linux/fs/ext3/inode.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/ext3/inode.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  Goal-directed block allocation by Stephen Tweedie
  16 *      (sct@redhat.com), 1993, 1998
  17 *  Big-endian to little-endian byte-swapping/bitmaps by
  18 *        David S. Miller (davem@caip.rutgers.edu), 1995
  19 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  20 *      (jj@sunsite.ms.mff.cuni.cz)
  21 *
  22 *  Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/fs.h>
  27#include <linux/time.h>
  28#include <linux/ext3_jbd.h>
  29#include <linux/jbd.h>
  30#include <linux/highuid.h>
  31#include <linux/pagemap.h>
  32#include <linux/quotaops.h>
  33#include <linux/string.h>
  34#include <linux/buffer_head.h>
  35#include <linux/writeback.h>
  36#include <linux/mpage.h>
  37#include <linux/uio.h>
  38#include <linux/bio.h>
  39#include <linux/fiemap.h>
  40#include <linux/namei.h>
  41#include "xattr.h"
  42#include "acl.h"
  43
  44static int ext3_writepage_trans_blocks(struct inode *inode);
  45
  46/*
  47 * Test whether an inode is a fast symlink.
  48 */
  49static int ext3_inode_is_fast_symlink(struct inode *inode)
  50{
  51        int ea_blocks = EXT3_I(inode)->i_file_acl ?
  52                (inode->i_sb->s_blocksize >> 9) : 0;
  53
  54        return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  55}
  56
  57/*
  58 * The ext3 forget function must perform a revoke if we are freeing data
  59 * which has been journaled.  Metadata (eg. indirect blocks) must be
  60 * revoked in all cases.
  61 *
  62 * "bh" may be NULL: a metadata block may have been freed from memory
  63 * but there may still be a record of it in the journal, and that record
  64 * still needs to be revoked.
  65 */
  66int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
  67                        struct buffer_head *bh, ext3_fsblk_t blocknr)
  68{
  69        int err;
  70
  71        might_sleep();
  72
  73        BUFFER_TRACE(bh, "enter");
  74
  75        jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  76                  "data mode %lx\n",
  77                  bh, is_metadata, inode->i_mode,
  78                  test_opt(inode->i_sb, DATA_FLAGS));
  79
  80        /* Never use the revoke function if we are doing full data
  81         * journaling: there is no need to, and a V1 superblock won't
  82         * support it.  Otherwise, only skip the revoke on un-journaled
  83         * data blocks. */
  84
  85        if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
  86            (!is_metadata && !ext3_should_journal_data(inode))) {
  87                if (bh) {
  88                        BUFFER_TRACE(bh, "call journal_forget");
  89                        return ext3_journal_forget(handle, bh);
  90                }
  91                return 0;
  92        }
  93
  94        /*
  95         * data!=journal && (is_metadata || should_journal_data(inode))
  96         */
  97        BUFFER_TRACE(bh, "call ext3_journal_revoke");
  98        err = ext3_journal_revoke(handle, blocknr, bh);
  99        if (err)
 100                ext3_abort(inode->i_sb, __func__,
 101                           "error %d when attempting revoke", err);
 102        BUFFER_TRACE(bh, "exit");
 103        return err;
 104}
 105
 106/*
 107 * Work out how many blocks we need to proceed with the next chunk of a
 108 * truncate transaction.
 109 */
 110static unsigned long blocks_for_truncate(struct inode *inode)
 111{
 112        unsigned long needed;
 113
 114        needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
 115
 116        /* Give ourselves just enough room to cope with inodes in which
 117         * i_blocks is corrupt: we've seen disk corruptions in the past
 118         * which resulted in random data in an inode which looked enough
 119         * like a regular file for ext3 to try to delete it.  Things
 120         * will go a bit crazy if that happens, but at least we should
 121         * try not to panic the whole kernel. */
 122        if (needed < 2)
 123                needed = 2;
 124
 125        /* But we need to bound the transaction so we don't overflow the
 126         * journal. */
 127        if (needed > EXT3_MAX_TRANS_DATA)
 128                needed = EXT3_MAX_TRANS_DATA;
 129
 130        return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
 131}
 132
 133/*
 134 * Truncate transactions can be complex and absolutely huge.  So we need to
 135 * be able to restart the transaction at a conventient checkpoint to make
 136 * sure we don't overflow the journal.
 137 *
 138 * start_transaction gets us a new handle for a truncate transaction,
 139 * and extend_transaction tries to extend the existing one a bit.  If
 140 * extend fails, we need to propagate the failure up and restart the
 141 * transaction in the top-level truncate loop. --sct
 142 */
 143static handle_t *start_transaction(struct inode *inode)
 144{
 145        handle_t *result;
 146
 147        result = ext3_journal_start(inode, blocks_for_truncate(inode));
 148        if (!IS_ERR(result))
 149                return result;
 150
 151        ext3_std_error(inode->i_sb, PTR_ERR(result));
 152        return result;
 153}
 154
 155/*
 156 * Try to extend this transaction for the purposes of truncation.
 157 *
 158 * Returns 0 if we managed to create more room.  If we can't create more
 159 * room, and the transaction must be restarted we return 1.
 160 */
 161static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
 162{
 163        if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
 164                return 0;
 165        if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
 166                return 0;
 167        return 1;
 168}
 169
 170/*
 171 * Restart the transaction associated with *handle.  This does a commit,
 172 * so before we call here everything must be consistently dirtied against
 173 * this transaction.
 174 */
 175static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
 176{
 177        int ret;
 178
 179        jbd_debug(2, "restarting handle %p\n", handle);
 180        /*
 181         * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
 182         * At this moment, get_block can be called only for blocks inside
 183         * i_size since page cache has been already dropped and writes are
 184         * blocked by i_mutex. So we can safely drop the truncate_mutex.
 185         */
 186        mutex_unlock(&EXT3_I(inode)->truncate_mutex);
 187        ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
 188        mutex_lock(&EXT3_I(inode)->truncate_mutex);
 189        return ret;
 190}
 191
 192/*
 193 * Called at the last iput() if i_nlink is zero.
 194 */
 195void ext3_delete_inode (struct inode * inode)
 196{
 197        handle_t *handle;
 198
 199        truncate_inode_pages(&inode->i_data, 0);
 200
 201        if (is_bad_inode(inode))
 202                goto no_delete;
 203
 204        handle = start_transaction(inode);
 205        if (IS_ERR(handle)) {
 206                /*
 207                 * If we're going to skip the normal cleanup, we still need to
 208                 * make sure that the in-core orphan linked list is properly
 209                 * cleaned up.
 210                 */
 211                ext3_orphan_del(NULL, inode);
 212                goto no_delete;
 213        }
 214
 215        if (IS_SYNC(inode))
 216                handle->h_sync = 1;
 217        inode->i_size = 0;
 218        if (inode->i_blocks)
 219                ext3_truncate(inode);
 220        /*
 221         * Kill off the orphan record which ext3_truncate created.
 222         * AKPM: I think this can be inside the above `if'.
 223         * Note that ext3_orphan_del() has to be able to cope with the
 224         * deletion of a non-existent orphan - this is because we don't
 225         * know if ext3_truncate() actually created an orphan record.
 226         * (Well, we could do this if we need to, but heck - it works)
 227         */
 228        ext3_orphan_del(handle, inode);
 229        EXT3_I(inode)->i_dtime  = get_seconds();
 230
 231        /*
 232         * One subtle ordering requirement: if anything has gone wrong
 233         * (transaction abort, IO errors, whatever), then we can still
 234         * do these next steps (the fs will already have been marked as
 235         * having errors), but we can't free the inode if the mark_dirty
 236         * fails.
 237         */
 238        if (ext3_mark_inode_dirty(handle, inode))
 239                /* If that failed, just do the required in-core inode clear. */
 240                clear_inode(inode);
 241        else
 242                ext3_free_inode(handle, inode);
 243        ext3_journal_stop(handle);
 244        return;
 245no_delete:
 246        clear_inode(inode);     /* We must guarantee clearing of inode... */
 247}
 248
 249typedef struct {
 250        __le32  *p;
 251        __le32  key;
 252        struct buffer_head *bh;
 253} Indirect;
 254
 255static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
 256{
 257        p->key = *(p->p = v);
 258        p->bh = bh;
 259}
 260
 261static int verify_chain(Indirect *from, Indirect *to)
 262{
 263        while (from <= to && from->key == *from->p)
 264                from++;
 265        return (from > to);
 266}
 267
 268/**
 269 *      ext3_block_to_path - parse the block number into array of offsets
 270 *      @inode: inode in question (we are only interested in its superblock)
 271 *      @i_block: block number to be parsed
 272 *      @offsets: array to store the offsets in
 273 *      @boundary: set this non-zero if the referred-to block is likely to be
 274 *             followed (on disk) by an indirect block.
 275 *
 276 *      To store the locations of file's data ext3 uses a data structure common
 277 *      for UNIX filesystems - tree of pointers anchored in the inode, with
 278 *      data blocks at leaves and indirect blocks in intermediate nodes.
 279 *      This function translates the block number into path in that tree -
 280 *      return value is the path length and @offsets[n] is the offset of
 281 *      pointer to (n+1)th node in the nth one. If @block is out of range
 282 *      (negative or too large) warning is printed and zero returned.
 283 *
 284 *      Note: function doesn't find node addresses, so no IO is needed. All
 285 *      we need to know is the capacity of indirect blocks (taken from the
 286 *      inode->i_sb).
 287 */
 288
 289/*
 290 * Portability note: the last comparison (check that we fit into triple
 291 * indirect block) is spelled differently, because otherwise on an
 292 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 293 * if our filesystem had 8Kb blocks. We might use long long, but that would
 294 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 295 * i_block would have to be negative in the very beginning, so we would not
 296 * get there at all.
 297 */
 298
 299static int ext3_block_to_path(struct inode *inode,
 300                        long i_block, int offsets[4], int *boundary)
 301{
 302        int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
 303        int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
 304        const long direct_blocks = EXT3_NDIR_BLOCKS,
 305                indirect_blocks = ptrs,
 306                double_blocks = (1 << (ptrs_bits * 2));
 307        int n = 0;
 308        int final = 0;
 309
 310        if (i_block < 0) {
 311                ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
 312        } else if (i_block < direct_blocks) {
 313                offsets[n++] = i_block;
 314                final = direct_blocks;
 315        } else if ( (i_block -= direct_blocks) < indirect_blocks) {
 316                offsets[n++] = EXT3_IND_BLOCK;
 317                offsets[n++] = i_block;
 318                final = ptrs;
 319        } else if ((i_block -= indirect_blocks) < double_blocks) {
 320                offsets[n++] = EXT3_DIND_BLOCK;
 321                offsets[n++] = i_block >> ptrs_bits;
 322                offsets[n++] = i_block & (ptrs - 1);
 323                final = ptrs;
 324        } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
 325                offsets[n++] = EXT3_TIND_BLOCK;
 326                offsets[n++] = i_block >> (ptrs_bits * 2);
 327                offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
 328                offsets[n++] = i_block & (ptrs - 1);
 329                final = ptrs;
 330        } else {
 331                ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
 332        }
 333        if (boundary)
 334                *boundary = final - 1 - (i_block & (ptrs - 1));
 335        return n;
 336}
 337
 338/**
 339 *      ext3_get_branch - read the chain of indirect blocks leading to data
 340 *      @inode: inode in question
 341 *      @depth: depth of the chain (1 - direct pointer, etc.)
 342 *      @offsets: offsets of pointers in inode/indirect blocks
 343 *      @chain: place to store the result
 344 *      @err: here we store the error value
 345 *
 346 *      Function fills the array of triples <key, p, bh> and returns %NULL
 347 *      if everything went OK or the pointer to the last filled triple
 348 *      (incomplete one) otherwise. Upon the return chain[i].key contains
 349 *      the number of (i+1)-th block in the chain (as it is stored in memory,
 350 *      i.e. little-endian 32-bit), chain[i].p contains the address of that
 351 *      number (it points into struct inode for i==0 and into the bh->b_data
 352 *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 353 *      block for i>0 and NULL for i==0. In other words, it holds the block
 354 *      numbers of the chain, addresses they were taken from (and where we can
 355 *      verify that chain did not change) and buffer_heads hosting these
 356 *      numbers.
 357 *
 358 *      Function stops when it stumbles upon zero pointer (absent block)
 359 *              (pointer to last triple returned, *@err == 0)
 360 *      or when it gets an IO error reading an indirect block
 361 *              (ditto, *@err == -EIO)
 362 *      or when it notices that chain had been changed while it was reading
 363 *              (ditto, *@err == -EAGAIN)
 364 *      or when it reads all @depth-1 indirect blocks successfully and finds
 365 *      the whole chain, all way to the data (returns %NULL, *err == 0).
 366 */
 367static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
 368                                 Indirect chain[4], int *err)
 369{
 370        struct super_block *sb = inode->i_sb;
 371        Indirect *p = chain;
 372        struct buffer_head *bh;
 373
 374        *err = 0;
 375        /* i_data is not going away, no lock needed */
 376        add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
 377        if (!p->key)
 378                goto no_block;
 379        while (--depth) {
 380                bh = sb_bread(sb, le32_to_cpu(p->key));
 381                if (!bh)
 382                        goto failure;
 383                /* Reader: pointers */
 384                if (!verify_chain(chain, p))
 385                        goto changed;
 386                add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
 387                /* Reader: end */
 388                if (!p->key)
 389                        goto no_block;
 390        }
 391        return NULL;
 392
 393changed:
 394        brelse(bh);
 395        *err = -EAGAIN;
 396        goto no_block;
 397failure:
 398        *err = -EIO;
 399no_block:
 400        return p;
 401}
 402
 403/**
 404 *      ext3_find_near - find a place for allocation with sufficient locality
 405 *      @inode: owner
 406 *      @ind: descriptor of indirect block.
 407 *
 408 *      This function returns the preferred place for block allocation.
 409 *      It is used when heuristic for sequential allocation fails.
 410 *      Rules are:
 411 *        + if there is a block to the left of our position - allocate near it.
 412 *        + if pointer will live in indirect block - allocate near that block.
 413 *        + if pointer will live in inode - allocate in the same
 414 *          cylinder group.
 415 *
 416 * In the latter case we colour the starting block by the callers PID to
 417 * prevent it from clashing with concurrent allocations for a different inode
 418 * in the same block group.   The PID is used here so that functionally related
 419 * files will be close-by on-disk.
 420 *
 421 *      Caller must make sure that @ind is valid and will stay that way.
 422 */
 423static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
 424{
 425        struct ext3_inode_info *ei = EXT3_I(inode);
 426        __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
 427        __le32 *p;
 428        ext3_fsblk_t bg_start;
 429        ext3_grpblk_t colour;
 430
 431        /* Try to find previous block */
 432        for (p = ind->p - 1; p >= start; p--) {
 433                if (*p)
 434                        return le32_to_cpu(*p);
 435        }
 436
 437        /* No such thing, so let's try location of indirect block */
 438        if (ind->bh)
 439                return ind->bh->b_blocknr;
 440
 441        /*
 442         * It is going to be referred to from the inode itself? OK, just put it
 443         * into the same cylinder group then.
