct sighand_struct *newsighand;
 856                /*
 857                 * This ->sighand is shared with the CLONE_SIGHAND
 858                 * but not CLONE_THREAD task, switch to the new one.
 859                 */
 860                newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
 861                if (!newsighand)
 862                        return -ENOMEM;
 863
 864                atomic_set(&newsighand->count, 1);
 865                memcpy(newsighand->action, oldsighand->action,
 866                       sizeof(newsighand->action));
 867
 868                write_lock_irq(&tasklist_lock);
 869                spin_lock(&oldsighand->siglock);
 870                rcu_assign_pointer(tsk->sighand, newsighand);
 871                spin_unlock(&oldsighand->siglock);
 872                write_unlock_irq(&tasklist_lock);
 873
 874                __cleanup_sighand(oldsighand);
 875        }
 876
 877        BUG_ON(!thread_group_leader(tsk));
 878        return 0;
 879}
 880
 881/*
 882 * These functions flushes out all traces of the currently running executable
 883 * so that a new one can be started
 884 */
 885static void flush_old_files(struct files_struct * files)
 886{
 887        long j = -1;
 888        struct fdtable *fdt;
 889
 890        spin_lock(&files->file_lock);
 891        for (;;) {
 892                unsigned long set, i;
 893
 894                j++;
 895                i = j * __NFDBITS;
 896                fdt = files_fdtable(files);
 897                if (i >= fdt->max_fds)
 898                        break;
 899                set = fdt->close_on_exec->fds_bits[j];
 900                if (!set)
 901                        continue;
 902                fdt->close_on_exec->fds_bits[j] = 0;
 903                spin_unlock(&files->file_lock);
 904                for ( ; set ; i++,set >>= 1) {
 905                        if (set & 1) {
 906                                sys_close(i);
 907                        }
 908                }
 909                spin_lock(&files->file_lock);
 910
 911        }
 912        spin_unlock(&files->file_lock);
 913}
 914
 915char *get_task_comm(char *buf, struct task_struct *tsk)
 916{
 917        /* buf must be at least sizeof(tsk->comm) in size */
 918        task_lock(tsk);
 919        strncpy(buf, tsk->comm, sizeof(tsk->comm));
 920        task_unlock(tsk);
 921        return buf;
 922}
 923
 924void set_task_comm(struct task_struct *tsk, char *buf)
 925{
 926        task_lock(tsk);
 927        strlcpy(tsk->comm, buf, sizeof(tsk->comm));
 928        task_unlock(tsk);
 929        perf_event_comm(tsk);
 930}
 931
 932int flush_old_exec(struct linux_binprm * bprm)
 933{
 934        char * name;
 935        int i, ch, retval;
 936        char tcomm[sizeof(current->comm)];
 937
 938        /*
 939         * Make sure we have a private signal table and that
 940         * we are unassociated from the previous thread group.
 941         */
 942        retval = de_thread(current);
 943        if (retval)
 944                goto out;
 945
 946        set_mm_exe_file(bprm->mm, bprm->file);
 947
 948        /*
 949         * Release all of the old mmap stuff
 950         */
 951        retval = exec_mmap(bprm->mm);
 952        if (retval)
 953                goto out;
 954
 955        bprm->mm = NULL;                /* We're using it now */
 956
 957        /* This is the point of no return */
 958        current->sas_ss_sp = current->sas_ss_size = 0;
 959
 960        if (current_euid() == current_uid() && current_egid() == current_gid())
 961                set_dumpable(current->mm, 1);
 962        else
 963                set_dumpable(current->mm, suid_dumpable);
 964
 965        name = bprm->filename;
 966
 967        /* Copies the binary name from after last slash */
 968        for (i=0; (ch = *(name++)) != '\0';) {
 969                if (ch == '/')
 970                        i = 0; /* overwrite what we wrote */
 971                else
 972                        if (i < (sizeof(tcomm) - 1))
 973                                tcomm[i++] = ch;
 974        }
 975        tcomm[i] = '\0';
 976        set_task_comm(current, tcomm);
 977
 978        current->flags &= ~PF_RANDOMIZE;
 979        flush_thread();
 980
 981        /* Set the new mm task size. We have to do that late because it may
 982         * depend on TIF_32BIT which is only updated in flush_thread() on
 983         * some architectures like powerpc
 984         */
 985        current->mm->task_size = TASK_SIZE;
 986
 987        /* install the new credentials */
 988        if (bprm->cred->uid != current_euid() ||
 989            bprm->cred->gid != current_egid()) {
 990                current->pdeath_signal = 0;
 991        } else if (file_permission(bprm->file, MAY_READ) ||
 992                   bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
 993                set_dumpable(current->mm, suid_dumpable);
 994        }
 995
 996        current->personality &= ~bprm->per_clear;
 997
 998        /*
 999         * Flush performance counters when crossing a
1000         * security domain:
1001         */
1002        if (!get_dumpable(current->mm))
1003                perf_event_exit_task(current);
1004
1005        /* An exec changes our domain. We are no longer part of the thread
1006           group */
1007
1008        current->self_exec_id++;
1009                        
1010        flush_signal_handlers(current, 0);
1011        flush_old_files(current->files);
1012
1013        return 0;
1014
1015out:
1016        return retval;
1017}
1018
1019EXPORT_SYMBOL(flush_old_exec);
1020
1021/*
1022 * Prepare credentials and lock ->cred_guard_mutex.
