linux/fs/ext4/inode.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/ext4/inode.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  Goal-directed block allocation by Stephen Tweedie
  16 *      (sct@redhat.com), 1993, 1998
  17 *  Big-endian to little-endian byte-swapping/bitmaps by
  18 *        David S. Miller (davem@caip.rutgers.edu), 1995
  19 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  20 *      (jj@sunsite.ms.mff.cuni.cz)
  21 *
  22 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/fs.h>
  27#include <linux/time.h>
  28#include <linux/jbd2.h>
  29#include <linux/highuid.h>
  30#include <linux/pagemap.h>
  31#include <linux/quotaops.h>
  32#include <linux/string.h>
  33#include <linux/buffer_head.h>
  34#include <linux/writeback.h>
  35#include <linux/pagevec.h>
  36#include <linux/mpage.h>
  37#include <linux/namei.h>
  38#include <linux/uio.h>
  39#include <linux/bio.h>
  40#include <linux/workqueue.h>
  41
  42#include "ext4_jbd2.h"
  43#include "xattr.h"
  44#include "acl.h"
  45#include "ext4_extents.h"
  46
  47#include <trace/events/ext4.h>
  48
  49#define MPAGE_DA_EXTENT_TAIL 0x01
  50
  51static inline int ext4_begin_ordered_truncate(struct inode *inode,
  52                                              loff_t new_size)
  53{
  54        return jbd2_journal_begin_ordered_truncate(
  55                                        EXT4_SB(inode->i_sb)->s_journal,
  56                                        &EXT4_I(inode)->jinode,
  57                                        new_size);
  58}
  59
  60static void ext4_invalidatepage(struct page *page, unsigned long offset);
  61
  62/*
  63 * Test whether an inode is a fast symlink.
  64 */
  65static int ext4_inode_is_fast_symlink(struct inode *inode)
  66{
  67        int ea_blocks = EXT4_I(inode)->i_file_acl ?
  68                (inode->i_sb->s_blocksize >> 9) : 0;
  69
  70        return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  71}
  72
  73/*
  74 * The ext4 forget function must perform a revoke if we are freeing data
  75 * which has been journaled.  Metadata (eg. indirect blocks) must be
  76 * revoked in all cases.
  77 *
  78 * "bh" may be NULL: a metadata block may have been freed from memory
  79 * but there may still be a record of it in the journal, and that record
  80 * still needs to be revoked.
  81 *
  82 * If the handle isn't valid we're not journaling, but we still need to
  83 * call into ext4_journal_revoke() to put the buffer head.
  84 */
  85int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
  86                struct buffer_head *bh, ext4_fsblk_t blocknr)
  87{
  88        int err;
  89
  90        might_sleep();
  91
  92        BUFFER_TRACE(bh, "enter");
  93
  94        jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  95                  "data mode %x\n",
  96                  bh, is_metadata, inode->i_mode,
  97                  test_opt(inode->i_sb, DATA_FLAGS));
  98
  99        /* Never use the revoke function if we are doing full data
 100         * journaling: there is no need to, and a V1 superblock won't
 101         * support it.  Otherwise, only skip the revoke on un-journaled
 102         * data blocks. */
 103
 104        if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
 105            (!is_metadata && !ext4_should_journal_data(inode))) {
 106                if (bh) {
 107                        BUFFER_TRACE(bh, "call jbd2_journal_forget");
 108                        return ext4_journal_forget(handle, bh);
 109                }
 110                return 0;
 111        }
 112
 113        /*
 114         * data!=journal && (is_metadata || should_journal_data(inode))
 115         */
 116        BUFFER_TRACE(bh, "call ext4_journal_revoke");
 117        err = ext4_journal_revoke(handle, blocknr, bh);
 118        if (err)
 119                ext4_abort(inode->i_sb, __func__,
 120                           "error %d when attempting revoke", err);
 121        BUFFER_TRACE(bh, "exit");
 122        return err;
 123}
 124
 125/*
 126 * Work out how many blocks we need to proceed with the next chunk of a
 127 * truncate transaction.
 128 */
 129static unsigned long blocks_for_truncate(struct inode *inode)
 130{
 131        ext4_lblk_t needed;
 132
 133        needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
 134
 135        /* Give ourselves just enough room to cope with inodes in which
 136         * i_blocks is corrupt: we've seen disk corruptions in the past
 137         * which resulted in random data in an inode which looked enough
 138         * like a regular file for ext4 to try to delete it.  Things
 139         * will go a bit crazy if that happens, but at least we should
 140         * try not to panic the whole kernel. */
 141        if (needed < 2)
 142                needed = 2;
 143
 144        /* But we need to bound the transaction so we don't overflow the
 145         * journal. */
 146        if (needed > EXT4_MAX_TRANS_DATA)
 147                needed = EXT4_MAX_TRANS_DATA;
 148
 149        return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
 150}
 151
 152/*
 153 * Truncate transactions can be complex and absolutely huge.  So we need to
 154 * be able to restart the transaction at a conventient checkpoint to make
 155 * sure we don't overflow the journal.