 444         */
 445        bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
 446        colour = (current->pid % 16) *
 447                        (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
 448        return bg_start + colour;
 449}
 450
 451/**
 452 *      ext3_find_goal - find a preferred place for allocation.
 453 *      @inode: owner
 454 *      @block:  block we want
 455 *      @partial: pointer to the last triple within a chain
 456 *
 457 *      Normally this function find the preferred place for block allocation,
 458 *      returns it.
 459 */
 460
 461static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
 462                                   Indirect *partial)
 463{
 464        struct ext3_block_alloc_info *block_i;
 465
 466        block_i =  EXT3_I(inode)->i_block_alloc_info;
 467
 468        /*
 469         * try the heuristic for sequential allocation,
 470         * failing that at least try to get decent locality.
 471         */
 472        if (block_i && (block == block_i->last_alloc_logical_block + 1)
 473                && (block_i->last_alloc_physical_block != 0)) {
 474                return block_i->last_alloc_physical_block + 1;
 475        }
 476
 477        return ext3_find_near(inode, partial);
 478}
 479
 480/**
 481 *      ext3_blks_to_allocate: Look up the block map and count the number
 482 *      of direct blocks need to be allocated for the given branch.
 483 *
 484 *      @branch: chain of indirect blocks
 485 *      @k: number of blocks need for indirect blocks
 486 *      @blks: number of data blocks to be mapped.
 487 *      @blocks_to_boundary:  the offset in the indirect block
 488 *
 489 *      return the total number of blocks to be allocate, including the
 490 *      direct and indirect blocks.
 491 */
 492static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
 493                int blocks_to_boundary)
 494{
 495        unsigned long count = 0;
 496
 497        /*
 498         * Simple case, [t,d]Indirect block(s) has not allocated yet
 499         * then it's clear blocks on that path have not allocated
 500         */
 501        if (k > 0) {
 502                /* right now we don't handle cross boundary allocation */
 503                if (blks < blocks_to_boundary + 1)
 504                        count += blks;
 505                else
 506                        count += blocks_to_boundary + 1;
 507                return count;
 508        }
 509
 510        count++;
 511        while (count < blks && count <= blocks_to_boundary &&
 512                le32_to_cpu(*(branch[0].p + count)) == 0) {
 513                count++;
 514        }
 515        return count;
 516}
 517
 518/**
 519 *      ext3_alloc_blocks: multiple allocate blocks needed for a branch
 520 *      @indirect_blks: the number of blocks need to allocate for indirect
 521 *                      blocks
 522 *
 523 *      @new_blocks: on return it will store the new block numbers for
 524 *      the indirect blocks(if needed) and the first direct block,
 525 *      @blks:  on return it will store the total number of allocated
 526 *              direct blocks
 527 */
 528static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
 529                        ext3_fsblk_t goal, int indirect_blks, int blks,
 530                        ext3_fsblk_t new_blocks[4], int *err)
 531{
 532        int target, i;
 533        unsigned long count = 0;
 534        int index = 0;
 535        ext3_fsblk_t current_block = 0;
 536        int ret = 0;
 537
 538        /*
 539         * Here we try to allocate the requested multiple blocks at once,
 540         * on a best-effort basis.
 541         * To build a branch, we should allocate blocks for
 542         * the indirect blocks(if not allocated yet), and at least
 543         * the first direct block of this branch.  That's the
 544         * minimum number of blocks need to allocate(required)
 545         */
 546        target = blks + indirect_blks;
 547
 548        while (1) {
 549                count = target;
 550                /* allocating blocks for indirect blocks and direct blocks */
 551                current_block = ext3_new_blocks(handle,inode,goal,&count,err);
 552                if (*err)
 553                        goto failed_out;
 554
 555                target -= count;
 556                /* allocate blocks for indirect blocks */
 557                while (index < indirect_blks && count) {
 558                        new_blocks[index++] = current_block++;
 559                        count--;
 560                }
 561
 562                if (count > 0)
 563                        break;
 564        }
 565
 566        /* save the new block number for the first direct block */
 567        new_blocks[index] = current_block;
 568
 569        /* total number of blocks allocated for direct blocks */
 570        ret = count;
 571        *err = 0;
 572        return ret;
 573failed_out:
 574        for (i = 0; i <index; i++)
 575                ext3_free_blocks(handle, inode, new_blocks[i], 1);
 576        return ret;
 577}
 578
 579/**
 580 *      ext3_alloc_branch - allocate and set up a chain of blocks.
 581 *      @inode: owner
 582 *      @indirect_blks: number of allocated indirect blocks
 583 *      @blks: number of allocated direct blocks
 584 *      @offsets: offsets (in the blocks) to store the pointers to next.
 585 *      @branch: place to store the chain in.
 586 *
 587 *      This function allocates blocks, zeroes out all but the last one,
 588 *      links them into chain and (if we are synchronous) writes them to disk.
 589 *      In other words, it prepares a branch that can be spliced onto the
 590 *      inode. It stores the information about that chain in the branch[], in
 591 *      the same format as ext3_get_branch() would do. We are calling it after
 592 *      we had read the existing part of chain and partial points to the last
 593 *      triple of that (one with zero ->key). Upon the exit we have the same
 594 *      picture as after the successful ext3_get_block(), except that in one
 595 *      place chain is disconnected - *branch->p is still zero (we did not
 596 *      set the last link), but branch->key contains the number that should
 597 *      be placed into *branch->p to fill that gap.
 598 *
 599 *      If allocation fails we free all blocks we've allocated (and forget
 600 *      their buffer_heads) and return the error value the from failed
 601 *      ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
 602 *      as described above and return 0.
 603 */
 604static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
 605                        int indirect_blks, int *blks, ext3_fsblk_t goal,
 606                        int *offsets, Indirect *branch)
 607{
 608        int blocksize = inode->i_sb->s_blocksize;
 609        int i, n = 0;
 610        int err = 0;
 611        struct buffer_head *bh;
 612        int num;
 613        ext3_fsblk_t new_blocks[4];
 614        ext3_fsblk_t current_block;
 615
 616        num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
 617                                *blks, new_blocks, &err);
 618        if (err)
 619                return err;
 620
 621        branch[0].key = cpu_to_le32(new_blocks[0]);
 622        /*
 623         * metadata blocks and data blocks are allocated.
 624         */
 625        for (n = 1; n <= indirect_blks;  n++) {
 626                /*
 627                 * Get buffer_head for parent block, zero it out
 628                 * and set the pointer to new one, then send
 629                 * parent to disk.
 630                 */
 631                bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
 632                branch[n].bh = bh;
 633                lock_buffer(bh);
 634                BUFFER_TRACE(bh, "call get_create_access");
 635                err = ext3_journal_get_create_access(handle, bh);
 636                if (err) {
 637                        unlock_buffer(bh);
 638                        brelse(bh);
 639                        goto failed;
 640                }
 641
 642                memset(bh->b_data, 0, blocksize);
 643                branch[n].p = (__le32 *) bh->b_data + offsets[n];
 644                branch[n].key = cpu_to_le32(new_blocks[n]);
 645                *branch[n].p = branch[n].key;
 646                if ( n == indirect_blks) {
 647                        current_block = new_blocks[n];
 648                        /*
 649                         * End of chain, update the last new metablock of
 650                         * the chain to point to the new allocated
 651                         * data blocks numbers
 652                         */
 653                        for (i=1; i < num; i++)
 654                                *(branch[n].p + i) = cpu_to_le32(++current_block);
 655                }
 656                BUFFER_TRACE(bh, "marking uptodate");
 657                set_buffer_uptodate(bh);
 658                unlock_buffer(bh);
 659
 660                BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
 661                err = ext3_journal_dirty_metadata(handle, bh);
 662                if (err)
 663                        goto failed;
 664        }
 665        *blks = num;
 666        return err;
 667failed:
 668        /* Allocation failed, free what we already allocated */
 669        for (i = 1; i <= n ; i++) {
 670                BUFFER_TRACE(branch[i].bh, "call journal_forget");
 671                ext3_journal_forget(handle, branch[i].bh);
 672        }
 673        for (i = 0; i <indirect_blks; i++)
 674                ext3_free_blocks(handle, inode, new_blocks[i], 1);
 675
 676        ext3_free_blocks(handle, inode, new_blocks[i], num);
 677
 678        return err;
 679}
 680
 681/**
 682 * ext3_splice_branch - splice the allocated branch onto inode.
 683 * @inode: owner
 684 * @block: (logical) number of block we are adding
 685 * @chain: chain of indirect blocks (with a missing link - see
 686 *      ext3_alloc_branch)
 687 * @where: location of missing link
 688 * @num:   number of indirect blocks we are adding
 689 * @blks:  number of direct blocks we are adding
 690 *
 691 * This function fills the missing link and does all housekeeping needed in
 692 * inode (->i_blocks, etc.). In case of success we end up with the full
 693 * chain to new block and return 0.
 694 */
 695static int ext3_splice_branch(handle_t *handle, struct inode *inode,
 696                        long block, Indirect *where, int num, int blks)
 697{
 698        int i;
 699        int err = 0;
 700        struct ext3_block_alloc_info *block_i;
 701        ext3_fsblk_t current_block;
 702        struct ext3_inode_info *ei = EXT3_I(inode);
 703
 704        block_i = ei->i_block_alloc_info;
 705        /*
 706         * If we're splicing into a [td]indirect block (as opposed to the
 707         * inode) then we need to get write access to the [td]indirect block
 708         * before the splice.
 709         */
 710        if (where->bh) {
 711                BUFFER_TRACE(where->bh, "get_write_access");
 712                err = ext3_journal_get_write_access(handle, where->bh);
 713                if (err)
 714                        goto err_out;
 715        }
 716        /* That's it */
 717
 718        *where->p = where->key;
 719
 720        /*
 721         * Update the host buffer_head or inode to point to more just allocated
 722         * direct blocks blocks
 723         */
 724        if (num == 0 && blks > 1) {
 725                current_block = le32_to_cpu(where->key) + 1;
 726                for (i = 1; i < blks; i++)
 727                        *(where->p + i ) = cpu_to_le32(current_block++);
 728        }
 729
 730        /*
 731         * update the most recently allocated logical & physical block
 732         * in i_block_alloc_info, to assist find the proper goal block for next
 733         * allocation
 734         */
 735        if (block_i) {
 736                block_i->last_alloc_logical_block = block + blks - 1;
 737                block_i->last_alloc_physical_block =
 738                                le32_to_cpu(where[num].key) + blks - 1;
 739        }
 740
 741        /* We are done with atomic stuff, now do the rest of housekeeping */
 742
 743        inode->i_ctime = CURRENT_TIME_SEC;
 744        ext3_mark_inode_dirty(handle, inode);
 745        /* ext3_mark_inode_dirty already updated i_sync_tid */
 746        atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
 747
 748        /* had we spliced it onto indirect block? */
 749        if (where->bh) {
 750                /*
 751                 * If we spliced it onto an indirect block, we haven't
 752                 * altered the inode.  Note however that if it is being spliced
 753                 * onto an indirect block at the very end of the file (the
 754                 * file is growing) then we *will* alter the inode to reflect
 755                 * the new i_size.  But that is not done here - it is done in
 756                 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
 757                 */
 758                jbd_debug(5, "splicing indirect only\n");
 759                BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
 760                err = ext3_journal_dirty_metadata(handle, where->bh);
 761                if (err)
 762                        goto err_out;
 763        } else {
 764                /*
 765                 * OK, we spliced it into the inode itself on a direct block.
 766                 * Inode was dirtied above.
 767                 */
 768                jbd_debug(5, "splicing direct\n");
 769        }
 770        return err;
 771
 772err_out:
 773        for (i = 1; i <= num; i++) {
 774                BUFFER_TRACE(where[i].bh, "call journal_forget");
 775                ext3_journal_forget(handle, where[i].bh);
 776                ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
 777        }
 778        ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
 779
 780        return err;
 781}
 782
 783/*
 784 * Allocation strategy is simple: if we have to allocate something, we will
 785 * have to go the whole way to leaf. So let's do it before attaching anything
 786 * to tree, set linkage between the newborn blocks, write them if sync is
 787 * required, recheck the path, free and repeat if check fails, otherwise
 788 * set the last missing link (that will protect us from any truncate-generated
 789 * removals - all blocks on the path are immune now) and possibly force the
 790 * write on the parent block.
 791 * That has a nice additional property: no special recovery from the failed
 792 * allocations is needed - we simply release blocks and do not touch anything
 793 * reachable from inode.
 794 *
 795 * `handle' can be NULL if create == 0.
 796 *
 797 * The BKL may not be held on entry here.  Be sure to take it early.
 798 * return > 0, # of blocks mapped or allocated.
 799 * return = 0, if plain lookup failed.
 800 * return < 0, error case.
 801 */
 802int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
 803                sector_t iblock, unsigned long maxblocks,
 804                struct buffer_head *bh_result,
 805                int create)
 806{
 807        int err = -EIO;
 808        int offsets[4];
 809        Indirect chain[4];
 810        Indirect *partial;
 811        ext3_fsblk_t goal;
 812        int indirect_blks;
 813        int blocks_to_boundary = 0;
 814        int depth;
 815        struct ext3_inode_info *ei = EXT3_I(inode);
 816        int count = 0;
 817        ext3_fsblk_t first_block = 0;
 818
 819
 820        J_ASSERT(handle != NULL || create == 0);
 821        depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
 822
 823        if (depth == 0)
 824                goto out;
 825
 826        partial = ext3_get_branch(inode, depth, offsets, chain, &err);
 827
 828        /* Simplest case - block found, no allocation needed */
 829        if (!partial) {
 830                first_block = le32_to_cpu(chain[depth - 1].key);
 831                clear_buffer_new(bh_result);
 832                count++;
 833                /*map more blocks*/
 834                while (count < maxblocks && count <= blocks_to_boundary) {
 835                        ext3_fsblk_t blk;
 836
 837                        if (!verify_chain(chain, chain + depth - 1)) {
 838                                /*
 839                                 * Indirect block might be removed by
 840                                 * truncate while we were reading it.
 841                                 * Handling of that case: forget what we've
 842                                 * got now. Flag the err as EAGAIN, so it
 843                                 * will reread.
 844                                 */
 845                                err = -EAGAIN;
 846                                count = 0;
 847                                break;
 848                        }
 849                        blk = le32_to_cpu(*(chain[depth-1].p + count));
 850
 851                        if (blk == first_block + count)
 852                                count++;
 853                        else
 854                                break;
 855                }
 856                if (err != -EAGAIN)
 857                        goto got_it;
 858        }
 859
 860        /* Next simple case - plain lookup or failed read of indirect block */
 861        if (!create || err == -EIO)
 862                goto cleanup;
 863
 864        mutex_lock(&ei->truncate_mutex);
 865
 866        /*
 867         * If the indirect block is missing while we are reading
 868         * the chain(ext3_get_branch() returns -EAGAIN err), or
 869         * if the chain has been changed after we grab the semaphore,
 870         * (either because another process truncated this branch, or
 871         * another get_block allocated this branch) re-grab the chain to see if
 872         * the request block has been allocated or not.
