linux/fs/ext2/inode.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/ext2/inode.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  Goal-directed block allocation by Stephen Tweedie
  16 *      (sct@dcs.ed.ac.uk), 1993, 1998
  17 *  Big-endian to little-endian byte-swapping/bitmaps by
  18 *        David S. Miller (davem@caip.rutgers.edu), 1995
  19 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  20 *      (jj@sunsite.ms.mff.cuni.cz)
  21 *
  22 *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
  23 */
  24
  25#include <linux/smp_lock.h>
  26#include <linux/time.h>
  27#include <linux/highuid.h>
  28#include <linux/pagemap.h>
  29#include <linux/quotaops.h>
  30#include <linux/module.h>
  31#include <linux/writeback.h>
  32#include <linux/buffer_head.h>
  33#include <linux/mpage.h>
  34#include <linux/fiemap.h>
  35#include <linux/namei.h>
  36#include "ext2.h"
  37#include "acl.h"
  38#include "xip.h"
  39
  40MODULE_AUTHOR("Remy Card and others");
  41MODULE_DESCRIPTION("Second Extended Filesystem");
  42MODULE_LICENSE("GPL");
  43
  44/*
  45 * Test whether an inode is a fast symlink.
  46 */
  47static inline int ext2_inode_is_fast_symlink(struct inode *inode)
  48{
  49        int ea_blocks = EXT2_I(inode)->i_file_acl ?
  50                (inode->i_sb->s_blocksize >> 9) : 0;
  51
  52        return (S_ISLNK(inode->i_mode) &&
  53                inode->i_blocks - ea_blocks == 0);
  54}
  55
  56/*
  57 * Called at the last iput() if i_nlink is zero.
  58 */
  59void ext2_delete_inode (struct inode * inode)
  60{
  61        truncate_inode_pages(&inode->i_data, 0);
  62
  63        if (is_bad_inode(inode))
  64                goto no_delete;
  65        EXT2_I(inode)->i_dtime  = get_seconds();
  66        mark_inode_dirty(inode);
  67        ext2_write_inode(inode, inode_needs_sync(inode));
  68
  69        inode->i_size = 0;
  70        if (inode->i_blocks)
  71                ext2_truncate (inode);
  72        ext2_free_inode (inode);
  73
  74        return;
  75no_delete:
  76        clear_inode(inode);     /* We must guarantee clearing of inode... */
  77}
  78
  79typedef struct {
  80        __le32  *p;
  81        __le32  key;
  82        struct buffer_head *bh;
  83} Indirect;
  84
  85static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  86{
  87        p->key = *(p->p = v);
  88        p->bh = bh;
  89}
  90
  91static inline int verify_chain(Indirect *from, Indirect *to)
  92{
  93        while (from <= to && from->key == *from->p)
  94                from++;
  95        return (from > to);
  96}
  97
  98/**
  99 *      ext2_block_to_path - parse the block number into array of offsets
 100 *      @inode: inode in question (we are only interested in its superblock)
 101 *      @i_block: block number to be parsed
 102 *      @offsets: array to store the offsets in
 103 *      @boundary: set this non-zero if the referred-to block is likely to be
 104 *             followed (on disk) by an indirect block.
 105 *      To store the locations of file's data ext2 uses a data structure common
 106 *      for UNIX filesystems - tree of pointers anchored in the inode, with
 107 *      data blocks at leaves and indirect blocks in intermediate nodes.
 108 *      This function translates the block number into path in that tree -
 109 *      return value is the path length and @offsets[n] is the offset of
 110 *      pointer to (n+1)th node in the nth one. If @block is out of range
 111 *      (negative or too large) warning is printed and zero returned.
 112 *
 113 *      Note: function doesn't find node addresses, so no IO is needed. All
 114 *      we need to know is the capacity of indirect blocks (taken from the
 115 *      inode->i_sb).
 116 */
 117
 118/*
 119 * Portability note: the last comparison (check that we fit into triple
 120 * indirect block) is spelled differently, because otherwise on an
 121 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 122 * if our filesystem had 8Kb blocks. We might use long long, but that would
 123 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 124 * i_block would have to be negative in the very beginning, so we would not
 125 * get there at all.
 126 */
 127
 128static int ext2_block_to_path(struct inode *inode,
 129                        long i_block, int offsets[4], int *boundary)
 130{
 131        int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
 132        int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
 133        const long direct_blocks = EXT2_NDIR_BLOCKS,
 134                indirect_blocks = ptrs,
 135                double_blocks = (1 << (ptrs_bits * 2));
 136        int n = 0;
 137        int final = 0;
 138
 139        if (i_block < 0) {
 140                ext2_warning (inode->i_sb, "ext2_block_to_path", "block < 0");
 141        } else if (i_block < direct_blocks) {
 142                offsets[n++] = i_block;
 143                final = direct_blocks;
 144        } else if ( (i_block -= direct_blocks) < indirect_blocks) {
 145                offsets[n++] = EXT2_IND_BLOCK;
 146                offsets[n++] = i_block;
 147                final = ptrs;
 148        } else if ((i_block -= indirect_blocks) < double_blocks) {
 149                offsets[n++] = EXT2_DIND_BLOCK;
 150                offsets[n++] = i_block >> ptrs_bits;
 151                offsets[n++] = i_block & (ptrs - 1);
 152                final = ptrs;
 153        } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
 154                offsets[n++] = EXT2_TIND_BLOCK;
 155                offsets[n++] = i_block >> (ptrs_bits * 2);
 156                offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
 157                offsets[n++] = i_block & (ptrs - 1);
 158                final = ptrs;
 159        } else {
 160                ext2_warning (inode->i_sb, "ext2_block_to_path", "block > big");
 161        }
 162        if (boundary)
 163                *boundary = final - 1 - (i_block & (ptrs - 1));
 164
 165        return n;
 166}
 167
 168/**
 169 *      ext2_get_branch - read the chain of indirect blocks leading to data
 170 *      @inode: inode in question
 171 *      @depth: depth of the chain (1 - direct pointer, etc.)
 172 *      @offsets: offsets of pointers in inode/indirect blocks
 173 *      @chain: place to store the result
 174 *      @err: here we store the error value
 175 *
 176 *      Function fills the array of triples <key, p, bh> and returns %NULL
 177 *      if everything went OK or the pointer to the last filled triple
 178 *      (incomplete one) otherwise. Upon the return chain[i].key contains
 179 *      the number of (i+1)-th block in the chain (as it is stored in memory,
 180 *      i.e. little-endian 32-bit), chain[i].p contains the address of that
 181 *      number (it points into struct inode for i==0 and into the bh->b_data
 182 *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 183 *      block for i>0 and NULL for i==0. In other words, it holds the block
 184 *      numbers of the chain, addresses they were taken from (and where we can
 185 *      verify that chain did not change) and buffer_heads hosting these
 186 *      numbers.