 156 *
 157 * start_transaction gets us a new handle for a truncate transaction,
 158 * and extend_transaction tries to extend the existing one a bit.  If
 159 * extend fails, we need to propagate the failure up and restart the
 160 * transaction in the top-level truncate loop. --sct
 161 */
 162static handle_t *start_transaction(struct inode *inode)
 163{
 164        handle_t *result;
 165
 166        result = ext4_journal_start(inode, blocks_for_truncate(inode));
 167        if (!IS_ERR(result))
 168                return result;
 169
 170        ext4_std_error(inode->i_sb, PTR_ERR(result));
 171        return result;
 172}
 173
 174/*
 175 * Try to extend this transaction for the purposes of truncation.
 176 *
 177 * Returns 0 if we managed to create more room.  If we can't create more
 178 * room, and the transaction must be restarted we return 1.
 179 */
 180static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
 181{
 182        if (!ext4_handle_valid(handle))
 183                return 0;
 184        if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
 185                return 0;
 186        if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
 187                return 0;
 188        return 1;
 189}
 190
 191/*
 192 * Restart the transaction associated with *handle.  This does a commit,
 193 * so before we call here everything must be consistently dirtied against
 194 * this transaction.
 195 */
 196int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
 197                                 int nblocks)
 198{
 199        int ret;
 200
 201        /*
 202         * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
 203         * moment, get_block can be called only for blocks inside i_size since
 204         * page cache has been already dropped and writes are blocked by
 205         * i_mutex. So we can safely drop the i_data_sem here.
 206         */
 207        BUG_ON(EXT4_JOURNAL(inode) == NULL);
 208        jbd_debug(2, "restarting handle %p\n", handle);
 209        up_write(&EXT4_I(inode)->i_data_sem);
 210        ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
 211        down_write(&EXT4_I(inode)->i_data_sem);
 212        ext4_discard_preallocations(inode);
 213
 214        return ret;
 215}
 216
 217/*
 218 * Called at the last iput() if i_nlink is zero.
 219 */
 220void ext4_delete_inode(struct inode *inode)
 221{
 222        handle_t *handle;
 223        int err;
 224
 225        if (ext4_should_order_data(inode))
 226                ext4_begin_ordered_truncate(inode, 0);
 227        truncate_inode_pages(&inode->i_data, 0);
 228
 229        if (is_bad_inode(inode))
 230                goto no_delete;
 231
 232        handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
 233        if (IS_ERR(handle)) {
 234                ext4_std_error(inode->i_sb, PTR_ERR(handle));
 235                /*
 236                 * If we're going to skip the normal cleanup, we still need to
 237                 * make sure that the in-core orphan linked list is properly
 238                 * cleaned up.
 239                 */
 240                ext4_orphan_del(NULL, inode);
 241                goto no_delete;
 242        }
 243
 244        if (IS_SYNC(inode))
 245                ext4_handle_sync(handle);
 246        inode->i_size = 0;
 247        err = ext4_mark_inode_dirty(handle, inode);
 248        if (err) {
 249                ext4_warning(inode->i_sb, __func__,
 250                             "couldn't mark inode dirty (err %d)", err);
 251                goto stop_handle;
 252        }
 253        if (inode->i_blocks)
 254                ext4_truncate(inode);
 255
 256        /*
 257         * ext4_ext_truncate() doesn't reserve any slop when it
 258         * restarts journal transactions; therefore there may not be
 259         * enough credits left in the handle to remove the inode from
 260         * the orphan list and set the dtime field.
 261         */
 262        if (!ext4_handle_has_enough_credits(handle, 3)) {
 263                err = ext4_journal_extend(handle, 3);
 264                if (err > 0)
 265                        err = ext4_journal_restart(handle, 3);
 266                if (err != 0) {
 267                        ext4_warning(inode->i_sb, __func__,
 268                                     "couldn't extend journal (err %d)", err);
 269                stop_handle:
 270                        ext4_journal_stop(handle);
 271                        goto no_delete;
 272                }
 273        }
 274
 275        /*
 276         * Kill off the orphan record which ext4_truncate created.
 277         * AKPM: I think this can be inside the above `if'.
 278         * Note that ext4_orphan_del() has to be able to cope with the
 279         * deletion of a non-existent orphan - this is because we don't
 280         * know if ext4_truncate() actually created an orphan record.
 281         * (Well, we could do this if we need to, but heck - it works)
 282         */
 283        ext4_orphan_del(handle, inode);
 284        EXT4_I(inode)->i_dtime  = get_seconds();
 285
 286        /*
 287         * One subtle ordering requirement: if anything has gone wrong
 288         * (transaction abort, IO errors, whatever), then we can still
 289         * do these next steps (the fs will already have been marked as
 290         * having errors), but we can't free the inode if the mark_dirty
 291         * fails.