 873         *
 874         * Since we already block the truncate/other get_block
 875         * at this point, we will have the current copy of the chain when we
 876         * splice the branch into the tree.
 877         */
 878        if (err == -EAGAIN || !verify_chain(chain, partial)) {
 879                while (partial > chain) {
 880                        brelse(partial->bh);
 881                        partial--;
 882                }
 883                partial = ext3_get_branch(inode, depth, offsets, chain, &err);
 884                if (!partial) {
 885                        count++;
 886                        mutex_unlock(&ei->truncate_mutex);
 887                        if (err)
 888                                goto cleanup;
 889                        clear_buffer_new(bh_result);
 890                        goto got_it;
 891                }
 892        }
 893
 894        /*
 895         * Okay, we need to do block allocation.  Lazily initialize the block
 896         * allocation info here if necessary
 897        */
 898        if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
 899                ext3_init_block_alloc_info(inode);
 900
 901        goal = ext3_find_goal(inode, iblock, partial);
 902
 903        /* the number of blocks need to allocate for [d,t]indirect blocks */
 904        indirect_blks = (chain + depth) - partial - 1;
 905
 906        /*
 907         * Next look up the indirect map to count the totoal number of
 908         * direct blocks to allocate for this branch.
 909         */
 910        count = ext3_blks_to_allocate(partial, indirect_blks,
 911                                        maxblocks, blocks_to_boundary);
 912        /*
 913         * Block out ext3_truncate while we alter the tree
 914         */
 915        err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
 916                                offsets + (partial - chain), partial);
 917
 918        /*
 919         * The ext3_splice_branch call will free and forget any buffers
 920         * on the new chain if there is a failure, but that risks using
 921         * up transaction credits, especially for bitmaps where the
 922         * credits cannot be returned.  Can we handle this somehow?  We
 923         * may need to return -EAGAIN upwards in the worst case.  --sct
 924         */
 925        if (!err)
 926                err = ext3_splice_branch(handle, inode, iblock,
 927                                        partial, indirect_blks, count);
 928        mutex_unlock(&ei->truncate_mutex);
 929        if (err)
 930                goto cleanup;
 931
 932        set_buffer_new(bh_result);
 933got_it:
 934        map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
 935        if (count > blocks_to_boundary)
 936                set_buffer_boundary(bh_result);
 937        err = count;
 938        /* Clean up and exit */
 939        partial = chain + depth - 1;    /* the whole chain */
 940cleanup:
 941        while (partial > chain) {
 942                BUFFER_TRACE(partial->bh, "call brelse");
 943                brelse(partial->bh);
 944                partial--;
 945        }
 946        BUFFER_TRACE(bh_result, "returned");
 947out:
 948        return err;
 949}
 950
 951/* Maximum number of blocks we map for direct IO at once. */
 952#define DIO_MAX_BLOCKS 4096
 953/*
 954 * Number of credits we need for writing DIO_MAX_BLOCKS:
 955 * We need sb + group descriptor + bitmap + inode -> 4
 956 * For B blocks with A block pointers per block we need:
 957 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
 958 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
 959 */
 960#define DIO_CREDITS 25
 961
 962static int ext3_get_block(struct inode *inode, sector_t iblock,
 963                        struct buffer_head *bh_result, int create)
 964{
 965        handle_t *handle = ext3_journal_current_handle();
 966        int ret = 0, started = 0;
 967        unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
 968
 969        if (create && !handle) {        /* Direct IO write... */
 970                if (max_blocks > DIO_MAX_BLOCKS)
 971                        max_blocks = DIO_MAX_BLOCKS;
 972                handle = ext3_journal_start(inode, DIO_CREDITS +
 973                                2 * EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb));
 974                if (IS_ERR(handle)) {
 975                        ret = PTR_ERR(handle);
 976                        goto out;
 977                }
 978                started = 1;
 979        }
 980
 981        ret = ext3_get_blocks_handle(handle, inode, iblock,
 982                                        max_blocks, bh_result, create);
 983        if (ret > 0) {
 984                bh_result->b_size = (ret << inode->i_blkbits);
 985                ret = 0;
 986        }
 987        if (started)
 988                ext3_journal_stop(handle);
 989out:
 990        return ret;
 991}
 992
 993int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
 994                u64 start, u64 len)
 995{
 996        return generic_block_fiemap(inode, fieinfo, start, len,
 997                                    ext3_get_block);
 998}
 999
1000/*
1001 * `handle' can be NULL if create is zero
1002 */
1003struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
1004                                long block, int create, int *errp)
1005{
1006        struct buffer_head dummy;
1007        int fatal = 0, err;
1008
1009        J_ASSERT(handle != NULL || create == 0);
1010
1011        dummy.b_state = 0;
1012        dummy.b_blocknr = -1000;
1013        buffer_trace_init(&dummy.b_history);
1014        err = ext3_get_blocks_handle(handle, inode, block, 1,
1015                                        &dummy, create);
1016        /*
1017         * ext3_get_blocks_handle() returns number of blocks
1018         * mapped. 0 in case of a HOLE.
1019         */
1020        if (err > 0) {
1021                if (err > 1)
1022                        WARN_ON(1);
1023                err = 0;
1024        }
1025        *errp = err;
1026        if (!err && buffer_mapped(&dummy)) {
1027                struct buffer_head *bh;
1028                bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1029                if (!bh) {
1030                        *errp = -EIO;
1031                        goto err;
1032                }
1033                if (buffer_new(&dummy)) {
1034                        J_ASSERT(create != 0);
1035                        J_ASSERT(handle != NULL);
1036
1037                        /*
1038                         * Now that we do not always journal data, we should
1039                         * keep in mind whether this should always journal the
1040                         * new buffer as metadata.  For now, regular file
1041                         * writes use ext3_get_block instead, so it's not a
1042                         * problem.
1043                         */
1044                        lock_buffer(bh);
1045                        BUFFER_TRACE(bh, "call get_create_access");
1046                        fatal = ext3_journal_get_create_access(handle, bh);
1047                        if (!fatal && !buffer_uptodate(bh)) {
1048                                memset(bh->b_data,0,inode->i_sb->s_blocksize);
1049                                set_buffer_uptodate(bh);
1050                        }
1051                        unlock_buffer(bh);
1052                        BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1053                        err = ext3_journal_dirty_metadata(handle, bh);
1054                        if (!fatal)
1055                                fatal = err;
1056                } else {
1057                        BUFFER_TRACE(bh, "not a new buffer");
1058                }
1059                if (fatal) {
1060                        *errp = fatal;
1061                        brelse(bh);
1062                        bh = NULL;
1063                }
1064                return bh;
1065        }
1066err:
1067        return NULL;
1068}
1069
1070struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1071                               int block, int create, int *err)
1072{
1073        struct buffer_head * bh;
1074
1075        bh = ext3_getblk(handle, inode, block, create, err);
1076        if (!bh)
1077                return bh;
1078        if (buffer_uptodate(bh))
1079                return bh;
1080        ll_rw_block(READ_META, 1, &bh);
1081        wait_on_buffer(bh);
1082        if (buffer_uptodate(bh))
1083                return bh;
1084        put_bh(bh);
1085        *err = -EIO;
1086        return NULL;
1087}
1088
1089static int walk_page_buffers(   handle_t *handle,
1090                                struct buffer_head *head,
1091                                unsigned from,
1092                                unsigned to,
1093                                int *partial,
1094                                int (*fn)(      handle_t *handle,
1095                                                struct buffer_head *bh))
1096{
1097        struct buffer_head *bh;
1098        unsigned block_start, block_end;
1099        unsigned blocksize = head->b_size;
1100        int err, ret = 0;
1101        struct buffer_head *next;
1102
1103        for (   bh = head, block_start = 0;
1104                ret == 0 && (bh != head || !block_start);
1105                block_start = block_end, bh = next)
1106        {
1107                next = bh->b_this_page;
1108                block_end = block_start + blocksize;
1109                if (block_end <= from || block_start >= to) {
1110                        if (partial && !buffer_uptodate(bh))
1111                                *partial = 1;
1112                        continue;
1113                }
1114                err = (*fn)(handle, bh);
1115                if (!ret)
1116                        ret = err;
1117        }
1118        return ret;
1119}
1120
1121/*
1122 * To preserve ordering, it is essential that the hole instantiation and
1123 * the data write be encapsulated in a single transaction.  We cannot
1124 * close off a transaction and start a new one between the ext3_get_block()
1125 * and the commit_write().  So doing the journal_start at the start of
1126 * prepare_write() is the right place.
1127 *
1128 * Also, this function can nest inside ext3_writepage() ->
1129 * block_write_full_page(). In that case, we *know* that ext3_writepage()
1130 * has generated enough buffer credits to do the whole page.  So we won't
1131 * block on the journal in that case, which is good, because the caller may
1132 * be PF_MEMALLOC.
1133 *
1134 * By accident, ext3 can be reentered when a transaction is open via
1135 * quota file writes.  If we were to commit the transaction while thus
1136 * reentered, there can be a deadlock - we would be holding a quota
1137 * lock, and the commit would never complete if another thread had a
1138 * transaction open and was blocking on the quota lock - a ranking
1139 * violation.
1140 *
1141 * So what we do is to rely on the fact that journal_stop/journal_start
1142 * will _not_ run commit under these circumstances because handle->h_ref
1143 * is elevated.  We'll still have enough credits for the tiny quotafile
1144 * write.
1145 */
1146static int do_journal_get_write_access(handle_t *handle,
1147                                        struct buffer_head *bh)
1148{
1149        if (!buffer_mapped(bh) || buffer_freed(bh))
1150                return 0;
1151        return ext3_journal_get_write_access(handle, bh);
1152}
1153
1154static int ext3_write_begin(struct file *file, struct address_space *mapping,
1155                                loff_t pos, unsigned len, unsigned flags,
1156                                struct page **pagep, void **fsdata)
1157{
1158        struct inode *inode = mapping->host;
1159        int ret;
1160        handle_t *handle;
1161        int retries = 0;
1162        struct page *page;
1163        pgoff_t index;
1164        unsigned from, to;
1165        /* Reserve one block more for addition to orphan list in case
1166         * we allocate blocks but write fails for some reason */
1167        int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
1168
1169        index = pos >> PAGE_CACHE_SHIFT;
1170        from = pos & (PAGE_CACHE_SIZE - 1);
1171        to = from + len;
1172
1173retry:
1174        page = grab_cache_page_write_begin(mapping, index, flags);
1175        if (!page)
1176                return -ENOMEM;
1177        *pagep = page;
1178
1179        handle = ext3_journal_start(inode, needed_blocks);
1180        if (IS_ERR(handle)) {
1181                unlock_page(page);
1182                page_cache_release(page);
1183                ret = PTR_ERR(handle);
1184                goto out;
1185        }
1186        ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1187                                                        ext3_get_block);
1188        if (ret)
1189                goto write_begin_failed;
1190
1191        if (ext3_should_journal_data(inode)) {
1192                ret = walk_page_buffers(handle, page_buffers(page),
1193                                from, to, NULL, do_journal_get_write_access);
1194        }
1195write_begin_failed:
1196        if (ret) {
1197                /*
1198                 * block_write_begin may have instantiated a few blocks
1199                 * outside i_size.  Trim these off again. Don't need
1200                 * i_size_read because we hold i_mutex.
1201                 *
1202                 * Add inode to orphan list in case we crash before truncate
1203                 * finishes. Do this only if ext3_can_truncate() agrees so
1204                 * that orphan processing code is happy.
1205                 */
1206                if (pos + len > inode->i_size && ext3_can_truncate(inode))
1207                        ext3_orphan_add(handle, inode);
1208                ext3_journal_stop(handle);
1209                unlock_page(page);
1210                page_cache_release(page);
1211                if (pos + len > inode->i_size)
1212                        ext3_truncate(inode);
1213        }
1214        if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1215                goto retry;
1216out:
1217        return ret;
1218}
1219
1220
1221int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1222{
1223        int err = journal_dirty_data(handle, bh);
1224        if (err)
1225                ext3_journal_abort_handle(__func__, __func__,
1226                                                bh, handle, err);
1227        return err;
1228}
1229
1230/* For ordered writepage and write_end functions */
1231static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1232{
1233        /*
1234         * Write could have mapped the buffer but it didn't copy the data in
1235         * yet. So avoid filing such buffer into a transaction.
1236         */
1237        if (buffer_mapped(bh) && buffer_uptodate(bh))
1238                return ext3_journal_dirty_data(handle, bh);
1239        return 0;
1240}
1241
1242/* For write_end() in data=journal mode */
1243static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1244{
1245        if (!buffer_mapped(bh) || buffer_freed(bh))
1246                return 0;
1247        set_buffer_uptodate(bh);
1248        return ext3_journal_dirty_metadata(handle, bh);
1249}
1250
1251/*
1252 * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1253 * for the whole page but later we failed to copy the data in. Update inode
1254 * size according to what we managed to copy. The rest is going to be
1255 * truncated in write_end function.
1256 */
1257static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
1258{
1259        /* What matters to us is i_disksize. We don't write i_size anywhere */
1260        if (pos + copied > inode->i_size)
1261                i_size_write(inode, pos + copied);
1262        if (pos + copied > EXT3_I(inode)->i_disksize) {
1263                EXT3_I(inode)->i_disksize = pos + copied;
1264                mark_inode_dirty(inode);
1265        }
1266}
1267
1268/*
1269 * We need to pick up the new inode size which generic_commit_write gave us
1270 * `file' can be NULL - eg, when called from page_symlink().
1271 *
1272 * ext3 never places buffers on inode->i_mapping->private_list.  metadata
1273 * buffers are managed internally.
1274 */
1275static int ext3_ordered_write_end(struct file *file,
1276                                struct address_space *mapping,
1277                                loff_t pos, unsigned len, unsigned copied,
1278                                struct page *page, void *fsdata)
1279{
1280        handle_t *handle = ext3_journal_current_handle();
1281        struct inode *inode = file->f_mapping->host;
1282        unsigned from, to;
1283        int ret = 0, ret2;
1284
1285        copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1286
1287        from = pos & (PAGE_CACHE_SIZE - 1);
1288        to = from + copied;
1289        ret = walk_page_buffers(handle, page_buffers(page),
1290                from, to, NULL, journal_dirty_data_fn);
1291
1292        if (ret == 0)
1293                update_file_sizes(inode, pos, copied);
1294        /*
1295         * There may be allocated blocks outside of i_size because
1296         * we failed to copy some data. Prepare for truncate.