 187 *
 188 *      Function stops when it stumbles upon zero pointer (absent block)
 189 *              (pointer to last triple returned, *@err == 0)
 190 *      or when it gets an IO error reading an indirect block
 191 *              (ditto, *@err == -EIO)
 192 *      or when it notices that chain had been changed while it was reading
 193 *              (ditto, *@err == -EAGAIN)
 194 *      or when it reads all @depth-1 indirect blocks successfully and finds
 195 *      the whole chain, all way to the data (returns %NULL, *err == 0).
 196 */
 197static Indirect *ext2_get_branch(struct inode *inode,
 198                                 int depth,
 199                                 int *offsets,
 200                                 Indirect chain[4],
 201                                 int *err)
 202{
 203        struct super_block *sb = inode->i_sb;
 204        Indirect *p = chain;
 205        struct buffer_head *bh;
 206
 207        *err = 0;
 208        /* i_data is not going away, no lock needed */
 209        add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
 210        if (!p->key)
 211                goto no_block;
 212        while (--depth) {
 213                bh = sb_bread(sb, le32_to_cpu(p->key));
 214                if (!bh)
 215                        goto failure;
 216                read_lock(&EXT2_I(inode)->i_meta_lock);
 217                if (!verify_chain(chain, p))
 218                        goto changed;
 219                add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
 220                read_unlock(&EXT2_I(inode)->i_meta_lock);
 221                if (!p->key)
 222                        goto no_block;
 223        }
 224        return NULL;
 225
 226changed:
 227        read_unlock(&EXT2_I(inode)->i_meta_lock);
 228        brelse(bh);
 229        *err = -EAGAIN;
 230        goto no_block;
 231failure:
 232        *err = -EIO;
 233no_block:
 234        return p;
 235}
 236
 237/**
 238 *      ext2_find_near - find a place for allocation with sufficient locality
 239 *      @inode: owner
 240 *      @ind: descriptor of indirect block.
 241 *
 242 *      This function returns the preferred place for block allocation.
 243 *      It is used when heuristic for sequential allocation fails.
 244 *      Rules are:
 245 *        + if there is a block to the left of our position - allocate near it.
 246 *        + if pointer will live in indirect block - allocate near that block.
 247 *        + if pointer will live in inode - allocate in the same cylinder group.
 248 *
 249 * In the latter case we colour the starting block by the callers PID to
 250 * prevent it from clashing with concurrent allocations for a different inode
 251 * in the same block group.   The PID is used here so that functionally related
 252 * files will be close-by on-disk.
 253 *
 254 *      Caller must make sure that @ind is valid and will stay that way.
 255 */
 256
 257static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
 258{
 259        struct ext2_inode_info *ei = EXT2_I(inode);
 260        __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
 261        __le32 *p;
 262        ext2_fsblk_t bg_start;
 263        ext2_fsblk_t colour;
 264
 265        /* Try to find previous block */
 266        for (p = ind->p - 1; p >= start; p--)
 267                if (*p)
 268                        return le32_to_cpu(*p);
 269
 270        /* No such thing, so let's try location of indirect block */
 271        if (ind->bh)
 272                return ind->bh->b_blocknr;
 273
 274        /*
 275         * It is going to be refered from inode itself? OK, just put it into
 276         * the same cylinder group then.
 277         */
 278        bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
 279        colour = (current->pid % 16) *
 280                        (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
 281        return bg_start + colour;
 282}
 283
 284/**
 285 *      ext2_find_goal - find a preferred place for allocation.
 286 *      @inode: owner
 287 *      @block:  block we want
 288 *      @partial: pointer to the last triple within a chain
 289 *
 290 *      Returns preferred place for a block (the goal).
 291 */
 292
 293static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
 294                                          Indirect *partial)
 295{
 296        struct ext2_block_alloc_info *block_i;
 297
 298        block_i = EXT2_I(inode)->i_block_alloc_info;
 299
 300        /*
 301         * try the heuristic for sequential allocation,
 302         * failing that at least try to get decent locality.
 303         */
 304        if (block_i && (block == block_i->last_alloc_logical_block + 1)
 305                && (block_i->last_alloc_physical_block != 0)) {
 306                return block_i->last_alloc_physical_block + 1;
 307        }
 308
 309        return ext2_find_near(inode, partial);
 310}
 311
 312/**
 313 *      ext2_blks_to_allocate: Look up the block map and count the number
 314 *      of direct blocks need to be allocated for the given branch.
 315 *
 316 *      @branch: chain of indirect blocks
 317 *      @k: number of blocks need for indirect blocks
 318 *      @blks: number of data blocks to be mapped.
 319 *      @blocks_to_boundary:  the offset in the indirect block
 320 *
 321 *      return the total number of blocks to be allocate, including the
 322 *      direct and indirect blocks.
 323 */
 324static int
 325ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
 326                int blocks_to_boundary)
 327{
 328        unsigned long count = 0;
 329
 330        /*
 331         * Simple case, [t,d]Indirect block(s) has not allocated yet
 332         * then it's clear blocks on that path have not allocated
 333         */
 334        if (k > 0) {
 335                /* right now don't hanel cross boundary allocation */
 336                if (blks < blocks_to_boundary + 1)
 337                        count += blks;
 338                else
 339                        count += blocks_to_boundary + 1;
 340                return count;
 341        }
 342
 343        count++;
 344        while (count < blks && count <= blocks_to_boundary
 345                && le32_to_cpu(*(branch[0].p + count)) == 0) {
 346                count++;
 347        }
 348        return count;
 349}
 350
 351/**
 352 *      ext2_alloc_blocks: multiple allocate blocks needed for a branch
 353 *      @indirect_blks: the number of blocks need to allocate for indirect
 354 *                      blocks
 355 *
 356 *      @new_blocks: on return it will store the new block numbers for
 357 *      the indirect blocks(if needed) and the first direct block,
 358 *      @blks:  on return it will store the total number of allocated
 359 *              direct blocks
 360 */
 361static int ext2_alloc_blocks(struct inode *inode,
 362                        ext2_fsblk_t goal, int indirect_blks, int blks,
 363                        ext2_fsblk_t new_blocks[4], int *err)
 364{
 365        int target, i;
 366        unsigned long count = 0;
 367        int index = 0;
 368        ext2_fsblk_t current_block = 0;
 369        int ret = 0;
 370
 371        /*
 372         * Here we try to allocate the requested multiple blocks at once,
 373         * on a best-effort basis.