1023 * install_exec_creds() commits the new creds and drops the lock.
1024 * Or, if exec fails before, free_bprm() should release ->cred and
1025 * and unlock.
1026 */
1027int prepare_bprm_creds(struct linux_binprm *bprm)
1028{
1029        if (mutex_lock_interruptible(&current->cred_guard_mutex))
1030                return -ERESTARTNOINTR;
1031
1032        bprm->cred = prepare_exec_creds();
1033        if (likely(bprm->cred))
1034                return 0;
1035
1036        mutex_unlock(&current->cred_guard_mutex);
1037        return -ENOMEM;
1038}
1039
1040void free_bprm(struct linux_binprm *bprm)
1041{
1042        free_arg_pages(bprm);
1043        if (bprm->cred) {
1044                mutex_unlock(&current->cred_guard_mutex);
1045                abort_creds(bprm->cred);
1046        }
1047        kfree(bprm);
1048}
1049
1050/*
1051 * install the new credentials for this executable
1052 */
1053void install_exec_creds(struct linux_binprm *bprm)
1054{
1055        security_bprm_committing_creds(bprm);
1056
1057        commit_creds(bprm->cred);
1058        bprm->cred = NULL;
1059        /*
1060         * cred_guard_mutex must be held at least to this point to prevent
1061         * ptrace_attach() from altering our determination of the task's
1062         * credentials; any time after this it may be unlocked.
1063         */
1064        security_bprm_committed_creds(bprm);
1065        mutex_unlock(&current->cred_guard_mutex);
1066}
1067EXPORT_SYMBOL(install_exec_creds);
1068
1069/*
1070 * determine how safe it is to execute the proposed program
1071 * - the caller must hold current->cred_guard_mutex to protect against
1072 *   PTRACE_ATTACH
1073 */
1074int check_unsafe_exec(struct linux_binprm *bprm)
1075{
1076        struct task_struct *p = current, *t;
1077        unsigned n_fs;
1078        int res = 0;
1079
1080        bprm->unsafe = tracehook_unsafe_exec(p);
1081
1082        n_fs = 1;
1083        write_lock(&p->fs->lock);
1084        rcu_read_lock();
1085        for (t = next_thread(p); t != p; t = next_thread(t)) {
1086                if (t->fs == p->fs)
1087                        n_fs++;
1088        }
1089        rcu_read_unlock();
1090
1091        if (p->fs->users > n_fs) {
1092                bprm->unsafe |= LSM_UNSAFE_SHARE;
1093        } else {
1094                res = -EAGAIN;
1095                if (!p->fs->in_exec) {
1096                        p->fs->in_exec = 1;
1097                        res = 1;
1098                }
1099        }
1100        write_unlock(&p->fs->lock);
1101
1102        return res;
1103}
1104
1105/* 
1106 * Fill the binprm structure from the inode. 
1107 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1108 *
1109 * This may be called multiple times for binary chains (scripts for example).
1110 */
1111int prepare_binprm(struct linux_binprm *bprm)
1112{
1113        umode_t mode;
1114        struct inode * inode = bprm->file->f_path.dentry->d_inode;
1115        int retval;
1116
1117        mode = inode->i_mode;
1118        if (bprm->file->f_op == NULL)
1119                return -EACCES;
1120
1121        /* clear any previous set[ug]id data from a previous binary */
1122        bprm->cred->euid = current_euid();
1123        bprm->cred->egid = current_egid();
1124
1125        if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1126                /* Set-uid? */
1127                if (mode & S_ISUID) {
1128                        bprm->per_clear |= PER_CLEAR_ON_SETID;
1129                        bprm->cred->euid = inode->i_uid;
1130                }
1131
1132                /* Set-gid? */
1133                /*
1134                 * If setgid is set but no group execute bit then this
1135                 * is a candidate for mandatory locking, not a setgid
1136                 * executable.