1297         */
1298        if (pos + len > inode->i_size && ext3_can_truncate(inode))
1299                ext3_orphan_add(handle, inode);
1300        ret2 = ext3_journal_stop(handle);
1301        if (!ret)
1302                ret = ret2;
1303        unlock_page(page);
1304        page_cache_release(page);
1305
1306        if (pos + len > inode->i_size)
1307                ext3_truncate(inode);
1308        return ret ? ret : copied;
1309}
1310
1311static int ext3_writeback_write_end(struct file *file,
1312                                struct address_space *mapping,
1313                                loff_t pos, unsigned len, unsigned copied,
1314                                struct page *page, void *fsdata)
1315{
1316        handle_t *handle = ext3_journal_current_handle();
1317        struct inode *inode = file->f_mapping->host;
1318        int ret;
1319
1320        copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1321        update_file_sizes(inode, pos, copied);
1322        /*
1323         * There may be allocated blocks outside of i_size because
1324         * we failed to copy some data. Prepare for truncate.
1325         */
1326        if (pos + len > inode->i_size && ext3_can_truncate(inode))
1327                ext3_orphan_add(handle, inode);
1328        ret = ext3_journal_stop(handle);
1329        unlock_page(page);
1330        page_cache_release(page);
1331
1332        if (pos + len > inode->i_size)
1333                ext3_truncate(inode);
1334        return ret ? ret : copied;
1335}
1336
1337static int ext3_journalled_write_end(struct file *file,
1338                                struct address_space *mapping,
1339                                loff_t pos, unsigned len, unsigned copied,
1340                                struct page *page, void *fsdata)
1341{
1342        handle_t *handle = ext3_journal_current_handle();
1343        struct inode *inode = mapping->host;
1344        int ret = 0, ret2;
1345        int partial = 0;
1346        unsigned from, to;
1347
1348        from = pos & (PAGE_CACHE_SIZE - 1);
1349        to = from + len;
1350
1351        if (copied < len) {
1352                if (!PageUptodate(page))
1353                        copied = 0;
1354                page_zero_new_buffers(page, from + copied, to);
1355                to = from + copied;
1356        }
1357
1358        ret = walk_page_buffers(handle, page_buffers(page), from,
1359                                to, &partial, write_end_fn);
1360        if (!partial)
1361                SetPageUptodate(page);
1362
1363        if (pos + copied > inode->i_size)
1364                i_size_write(inode, pos + copied);
1365        /*
1366         * There may be allocated blocks outside of i_size because
1367         * we failed to copy some data. Prepare for truncate.
1368         */
1369        if (pos + len > inode->i_size && ext3_can_truncate(inode))
1370                ext3_orphan_add(handle, inode);
1371        EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1372        if (inode->i_size > EXT3_I(inode)->i_disksize) {
1373                EXT3_I(inode)->i_disksize = inode->i_size;
1374                ret2 = ext3_mark_inode_dirty(handle, inode);
1375                if (!ret)
1376                        ret = ret2;
1377        }
1378
1379        ret2 = ext3_journal_stop(handle);
1380        if (!ret)
1381                ret = ret2;
1382        unlock_page(page);
1383        page_cache_release(page);
1384
1385        if (pos + len > inode->i_size)
1386                ext3_truncate(inode);
1387        return ret ? ret : copied;
1388}
1389
1390/*
1391 * bmap() is special.  It gets used by applications such as lilo and by
1392 * the swapper to find the on-disk block of a specific piece of data.
1393 *
1394 * Naturally, this is dangerous if the block concerned is still in the
1395 * journal.  If somebody makes a swapfile on an ext3 data-journaling
1396 * filesystem and enables swap, then they may get a nasty shock when the
1397 * data getting swapped to that swapfile suddenly gets overwritten by
1398 * the original zero's written out previously to the journal and
1399 * awaiting writeback in the kernel's buffer cache.
1400 *
1401 * So, if we see any bmap calls here on a modified, data-journaled file,
1402 * take extra steps to flush any blocks which might be in the cache.
1403 */
1404static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1405{
1406        struct inode *inode = mapping->host;
1407        journal_t *journal;
1408        int err;
1409
1410        if (EXT3_I(inode)->i_state & EXT3_STATE_JDATA) {
1411                /*
1412                 * This is a REALLY heavyweight approach, but the use of
1413                 * bmap on dirty files is expected to be extremely rare:
1414                 * only if we run lilo or swapon on a freshly made file
1415                 * do we expect this to happen.
1416                 *
1417                 * (bmap requires CAP_SYS_RAWIO so this does not
1418                 * represent an unprivileged user DOS attack --- we'd be
1419                 * in trouble if mortal users could trigger this path at
1420                 * will.)
1421                 *
1422                 * NB. EXT3_STATE_JDATA is not set on files other than
1423                 * regular files.  If somebody wants to bmap a directory
1424                 * or symlink and gets confused because the buffer
1425                 * hasn't yet been flushed to disk, they deserve
1426                 * everything they get.
1427                 */
1428
1429                EXT3_I(inode)->i_state &= ~EXT3_STATE_JDATA;
1430                journal = EXT3_JOURNAL(inode);
1431                journal_lock_updates(journal);
1432                err = journal_flush(journal);
1433                journal_unlock_updates(journal);
1434
1435                if (err)
1436                        return 0;
1437        }
1438
1439        return generic_block_bmap(mapping,block,ext3_get_block);
1440}
1441
1442static int bget_one(handle_t *handle, struct buffer_head *bh)
1443{
1444        get_bh(bh);
1445        return 0;
1446}
1447
1448static int bput_one(handle_t *handle, struct buffer_head *bh)
1449{
1450        put_bh(bh);
1451        return 0;
1452}
1453
1454static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
1455{
1456        return !buffer_mapped(bh);
1457}
1458
1459/*
1460 * Note that we always start a transaction even if we're not journalling
1461 * data.  This is to preserve ordering: any hole instantiation within
1462 * __block_write_full_page -> ext3_get_block() should be journalled
1463 * along with the data so we don't crash and then get metadata which
1464 * refers to old data.
1465 *
1466 * In all journalling modes block_write_full_page() will start the I/O.
1467 *
1468 * Problem:
1469 *
1470 *      ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1471 *              ext3_writepage()
1472 *
1473 * Similar for:
1474 *
1475 *      ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1476 *
1477 * Same applies to ext3_get_block().  We will deadlock on various things like
1478 * lock_journal and i_truncate_mutex.
1479 *
1480 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1481 * allocations fail.
1482 *
1483 * 16May01: If we're reentered then journal_current_handle() will be
1484 *          non-zero. We simply *return*.
1485 *
1486 * 1 July 2001: @@@ FIXME:
1487 *   In journalled data mode, a data buffer may be metadata against the
1488 *   current transaction.  But the same file is part of a shared mapping
1489 *   and someone does a writepage() on it.
1490 *
1491 *   We will move the buffer onto the async_data list, but *after* it has
1492 *   been dirtied. So there's a small window where we have dirty data on
1493 *   BJ_Metadata.
1494 *
1495 *   Note that this only applies to the last partial page in the file.  The
1496 *   bit which block_write_full_page() uses prepare/commit for.  (That's
1497 *   broken code anyway: it's wrong for msync()).
1498 *
1499 *   It's a rare case: affects the final partial page, for journalled data
1500 *   where the file is subject to bith write() and writepage() in the same
1501 *   transction.  To fix it we'll need a custom block_write_full_page().
1502 *   We'll probably need that anyway for journalling writepage() output.
1503 *
1504 * We don't honour synchronous mounts for writepage().  That would be
1505 * disastrous.  Any write() or metadata operation will sync the fs for
1506 * us.
1507 *
1508 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1509 * we don't need to open a transaction here.
1510 */
1511static int ext3_ordered_writepage(struct page *page,
1512                                struct writeback_control *wbc)
1513{
1514        struct inode *inode = page->mapping->host;
1515        struct buffer_head *page_bufs;
1516        handle_t *handle = NULL;
1517        int ret = 0;
1518        int err;
1519
1520        J_ASSERT(PageLocked(page));
1521
1522        /*
1523         * We give up here if we're reentered, because it might be for a
1524         * different filesystem.
1525         */
1526        if (ext3_journal_current_handle())
1527                goto out_fail;
1528
1529        if (!page_has_buffers(page)) {
1530                create_empty_buffers(page, inode->i_sb->s_blocksize,
1531                                (1 << BH_Dirty)|(1 << BH_Uptodate));
1532                page_bufs = page_buffers(page);
1533        } else {
1534                page_bufs = page_buffers(page);
1535                if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
1536                                       NULL, buffer_unmapped)) {
1537                        /* Provide NULL get_block() to catch bugs if buffers
1538                         * weren't really mapped */
1539                        return block_write_full_page(page, NULL, wbc);
1540                }
1541        }
1542        handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1543
1544        if (IS_ERR(handle)) {
1545                ret = PTR_ERR(handle);
1546                goto out_fail;
1547        }
1548
1549        walk_page_buffers(handle, page_bufs, 0,
1550                        PAGE_CACHE_SIZE, NULL, bget_one);
1551
1552        ret = block_write_full_page(page, ext3_get_block, wbc);
1553
1554        /*
1555         * The page can become unlocked at any point now, and
1556         * truncate can then come in and change things.  So we
1557         * can't touch *page from now on.  But *page_bufs is
1558         * safe due to elevated refcount.
1559         */
1560
1561        /*
1562         * And attach them to the current transaction.  But only if
1563         * block_write_full_page() succeeded.  Otherwise they are unmapped,
1564         * and generally junk.
1565         */
1566        if (ret == 0) {
1567                err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1568                                        NULL, journal_dirty_data_fn);
1569                if (!ret)
1570                        ret = err;
1571        }
1572        walk_page_buffers(handle, page_bufs, 0,
1573                        PAGE_CACHE_SIZE, NULL, bput_one);
1574        err = ext3_journal_stop(handle);
1575        if (!ret)
1576                ret = err;
1577        return ret;
1578
1579out_fail:
1580        redirty_page_for_writepage(wbc, page);
1581        unlock_page(page);
1582        return ret;
1583}
1584
1585static int ext3_writeback_writepage(struct page *page,
1586                                struct writeback_control *wbc)
1587{
1588        struct inode *inode = page->mapping->host;
1589        handle_t *handle = NULL;
1590        int ret = 0;
1591        int err;
1592
1593        if (ext3_journal_current_handle())
1594                goto out_fail;
1595
1596        if (page_has_buffers(page)) {
1597                if (!walk_page_buffers(NULL, page_buffers(page), 0,
1598                                      PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
1599                        /* Provide NULL get_block() to catch bugs if buffers
1600                         * weren't really mapped */
1601                        return block_write_full_page(page, NULL, wbc);
1602                }
1603        }
1604
1605        handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1606        if (IS_ERR(handle)) {
1607                ret = PTR_ERR(handle);
1608                goto out_fail;
1609        }
1610
1611        if (test_opt(inode->i_sb, NOBH) && ext3_should_writeback_data(inode))
1612                ret = nobh_writepage(page, ext3_get_block, wbc);
1613        else
1614                ret = block_write_full_page(page, ext3_get_block, wbc);
1615
1616        err = ext3_journal_stop(handle);
1617        if (!ret)
1618                ret = err;
1619        return ret;
1620
1621out_fail:
1622        redirty_page_for_writepage(wbc, page);
1623        unlock_page(page);
1624        return ret;
1625}
1626
1627static int ext3_journalled_writepage(struct page *page,
1628                                struct writeback_control *wbc)
1629{
1630        struct inode *inode = page->mapping->host;
1631        handle_t *handle = NULL;
1632        int ret = 0;
1633        int err;
1634
1635        if (ext3_journal_current_handle())
1636                goto no_write;
1637
1638        handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1639        if (IS_ERR(handle)) {
1640                ret = PTR_ERR(handle);
1641                goto no_write;
1642        }
1643
1644        if (!page_has_buffers(page) || PageChecked(page)) {
1645                /*
1646                 * It's mmapped pagecache.  Add buffers and journal it.  There
1647                 * doesn't seem much point in redirtying the page here.
1648                 */
1649                ClearPageChecked(page);
1650                ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1651                                        ext3_get_block);
1652                if (ret != 0) {
1653                        ext3_journal_stop(handle);
1654                        goto out_unlock;
1655                }
1656                ret = walk_page_buffers(handle, page_buffers(page), 0,
1657                        PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1658
1659                err = walk_page_buffers(handle, page_buffers(page), 0,
1660                                PAGE_CACHE_SIZE, NULL, write_end_fn);
1661                if (ret == 0)
1662                        ret = err;
1663                EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1664                unlock_page(page);
1665        } else {
1666                /*
1667                 * It may be a page full of checkpoint-mode buffers.  We don't
1668                 * really know unless we go poke around in the buffer_heads.
1669                 * But block_write_full_page will do the right thing.
1670                 */
1671                ret = block_write_full_page(page, ext3_get_block, wbc);
1672        }
1673        err = ext3_journal_stop(handle);
1674        if (!ret)
1675                ret = err;
1676out:
1677        return ret;
1678
1679no_write:
1680        redirty_page_for_writepage(wbc, page);
1681out_unlock:
1682        unlock_page(page);
1683        goto out;
1684}
1685
1686static int ext3_readpage(struct file *file, struct page *page)
1687{
1688        return mpage_readpage(page, ext3_get_block);
1689}
1690
1691static int
1692ext3_readpages(struct file *file, struct address_space *mapping,
1693                struct list_head *pages, unsigned nr_pages)
1694{
1695        return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1696}
1697
1698static void ext3_invalidatepage(struct page *page, unsigned long offset)
1699{
1700        journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1701
1702        /*
1703         * If it's a full truncate we just forget about the pending dirtying
1704         */
1705        if (offset == 0)
1706                ClearPageChecked(page);
1707
1708        journal_invalidatepage(journal, page, offset);
1709}
1710
1711static int ext3_releasepage(struct page *page, gfp_t wait)
1712{
1713        journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1714
1715        WARN_ON(PageChecked(page));
1716        if (!page_has_buffers(page))
1717                return 0;
1718        return journal_try_to_free_buffers(journal, page, wait);
1719}
1720
1721/*
1722 * If the O_DIRECT write will extend the file then add this inode to the
1723 * orphan list.  So recovery will truncate it back to the original size
1724 * if the machine crashes during the write.
1725 *
1726 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1727 * crashes then stale disk data _may_ be exposed inside the file. But current
1728 * VFS code falls back into buffered path in that case so we are safe.