 374         * To build a branch, we should allocate blocks for
 375         * the indirect blocks(if not allocated yet), and at least
 376         * the first direct block of this branch.  That's the
 377         * minimum number of blocks need to allocate(required)
 378         */
 379        target = blks + indirect_blks;
 380
 381        while (1) {
 382                count = target;
 383                /* allocating blocks for indirect blocks and direct blocks */
 384                current_block = ext2_new_blocks(inode,goal,&count,err);
 385                if (*err)
 386                        goto failed_out;
 387
 388                target -= count;
 389                /* allocate blocks for indirect blocks */
 390                while (index < indirect_blks && count) {
 391                        new_blocks[index++] = current_block++;
 392                        count--;
 393                }
 394
 395                if (count > 0)
 396                        break;
 397        }
 398
 399        /* save the new block number for the first direct block */
 400        new_blocks[index] = current_block;
 401
 402        /* total number of blocks allocated for direct blocks */
 403        ret = count;
 404        *err = 0;
 405        return ret;
 406failed_out:
 407        for (i = 0; i <index; i++)
 408                ext2_free_blocks(inode, new_blocks[i], 1);
 409        return ret;
 410}
 411
 412/**
 413 *      ext2_alloc_branch - allocate and set up a chain of blocks.
 414 *      @inode: owner
 415 *      @num: depth of the chain (number of blocks to allocate)
 416 *      @offsets: offsets (in the blocks) to store the pointers to next.
 417 *      @branch: place to store the chain in.
 418 *
 419 *      This function allocates @num blocks, zeroes out all but the last one,
 420 *      links them into chain and (if we are synchronous) writes them to disk.
 421 *      In other words, it prepares a branch that can be spliced onto the
 422 *      inode. It stores the information about that chain in the branch[], in
 423 *      the same format as ext2_get_branch() would do. We are calling it after
 424 *      we had read the existing part of chain and partial points to the last
 425 *      triple of that (one with zero ->key). Upon the exit we have the same
 426 *      picture as after the successful ext2_get_block(), excpet that in one
 427 *      place chain is disconnected - *branch->p is still zero (we did not
 428 *      set the last link), but branch->key contains the number that should
 429 *      be placed into *branch->p to fill that gap.
 430 *
 431 *      If allocation fails we free all blocks we've allocated (and forget
 432 *      their buffer_heads) and return the error value the from failed
 433 *      ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
 434 *      as described above and return 0.
 435 */
 436
 437static int ext2_alloc_branch(struct inode *inode,
 438                        int indirect_blks, int *blks, ext2_fsblk_t goal,
 439                        int *offsets, Indirect *branch)
 440{
 441        int blocksize = inode->i_sb->s_blocksize;
 442        int i, n = 0;
 443        int err = 0;
 444        struct buffer_head *bh;
 445        int num;
 446        ext2_fsblk_t new_blocks[4];
 447        ext2_fsblk_t current_block;
 448
 449        num = ext2_alloc_blocks(inode, goal, indirect_blks,
 450                                *blks, new_blocks, &err);
 451        if (err)
 452                return err;
 453
 454        branch[0].key = cpu_to_le32(new_blocks[0]);
 455        /*
 456         * metadata blocks and data blocks are allocated.
 457         */
 458        for (n = 1; n <= indirect_blks;  n++) {
 459                /*
 460                 * Get buffer_head for parent block, zero it out
 461                 * and set the pointer to new one, then send
 462                 * parent to disk.
 463                 */
 464                bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
 465                branch[n].bh = bh;
 466                lock_buffer(bh);
 467                memset(bh->b_data, 0, blocksize);
 468                branch[n].p = (__le32 *) bh->b_data + offsets[n];
 469                branch[n].key = cpu_to_le32(new_blocks[n]);
 470                *branch[n].p = branch[n].key;
 471                if ( n == indirect_blks) {
 472                        current_block = new_blocks[n];
 473                        /*
 474                         * End of chain, update the last new metablock of
 475                         * the chain to point to the new allocated
 476                         * data blocks numbers
 477                         */
 478                        for (i=1; i < num; i++)
 479                                *(branch[n].p + i) = cpu_to_le32(++current_block);
 480                }
 481                set_buffer_uptodate(bh);
 482                unlock_buffer(bh);
 483                mark_buffer_dirty_inode(bh, inode);
 484                /* We used to sync bh here if IS_SYNC(inode).
 485                 * But we now rely upon generic_write_sync()
 486                 * and b_inode_buffers.  But not for directories.
 487                 */
 488                if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
 489                        sync_dirty_buffer(bh);
 490        }
 491        *blks = num;
 492        return err;
 493}
 494
 495/**
 496 * ext2_splice_branch - splice the allocated branch onto inode.
 497 * @inode: owner
 498 * @block: (logical) number of block we are adding
 499 * @where: location of missing link
 500 * @num:   number of indirect blocks we are adding
 501 * @blks:  number of direct blocks we are adding
 502 *
 503 * This function fills the missing link and does all housekeeping needed in
 504 * inode (->i_blocks, etc.). In case of success we end up with the full
 505 * chain to new block and return 0.
 506 */
 507static void ext2_splice_branch(struct inode *inode,
 508                        long block, Indirect *where, int num, int blks)
 509{
 510        int i;
 511        struct ext2_block_alloc_info *block_i;
 512        ext2_fsblk_t current_block;
 513
 514        block_i = EXT2_I(inode)->i_block_alloc_info;
 515
 516        /* XXX LOCKING probably should have i_meta_lock ?*/
 517        /* That's it */
 518
 519        *where->p = where->key;
 520
 521        /*
 522         * Update the host buffer_head or inode to point to more just allocated
 523         * direct blocks blocks
 524         */
 525        if (num == 0 && blks > 1) {
 526                current_block = le32_to_cpu(where->key) + 1;
 527                for (i = 1; i < blks; i++)
 528                        *(where->p + i ) = cpu_to_le32(current_block++);
 529        }
 530
 531        /*
 532         * update the most recently allocated logical & physical block
 533         * in i_block_alloc_info, to assist find the proper goal block for next
 534         * allocation
 535         */
 536        if (block_i) {
 537                block_i->last_alloc_logical_block = block + blks - 1;
 538                block_i->last_alloc_physical_block =
 539                                le32_to_cpu(where[num].key) + blks - 1;
 540        }
 541
 542        /* We are done with atomic stuff, now do the rest of housekeeping */
 543
 544        /* had we spliced it onto indirect block? */
 545        if (where->bh)
 546                mark_buffer_dirty_inode(where->bh, inode);
 547
 548        inode->i_ctime = CURRENT_TIME_SEC;
 549        mark_inode_dirty(inode);
 550}
 551
 552/*
 553 * Allocation strategy is simple: if we have to allocate something, we will
 554 * have to go the whole way to leaf. So let's do it before attaching anything
 555 * to tree, set linkage between the newborn blocks, write them if sync is
 556 * required, recheck the path, free and repeat if check fails, otherwise
 557 * set the last missing link (that will protect us from any truncate-generated
 558 * removals - all blocks on the path are immune now) and possibly force the
 559 * write on the parent block.