1137                 */
1138                if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1139                        bprm->per_clear |= PER_CLEAR_ON_SETID;
1140                        bprm->cred->egid = inode->i_gid;
1141                }
1142        }
1143
1144        /* fill in binprm security blob */
1145        retval = security_bprm_set_creds(bprm);
1146        if (retval)
1147                return retval;
1148        bprm->cred_prepared = 1;
1149
1150        memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1151        return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1152}
1153
1154EXPORT_SYMBOL(prepare_binprm);
1155
1156/*
1157 * Arguments are '\0' separated strings found at the location bprm->p
1158 * points to; chop off the first by relocating brpm->p to right after
1159 * the first '\0' encountered.
1160 */
1161int remove_arg_zero(struct linux_binprm *bprm)
1162{
1163        int ret = 0;
1164        unsigned long offset;
1165        char *kaddr;
1166        struct page *page;
1167
1168        if (!bprm->argc)
1169                return 0;
1170
1171        do {
1172                offset = bprm->p & ~PAGE_MASK;
1173                page = get_arg_page(bprm, bprm->p, 0);
1174                if (!page) {
1175                        ret = -EFAULT;
1176                        goto out;
1177                }
1178                kaddr = kmap_atomic(page, KM_USER0);
1179
1180                for (; offset < PAGE_SIZE && kaddr[offset];
1181                                offset++, bprm->p++)
1182                        ;
1183
1184                kunmap_atomic(kaddr, KM_USER0);
1185                put_arg_page(page);
1186
1187                if (offset == PAGE_SIZE)
1188                        free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1189        } while (offset == PAGE_SIZE);
1190
1191        bprm->p++;
1192        bprm->argc--;
1193        ret = 0;
1194
1195out:
1196        return ret;
1197}
1198EXPORT_SYMBOL(remove_arg_zero);
1199
1200/*
1201 * cycle the list of binary formats handler, until one recognizes the image
1202 */
1203int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1204{
1205        unsigned int depth = bprm->recursion_depth;
1206        int try,retval;
1207        struct linux_binfmt *fmt;
1208
1209        retval = security_bprm_check(bprm);
1210        if (retval)
1211                return retval;
1212        retval = ima_bprm_check(bprm);
1213        if (retval)
1214                return retval;
1215
1216        /* kernel module loader fixup */
1217        /* so we don't try to load run modprobe in kernel space. */
1218        set_fs(USER_DS);
1219
1220        retval = audit_bprm(bprm);
1221        if (retval)
1222                return retval;
1223
1224        retval = -ENOENT;
1225        for (try=0; try<2; try++) {
1226                read_lock(&binfmt_lock);
1227                list_for_each_entry(fmt, &formats, lh) {
1228                        int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1229                        if (!fn)
1230                                continue;
1231                        if (!try_module_get(fmt->module))
1232                                continue;
1233                        read_unlock(&binfmt_lock);
1234                        retval = fn(bprm, regs);
1235                        /*
1236                         * Restore the depth counter to its starting value
1237                         * in this call, so we don't have to rely on every
1238                         * load_binary function to restore it on return.
1239                         */
1240                        bprm->recursion_depth = depth;
1241                        if (retval >= 0) {
1242                                if (depth == 0)
1243                                        tracehook_report_exec(fmt, bprm, regs);
1244                                put_binfmt(fmt);
1245                                allow_write_access(bprm->file);
1246                                if (bprm->file)
1247                                        fput(bprm->file);
1248                                bprm->file = NULL;
1249                                current->did_exec = 1;
1250                                proc_exec_connector(current);
1251                                return retval;
1252                        }
1253                        read_lock(&binfmt_lock);
1254                        put_binfmt(fmt);
1255                        if (retval != -ENOEXEC || bprm->mm == NULL)
1256                                break;
1257                        if (!bprm->file) {
1258                                read_unlock(&binfmt_lock);
1259                                return retval;
1260                        }
1261                }
1262                read_unlock(&binfmt_lock);
1263                if (retval != -ENOEXEC || bprm->mm == NULL) {
1264                        break;
1265#ifdef CONFIG_MODULES
1266                } else {
1267#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1268                        if (printable(bprm->buf[0]) &&
1269                            printable(bprm->buf[1]) &&
1270                            printable(bprm->buf[2]) &&
1271                            printable(bprm->buf[3]))
1272                                break; /* -ENOEXEC */
1273                        request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1274#endif
1275                }
1276        }
1277        return retval;
1278}
1279
1280EXPORT_SYMBOL(search_binary_handler);
1281
1282/*
1283 * sys_execve() executes a new program.