1729 */
1730static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1731                        const struct iovec *iov, loff_t offset,
1732                        unsigned long nr_segs)
1733{
1734        struct file *file = iocb->ki_filp;
1735        struct inode *inode = file->f_mapping->host;
1736        struct ext3_inode_info *ei = EXT3_I(inode);
1737        handle_t *handle;
1738        ssize_t ret;
1739        int orphan = 0;
1740        size_t count = iov_length(iov, nr_segs);
1741        int retries = 0;
1742
1743        if (rw == WRITE) {
1744                loff_t final_size = offset + count;
1745
1746                if (final_size > inode->i_size) {
1747                        /* Credits for sb + inode write */
1748                        handle = ext3_journal_start(inode, 2);
1749                        if (IS_ERR(handle)) {
1750                                ret = PTR_ERR(handle);
1751                                goto out;
1752                        }
1753                        ret = ext3_orphan_add(handle, inode);
1754                        if (ret) {
1755                                ext3_journal_stop(handle);
1756                                goto out;
1757                        }
1758                        orphan = 1;
1759                        ei->i_disksize = inode->i_size;
1760                        ext3_journal_stop(handle);
1761                }
1762        }
1763
1764retry:
1765        ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1766                                 offset, nr_segs,
1767                                 ext3_get_block, NULL);
1768        if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1769                goto retry;
1770
1771        if (orphan) {
1772                int err;
1773
1774                /* Credits for sb + inode write */
1775                handle = ext3_journal_start(inode, 2);
1776                if (IS_ERR(handle)) {
1777                        /* This is really bad luck. We've written the data
1778                         * but cannot extend i_size. Bail out and pretend
1779                         * the write failed... */
1780                        ret = PTR_ERR(handle);
1781                        goto out;
1782                }
1783                if (inode->i_nlink)
1784                        ext3_orphan_del(handle, inode);
1785                if (ret > 0) {
1786                        loff_t end = offset + ret;
1787                        if (end > inode->i_size) {
1788                                ei->i_disksize = end;
1789                                i_size_write(inode, end);
1790                                /*
1791                                 * We're going to return a positive `ret'
1792                                 * here due to non-zero-length I/O, so there's
1793                                 * no way of reporting error returns from
1794                                 * ext3_mark_inode_dirty() to userspace.  So
1795                                 * ignore it.
1796                                 */
1797                                ext3_mark_inode_dirty(handle, inode);
1798                        }
1799                }
1800                err = ext3_journal_stop(handle);
1801                if (ret == 0)
1802                        ret = err;
1803        }
1804out:
1805        return ret;
1806}
1807
1808/*
1809 * Pages can be marked dirty completely asynchronously from ext3's journalling
1810 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1811 * much here because ->set_page_dirty is called under VFS locks.  The page is
1812 * not necessarily locked.
1813 *
1814 * We cannot just dirty the page and leave attached buffers clean, because the
1815 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1816 * or jbddirty because all the journalling code will explode.
1817 *
1818 * So what we do is to mark the page "pending dirty" and next time writepage
1819 * is called, propagate that into the buffers appropriately.
1820 */
1821static int ext3_journalled_set_page_dirty(struct page *page)
1822{
1823        SetPageChecked(page);
1824        return __set_page_dirty_nobuffers(page);
1825}
1826
1827static const struct address_space_operations ext3_ordered_aops = {
1828        .readpage               = ext3_readpage,
1829        .readpages              = ext3_readpages,
1830        .writepage              = ext3_ordered_writepage,
1831        .sync_page              = block_sync_page,
1832        .write_begin            = ext3_write_begin,
1833        .write_end              = ext3_ordered_write_end,
1834        .bmap                   = ext3_bmap,
1835        .invalidatepage         = ext3_invalidatepage,
1836        .releasepage            = ext3_releasepage,
1837        .direct_IO              = ext3_direct_IO,
1838        .migratepage            = buffer_migrate_page,
1839        .is_partially_uptodate  = block_is_partially_uptodate,
1840        .error_remove_page      = generic_error_remove_page,
1841};
1842
1843static const struct address_space_operations ext3_writeback_aops = {
1844        .readpage               = ext3_readpage,
1845        .readpages              = ext3_readpages,
1846        .writepage              = ext3_writeback_writepage,
1847        .sync_page              = block_sync_page,
1848        .write_begin            = ext3_write_begin,
1849        .write_end              = ext3_writeback_write_end,
1850        .bmap                   = ext3_bmap,
1851        .invalidatepage         = ext3_invalidatepage,
1852        .releasepage            = ext3_releasepage,
1853        .direct_IO              = ext3_direct_IO,
1854        .migratepage            = buffer_migrate_page,
1855        .is_partially_uptodate  = block_is_partially_uptodate,
1856        .error_remove_page      = generic_error_remove_page,
1857};
1858
1859static const struct address_space_operations ext3_journalled_aops = {
1860        .readpage               = ext3_readpage,
1861        .readpages              = ext3_readpages,
1862        .writepage              = ext3_journalled_writepage,
1863        .sync_page              = block_sync_page,
1864        .write_begin            = ext3_write_begin,
1865        .write_end              = ext3_journalled_write_end,
1866        .set_page_dirty         = ext3_journalled_set_page_dirty,
1867        .bmap                   = ext3_bmap,
1868        .invalidatepage         = ext3_invalidatepage,
1869        .releasepage            = ext3_releasepage,
1870        .is_partially_uptodate  = block_is_partially_uptodate,
1871        .error_remove_page      = generic_error_remove_page,
1872};
1873
1874void ext3_set_aops(struct inode *inode)
1875{
1876        if (ext3_should_order_data(inode))
1877                inode->i_mapping->a_ops = &ext3_ordered_aops;
1878        else if (ext3_should_writeback_data(inode))
1879                inode->i_mapping->a_ops = &ext3_writeback_aops;
1880        else
1881                inode->i_mapping->a_ops = &ext3_journalled_aops;
1882}
1883
1884/*
1885 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1886 * up to the end of the block which corresponds to `from'.
1887 * This required during truncate. We need to physically zero the tail end
1888 * of that block so it doesn't yield old data if the file is later grown.
1889 */
1890static int ext3_block_truncate_page(handle_t *handle, struct page *page,
1891                struct address_space *mapping, loff_t from)
1892{
1893        ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1894        unsigned offset = from & (PAGE_CACHE_SIZE-1);
1895        unsigned blocksize, iblock, length, pos;
1896        struct inode *inode = mapping->host;
1897        struct buffer_head *bh;
1898        int err = 0;
1899
1900        blocksize = inode->i_sb->s_blocksize;
1901        length = blocksize - (offset & (blocksize - 1));
1902        iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1903
1904        /*
1905         * For "nobh" option,  we can only work if we don't need to
1906         * read-in the page - otherwise we create buffers to do the IO.
1907         */
1908        if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1909             ext3_should_writeback_data(inode) && PageUptodate(page)) {
1910                zero_user(page, offset, length);
1911                set_page_dirty(page);
1912                goto unlock;
1913        }
1914
1915        if (!page_has_buffers(page))
1916                create_empty_buffers(page, blocksize, 0);
1917
1918        /* Find the buffer that contains "offset" */
1919        bh = page_buffers(page);
1920        pos = blocksize;
1921        while (offset >= pos) {
1922                bh = bh->b_this_page;
1923                iblock++;
1924                pos += blocksize;
1925        }
1926
1927        err = 0;
1928        if (buffer_freed(bh)) {
1929                BUFFER_TRACE(bh, "freed: skip");
1930                goto unlock;
1931        }
1932
1933        if (!buffer_mapped(bh)) {
1934                BUFFER_TRACE(bh, "unmapped");
1935                ext3_get_block(inode, iblock, bh, 0);
1936                /* unmapped? It's a hole - nothing to do */
1937                if (!buffer_mapped(bh)) {
1938                        BUFFER_TRACE(bh, "still unmapped");
1939                        goto unlock;
1940                }
1941        }
1942
1943        /* Ok, it's mapped. Make sure it's up-to-date */
1944        if (PageUptodate(page))
1945                set_buffer_uptodate(bh);
1946
1947        if (!buffer_uptodate(bh)) {
1948                err = -EIO;
1949                ll_rw_block(READ, 1, &bh);
1950                wait_on_buffer(bh);
1951                /* Uhhuh. Read error. Complain and punt. */
1952                if (!buffer_uptodate(bh))
1953                        goto unlock;
1954        }
1955
1956        if (ext3_should_journal_data(inode)) {
1957                BUFFER_TRACE(bh, "get write access");
1958                err = ext3_journal_get_write_access(handle, bh);
1959                if (err)
1960                        goto unlock;
1961        }
1962
1963        zero_user(page, offset, length);
1964        BUFFER_TRACE(bh, "zeroed end of block");
1965
1966        err = 0;
1967        if (ext3_should_journal_data(inode)) {
1968                err = ext3_journal_dirty_metadata(handle, bh);
1969        } else {
1970                if (ext3_should_order_data(inode))
1971                        err = ext3_journal_dirty_data(handle, bh);
1972                mark_buffer_dirty(bh);
1973        }
1974
1975unlock:
1976        unlock_page(page);
1977        page_cache_release(page);
1978        return err;
1979}
1980
1981/*
1982 * Probably it should be a library function... search for first non-zero word
1983 * or memcmp with zero_page, whatever is better for particular architecture.
1984 * Linus?
1985 */
1986static inline int all_zeroes(__le32 *p, __le32 *q)
1987{
1988        while (p < q)
1989                if (*p++)
1990                        return 0;
1991        return 1;
1992}
1993
1994/**
1995 *      ext3_find_shared - find the indirect blocks for partial truncation.
1996 *      @inode:   inode in question
1997 *      @depth:   depth of the affected branch
1998 *      @offsets: offsets of pointers in that branch (see ext3_block_to_path)
1999 *      @chain:   place to store the pointers to partial indirect blocks
2000 *      @top:     place to the (detached) top of branch
2001 *
2002 *      This is a helper function used by ext3_truncate().
2003 *
2004 *      When we do truncate() we may have to clean the ends of several
2005 *      indirect blocks but leave the blocks themselves alive. Block is
2006 *      partially truncated if some data below the new i_size is refered
2007 *      from it (and it is on the path to the first completely truncated
2008 *      data block, indeed).  We have to free the top of that path along
2009 *      with everything to the right of the path. Since no allocation
2010 *      past the truncation point is possible until ext3_truncate()
2011 *      finishes, we may safely do the latter, but top of branch may
2012 *      require special attention - pageout below the truncation point
2013 *      might try to populate it.
2014 *
2015 *      We atomically detach the top of branch from the tree, store the
2016 *      block number of its root in *@top, pointers to buffer_heads of
2017 *      partially truncated blocks - in @chain[].bh and pointers to
2018 *      their last elements that should not be removed - in
2019 *      @chain[].p. Return value is the pointer to last filled element
2020 *      of @chain.
2021 *
2022 *      The work left to caller to do the actual freeing of subtrees:
2023 *              a) free the subtree starting from *@top
2024 *              b) free the subtrees whose roots are stored in
2025 *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2026 *              c) free the subtrees growing from the inode past the @chain[0].
2027 *                      (no partially truncated stuff there).  */
2028
2029static Indirect *ext3_find_shared(struct inode *inode, int depth,
2030                        int offsets[4], Indirect chain[4], __le32 *top)
2031{
2032        Indirect *partial, *p;
2033        int k, err;
2034
2035        *top = 0;
2036        /* Make k index the deepest non-null offest + 1 */
2037        for (k = depth; k > 1 && !offsets[k-1]; k--)
2038                ;
2039        partial = ext3_get_branch(inode, k, offsets, chain, &err);
2040        /* Writer: pointers */
2041        if (!partial)
2042                partial = chain + k-1;
2043        /*
2044         * If the branch acquired continuation since we've looked at it -
2045         * fine, it should all survive and (new) top doesn't belong to us.
2046         */
2047        if (!partial->key && *partial->p)
2048                /* Writer: end */
2049                goto no_top;
2050        for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2051                ;
2052        /*
2053         * OK, we've found the last block that must survive. The rest of our
2054         * branch should be detached before unlocking. However, if that rest
2055         * of branch is all ours and does not grow immediately from the inode
2056         * it's easier to cheat and just decrement partial->p.
2057         */
2058        if (p == chain + k - 1 && p > chain) {
2059                p->p--;
2060        } else {
2061                *top = *p->p;
2062                /* Nope, don't do this in ext3.  Must leave the tree intact */
2063#if 0
2064                *p->p = 0;
2065#endif
2066        }
2067        /* Writer: end */
2068
2069        while(partial > p) {
2070                brelse(partial->bh);
2071                partial--;
2072        }
2073no_top:
2074        return partial;
2075}
2076
2077/*
2078 * Zero a number of block pointers in either an inode or an indirect block.
2079 * If we restart the transaction we must again get write access to the
2080 * indirect block for further modification.
2081 *
2082 * We release `count' blocks on disk, but (last - first) may be greater
2083 * than `count' because there can be holes in there.
2084 */
2085static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
2086                struct buffer_head *bh, ext3_fsblk_t block_to_free,
2087                unsigned long count, __le32 *first, __le32 *last)
2088{
2089        __le32 *p;
2090        if (try_to_extend_transaction(handle, inode)) {
2091                if (bh) {
2092                        BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2093                        ext3_journal_dirty_metadata(handle, bh);
2094                }
2095                ext3_mark_inode_dirty(handle, inode);
2096                truncate_restart_transaction(handle, inode);
2097                if (bh) {
2098                        BUFFER_TRACE(bh, "retaking write access");
2099                        ext3_journal_get_write_access(handle, bh);
2100                }
2101        }
2102
2103        /*
2104         * Any buffers which are on the journal will be in memory. We find
2105         * them on the hash table so journal_revoke() will run journal_forget()
2106         * on them.  We've already detached each block from the file, so
2107         * bforget() in journal_forget() should be safe.
2108         *
2109         * AKPM: turn on bforget in journal_forget()!!!
2110         */
2111        for (p = first; p < last; p++) {
2112                u32 nr = le32_to_cpu(*p);
2113                if (nr) {
2114                        struct buffer_head *bh;
2115
2116                        *p = 0;
2117                        bh = sb_find_get_block(inode->i_sb, nr);
2118                        ext3_forget(handle, 0, inode, bh, nr);
2119                }
2120        }
2121
2122        ext3_free_blocks(handle, inode, block_to_free, count);
2123}
2124
2125/**
2126 * ext3_free_data - free a list of data blocks
2127 * @handle:     handle for this transaction
2128 * @inode:      inode we are dealing with
2129 * @this_bh:    indirect buffer_head which contains *@first and *@last
2130 * @first:      array of block numbers
2131 * @last:       points immediately past the end of array
2132 *
2133 * We are freeing all blocks refered from that array (numbers are stored as
2134 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2135 *
2136 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2137 * blocks are contiguous then releasing them at one time will only affect one
2138 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2139 * actually use a lot of journal space.
2140 *
2141 * @this_bh will be %NULL if @first and @last point into the inode's direct
2142 * block pointers.