 560 * That has a nice additional property: no special recovery from the failed
 561 * allocations is needed - we simply release blocks and do not touch anything
 562 * reachable from inode.
 563 *
 564 * `handle' can be NULL if create == 0.
 565 *
 566 * return > 0, # of blocks mapped or allocated.
 567 * return = 0, if plain lookup failed.
 568 * return < 0, error case.
 569 */
 570static int ext2_get_blocks(struct inode *inode,
 571                           sector_t iblock, unsigned long maxblocks,
 572                           struct buffer_head *bh_result,
 573                           int create)
 574{
 575        int err = -EIO;
 576        int offsets[4];
 577        Indirect chain[4];
 578        Indirect *partial;
 579        ext2_fsblk_t goal;
 580        int indirect_blks;
 581        int blocks_to_boundary = 0;
 582        int depth;
 583        struct ext2_inode_info *ei = EXT2_I(inode);
 584        int count = 0;
 585        ext2_fsblk_t first_block = 0;
 586
 587        depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
 588
 589        if (depth == 0)
 590                return (err);
 591
 592        partial = ext2_get_branch(inode, depth, offsets, chain, &err);
 593        /* Simplest case - block found, no allocation needed */
 594        if (!partial) {
 595                first_block = le32_to_cpu(chain[depth - 1].key);
 596                clear_buffer_new(bh_result); /* What's this do? */
 597                count++;
 598                /*map more blocks*/
 599                while (count < maxblocks && count <= blocks_to_boundary) {
 600                        ext2_fsblk_t blk;
 601
 602                        if (!verify_chain(chain, chain + depth - 1)) {
 603                                /*
 604                                 * Indirect block might be removed by
 605                                 * truncate while we were reading it.
 606                                 * Handling of that case: forget what we've
 607                                 * got now, go to reread.
 608                                 */
 609                                err = -EAGAIN;
 610                                count = 0;
 611                                break;
 612                        }
 613                        blk = le32_to_cpu(*(chain[depth-1].p + count));
 614                        if (blk == first_block + count)
 615                                count++;
 616                        else
 617                                break;
 618                }
 619                if (err != -EAGAIN)
 620                        goto got_it;
 621        }
 622
 623        /* Next simple case - plain lookup or failed read of indirect block */
 624        if (!create || err == -EIO)
 625                goto cleanup;
 626
 627        mutex_lock(&ei->truncate_mutex);
 628        /*
 629         * If the indirect block is missing while we are reading
 630         * the chain(ext3_get_branch() returns -EAGAIN err), or
 631         * if the chain has been changed after we grab the semaphore,
 632         * (either because another process truncated this branch, or
 633         * another get_block allocated this branch) re-grab the chain to see if
 634         * the request block has been allocated or not.
 635         *
 636         * Since we already block the truncate/other get_block
 637         * at this point, we will have the current copy of the chain when we
 638         * splice the branch into the tree.
 639         */
 640        if (err == -EAGAIN || !verify_chain(chain, partial)) {
 641                while (partial > chain) {
 642                        brelse(partial->bh);
 643                        partial--;
 644                }
 645                partial = ext2_get_branch(inode, depth, offsets, chain, &err);
 646                if (!partial) {
 647                        count++;
 648                        mutex_unlock(&ei->truncate_mutex);
 649                        if (err)
 650                                goto cleanup;
 651                        clear_buffer_new(bh_result);
 652                        goto got_it;
 653                }
 654        }
 655
 656        /*
 657         * Okay, we need to do block allocation.  Lazily initialize the block
 658         * allocation info here if necessary
 659        */
 660        if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
 661                ext2_init_block_alloc_info(inode);
 662
 663        goal = ext2_find_goal(inode, iblock, partial);
 664
 665        /* the number of blocks need to allocate for [d,t]indirect blocks */
 666        indirect_blks = (chain + depth) - partial - 1;
 667        /*
 668         * Next look up the indirect map to count the totoal number of
 669         * direct blocks to allocate for this branch.
 670         */
 671        count = ext2_blks_to_allocate(partial, indirect_blks,
 672                                        maxblocks, blocks_to_boundary);
 673        /*
 674         * XXX ???? Block out ext2_truncate while we alter the tree
 675         */
 676        err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
 677                                offsets + (partial - chain), partial);
 678
 679        if (err) {
 680                mutex_unlock(&ei->truncate_mutex);
 681                goto cleanup;
 682        }
 683
 684        if (ext2_use_xip(inode->i_sb)) {
 685                /*
 686                 * we need to clear the block
 687                 */
 688                err = ext2_clear_xip_target (inode,
 689                        le32_to_cpu(chain[depth-1].key));
 690                if (err) {
 691                        mutex_unlock(&ei->truncate_mutex);
 692                        goto cleanup;
 693                }
 694        }
 695
 696        ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
 697        mutex_unlock(&ei->truncate_mutex);
 698        set_buffer_new(bh_result);
 699got_it:
 700        map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
 701        if (count > blocks_to_boundary)
 702                set_buffer_boundary(bh_result);
 703        err = count;
 704        /* Clean up and exit */
 705        partial = chain + depth - 1;    /* the whole chain */
 706cleanup:
 707        while (partial > chain) {
 708                brelse(partial->bh);
 709                partial--;
 710        }
 711        return err;
 712}
 713
 714int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
 715{
 716        unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
 717        int ret = ext2_get_blocks(inode, iblock, max_blocks,
 718                              bh_result, create);
 719        if (ret > 0) {
 720                bh_result->b_size = (ret << inode->i_blkbits);
 721                ret = 0;
 722        }
 723        return ret;
 724
 725}
 726
 727int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
 728                u64 start, u64 len)
 729{
 730        return generic_block_fiemap(inode, fieinfo, start, len,
 731                                    ext2_get_block);
 732}
 733
 734static int ext2_writepage(struct page *page, struct writeback_control *wbc)
 735{
 736        return block_write_full_page(page, ext2_get_block, wbc);
 737}
 738
 739static int ext2_readpage(struct file *file, struct page *page)
 740{
 741        return mpage_readpage(page, ext2_get_block);
 742}
 743
 744static int
 745ext2_readpages(struct file *file, struct address_space *mapping,
 746                struct list_head *pages, unsigned nr_pages)
 747{
 748        return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
 749}
 750
 751int __ext2_write_begin(struct file *file, struct address_space *mapping,
 752                loff_t pos, unsigned len, unsigned flags,
 753                struct page **pagep, void **fsdata)
 754{
 755        return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
 756                                                        ext2_get_block);
 757}
 758
 759static int
 760ext2_write_begin(struct file *file, struct address_space *mapping,
 761                loff_t pos, unsigned len, unsigned flags,
 762                struct page **pagep, void **fsdata)
 763{
 764        *pagep = NULL;
 765        return __ext2_write_begin(file, mapping, pos, len, flags, pagep,fsdata);
 766}
 767
 768static int
 769ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
 770                loff_t pos, unsigned len, unsigned flags,
 771                struct page **pagep, void **fsdata)
 772{
 773        /*
 774         * Dir-in-pagecache still uses ext2_write_begin. Would have to rework
 775         * directory handling code to pass around offsets rather than struct
 776         * pages in order to make this work easily.