1284 */
1285int do_execve(char * filename,
1286        char __user *__user *argv,
1287        char __user *__user *envp,
1288        struct pt_regs * regs)
1289{
1290        struct linux_binprm *bprm;
1291        struct file *file;
1292        struct files_struct *displaced;
1293        bool clear_in_exec;
1294        int retval;
1295
1296        retval = unshare_files(&displaced);
1297        if (retval)
1298                goto out_ret;
1299
1300        retval = -ENOMEM;
1301        bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1302        if (!bprm)
1303                goto out_files;
1304
1305        retval = prepare_bprm_creds(bprm);
1306        if (retval)
1307                goto out_free;
1308
1309        retval = check_unsafe_exec(bprm);
1310        if (retval < 0)
1311                goto out_free;
1312        clear_in_exec = retval;
1313        current->in_execve = 1;
1314
1315        file = open_exec(filename);
1316        retval = PTR_ERR(file);
1317        if (IS_ERR(file))
1318                goto out_unmark;
1319
1320        sched_exec();
1321
1322        bprm->file = file;
1323        bprm->filename = filename;
1324        bprm->interp = filename;
1325
1326        retval = bprm_mm_init(bprm);
1327        if (retval)
1328                goto out_file;
1329
1330        bprm->argc = count(argv, MAX_ARG_STRINGS);
1331        if ((retval = bprm->argc) < 0)
1332                goto out;
1333
1334        bprm->envc = count(envp, MAX_ARG_STRINGS);
1335        if ((retval = bprm->envc) < 0)
1336                goto out;
1337
1338        retval = prepare_binprm(bprm);
1339        if (retval < 0)
1340                goto out;
1341
1342        retval = copy_strings_kernel(1, &bprm->filename, bprm);
1343        if (retval < 0)
1344                goto out;
1345
1346        bprm->exec = bprm->p;
1347        retval = copy_strings(bprm->envc, envp, bprm);
1348        if (retval < 0)
1349                goto out;
1350
1351        retval = copy_strings(bprm->argc, argv, bprm);
1352        if (retval < 0)
1353                goto out;
1354
1355        current->flags &= ~PF_KTHREAD;
1356        retval = search_binary_handler(bprm,regs);
1357        if (retval < 0)
1358                goto out;
1359
1360        current->stack_start = current->mm->start_stack;
1361
1362        /* execve succeeded */
1363        current->fs->in_exec = 0;
1364        current->in_execve = 0;
1365        acct_update_integrals(current);
1366        free_bprm(bprm);
1367        if (displaced)
1368                put_files_struct(displaced);
1369        return retval;
1370
1371out:
1372        if (bprm->mm)
1373                mmput (bprm->mm);
1374
1375out_file:
1376        if (bprm->file) {
1377                allow_write_access(bprm->file);
1378                fput(bprm->file);
1379        }
1380
1381out_unmark:
1382        if (clear_in_exec)
1383                current->fs->in_exec = 0;
1384        current->in_execve = 0;
1385
1386out_free:
1387        free_bprm(bprm);
1388
1389out_files:
1390        if (displaced)
1391                reset_files_struct(displaced);
1392out_ret:
1393        return retval;
1394}
1395
1396void set_binfmt(struct linux_binfmt *new)
1397{
1398        struct mm_struct *mm = current->mm;
1399
1400        if (mm->binfmt)
1401                module_put(mm->binfmt->module);
1402
1403        mm->binfmt = new;
1404        if (new)
1405                __module_get(new->module);
1406}
1407
1408EXPORT_SYMBOL(set_binfmt);
1409
1410/* format_corename will inspect the pattern parameter, and output a
1411 * name into corename, which must have space for at least
1412 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1413 */
1414static int format_corename(char *corename, long signr)
1415{
1416        const struct cred *cred = current_cred();
1417        const char *pat_ptr = core_pattern;
1418        int ispipe = (*pat_ptr == '|');
1419        char *out_ptr = corename;
1420        char *const out_end = corename + CORENAME_MAX_SIZE;
1421        int rc;
1422        int pid_in_pattern = 0;
1423
1424        /* Repeat as long as we have more pattern to process and more output
1425           space */
1426        while (*pat_ptr) {
1427                if (*pat_ptr != '%') {
1428                        if (out_ptr == out_end)
1429                                goto out;
1430                        *out_ptr++ = *pat_ptr++;
1431                } else {
1432                        switch (*++pat_ptr) {
1433                        case 0:
1434                                goto out;
1435                        /* Double percent, output one percent */
1436                        case '%':
1437                                if (out_ptr == out_end)
1438                                        goto out;
1439                                *out_ptr++ = '%';
1440                                break;
1441                        /* pid */
1442                        case 'p':
1443                                pid_in_pattern = 1;