2143 */
2144static void ext3_free_data(handle_t *handle, struct inode *inode,
2145                           struct buffer_head *this_bh,
2146                           __le32 *first, __le32 *last)
2147{
2148        ext3_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2149        unsigned long count = 0;            /* Number of blocks in the run */
2150        __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
2151                                               corresponding to
2152                                               block_to_free */
2153        ext3_fsblk_t nr;                    /* Current block # */
2154        __le32 *p;                          /* Pointer into inode/ind
2155                                               for current block */
2156        int err;
2157
2158        if (this_bh) {                          /* For indirect block */
2159                BUFFER_TRACE(this_bh, "get_write_access");
2160                err = ext3_journal_get_write_access(handle, this_bh);
2161                /* Important: if we can't update the indirect pointers
2162                 * to the blocks, we can't free them. */
2163                if (err)
2164                        return;
2165        }
2166
2167        for (p = first; p < last; p++) {
2168                nr = le32_to_cpu(*p);
2169                if (nr) {
2170                        /* accumulate blocks to free if they're contiguous */
2171                        if (count == 0) {
2172                                block_to_free = nr;
2173                                block_to_free_p = p;
2174                                count = 1;
2175                        } else if (nr == block_to_free + count) {
2176                                count++;
2177                        } else {
2178                                ext3_clear_blocks(handle, inode, this_bh,
2179                                                  block_to_free,
2180                                                  count, block_to_free_p, p);
2181                                block_to_free = nr;
2182                                block_to_free_p = p;
2183                                count = 1;
2184                        }
2185                }
2186        }
2187
2188        if (count > 0)
2189                ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2190                                  count, block_to_free_p, p);
2191
2192        if (this_bh) {
2193                BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2194
2195                /*
2196                 * The buffer head should have an attached journal head at this
2197                 * point. However, if the data is corrupted and an indirect
2198                 * block pointed to itself, it would have been detached when
2199                 * the block was cleared. Check for this instead of OOPSing.
2200                 */
2201                if (bh2jh(this_bh))
2202                        ext3_journal_dirty_metadata(handle, this_bh);
2203                else
2204                        ext3_error(inode->i_sb, "ext3_free_data",
2205                                   "circular indirect block detected, "
2206                                   "inode=%lu, block=%llu",
2207                                   inode->i_ino,
2208                                   (unsigned long long)this_bh->b_blocknr);
2209        }
2210}
2211
2212/**
2213 *      ext3_free_branches - free an array of branches
2214 *      @handle: JBD handle for this transaction
2215 *      @inode: inode we are dealing with
2216 *      @parent_bh: the buffer_head which contains *@first and *@last
2217 *      @first: array of block numbers
2218 *      @last:  pointer immediately past the end of array
2219 *      @depth: depth of the branches to free
2220 *
2221 *      We are freeing all blocks refered from these branches (numbers are
2222 *      stored as little-endian 32-bit) and updating @inode->i_blocks
2223 *      appropriately.
2224 */
2225static void ext3_free_branches(handle_t *handle, struct inode *inode,
2226                               struct buffer_head *parent_bh,
2227                               __le32 *first, __le32 *last, int depth)
2228{
2229        ext3_fsblk_t nr;
2230        __le32 *p;
2231
2232        if (is_handle_aborted(handle))
2233                return;
2234
2235        if (depth--) {
2236                struct buffer_head *bh;
2237                int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2238                p = last;
2239                while (--p >= first) {
2240                        nr = le32_to_cpu(*p);
2241                        if (!nr)
2242                                continue;               /* A hole */
2243
2244                        /* Go read the buffer for the next level down */
2245                        bh = sb_bread(inode->i_sb, nr);
2246
2247                        /*
2248                         * A read failure? Report error and clear slot
2249                         * (should be rare).
2250                         */
2251                        if (!bh) {
2252                                ext3_error(inode->i_sb, "ext3_free_branches",
2253                                           "Read failure, inode=%lu, block="E3FSBLK,
2254                                           inode->i_ino, nr);
2255                                continue;
2256                        }
2257
2258                        /* This zaps the entire block.  Bottom up. */
2259                        BUFFER_TRACE(bh, "free child branches");
2260                        ext3_free_branches(handle, inode, bh,
2261                                           (__le32*)bh->b_data,
2262                                           (__le32*)bh->b_data + addr_per_block,
2263                                           depth);
2264
2265                        /*
2266                         * We've probably journalled the indirect block several
2267                         * times during the truncate.  But it's no longer
2268                         * needed and we now drop it from the transaction via
2269                         * journal_revoke().
2270                         *
2271                         * That's easy if it's exclusively part of this
2272                         * transaction.  But if it's part of the committing
2273                         * transaction then journal_forget() will simply
2274                         * brelse() it.  That means that if the underlying
2275                         * block is reallocated in ext3_get_block(),
2276                         * unmap_underlying_metadata() will find this block
2277                         * and will try to get rid of it.  damn, damn.
2278                         *
2279                         * If this block has already been committed to the
2280                         * journal, a revoke record will be written.  And
2281                         * revoke records must be emitted *before* clearing
2282                         * this block's bit in the bitmaps.
2283                         */
2284                        ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2285
2286                        /*
2287                         * Everything below this this pointer has been
2288                         * released.  Now let this top-of-subtree go.
2289                         *
2290                         * We want the freeing of this indirect block to be
2291                         * atomic in the journal with the updating of the
2292                         * bitmap block which owns it.  So make some room in
2293                         * the journal.
2294                         *
2295                         * We zero the parent pointer *after* freeing its
2296                         * pointee in the bitmaps, so if extend_transaction()
2297                         * for some reason fails to put the bitmap changes and
2298                         * the release into the same transaction, recovery
2299                         * will merely complain about releasing a free block,
2300                         * rather than leaking blocks.
2301                         */
2302                        if (is_handle_aborted(handle))
2303                                return;
2304                        if (try_to_extend_transaction(handle, inode)) {
2305                                ext3_mark_inode_dirty(handle, inode);
2306                                truncate_restart_transaction(handle, inode);
2307                        }
2308
2309                        ext3_free_blocks(handle, inode, nr, 1);
2310
2311                        if (parent_bh) {
2312                                /*
2313                                 * The block which we have just freed is
2314                                 * pointed to by an indirect block: journal it
2315                                 */
2316                                BUFFER_TRACE(parent_bh, "get_write_access");
2317                                if (!ext3_journal_get_write_access(handle,
2318                                                                   parent_bh)){
2319                                        *p = 0;
2320                                        BUFFER_TRACE(parent_bh,
2321                                        "call ext3_journal_dirty_metadata");
2322                                        ext3_journal_dirty_metadata(handle,
2323                                                                    parent_bh);
2324                                }
2325                        }
2326                }
2327        } else {
2328                /* We have reached the bottom of the tree. */
2329                BUFFER_TRACE(parent_bh, "free data blocks");
2330                ext3_free_data(handle, inode, parent_bh, first, last);
2331        }
2332}
2333
2334int ext3_can_truncate(struct inode *inode)
2335{
2336        if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2337                return 0;
2338        if (S_ISREG(inode->i_mode))
2339                return 1;
2340        if (S_ISDIR(inode->i_mode))
2341                return 1;
2342        if (S_ISLNK(inode->i_mode))
2343                return !ext3_inode_is_fast_symlink(inode);
2344        return 0;
2345}
2346
2347/*
2348 * ext3_truncate()
2349 *
2350 * We block out ext3_get_block() block instantiations across the entire
2351 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2352 * simultaneously on behalf of the same inode.
2353 *
2354 * As we work through the truncate and commmit bits of it to the journal there
2355 * is one core, guiding principle: the file's tree must always be consistent on
2356 * disk.  We must be able to restart the truncate after a crash.
2357 *
2358 * The file's tree may be transiently inconsistent in memory (although it
2359 * probably isn't), but whenever we close off and commit a journal transaction,
2360 * the contents of (the filesystem + the journal) must be consistent and
2361 * restartable.  It's pretty simple, really: bottom up, right to left (although
2362 * left-to-right works OK too).
2363 *
2364 * Note that at recovery time, journal replay occurs *before* the restart of
2365 * truncate against the orphan inode list.
2366 *
2367 * The committed inode has the new, desired i_size (which is the same as
2368 * i_disksize in this case).  After a crash, ext3_orphan_cleanup() will see
2369 * that this inode's truncate did not complete and it will again call
2370 * ext3_truncate() to have another go.  So there will be instantiated blocks
2371 * to the right of the truncation point in a crashed ext3 filesystem.  But
2372 * that's fine - as long as they are linked from the inode, the post-crash
2373 * ext3_truncate() run will find them and release them.
2374 */
2375void ext3_truncate(struct inode *inode)
2376{
2377        handle_t *handle;
2378        struct ext3_inode_info *ei = EXT3_I(inode);
2379        __le32 *i_data = ei->i_data;
2380        int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2381        struct address_space *mapping = inode->i_mapping;
2382        int offsets[4];
2383        Indirect chain[4];
2384        Indirect *partial;
2385        __le32 nr = 0;
2386        int n;
2387        long last_block;
2388        unsigned blocksize = inode->i_sb->s_blocksize;
2389        struct page *page;
2390
2391        if (!ext3_can_truncate(inode))
2392                goto out_notrans;
2393
2394        if (inode->i_size == 0 && ext3_should_writeback_data(inode))
2395                ei->i_state |= EXT3_STATE_FLUSH_ON_CLOSE;
2396
2397        /*
2398         * We have to lock the EOF page here, because lock_page() nests
2399         * outside journal_start().
2400         */
2401        if ((inode->i_size & (blocksize - 1)) == 0) {
2402                /* Block boundary? Nothing to do */
2403                page = NULL;
2404        } else {
2405                page = grab_cache_page(mapping,
2406                                inode->i_size >> PAGE_CACHE_SHIFT);
2407                if (!page)
2408                        goto out_notrans;
2409        }
2410
2411        handle = start_transaction(inode);
2412        if (IS_ERR(handle)) {
2413                if (page) {
2414                        clear_highpage(page);
2415                        flush_dcache_page(page);
2416                        unlock_page(page);
2417                        page_cache_release(page);
2418                }
2419                goto out_notrans;
2420        }
2421
2422        last_block = (inode->i_size + blocksize-1)
2423                                        >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2424
2425        if (page)
2426                ext3_block_truncate_page(handle, page, mapping, inode->i_size);
2427
2428        n = ext3_block_to_path(inode, last_block, offsets, NULL);
2429        if (n == 0)
2430                goto out_stop;  /* error */
2431
2432        /*
2433         * OK.  This truncate is going to happen.  We add the inode to the
2434         * orphan list, so that if this truncate spans multiple transactions,
2435         * and we crash, we will resume the truncate when the filesystem
2436         * recovers.  It also marks the inode dirty, to catch the new size.
2437         *
2438         * Implication: the file must always be in a sane, consistent
2439         * truncatable state while each transaction commits.
2440         */
2441        if (ext3_orphan_add(handle, inode))
2442                goto out_stop;
2443
2444        /*
2445         * The orphan list entry will now protect us from any crash which
2446         * occurs before the truncate completes, so it is now safe to propagate
2447         * the new, shorter inode size (held for now in i_size) into the
2448         * on-disk inode. We do this via i_disksize, which is the value which
2449         * ext3 *really* writes onto the disk inode.
2450         */
2451        ei->i_disksize = inode->i_size;
2452
2453        /*
2454         * From here we block out all ext3_get_block() callers who want to
2455         * modify the block allocation tree.
2456         */
2457        mutex_lock(&ei->truncate_mutex);
2458
2459        if (n == 1) {           /* direct blocks */
2460                ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2461                               i_data + EXT3_NDIR_BLOCKS);
2462                goto do_indirects;
2463        }
2464
2465        partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2466        /* Kill the top of shared branch (not detached) */
2467        if (nr) {
2468                if (partial == chain) {
2469                        /* Shared branch grows from the inode */
2470                        ext3_free_branches(handle, inode, NULL,
2471                                           &nr, &nr+1, (chain+n-1) - partial);
2472                        *partial->p = 0;
2473                        /*
2474                         * We mark the inode dirty prior to restart,
2475                         * and prior to stop.  No need for it here.
2476                         */
2477                } else {
2478                        /* Shared branch grows from an indirect block */
2479                        BUFFER_TRACE(partial->bh, "get_write_access");
2480                        ext3_free_branches(handle, inode, partial->bh,
2481                                        partial->p,
2482                                        partial->p+1, (chain+n-1) - partial);
2483                }
2484        }
2485        /* Clear the ends of indirect blocks on the shared branch */
2486        while (partial > chain) {
2487                ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2488                                   (__le32*)partial->bh->b_data+addr_per_block,
2489                                   (chain+n-1) - partial);
2490                BUFFER_TRACE(partial->bh, "call brelse");
2491                brelse (partial->bh);
2492                partial--;
2493        }
2494do_indirects:
2495        /* Kill the remaining (whole) subtrees */
2496        switch (offsets[0]) {
2497        default:
2498                nr = i_data[EXT3_IND_BLOCK];
2499                if (nr) {
2500                        ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2501                        i_data[EXT3_IND_BLOCK] = 0;
2502                }
2503        case EXT3_IND_BLOCK:
2504                nr = i_data[EXT3_DIND_BLOCK];
2505                if (nr) {
2506                        ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2507                        i_data[EXT3_DIND_BLOCK] = 0;
2508                }
2509        case EXT3_DIND_BLOCK:
2510                nr = i_data[EXT3_TIND_BLOCK];
2511                if (nr) {
2512                        ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2513                        i_data[EXT3_TIND_BLOCK] = 0;
2514                }
2515        case EXT3_TIND_BLOCK:
2516                ;
2517        }
2518
2519        ext3_discard_reservation(inode);
2520
2521        mutex_unlock(&ei->truncate_mutex);
2522        inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2523        ext3_mark_inode_dirty(handle, inode);
2524
2525        /*
2526         * In a multi-transaction truncate, we only make the final transaction
2527         * synchronous
2528         */
2529        if (IS_SYNC(inode))
2530                handle->h_sync = 1;
2531out_stop:
2532        /*
2533         * If this was a simple ftruncate(), and the file will remain alive
2534         * then we need to clear up the orphan record which we created above.
2535         * However, if this was a real unlink then we were called by
2536         * ext3_delete_inode(), and we allow that function to clean up the
2537         * orphan info for us.
2538         */
2539        if (inode->i_nlink)
2540                ext3_orphan_del(handle, inode);
2541
2542        ext3_journal_stop(handle);
2543        return;
2544out_notrans:
2545        /*
2546         * Delete the inode from orphan list so that it doesn't stay there
2547         * forever and trigger assertion on umount.
2548         */
2549        if (inode->i_nlink)
2550                ext3_orphan_del(NULL, inode);
2551}
2552
2553static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
2554                unsigned long ino, struct ext3_iloc *iloc)
2555{
2556        unsigned long block_group;
2557        unsigned long offset;
2558        ext3_fsblk_t block;
2559        struct ext3_group_desc *gdp;
2560
2561        if (!ext3_valid_inum(sb, ino)) {
2562                /*
2563                 * This error is already checked for in namei.c unless we are
2564                 * looking at an NFS filehandle, in which case no error
2565                 * report is needed
2566                 */
2567                return 0;
2568        }
2569
2570        block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2571        gdp = ext3_get_group_desc(sb, block_group, NULL);
2572        if (!gdp)
2573                return 0;
2574        /*
2575         * Figure out the offset within the block group inode table
2576         */
2577        offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2578                EXT3_INODE_SIZE(sb);
2579        block = le32_to_cpu(gdp->bg_inode_table) +
2580                (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2581
2582        iloc->block_group = block_group;
2583        iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2584        return block;
2585}
2586
2587/*
2588 * ext3_get_inode_loc returns with an extra refcount against the inode's
2589 * underlying buffer_head on success. If 'in_mem' is true, we have all
2590 * data in memory that is needed to recreate the on-disk version of this
2591 * inode.