 777         */
 778        return nobh_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
 779                                                        ext2_get_block);
 780}
 781
 782static int ext2_nobh_writepage(struct page *page,
 783                        struct writeback_control *wbc)
 784{
 785        return nobh_writepage(page, ext2_get_block, wbc);
 786}
 787
 788static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
 789{
 790        return generic_block_bmap(mapping,block,ext2_get_block);
 791}
 792
 793static ssize_t
 794ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
 795                        loff_t offset, unsigned long nr_segs)
 796{
 797        struct file *file = iocb->ki_filp;
 798        struct inode *inode = file->f_mapping->host;
 799
 800        return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
 801                                offset, nr_segs, ext2_get_block, NULL);
 802}
 803
 804static int
 805ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
 806{
 807        return mpage_writepages(mapping, wbc, ext2_get_block);
 808}
 809
 810const struct address_space_operations ext2_aops = {
 811        .readpage               = ext2_readpage,
 812        .readpages              = ext2_readpages,
 813        .writepage              = ext2_writepage,
 814        .sync_page              = block_sync_page,
 815        .write_begin            = ext2_write_begin,
 816        .write_end              = generic_write_end,
 817        .bmap                   = ext2_bmap,
 818        .direct_IO              = ext2_direct_IO,
 819        .writepages             = ext2_writepages,
 820        .migratepage            = buffer_migrate_page,
 821        .is_partially_uptodate  = block_is_partially_uptodate,
 822        .error_remove_page      = generic_error_remove_page,
 823};
 824
 825const struct address_space_operations ext2_aops_xip = {
 826        .bmap                   = ext2_bmap,
 827        .get_xip_mem            = ext2_get_xip_mem,
 828};
 829
 830const struct address_space_operations ext2_nobh_aops = {
 831        .readpage               = ext2_readpage,
 832        .readpages              = ext2_readpages,
 833        .writepage              = ext2_nobh_writepage,
 834        .sync_page              = block_sync_page,
 835        .write_begin            = ext2_nobh_write_begin,
 836        .write_end              = nobh_write_end,
 837        .bmap                   = ext2_bmap,
 838        .direct_IO              = ext2_direct_IO,
 839        .writepages             = ext2_writepages,
 840        .migratepage            = buffer_migrate_page,
 841        .error_remove_page      = generic_error_remove_page,
 842};
 843
 844/*
 845 * Probably it should be a library function... search for first non-zero word
 846 * or memcmp with zero_page, whatever is better for particular architecture.
 847 * Linus?
 848 */
 849static inline int all_zeroes(__le32 *p, __le32 *q)
 850{
 851        while (p < q)
 852                if (*p++)
 853                        return 0;
 854        return 1;
 855}
 856
 857/**
 858 *      ext2_find_shared - find the indirect blocks for partial truncation.
 859 *      @inode:   inode in question
 860 *      @depth:   depth of the affected branch
 861 *      @offsets: offsets of pointers in that branch (see ext2_block_to_path)
 862 *      @chain:   place to store the pointers to partial indirect blocks
 863 *      @top:     place to the (detached) top of branch
 864 *
 865 *      This is a helper function used by ext2_truncate().
 866 *
 867 *      When we do truncate() we may have to clean the ends of several indirect
 868 *      blocks but leave the blocks themselves alive. Block is partially
 869 *      truncated if some data below the new i_size is refered from it (and
 870 *      it is on the path to the first completely truncated data block, indeed).
 871 *      We have to free the top of that path along with everything to the right
 872 *      of the path. Since no allocation past the truncation point is possible
 873 *      until ext2_truncate() finishes, we may safely do the latter, but top
 874 *      of branch may require special attention - pageout below the truncation
 875 *      point might try to populate it.
 876 *
 877 *      We atomically detach the top of branch from the tree, store the block
 878 *      number of its root in *@top, pointers to buffer_heads of partially
 879 *      truncated blocks - in @chain[].bh and pointers to their last elements
 880 *      that should not be removed - in @chain[].p. Return value is the pointer
 881 *      to last filled element of @chain.
 882 *
 883 *      The work left to caller to do the actual freeing of subtrees:
 884 *              a) free the subtree starting from *@top
 885 *              b) free the subtrees whose roots are stored in
 886 *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
 887 *              c) free the subtrees growing from the inode past the @chain[0].p
 888 *                      (no partially truncated stuff there).
 889 */
 890
 891static Indirect *ext2_find_shared(struct inode *inode,
 892                                int depth,
 893                                int offsets[4],
 894                                Indirect chain[4],
 895                                __le32 *top)
 896{
 897        Indirect *partial, *p;
 898        int k, err;
 899
 900        *top = 0;
 901        for (k = depth; k > 1 && !offsets[k-1]; k--)
 902                ;
 903        partial = ext2_get_branch(inode, k, offsets, chain, &err);
 904        if (!partial)
 905                partial = chain + k-1;
 906        /*
 907         * If the branch acquired continuation since we've looked at it -
 908         * fine, it should all survive and (new) top doesn't belong to us.