1444                                rc = snprintf(out_ptr, out_end - out_ptr,
1445                                              "%d", task_tgid_vnr(current));
1446                                if (rc > out_end - out_ptr)
1447                                        goto out;
1448                                out_ptr += rc;
1449                                break;
1450                        /* uid */
1451                        case 'u':
1452                                rc = snprintf(out_ptr, out_end - out_ptr,
1453                                              "%d", cred->uid);
1454                                if (rc > out_end - out_ptr)
1455                                        goto out;
1456                                out_ptr += rc;
1457                                break;
1458                        /* gid */
1459                        case 'g':
1460                                rc = snprintf(out_ptr, out_end - out_ptr,
1461                                              "%d", cred->gid);
1462                                if (rc > out_end - out_ptr)
1463                                        goto out;
1464                                out_ptr += rc;
1465                                break;
1466                        /* signal that caused the coredump */
1467                        case 's':
1468                                rc = snprintf(out_ptr, out_end - out_ptr,
1469                                              "%ld", signr);
1470                                if (rc > out_end - out_ptr)
1471                                        goto out;
1472                                out_ptr += rc;
1473                                break;
1474                        /* UNIX time of coredump */
1475                        case 't': {
1476                                struct timeval tv;
1477                                do_gettimeofday(&tv);
1478                                rc = snprintf(out_ptr, out_end - out_ptr,
1479                                              "%lu", tv.tv_sec);
1480                                if (rc > out_end - out_ptr)
1481                                        goto out;
1482                                out_ptr += rc;
1483                                break;
1484                        }
1485                        /* hostname */
1486                        case 'h':
1487                                down_read(&uts_sem);
1488                                rc = snprintf(out_ptr, out_end - out_ptr,
1489                                              "%s", utsname()->nodename);
1490                                up_read(&uts_sem);
1491                                if (rc > out_end - out_ptr)
1492                                        goto out;
1493                                out_ptr += rc;
1494                                break;
1495                        /* executable */
1496                        case 'e':
1497                                rc = snprintf(out_ptr, out_end - out_ptr,
1498                                              "%s", current->comm);
1499                                if (rc > out_end - out_ptr)
1500                                        goto out;
1501                                out_ptr += rc;
1502                                break;
1503                        /* core limit size */
1504                        case 'c':
1505                                rc = snprintf(out_ptr, out_end - out_ptr,
1506                                              "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1507                                if (rc > out_end - out_ptr)
1508                                        goto out;
1509                                out_ptr += rc;
1510                                break;
1511                        default:
1512                                break;
1513                        }
1514                        ++pat_ptr;
1515                }
1516        }
1517        /* Backward compatibility with core_uses_pid:
1518         *
1519         * If core_pattern does not include a %p (as is the default)
1520         * and core_uses_pid is set, then .%pid will be appended to
1521         * the filename. Do not do this for piped commands. */
1522        if (!ispipe && !pid_in_pattern && core_uses_pid) {
1523                rc = snprintf(out_ptr, out_end - out_ptr,
1524                              ".%d", task_tgid_vnr(current));
1525                if (rc > out_end - out_ptr)
1526                        goto out;
1527                out_ptr += rc;
1528        }
1529out:
1530        *out_ptr = 0;
1531        return ispipe;
1532}
1533
1534static int zap_process(struct task_struct *start)
1535{
1536        struct task_struct *t;
1537        int nr = 0;
1538
1539        start->signal->flags = SIGNAL_GROUP_EXIT;
1540        start->signal->group_stop_count = 0;
1541
1542        t = start;
1543        do {
1544                if (t != current && t->mm) {
1545                        sigaddset(&t->pending.signal, SIGKILL);