2592 */
2593static int __ext3_get_inode_loc(struct inode *inode,
2594                                struct ext3_iloc *iloc, int in_mem)
2595{
2596        ext3_fsblk_t block;
2597        struct buffer_head *bh;
2598
2599        block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2600        if (!block)
2601                return -EIO;
2602
2603        bh = sb_getblk(inode->i_sb, block);
2604        if (!bh) {
2605                ext3_error (inode->i_sb, "ext3_get_inode_loc",
2606                                "unable to read inode block - "
2607                                "inode=%lu, block="E3FSBLK,
2608                                 inode->i_ino, block);
2609                return -EIO;
2610        }
2611        if (!buffer_uptodate(bh)) {
2612                lock_buffer(bh);
2613
2614                /*
2615                 * If the buffer has the write error flag, we have failed
2616                 * to write out another inode in the same block.  In this
2617                 * case, we don't have to read the block because we may
2618                 * read the old inode data successfully.
2619                 */
2620                if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
2621                        set_buffer_uptodate(bh);
2622
2623                if (buffer_uptodate(bh)) {
2624                        /* someone brought it uptodate while we waited */
2625                        unlock_buffer(bh);
2626                        goto has_buffer;
2627                }
2628
2629                /*
2630                 * If we have all information of the inode in memory and this
2631                 * is the only valid inode in the block, we need not read the
2632                 * block.
2633                 */
2634                if (in_mem) {
2635                        struct buffer_head *bitmap_bh;
2636                        struct ext3_group_desc *desc;
2637                        int inodes_per_buffer;
2638                        int inode_offset, i;
2639                        int block_group;
2640                        int start;
2641
2642                        block_group = (inode->i_ino - 1) /
2643                                        EXT3_INODES_PER_GROUP(inode->i_sb);
2644                        inodes_per_buffer = bh->b_size /
2645                                EXT3_INODE_SIZE(inode->i_sb);
2646                        inode_offset = ((inode->i_ino - 1) %
2647                                        EXT3_INODES_PER_GROUP(inode->i_sb));
2648                        start = inode_offset & ~(inodes_per_buffer - 1);
2649
2650                        /* Is the inode bitmap in cache? */
2651                        desc = ext3_get_group_desc(inode->i_sb,
2652                                                block_group, NULL);
2653                        if (!desc)
2654                                goto make_io;
2655
2656                        bitmap_bh = sb_getblk(inode->i_sb,
2657                                        le32_to_cpu(desc->bg_inode_bitmap));
2658                        if (!bitmap_bh)
2659                                goto make_io;
2660
2661                        /*
2662                         * If the inode bitmap isn't in cache then the
2663                         * optimisation may end up performing two reads instead
2664                         * of one, so skip it.
2665                         */
2666                        if (!buffer_uptodate(bitmap_bh)) {
2667                                brelse(bitmap_bh);
2668                                goto make_io;
2669                        }
2670                        for (i = start; i < start + inodes_per_buffer; i++) {
2671                                if (i == inode_offset)
2672                                        continue;
2673                                if (ext3_test_bit(i, bitmap_bh->b_data))
2674                                        break;
2675                        }
2676                        brelse(bitmap_bh);
2677                        if (i == start + inodes_per_buffer) {
2678                                /* all other inodes are free, so skip I/O */
2679                                memset(bh->b_data, 0, bh->b_size);
2680                                set_buffer_uptodate(bh);
2681                                unlock_buffer(bh);
2682                                goto has_buffer;
2683                        }
2684                }
2685
2686make_io:
2687                /*
2688                 * There are other valid inodes in the buffer, this inode
2689                 * has in-inode xattrs, or we don't have this inode in memory.
2690                 * Read the block from disk.
2691                 */
2692                get_bh(bh);
2693                bh->b_end_io = end_buffer_read_sync;
2694                submit_bh(READ_META, bh);
2695                wait_on_buffer(bh);
2696                if (!buffer_uptodate(bh)) {
2697                        ext3_error(inode->i_sb, "ext3_get_inode_loc",
2698                                        "unable to read inode block - "
2699                                        "inode=%lu, block="E3FSBLK,
2700                                        inode->i_ino, block);
2701                        brelse(bh);
2702                        return -EIO;
2703                }
2704        }
2705has_buffer:
2706        iloc->bh = bh;
2707        return 0;
2708}
2709
2710int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2711{
2712        /* We have all inode data except xattrs in memory here. */
2713        return __ext3_get_inode_loc(inode, iloc,
2714                !(EXT3_I(inode)->i_state & EXT3_STATE_XATTR));
2715}
2716
2717void ext3_set_inode_flags(struct inode *inode)
2718{
2719        unsigned int flags = EXT3_I(inode)->i_flags;
2720
2721        inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2722        if (flags & EXT3_SYNC_FL)
2723                inode->i_flags |= S_SYNC;
2724        if (flags & EXT3_APPEND_FL)
2725                inode->i_flags |= S_APPEND;
2726        if (flags & EXT3_IMMUTABLE_FL)
2727                inode->i_flags |= S_IMMUTABLE;
2728        if (flags & EXT3_NOATIME_FL)
2729                inode->i_flags |= S_NOATIME;
2730        if (flags & EXT3_DIRSYNC_FL)
2731                inode->i_flags |= S_DIRSYNC;
2732}
2733
2734/* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2735void ext3_get_inode_flags(struct ext3_inode_info *ei)
2736{
2737        unsigned int flags = ei->vfs_inode.i_flags;
2738
2739        ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2740                        EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2741        if (flags & S_SYNC)
2742                ei->i_flags |= EXT3_SYNC_FL;
2743        if (flags & S_APPEND)
2744                ei->i_flags |= EXT3_APPEND_FL;
2745        if (flags & S_IMMUTABLE)
2746                ei->i_flags |= EXT3_IMMUTABLE_FL;
2747        if (flags & S_NOATIME)
2748                ei->i_flags |= EXT3_NOATIME_FL;
2749        if (flags & S_DIRSYNC)
2750                ei->i_flags |= EXT3_DIRSYNC_FL;
2751}
2752
2753struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
2754{
2755        struct ext3_iloc iloc;
2756        struct ext3_inode *raw_inode;
2757        struct ext3_inode_info *ei;
2758        struct buffer_head *bh;
2759        struct inode *inode;
2760        journal_t *journal = EXT3_SB(sb)->s_journal;
2761        transaction_t *transaction;
2762        long ret;
2763        int block;
2764
2765        inode = iget_locked(sb, ino);
2766        if (!inode)
2767                return ERR_PTR(-ENOMEM);
2768        if (!(inode->i_state & I_NEW))
2769                return inode;
2770
2771        ei = EXT3_I(inode);
2772        ei->i_block_alloc_info = NULL;
2773
2774        ret = __ext3_get_inode_loc(inode, &iloc, 0);
2775        if (ret < 0)
2776                goto bad_inode;
2777        bh = iloc.bh;
2778        raw_inode = ext3_raw_inode(&iloc);
2779        inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2780        inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2781        inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2782        if(!(test_opt (inode->i_sb, NO_UID32))) {
2783                inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2784                inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2785        }
2786        inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2787        inode->i_size = le32_to_cpu(raw_inode->i_size);
2788        inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2789        inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2790        inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
2791        inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2792
2793        ei->i_state = 0;
2794        ei->i_dir_start_lookup = 0;
2795        ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2796        /* We now have enough fields to check if the inode was active or not.
2797         * This is needed because nfsd might try to access dead inodes
2798         * the test is that same one that e2fsck uses
2799         * NeilBrown 1999oct15
2800         */
2801        if (inode->i_nlink == 0) {
2802                if (inode->i_mode == 0 ||
2803                    !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2804                        /* this inode is deleted */
2805                        brelse (bh);
2806                        ret = -ESTALE;
2807                        goto bad_inode;
2808                }
2809                /* The only unlinked inodes we let through here have
2810                 * valid i_mode and are being read by the orphan
2811                 * recovery code: that's fine, we're about to complete
2812                 * the process of deleting those. */
2813        }
2814        inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2815        ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2816#ifdef EXT3_FRAGMENTS
2817        ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2818        ei->i_frag_no = raw_inode->i_frag;
2819        ei->i_frag_size = raw_inode->i_fsize;
2820#endif
2821        ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2822        if (!S_ISREG(inode->i_mode)) {
2823                ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2824        } else {
2825                inode->i_size |=
2826                        ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2827        }
2828        ei->i_disksize = inode->i_size;
2829        inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2830        ei->i_block_group = iloc.block_group;
2831        /*
2832         * NOTE! The in-memory inode i_data array is in little-endian order
2833         * even on big-endian machines: we do NOT byteswap the block numbers!
2834         */
2835        for (block = 0; block < EXT3_N_BLOCKS; block++)
2836                ei->i_data[block] = raw_inode->i_block[block];
2837        INIT_LIST_HEAD(&ei->i_orphan);
2838
2839        /*
2840         * Set transaction id's of transactions that have to be committed
2841         * to finish f[data]sync. We set them to currently running transaction
2842         * as we cannot be sure that the inode or some of its metadata isn't
2843         * part of the transaction - the inode could have been reclaimed and
2844         * now it is reread from disk.
2845         */
2846        if (journal) {
2847                tid_t tid;
2848
2849                spin_lock(&journal->j_state_lock);
2850                if (journal->j_running_transaction)
2851                        transaction = journal->j_running_transaction;
2852                else
2853                        transaction = journal->j_committing_transaction;
2854                if (transaction)
2855                        tid = transaction->t_tid;
2856                else
2857                        tid = journal->j_commit_sequence;
2858                spin_unlock(&journal->j_state_lock);
2859                atomic_set(&ei->i_sync_tid, tid);
2860                atomic_set(&ei->i_datasync_tid, tid);
2861        }
2862
2863        if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2864            EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2865                /*
2866                 * When mke2fs creates big inodes it does not zero out
2867                 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2868                 * so ignore those first few inodes.
2869                 */
2870                ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2871                if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2872                    EXT3_INODE_SIZE(inode->i_sb)) {
2873                        brelse (bh);
2874                        ret = -EIO;
2875                        goto bad_inode;
2876                }
2877                if (ei->i_extra_isize == 0) {
2878                        /* The extra space is currently unused. Use it. */
2879                        ei->i_extra_isize = sizeof(struct ext3_inode) -
2880                                            EXT3_GOOD_OLD_INODE_SIZE;
2881                } else {
2882                        __le32 *magic = (void *)raw_inode +
2883                                        EXT3_GOOD_OLD_INODE_SIZE +
2884                                        ei->i_extra_isize;
2885                        if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
2886                                 ei->i_state |= EXT3_STATE_XATTR;
2887                }
2888        } else
2889                ei->i_extra_isize = 0;
2890
2891        if (S_ISREG(inode->i_mode)) {
2892                inode->i_op = &ext3_file_inode_operations;
2893                inode->i_fop = &ext3_file_operations;
2894                ext3_set_aops(inode);
2895        } else if (S_ISDIR(inode->i_mode)) {
2896                inode->i_op = &ext3_dir_inode_operations;
2897                inode->i_fop = &ext3_dir_operations;
2898        } else if (S_ISLNK(inode->i_mode)) {
2899                if (ext3_inode_is_fast_symlink(inode)) {
2900                        inode->i_op = &ext3_fast_symlink_inode_operations;
2901                        nd_terminate_link(ei->i_data, inode->i_size,
2902                                sizeof(ei->i_data) - 1);
2903                } else {
2904                        inode->i_op = &ext3_symlink_inode_operations;
2905                        ext3_set_aops(inode);
2906                }
2907        } else {
2908                inode->i_op = &ext3_special_inode_operations;
2909                if (raw_inode->i_block[0])
2910                        init_special_inode(inode, inode->i_mode,
2911                           old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2912                else
2913                        init_special_inode(inode, inode->i_mode,
2914                           new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2915        }
2916        brelse (iloc.bh);
2917        ext3_set_inode_flags(inode);
2918        unlock_new_inode(inode);
2919        return inode;
2920
2921bad_inode:
2922        iget_failed(inode);
2923        return ERR_PTR(ret);
2924}
2925
2926/*
2927 * Post the struct inode info into an on-disk inode location in the
2928 * buffer-cache.  This gobbles the caller's reference to the
2929 * buffer_head in the inode location struct.
2930 *
2931 * The caller must have write access to iloc->bh.
2932 */
2933static int ext3_do_update_inode(handle_t *handle,
2934                                struct inode *inode,
2935                                struct ext3_iloc *iloc)
2936{
2937        struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
2938        struct ext3_inode_info *ei = EXT3_I(inode);
2939        struct buffer_head *bh = iloc->bh;
2940        int err = 0, rc, block;
2941
2942again:
2943        /* we can't allow multiple procs in here at once, its a bit racey */
2944        lock_buffer(bh);
2945
2946        /* For fields not not tracking in the in-memory inode,
2947         * initialise them to zero for new inodes. */
2948        if (ei->i_state & EXT3_STATE_NEW)
2949                memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
2950
2951        ext3_get_inode_flags(ei);
2952        raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2953        if(!(test_opt(inode->i_sb, NO_UID32))) {
2954                raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2955                raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2956/*
2957 * Fix up interoperability with old kernels. Otherwise, old inodes get
2958 * re-used with the upper 16 bits of the uid/gid intact
2959 */
2960                if(!ei->i_dtime) {
2961                        raw_inode->i_uid_high =
2962                                cpu_to_le16(high_16_bits(inode->i_uid));
2963                        raw_inode->i_gid_high =
2964                                cpu_to_le16(high_16_bits(inode->i_gid));
2965                } else {
2966                        raw_inode->i_uid_high = 0;
2967                        raw_inode->i_gid_high = 0;
2968                }
2969        } else {
2970                raw_inode->i_uid_low =
2971                        cpu_to_le16(fs_high2lowuid(inode->i_uid));
2972                raw_inode->i_gid_low =
2973                        cpu_to_le16(fs_high2lowgid(inode->i_gid));
2974                raw_inode->i_uid_high = 0;
2975                raw_inode->i_gid_high = 0;
2976        }
2977        raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2978        raw_inode->i_size = cpu_to_le32(ei->i_disksize);
2979        raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
2980        raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
2981        raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
2982        raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
2983        raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2984        raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2985#ifdef EXT3_FRAGMENTS
2986        raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
2987        raw_inode->i_frag = ei->i_frag_no;
2988        raw_inode->i_fsize = ei->i_frag_size;
2989#endif
2990        raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
2991        if (!S_ISREG(inode->i_mode)) {
2992                raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
2993        } else {
2994                raw_inode->i_size_high =
2995                        cpu_to_le32(ei->i_disksize >> 32);
2996                if (ei->i_disksize > 0x7fffffffULL) {
2997                        struct super_block *sb = inode->i_sb;
2998                        if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
2999                                        EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
3000                            EXT3_SB(sb)->s_es->s_rev_level ==
3001                                        cpu_to_le32(EXT3_GOOD_OLD_REV)) {
3002                               /* If this is the first large file
3003                                * created, add a flag to the superblock.