 909         */
 910        write_lock(&EXT2_I(inode)->i_meta_lock);
 911        if (!partial->key && *partial->p) {
 912                write_unlock(&EXT2_I(inode)->i_meta_lock);
 913                goto no_top;
 914        }
 915        for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
 916                ;
 917        /*
 918         * OK, we've found the last block that must survive. The rest of our
 919         * branch should be detached before unlocking. However, if that rest
 920         * of branch is all ours and does not grow immediately from the inode
 921         * it's easier to cheat and just decrement partial->p.
 922         */
 923        if (p == chain + k - 1 && p > chain) {
 924                p->p--;
 925        } else {
 926                *top = *p->p;
 927                *p->p = 0;
 928        }
 929        write_unlock(&EXT2_I(inode)->i_meta_lock);
 930
 931        while(partial > p)
 932        {
 933                brelse(partial->bh);
 934                partial--;
 935        }
 936no_top:
 937        return partial;
 938}
 939
 940/**
 941 *      ext2_free_data - free a list of data blocks
 942 *      @inode: inode we are dealing with
 943 *      @p:     array of block numbers
 944 *      @q:     points immediately past the end of array
 945 *
 946 *      We are freeing all blocks refered from that array (numbers are
 947 *      stored as little-endian 32-bit) and updating @inode->i_blocks
 948 *      appropriately.
 949 */
 950static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
 951{
 952        unsigned long block_to_free = 0, count = 0;
 953        unsigned long nr;
 954
 955        for ( ; p < q ; p++) {
 956                nr = le32_to_cpu(*p);
 957                if (nr) {
 958                        *p = 0;
 959                        /* accumulate blocks to free if they're contiguous */
 960                        if (count == 0)
 961                                goto free_this;
 962                        else if (block_to_free == nr - count)
 963                                count++;
 964                        else {
 965                                mark_inode_dirty(inode);
 966                                ext2_free_blocks (inode, block_to_free, count);
 967                        free_this:
 968                                block_to_free = nr;
 969                                count = 1;
 970                        }
 971                }
 972        }
 973        if (count > 0) {
 974                mark_inode_dirty(inode);
 975                ext2_free_blocks (inode, block_to_free, count);
 976        }
 977}
 978
 979/**
 980 *      ext2_free_branches - free an array of branches
 981 *      @inode: inode we are dealing with
 982 *      @p:     array of block numbers
 983 *      @q:     pointer immediately past the end of array
 984 *      @depth: depth of the branches to free
 985 *
 986 *      We are freeing all blocks refered from these branches (numbers are
 987 *      stored as little-endian 32-bit) and updating @inode->i_blocks
 988 *      appropriately.
 989 */
 990static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
 991{
 992        struct buffer_head * bh;
 993        unsigned long nr;
 994
 995        if (depth--) {
 996                int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
 997                for ( ; p < q ; p++) {
 998                        nr = le32_to_cpu(*p);
 999                        if (!nr)
1000                                continue;
1001                        *p = 0;
1002                        bh = sb_bread(inode->i_sb, nr);
1003                        /*
1004                         * A read failure? Report error and clear slot
1005                         * (should be rare).
1006                         */ 
1007                        if (!bh) {
1008                                ext2_error(inode->i_sb, "ext2_free_branches",
1009                                        "Read failure, inode=%ld, block=%ld",
1010                                        inode->i_ino, nr);
1011                                continue;
1012                        }
1013                        ext2_free_branches(inode,
1014                                           (__le32*)bh->b_data,
1015                                           (__le32*)bh->b_data + addr_per_block,
1016                                           depth);
1017                        bforget(bh);
1018                        ext2_free_blocks(inode, nr, 1);
1019                        mark_inode_dirty(inode);
1020                }
1021        } else
1022                ext2_free_data(inode, p, q);
1023}
1024
1025void ext2_truncate(struct inode *inode)
1026{
1027        __le32 *i_data = EXT2_I(inode)->i_data;
1028        struct ext2_inode_info *ei = EXT2_I(inode);
1029        int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1030        int offsets[4];
1031        Indirect chain[4];
1032        Indirect *partial;
1033        __le32 nr = 0;
1034        int n;
1035        long iblock;
1036        unsigned blocksize;
1037
1038        if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1039            S_ISLNK(inode->i_mode)))
1040                return;
1041        if (ext2_inode_is_fast_symlink(inode))
1042                return;
1043        if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1044                return;
1045
1046        blocksize = inode->i_sb->s_blocksize;
1047        iblock = (inode->i_size + blocksize-1)
1048                                        >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1049
1050        if (mapping_is_xip(inode->i_mapping))
1051                xip_truncate_page(inode->i_mapping, inode->i_size);
1052        else if (test_opt(inode->i_sb, NOBH))
1053                nobh_truncate_page(inode->i_mapping,
1054                                inode->i_size, ext2_get_block);
1055        else
1056                block_truncate_page(inode->i_mapping,
1057                                inode->i_size, ext2_get_block);
1058
1059        n = ext2_block_to_path(inode, iblock, offsets, NULL);
1060        if (n == 0)
1061                return;
1062
1063        /*
1064         * From here we block out all ext2_get_block() callers who want to
1065         * modify the block allocation tree.