1546                        signal_wake_up(t, 1);
1547                        nr++;
1548                }
1549        } while_each_thread(start, t);
1550
1551        return nr;
1552}
1553
1554static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1555                                struct core_state *core_state, int exit_code)
1556{
1557        struct task_struct *g, *p;
1558        unsigned long flags;
1559        int nr = -EAGAIN;
1560
1561        spin_lock_irq(&tsk->sighand->siglock);
1562        if (!signal_group_exit(tsk->signal)) {
1563                mm->core_state = core_state;
1564                tsk->signal->group_exit_code = exit_code;
1565                nr = zap_process(tsk);
1566        }
1567        spin_unlock_irq(&tsk->sighand->siglock);
1568        if (unlikely(nr < 0))
1569                return nr;
1570
1571        if (atomic_read(&mm->mm_users) == nr + 1)
1572                goto done;
1573        /*
1574         * We should find and kill all tasks which use this mm, and we should
1575         * count them correctly into ->nr_threads. We don't take tasklist
1576         * lock, but this is safe wrt:
1577         *
1578         * fork:
1579         *      None of sub-threads can fork after zap_process(leader). All
1580         *      processes which were created before this point should be
1581         *      visible to zap_threads() because copy_process() adds the new
1582         *      process to the tail of init_task.tasks list, and lock/unlock
1583         *      of ->siglock provides a memory barrier.
1584         *
1585         * do_exit:
1586         *      The caller holds mm->mmap_sem. This means that the task which
1587         *      uses this mm can't pass exit_mm(), so it can't exit or clear
1588         *      its ->mm.
1589         *
1590         * de_thread:
1591         *      It does list_replace_rcu(&leader->tasks, &current->tasks),
1592         *      we must see either old or new leader, this does not matter.
1593         *      However, it can change p->sighand, so lock_task_sighand(p)
1594         *      must be used. Since p->mm != NULL and we hold ->mmap_sem
1595         *      it can't fail.
1596         *
1597         *      Note also that "g" can be the old leader with ->mm == NULL
1598         *      and already unhashed and thus removed from ->thread_group.
1599         *      This is OK, __unhash_process()->list_del_rcu() does not
1600         *      clear the ->next pointer, we will find the new leader via
1601         *      next_thread().
1602         */
1603        rcu_read_lock();
1604        for_each_process(g) {
1605                if (g == tsk->group_leader)
1606                        continue;
1607                if (g->flags & PF_KTHREAD)
1608                        continue;
1609                p = g;
1610                do {
1611                        if (p->mm) {
1612                                if (unlikely(p->mm == mm)) {
1613                                        lock_task_sighand(p, &flags);
1614                                        nr += zap_process(p);
1615                                        unlock_task_sighand(p, &flags);
1616                                }
1617                                break;
1618                        }
1619                } while_each_thread(g, p);
1620        }
1621        rcu_read_unlock();
1622done:
1623        atomic_set(&core_state->nr_threads, nr);
1624        return nr;
1625}
1626
1627static int coredump_wait(int exit_code, struct core_state *core_state)
1628{
1629        struct task_struct *tsk = current;
1630        struct mm_struct *mm = tsk->mm;
1631        struct completion *vfork_done;
1632        int core_waiters;
1633
1634        init_completion(&core_state->startup);
1635        core_state->dumper.task = tsk;
1636        core_state->dumper.next = NULL;
1637        core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1638        up_write(&mm->mmap_sem);
1639
1640        if (unlikely(core_waiters < 0))
1641                goto fail;
1642
1643        /*
1644         * Make sure nobody is waiting for us to release the VM,
1645         * otherwise we can deadlock when we wait on each other
1646         */
1647        vfork_done = tsk->vfork_done;
1648        if (vfork_done) {
1649                tsk->vfork_done = NULL;
1650                complete(vfork_done);
1651        }
1652
1653        if (core_waiters)
1654                wait_for_completion(&core_state->startup);
1655fail:
1656        return core_waiters;
1657}
1658
1659static void coredump_finish(struct mm_struct *mm)
1660{
1661        struct core_thread *curr, *next;
1662        struct task_struct *task;
1663
1664        next = mm->core_state->dumper.next;
1665        while ((curr = next) != NULL) {
1666                next = curr->next;
1667                task = curr->task;
1668                /*
1669                 * see exit_mm(), curr->task must not see
1670                 * ->task == NULL before we read ->next.