3004                                */
3005                                unlock_buffer(bh);
3006                                err = ext3_journal_get_write_access(handle,
3007                                                EXT3_SB(sb)->s_sbh);
3008                                if (err)
3009                                        goto out_brelse;
3010
3011                                ext3_update_dynamic_rev(sb);
3012                                EXT3_SET_RO_COMPAT_FEATURE(sb,
3013                                        EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
3014                                handle->h_sync = 1;
3015                                err = ext3_journal_dirty_metadata(handle,
3016                                                EXT3_SB(sb)->s_sbh);
3017                                /* get our lock and start over */
3018                                goto again;
3019                        }
3020                }
3021        }
3022        raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3023        if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3024                if (old_valid_dev(inode->i_rdev)) {
3025                        raw_inode->i_block[0] =
3026                                cpu_to_le32(old_encode_dev(inode->i_rdev));
3027                        raw_inode->i_block[1] = 0;
3028                } else {
3029                        raw_inode->i_block[0] = 0;
3030                        raw_inode->i_block[1] =
3031                                cpu_to_le32(new_encode_dev(inode->i_rdev));
3032                        raw_inode->i_block[2] = 0;
3033                }
3034        } else for (block = 0; block < EXT3_N_BLOCKS; block++)
3035                raw_inode->i_block[block] = ei->i_data[block];
3036
3037        if (ei->i_extra_isize)
3038                raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3039
3040        BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
3041        unlock_buffer(bh);
3042        rc = ext3_journal_dirty_metadata(handle, bh);
3043        if (!err)
3044                err = rc;
3045        ei->i_state &= ~EXT3_STATE_NEW;
3046
3047        atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
3048out_brelse:
3049        brelse (bh);
3050        ext3_std_error(inode->i_sb, err);
3051        return err;
3052}
3053
3054/*
3055 * ext3_write_inode()
3056 *
3057 * We are called from a few places:
3058 *
3059 * - Within generic_file_write() for O_SYNC files.
3060 *   Here, there will be no transaction running. We wait for any running
3061 *   trasnaction to commit.
3062 *
3063 * - Within sys_sync(), kupdate and such.
3064 *   We wait on commit, if tol to.
3065 *
3066 * - Within prune_icache() (PF_MEMALLOC == true)
3067 *   Here we simply return.  We can't afford to block kswapd on the
3068 *   journal commit.
3069 *
3070 * In all cases it is actually safe for us to return without doing anything,
3071 * because the inode has been copied into a raw inode buffer in
3072 * ext3_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3073 * knfsd.
3074 *
3075 * Note that we are absolutely dependent upon all inode dirtiers doing the
3076 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3077 * which we are interested.
3078 *
3079 * It would be a bug for them to not do this.  The code:
3080 *
3081 *      mark_inode_dirty(inode)
3082 *      stuff();
3083 *      inode->i_size = expr;
3084 *
3085 * is in error because a kswapd-driven write_inode() could occur while
3086 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3087 * will no longer be on the superblock's dirty inode list.
3088 */
3089int ext3_write_inode(struct inode *inode, int wait)
3090{
3091        if (current->flags & PF_MEMALLOC)
3092                return 0;
3093
3094        if (ext3_journal_current_handle()) {
3095                jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3096                dump_stack();
3097                return -EIO;
3098        }
3099
3100        if (!wait)
3101                return 0;
3102
3103        return ext3_force_commit(inode->i_sb);
3104}
3105
3106/*
3107 * ext3_setattr()
3108 *
3109 * Called from notify_change.
3110 *
3111 * We want to trap VFS attempts to truncate the file as soon as
3112 * possible.  In particular, we want to make sure that when the VFS
3113 * shrinks i_size, we put the inode on the orphan list and modify
3114 * i_disksize immediately, so that during the subsequent flushing of
3115 * dirty pages and freeing of disk blocks, we can guarantee that any
3116 * commit will leave the blocks being flushed in an unused state on
3117 * disk.  (On recovery, the inode will get truncated and the blocks will
3118 * be freed, so we have a strong guarantee that no future commit will
3119 * leave these blocks visible to the user.)
3120 *
3121 * Called with inode->sem down.
3122 */
3123int ext3_setattr(struct dentry *dentry, struct iattr *attr)
3124{
3125        struct inode *inode = dentry->d_inode;
3126        int error, rc = 0;
3127        const unsigned int ia_valid = attr->ia_valid;
3128
3129        error = inode_change_ok(inode, attr);
3130        if (error)
3131                return error;
3132
3133        if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3134                (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3135                handle_t *handle;
3136
3137                /* (user+group)*(old+new) structure, inode write (sb,
3138                 * inode block, ? - but truncate inode update has it) */
3139                handle = ext3_journal_start(inode, 2*(EXT3_QUOTA_INIT_BLOCKS(inode->i_sb)+
3140                                        EXT3_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3141                if (IS_ERR(handle)) {
3142                        error = PTR_ERR(handle);
3143                        goto err_out;
3144                }
3145                error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
3146                if (error) {
3147                        ext3_journal_stop(handle);
3148                        return error;
3149                }
3150                /* Update corresponding info in inode so that everything is in
3151                 * one transaction */
3152                if (attr->ia_valid & ATTR_UID)
3153                        inode->i_uid = attr->ia_uid;
3154                if (attr->ia_valid & ATTR_GID)
3155                        inode->i_gid = attr->ia_gid;
3156                error = ext3_mark_inode_dirty(handle, inode);
3157                ext3_journal_stop(handle);
3158        }
3159
3160        if (S_ISREG(inode->i_mode) &&
3161            attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3162                handle_t *handle;
3163
3164                handle = ext3_journal_start(inode, 3);
3165                if (IS_ERR(handle)) {
3166                        error = PTR_ERR(handle);
3167                        goto err_out;
3168                }
3169
3170                error = ext3_orphan_add(handle, inode);
3171                EXT3_I(inode)->i_disksize = attr->ia_size;
3172                rc = ext3_mark_inode_dirty(handle, inode);
3173                if (!error)
3174                        error = rc;
3175                ext3_journal_stop(handle);
3176        }
3177
3178        rc = inode_setattr(inode, attr);
3179
3180        if (!rc && (ia_valid & ATTR_MODE))
3181                rc = ext3_acl_chmod(inode);
3182
3183err_out:
3184        ext3_std_error(inode->i_sb, error);
3185        if (!error)
3186                error = rc;
3187        return error;
3188}
3189
3190
3191/*
3192 * How many blocks doth make a writepage()?
3193 *
3194 * With N blocks per page, it may be:
3195 * N data blocks
3196 * 2 indirect block
3197 * 2 dindirect
3198 * 1 tindirect
3199 * N+5 bitmap blocks (from the above)
3200 * N+5 group descriptor summary blocks
3201 * 1 inode block
3202 * 1 superblock.
3203 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3204 *
3205 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3206 *
3207 * With ordered or writeback data it's the same, less the N data blocks.
3208 *
3209 * If the inode's direct blocks can hold an integral number of pages then a
3210 * page cannot straddle two indirect blocks, and we can only touch one indirect
3211 * and dindirect block, and the "5" above becomes "3".
3212 *
3213 * This still overestimates under most circumstances.  If we were to pass the
3214 * start and end offsets in here as well we could do block_to_path() on each
3215 * block and work out the exact number of indirects which are touched.  Pah.
3216 */
3217
3218static int ext3_writepage_trans_blocks(struct inode *inode)
3219{
3220        int bpp = ext3_journal_blocks_per_page(inode);
3221        int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3222        int ret;
3223
3224        if (ext3_should_journal_data(inode))
3225                ret = 3 * (bpp + indirects) + 2;
3226        else
3227                ret = 2 * (bpp + indirects) + 2;
3228
3229#ifdef CONFIG_QUOTA
3230        /* We know that structure was already allocated during vfs_dq_init so
3231         * we will be updating only the data blocks + inodes */
3232        ret += 2*EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb);
3233#endif
3234
3235        return ret;
3236}
3237
3238/*
3239 * The caller must have previously called ext3_reserve_inode_write().
3240 * Give this, we know that the caller already has write access to iloc->bh.
3241 */
3242int ext3_mark_iloc_dirty(handle_t *handle,
3243                struct inode *inode, struct ext3_iloc *iloc)
3244{
3245        int err = 0;
3246
3247        /* the do_update_inode consumes one bh->b_count */
3248        get_bh(iloc->bh);
3249
3250        /* ext3_do_update_inode() does journal_dirty_metadata */
3251        err = ext3_do_update_inode(handle, inode, iloc);
3252        put_bh(iloc->bh);
3253        return err;
3254}
3255
3256/*
3257 * On success, We end up with an outstanding reference count against
3258 * iloc->bh.  This _must_ be cleaned up later.
3259 */
3260
3261int
3262ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3263                         struct ext3_iloc *iloc)
3264{
3265        int err = 0;
3266        if (handle) {
3267                err = ext3_get_inode_loc(inode, iloc);
3268                if (!err) {
3269                        BUFFER_TRACE(iloc->bh, "get_write_access");
3270                        err = ext3_journal_get_write_access(handle, iloc->bh);
3271                        if (err) {
3272                                brelse(iloc->bh);
3273                                iloc->bh = NULL;
3274                        }
3275                }
3276        }
3277        ext3_std_error(inode->i_sb, err);
3278        return err;
3279}
3280
3281/*
3282 * What we do here is to mark the in-core inode as clean with respect to inode
3283 * dirtiness (it may still be data-dirty).
3284 * This means that the in-core inode may be reaped by prune_icache
3285 * without having to perform any I/O.  This is a very good thing,
3286 * because *any* task may call prune_icache - even ones which
3287 * have a transaction open against a different journal.
3288 *
3289 * Is this cheating?  Not really.  Sure, we haven't written the
3290 * inode out, but prune_icache isn't a user-visible syncing function.
3291 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3292 * we start and wait on commits.
3293 *
3294 * Is this efficient/effective?  Well, we're being nice to the system
3295 * by cleaning up our inodes proactively so they can be reaped
3296 * without I/O.  But we are potentially leaving up to five seconds'
3297 * worth of inodes floating about which prune_icache wants us to
3298 * write out.  One way to fix that would be to get prune_icache()
3299 * to do a write_super() to free up some memory.  It has the desired
3300 * effect.
3301 */
3302int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3303{
3304        struct ext3_iloc iloc;
3305        int err;
3306
3307        might_sleep();
3308        err = ext3_reserve_inode_write(handle, inode, &iloc);
3309        if (!err)
3310                err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3311        return err;
3312}
3313
3314/*
3315 * ext3_dirty_inode() is called from __mark_inode_dirty()
3316 *
3317 * We're really interested in the case where a file is being extended.
3318 * i_size has been changed by generic_commit_write() and we thus need
3319 * to include the updated inode in the current transaction.
3320 *
3321 * Also, vfs_dq_alloc_space() will always dirty the inode when blocks
3322 * are allocated to the file.
3323 *
3324 * If the inode is marked synchronous, we don't honour that here - doing
3325 * so would cause a commit on atime updates, which we don't bother doing.
3326 * We handle synchronous inodes at the highest possible level.
3327 */
3328void ext3_dirty_inode(struct inode *inode)
3329{
3330        handle_t *current_handle = ext3_journal_current_handle();
3331        handle_t *handle;
3332
3333        handle = ext3_journal_start(inode, 2);
3334        if (IS_ERR(handle))
3335                goto out;
3336        if (current_handle &&
3337                current_handle->h_transaction != handle->h_transaction) {
3338                /* This task has a transaction open against a different fs */
3339                printk(KERN_EMERG "%s: transactions do not match!\n",
3340                       __func__);
3341        } else {
3342                jbd_debug(5, "marking dirty.  outer handle=%p\n",
3343                                current_handle);
3344                ext3_mark_inode_dirty(handle, inode);
3345        }
3346        ext3_journal_stop(handle);
3347out:
3348        return;
3349}
3350
3351#if 0
3352/*
3353 * Bind an inode's backing buffer_head into this transaction, to prevent
3354 * it from being flushed to disk early.  Unlike
3355 * ext3_reserve_inode_write, this leaves behind no bh reference and
3356 * returns no iloc structure, so the caller needs to repeat the iloc
3357 * lookup to mark the inode dirty later.
3358 */
3359static int ext3_pin_inode(handle_t *handle, struct inode *inode)
3360{
3361        struct ext3_iloc iloc;
3362
3363        int err = 0;
3364        if (handle) {
3365                err = ext3_get_inode_loc(inode, &iloc);
3366                if (!err) {
3367                        BUFFER_TRACE(iloc.bh, "get_write_access");
3368                        err = journal_get_write_access(handle, iloc.bh);
3369                        if (!err)
3370                                err = ext3_journal_dirty_metadata(handle,
3371                                                                  iloc.bh);
3372                        brelse(iloc.bh);
3373                }
3374        }
3375        ext3_std_error(inode->i_sb, err);
3376        return err;
3377}
3378#endif
3379
3380int ext3_change_inode_journal_flag(struct inode *inode, int val)
3381{
3382        journal_t *journal;
3383        handle_t *handle;
3384        int err;
3385
3386        /*
3387         * We have to be very careful here: changing a data block's
3388         * journaling status dynamically is dangerous.  If we write a
3389         * data block to the journal, change the status and then delete
3390         * that block, we risk forgetting to revoke the old log record
3391         * from the journal and so a subsequent replay can corrupt data.
3392         * So, first we make sure that the journal is empty and that
3393         * nobody is changing anything.
3394         */
3395
3396        journal = EXT3_JOURNAL(inode);
3397        if (is_journal_aborted(journal))
3398                return -EROFS;
3399
3400        journal_lock_updates(journal);
3401        journal_flush(journal);
3402
3403        /*
3404         * OK, there are no updates running now, and all cached data is
3405         * synced to disk.  We are now in a completely consistent state
3406         * which doesn't have anything in the journal, and we know that
3407         * no filesystem updates are running, so it is safe to modify
3408         * the inode's in-core data-journaling state flag now.
3409         */
3410
3411        if (val)
3412                EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3413        else
3414                EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3415        ext3_set_aops(inode);
3416
3417        journal_unlock_updates(journal);
3418
3419        /* Finally we can mark the inode as dirty. */
3420
3421        handle = ext3_journal_start(inode, 1);
3422        if (IS_ERR(handle))
3423                return PTR_ERR(handle);
3424
3425        err = ext3_mark_inode_dirty(handle, inode);
3426        handle->h_sync = 1;
3427        ext3_journal_stop(handle);
3428        ext3_std_error(inode->i_sb, err);
3429
3430        return err;
3431}
3432