1066         */
1067        mutex_lock(&ei->truncate_mutex);
1068
1069        if (n == 1) {
1070                ext2_free_data(inode, i_data+offsets[0],
1071                                        i_data + EXT2_NDIR_BLOCKS);
1072                goto do_indirects;
1073        }
1074
1075        partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1076        /* Kill the top of shared branch (already detached) */
1077        if (nr) {
1078                if (partial == chain)
1079                        mark_inode_dirty(inode);
1080                else
1081                        mark_buffer_dirty_inode(partial->bh, inode);
1082                ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1083        }
1084        /* Clear the ends of indirect blocks on the shared branch */
1085        while (partial > chain) {
1086                ext2_free_branches(inode,
1087                                   partial->p + 1,
1088                                   (__le32*)partial->bh->b_data+addr_per_block,
1089                                   (chain+n-1) - partial);
1090                mark_buffer_dirty_inode(partial->bh, inode);
1091                brelse (partial->bh);
1092                partial--;
1093        }
1094do_indirects:
1095        /* Kill the remaining (whole) subtrees */
1096        switch (offsets[0]) {
1097                default:
1098                        nr = i_data[EXT2_IND_BLOCK];
1099                        if (nr) {
1100                                i_data[EXT2_IND_BLOCK] = 0;
1101                                mark_inode_dirty(inode);
1102                                ext2_free_branches(inode, &nr, &nr+1, 1);
1103                        }
1104                case EXT2_IND_BLOCK:
1105                        nr = i_data[EXT2_DIND_BLOCK];
1106                        if (nr) {
1107                                i_data[EXT2_DIND_BLOCK] = 0;
1108                                mark_inode_dirty(inode);
1109                                ext2_free_branches(inode, &nr, &nr+1, 2);
1110                        }
1111                case EXT2_DIND_BLOCK:
1112                        nr = i_data[EXT2_TIND_BLOCK];
1113                        if (nr) {
1114                                i_data[EXT2_TIND_BLOCK] = 0;
1115                                mark_inode_dirty(inode);
1116                                ext2_free_branches(inode, &nr, &nr+1, 3);
1117                        }
1118                case EXT2_TIND_BLOCK:
1119                        ;
1120        }
1121
1122        ext2_discard_reservation(inode);
1123
1124        mutex_unlock(&ei->truncate_mutex);
1125        inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1126        if (inode_needs_sync(inode)) {
1127                sync_mapping_buffers(inode->i_mapping);
1128                ext2_sync_inode (inode);
1129        } else {
1130                mark_inode_dirty(inode);
1131        }
1132}
1133
1134static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1135                                        struct buffer_head **p)
1136{
1137        struct buffer_head * bh;
1138        unsigned long block_group;
1139        unsigned long block;
1140        unsigned long offset;
1141        struct ext2_group_desc * gdp;
1142
1143        *p = NULL;
1144        if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1145            ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1146                goto Einval;
1147
1148        block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1149        gdp = ext2_get_group_desc(sb, block_group, NULL);
1150        if (!gdp)
1151                goto Egdp;
1152        /*
1153         * Figure out the offset within the block group inode table
1154         */
1155        offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1156        block = le32_to_cpu(gdp->bg_inode_table) +
1157                (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1158        if (!(bh = sb_bread(sb, block)))
1159                goto Eio;
1160
1161        *p = bh;
1162        offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1163        return (struct ext2_inode *) (bh->b_data + offset);
1164
1165Einval:
1166        ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1167                   (unsigned long) ino);
1168        return ERR_PTR(-EINVAL);
1169Eio:
1170        ext2_error(sb, "ext2_get_inode",
1171                   "unable to read inode block - inode=%lu, block=%lu",
1172                   (unsigned long) ino, block);
1173Egdp:
1174        return ERR_PTR(-EIO);
1175}
1176
1177void ext2_set_inode_flags(struct inode *inode)
1178{
1179        unsigned int flags = EXT2_I(inode)->i_flags;
1180
1181        inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
1182        if (flags & EXT2_SYNC_FL)
1183                inode->i_flags |= S_SYNC;
1184        if (flags & EXT2_APPEND_FL)
1185                inode->i_flags |= S_APPEND;
1186        if (flags & EXT2_IMMUTABLE_FL)
1187                inode->i_flags |= S_IMMUTABLE;
1188        if (flags & EXT2_NOATIME_FL)
1189                inode->i_flags |= S_NOATIME;
1190        if (flags & EXT2_DIRSYNC_FL)
1191                inode->i_flags |= S_DIRSYNC;
1192}
1193
1194/* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1195void ext2_get_inode_flags(struct ext2_inode_info *ei)
1196{
1197        unsigned int flags = ei->vfs_inode.i_flags;
1198
1199        ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1200                        EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1201        if (flags & S_SYNC)
1202                ei->i_flags |= EXT2_SYNC_FL;
1203        if (flags & S_APPEND)
1204                ei->i_flags |= EXT2_APPEND_FL;
1205        if (flags & S_IMMUTABLE)
1206                ei->i_flags |= EXT2_IMMUTABLE_FL;
1207        if (flags & S_NOATIME)
1208                ei->i_flags |= EXT2_NOATIME_FL;
1209        if (flags & S_DIRSYNC)
1210                ei->i_flags |= EXT2_DIRSYNC_FL;
1211}
1212
1213struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1214{
1215        struct ext2_inode_info *ei;
1216        struct buffer_head * bh;
1217        struct ext2_inode *raw_inode;
1218        struct inode *inode;
1219        long ret = -EIO;
1220        int n;
1221
1222        inode = iget_locked(sb, ino);
1223        if (!inode)
1224                return ERR_PTR(-ENOMEM);
1225        if (!(inode->i_state & I_NEW))
1226                return inode;
1227
1228        ei = EXT2_I(inode);
1229        ei->i_block_alloc_info = NULL;
1230
1231        raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1232        if (IS_ERR(raw_inode)) {
1233                ret = PTR_ERR(raw_inode);
1234                goto bad_inode;
1235        }
1236
1237        inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1238        inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1239        inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1240        if (!(test_opt (inode->i_sb, NO_UID32))) {
1241                inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1242                inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1243        }
1244        inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
1245        inode->i_size = le32_to_cpu(raw_inode->i_size);
1246        inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1247        inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1248        inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1249        inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1250        ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1251        /* We now have enough fields to check if the inode was active or not.
1252         * This is needed because nfsd might try to access dead inodes
1253         * the test is that same one that e2fsck uses
1254         * NeilBrown 1999oct15
1255         */
1256        if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1257                /* this inode is deleted */
1258                brelse (bh);
1259                ret = -ESTALE;
1260                goto bad_inode;
1261        }
1262        inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1263        ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1264        ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1265        ei->i_frag_no = raw_inode->i_frag;
1266        ei->i_frag_size = raw_inode->i_fsize;
1267        ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1268        ei->i_dir_acl = 0;
1269        if (S_ISREG(inode->i_mode))
1270                inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1271        else
1272                ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1273        ei->i_dtime = 0;
1274        inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1275        ei->i_state = 0;
1276        ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1277        ei->i_dir_start_lookup = 0;
1278
1279        /*
1280         * NOTE! The in-memory inode i_data array is in little-endian order
1281         * even on big-endian machines: we do NOT byteswap the block numbers!