1671                 */
1672                smp_mb();
1673                curr->task = NULL;
1674                wake_up_process(task);
1675        }
1676
1677        mm->core_state = NULL;
1678}
1679
1680/*
1681 * set_dumpable converts traditional three-value dumpable to two flags and
1682 * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1683 * these bits are not changed atomically.  So get_dumpable can observe the
1684 * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1685 * return either old dumpable or new one by paying attention to the order of
1686 * modifying the bits.
1687 *
1688 * dumpable |   mm->flags (binary)
1689 * old  new | initial interim  final
1690 * ---------+-----------------------
1691 *  0    1  |   00      01      01
1692 *  0    2  |   00      10(*)   11
1693 *  1    0  |   01      00      00
1694 *  1    2  |   01      11      11
1695 *  2    0  |   11      10(*)   00
1696 *  2    1  |   11      11      01
1697 *
1698 * (*) get_dumpable regards interim value of 10 as 11.
1699 */
1700void set_dumpable(struct mm_struct *mm, int value)
1701{
1702        switch (value) {
1703        case 0:
1704                clear_bit(MMF_DUMPABLE, &mm->flags);
1705                smp_wmb();
1706                clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1707                break;
1708        case 1:
1709                set_bit(MMF_DUMPABLE, &mm->flags);
1710                smp_wmb();
1711                clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1712                break;
1713        case 2:
1714                set_bit(MMF_DUMP_SECURELY, &mm->flags);
1715                smp_wmb();
1716                set_bit(MMF_DUMPABLE, &mm->flags);
1717                break;
1718        }
1719}
1720
1721int get_dumpable(struct mm_struct *mm)
1722{
1723        int ret;
1724
1725        ret = mm->flags & 0x3;
1726        return (ret >= 2) ? 2 : ret;
1727}
1728
1729static void wait_for_dump_helpers(struct file *file)
1730{
1731        struct pipe_inode_info *pipe;
1732
1733        pipe = file->f_path.dentry->d_inode->i_pipe;
1734
1735        pipe_lock(pipe);
1736        pipe->readers++;
1737        pipe->writers--;
1738
1739        while ((pipe->readers > 1) && (!signal_pending(current))) {
1740                wake_up_interruptible_sync(&pipe->wait);
1741                kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1742                pipe_wait(pipe);
1743        }
1744
1745        pipe->readers--;
1746        pipe->writers++;
1747        pipe_unlock(pipe);
1748
1749}
1750
1751
1752void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1753{
1754        struct core_state core_state;
1755        char corename[CORENAME_MAX_SIZE + 1];
1756        struct mm_struct *mm = current->mm;
1757        struct linux_binfmt * binfmt;
1758        struct inode * inode;
1759        struct file * file;
1760        const struct cred *old_cred;
1761        struct cred *cred;
1762        int retval = 0;
1763        int flag = 0;
1764        int ispipe = 0;
1765        unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1766        char **helper_argv = NULL;
1767        int helper_argc = 0;
1768        int dump_count = 0;
1769        static atomic_t core_dump_count = ATOMIC_INIT(0);
1770
1771        audit_core_dumps(signr);
1772
1773        binfmt = mm->binfmt;
1774        if (!binfmt || !binfmt->core_dump)
1775                goto fail;
1776
1777        cred = prepare_creds();
1778        if (!cred) {
1779                retval = -ENOMEM;
1780                goto fail;
1781        }
1782
1783        down_write(&mm->mmap_sem);
1784        /*
1785         * If another thread got here first, or we are not dumpable, bail out.
1786         */
1787        if (mm->core_state || !get_dumpable(mm)) {
1788                up_write(&mm->mmap_sem);
1789                put_cred(cred);
1790                goto fail;
1791        }
1792
1793        /*
1794         *      We cannot trust fsuid as being the "true" uid of the
1795         *      process nor do we know its entire history. We only know it
1796         *      was tainted so we dump it as root in mode 2.
1797         */
1798        if (get_dumpable(mm) == 2) {    /* Setuid core dump mode */
1799                flag = O_EXCL;          /* Stop rewrite attacks */
1800                cred->fsuid = 0;        /* Dump root private */
1801        }
1802
1803        retval = coredump_wait(exit_code, &core_state);
1804        if (retval < 0) {
1805                put_cred(cred);
1806                goto fail;
1807        }
1808
1809        old_cred = override_creds(cred);
1810
1811        /*
1812         * Clear any false indication of pending signals that might
1813         * be seen by the filesystem code called to write the core file.
1814         */
1815        clear_thread_flag(TIF_SIGPENDING);
1816
1817        /*
1818         * lock_kernel() because format_corename() is controlled by sysctl, which
1819         * uses lock_kernel()
1820         */
1821        lock_kernel();
1822        ispipe = format_corename(corename, signr);
1823        unlock_kernel();
1824
1825        if ((!ispipe) && (core_limit < binfmt->min_coredump))
1826                goto fail_unlock;
1827
1828        if (ispipe) {
1829                if (core_limit == 0) {
1830                        /*
1831                         * Normally core limits are irrelevant to pipes, since
1832                         * we're not writing to the file system, but we use
1833                         * core_limit of 0 here as a speacial value. Any
1834                         * non-zero limit gets set to RLIM_INFINITY below, but
1835                         * a limit of 0 skips the dump.  This is a consistent
1836                         * way to catch recursive crashes.  We can still crash
1837                         * if the core_pattern binary sets RLIM_CORE =  !0
1838                         * but it runs as root, and can do lots of stupid things
1839                         * Note that we use task_tgid_vnr here to grab the pid
1840                         * of the process group leader.  That way we get the
1841                         * right pid if a thread in a multi-threaded
1842                         * core_pattern process dies.
1843                         */
1844                        printk(KERN_WARNING
1845                                "Process %d(%s) has RLIMIT_CORE set to 0\n",
1846                                task_tgid_vnr(current), current->comm);
1847                        printk(KERN_WARNING "Aborting core\n");
1848                        goto fail_unlock;
1849                }
1850
1851                dump_count = atomic_inc_return(&core_dump_count);
1852                if (core_pipe_limit && (core_pipe_limit < dump_count)) {
1853                        printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
1854                               task_tgid_vnr(current), current->comm);
1855                        printk(KERN_WARNING "Skipping core dump\n");
1856                        goto fail_dropcount;
1857                }
1858
1859                helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1860                if (!helper_argv) {
1861                        printk(KERN_WARNING "%s failed to allocate memory\n",
1862                               __func__);
1863                        goto fail_dropcount;
1864                }
1865
1866                core_limit = RLIM_INFINITY;
1867
1868                /* SIGPIPE can happen, but it's just never processed */
1869                if (call_usermodehelper_pipe(helper_argv[0], helper_argv, NULL,
1870                                &file)) {
1871                        printk(KERN_INFO "Core dump to %s pipe failed\n",
1872                               corename);
1873                        goto fail_dropcount;
1874                }
1875        } else
1876                file = filp_open(corename,
1877                                 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1878                                 0600);
1879        if (IS_ERR(file))
1880                goto fail_dropcount;
1881        inode = file->f_path.dentry->d_inode;
1882        if (inode->i_nlink > 1)
1883                goto close_fail;        /* multiple links - don't dump */
1884        if (!ispipe && d_unhashed(file->f_path.dentry))
1885                goto close_fail;
1886
1887        /* AK: actually i see no reason to not allow this for named pipes etc.,
1888           but keep the previous behaviour for now. */
1889        if (!ispipe && !S_ISREG(inode->i_mode))
1890                goto close_fail;
1891        /*
1892         * Dont allow local users get cute and trick others to coredump
1893         * into their pre-created files:
1894         */
1895        if (inode->i_uid != current_fsuid())
1896                goto close_fail;
1897        if (!file->f_op)
1898                goto close_fail;
1899        if (!file->f_op->write)
1900                goto close_fail;
1901        if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1902                goto close_fail;
1903
1904        retval = binfmt->core_dump(signr, regs, file, core_limit);
1905
1906        if (retval)
1907                current->signal->group_exit_code |= 0x80;
1908close_fail:
1909        if (ispipe && core_pipe_limit)
1910                wait_for_dump_helpers(file);
1911        filp_close(file, NULL);
1912fail_dropcount:
1913        if (dump_count)
1914                atomic_dec(&core_dump_count);
1915fail_unlock:
1916        if (helper_argv)
1917                argv_free(helper_argv);
1918
1919        revert_creds(old_cred);
1920        put_cred(cred);
1921        coredump_finish(mm);
1922fail:
1923        return;
1924}
1925