1282         */
1283        for (n = 0; n < EXT2_N_BLOCKS; n++)
1284                ei->i_data[n] = raw_inode->i_block[n];
1285
1286        if (S_ISREG(inode->i_mode)) {
1287                inode->i_op = &ext2_file_inode_operations;
1288                if (ext2_use_xip(inode->i_sb)) {
1289                        inode->i_mapping->a_ops = &ext2_aops_xip;
1290                        inode->i_fop = &ext2_xip_file_operations;
1291                } else if (test_opt(inode->i_sb, NOBH)) {
1292                        inode->i_mapping->a_ops = &ext2_nobh_aops;
1293                        inode->i_fop = &ext2_file_operations;
1294                } else {
1295                        inode->i_mapping->a_ops = &ext2_aops;
1296                        inode->i_fop = &ext2_file_operations;
1297                }
1298        } else if (S_ISDIR(inode->i_mode)) {
1299                inode->i_op = &ext2_dir_inode_operations;
1300                inode->i_fop = &ext2_dir_operations;
1301                if (test_opt(inode->i_sb, NOBH))
1302                        inode->i_mapping->a_ops = &ext2_nobh_aops;
1303                else
1304                        inode->i_mapping->a_ops = &ext2_aops;
1305        } else if (S_ISLNK(inode->i_mode)) {
1306                if (ext2_inode_is_fast_symlink(inode)) {
1307                        inode->i_op = &ext2_fast_symlink_inode_operations;
1308                        nd_terminate_link(ei->i_data, inode->i_size,
1309                                sizeof(ei->i_data) - 1);
1310                } else {
1311                        inode->i_op = &ext2_symlink_inode_operations;
1312                        if (test_opt(inode->i_sb, NOBH))
1313                                inode->i_mapping->a_ops = &ext2_nobh_aops;
1314                        else
1315                                inode->i_mapping->a_ops = &ext2_aops;
1316                }
1317        } else {
1318                inode->i_op = &ext2_special_inode_operations;
1319                if (raw_inode->i_block[0])
1320                        init_special_inode(inode, inode->i_mode,
1321                           old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1322                else 
1323                        init_special_inode(inode, inode->i_mode,
1324                           new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1325        }
1326        brelse (bh);
1327        ext2_set_inode_flags(inode);
1328        unlock_new_inode(inode);
1329        return inode;
1330        
1331bad_inode:
1332        iget_failed(inode);
1333        return ERR_PTR(ret);
1334}
1335
1336int ext2_write_inode(struct inode *inode, int do_sync)
1337{
1338        struct ext2_inode_info *ei = EXT2_I(inode);
1339        struct super_block *sb = inode->i_sb;
1340        ino_t ino = inode->i_ino;
1341        uid_t uid = inode->i_uid;
1342        gid_t gid = inode->i_gid;
1343        struct buffer_head * bh;
1344        struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1345        int n;
1346        int err = 0;
1347
1348        if (IS_ERR(raw_inode))
1349                return -EIO;
1350
1351        /* For fields not not tracking in the in-memory inode,
1352         * initialise them to zero for new inodes. */
1353        if (ei->i_state & EXT2_STATE_NEW)
1354                memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1355
1356        ext2_get_inode_flags(ei);
1357        raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1358        if (!(test_opt(sb, NO_UID32))) {
1359                raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1360                raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1361/*
1362 * Fix up interoperability with old kernels. Otherwise, old inodes get
1363 * re-used with the upper 16 bits of the uid/gid intact
1364 */
1365                if (!ei->i_dtime) {
1366                        raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1367                        raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1368                } else {
1369                        raw_inode->i_uid_high = 0;
1370                        raw_inode->i_gid_high = 0;
1371                }
1372        } else {
1373                raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1374                raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1375                raw_inode->i_uid_high = 0;
1376                raw_inode->i_gid_high = 0;
1377        }
1378        raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1379        raw_inode->i_size = cpu_to_le32(inode->i_size);
1380        raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1381        raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1382        raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1383
1384        raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1385        raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1386        raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1387        raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1388        raw_inode->i_frag = ei->i_frag_no;
1389        raw_inode->i_fsize = ei->i_frag_size;
1390        raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1391        if (!S_ISREG(inode->i_mode))
1392                raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1393        else {
1394                raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1395                if (inode->i_size > 0x7fffffffULL) {
1396                        if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1397                                        EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1398                            EXT2_SB(sb)->s_es->s_rev_level ==
1399                                        cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1400                               /* If this is the first large file
1401                                * created, add a flag to the superblock.
1402                                */
1403                                lock_kernel();
1404                                ext2_update_dynamic_rev(sb);
1405                                EXT2_SET_RO_COMPAT_FEATURE(sb,
1406                                        EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1407                                unlock_kernel();
1408                                ext2_write_super(sb);
1409                        }
1410                }
1411        }
1412        
1413        raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1414        if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1415                if (old_valid_dev(inode->i_rdev)) {
1416                        raw_inode->i_block[0] =
1417                                cpu_to_le32(old_encode_dev(inode->i_rdev));
1418                        raw_inode->i_block[1] = 0;
1419                } else {
1420                        raw_inode->i_block[0] = 0;
1421                        raw_inode->i_block[1] =
1422                                cpu_to_le32(new_encode_dev(inode->i_rdev));
1423                        raw_inode->i_block[2] = 0;
1424                }
1425        } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1426                raw_inode->i_block[n] = ei->i_data[n];
1427        mark_buffer_dirty(bh);
1428        if (do_sync) {
1429                sync_dirty_buffer(bh);
1430                if (buffer_req(bh) && !buffer_uptodate(bh)) {
1431                        printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1432                                sb->s_id, (unsigned long) ino);
1433                        err = -EIO;
1434                }
1435        }
1436        ei->i_state &= ~EXT2_STATE_NEW;
1437        brelse (bh);
1438        return err;
1439}
1440
1441int ext2_sync_inode(struct inode *inode)
1442{
1443        struct writeback_control wbc = {
1444                .sync_mode = WB_SYNC_ALL,
1445                .nr_to_write = 0,       /* sys_fsync did this */
1446        };
1447        return sync_inode(inode, &wbc);
1448}
1449
1450int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1451{
1452        struct inode *inode = dentry->d_inode;
1453        int error;
1454
1455        error = inode_change_ok(inode, iattr);
1456        if (error)
1457                return error;
1458        if ((iattr->ia_valid & ATTR_UID && iattr->ia_uid != inode->i_uid) ||
1459            (iattr->ia_valid & ATTR_GID && iattr->ia_gid != inode->i_gid)) {
1460                error = vfs_dq_transfer(inode, iattr) ? -EDQUOT : 0;
1461                if (error)
1462                        return error;
1463        }
1464        error = inode_setattr(inode, iattr);
1465        if (!error && (iattr->ia_valid & ATTR_MODE))
1466                error = ext2_acl_chmod(inode);
1467        return error;
1468}
1469