 292         */
 293        if (ext4_mark_inode_dirty(handle, inode))
 294                /* If that failed, just do the required in-core inode clear. */
 295                clear_inode(inode);
 296        else
 297                ext4_free_inode(handle, inode);
 298        ext4_journal_stop(handle);
 299        return;
 300no_delete:
 301        clear_inode(inode);     /* We must guarantee clearing of inode... */
 302}
 303
 304typedef struct {
 305        __le32  *p;
 306        __le32  key;
 307        struct buffer_head *bh;
 308} Indirect;
 309
 310static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
 311{
 312        p->key = *(p->p = v);
 313        p->bh = bh;
 314}
 315
 316/**
 317 *      ext4_block_to_path - parse the block number into array of offsets
 318 *      @inode: inode in question (we are only interested in its superblock)
 319 *      @i_block: block number to be parsed
 320 *      @offsets: array to store the offsets in
 321 *      @boundary: set this non-zero if the referred-to block is likely to be
 322 *             followed (on disk) by an indirect block.
 323 *
 324 *      To store the locations of file's data ext4 uses a data structure common
 325 *      for UNIX filesystems - tree of pointers anchored in the inode, with
 326 *      data blocks at leaves and indirect blocks in intermediate nodes.
 327 *      This function translates the block number into path in that tree -
 328 *      return value is the path length and @offsets[n] is the offset of
 329 *      pointer to (n+1)th node in the nth one. If @block is out of range
 330 *      (negative or too large) warning is printed and zero returned.
 331 *
 332 *      Note: function doesn't find node addresses, so no IO is needed. All
 333 *      we need to know is the capacity of indirect blocks (taken from the
 334 *      inode->i_sb).
 335 */
 336
 337/*
 338 * Portability note: the last comparison (check that we fit into triple
 339 * indirect block) is spelled differently, because otherwise on an
 340 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 341 * if our filesystem had 8Kb blocks. We might use long long, but that would
 342 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 343 * i_block would have to be negative in the very beginning, so we would not
 344 * get there at all.
 345 */
 346
 347static int ext4_block_to_path(struct inode *inode,
 348                              ext4_lblk_t i_block,
 349                              ext4_lblk_t offsets[4], int *boundary)
 350{
 351        int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
 352        int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
 353        const long direct_blocks = EXT4_NDIR_BLOCKS,
 354                indirect_blocks = ptrs,
 355                double_blocks = (1 << (ptrs_bits * 2));
 356        int n = 0;
 357        int final = 0;
 358
 359        if (i_block < direct_blocks) {
 360                offsets[n++] = i_block;
 361                final = direct_blocks;
 362        } else if ((i_block -= direct_blocks) < indirect_blocks) {
 363                offsets[n++] = EXT4_IND_BLOCK;
 364                offsets[n++] = i_block;
 365                final = ptrs;
 366        } else if ((i_block -= indirect_blocks) < double_blocks) {
 367                offsets[n++] = EXT4_DIND_BLOCK;
 368                offsets[n++] = i_block >> ptrs_bits;
 369                offsets[n++] = i_block & (ptrs - 1);
 370                final = ptrs;
 371        } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
 372                offsets[n++] = EXT4_TIND_BLOCK;
 373                offsets[n++] = i_block >> (ptrs_bits * 2);
 374                offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
 375                offsets[n++] = i_block & (ptrs - 1);
 376                final = ptrs;
 377        } else {
 378                ext4_warning(inode->i_sb, "ext4_block_to_path",
 379                             "block %lu > max in inode %lu",
 380                             i_block + direct_blocks +
 381                             indirect_blocks + double_blocks, inode->i_ino);
 382        }
 383        if (boundary)
 384                *boundary = final - 1 - (i_block & (ptrs - 1));
 385        return n;
 386}
 387
 388static int __ext4_check_blockref(const char *function, struct inode *inode,
 389                                 __le32 *p, unsigned int max)
 390{
 391        __le32 *bref = p;
 392        unsigned int blk;
 393
 394        while (bref < p+max) {
 395                blk = le32_to_cpu(*bref++);
 396                if (blk &&
 397                    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
 398                                                    blk, 1))) {
 399                        ext4_error(inode->i_sb, function,
 400                                   "invalid block reference %u "
 401                                   "in inode #%lu", blk, inode->i_ino);
 402                        return -EIO;
 403                }
 404        }
 405        return 0;
 406}
 407
 408
 409#define ext4_check_indirect_blockref(inode, bh)                         \
 410        __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
 411                              EXT4_ADDR_PER_BLOCK((inode)->i_sb))
 412
 413#define ext4_check_inode_blockref(inode)                                \
 414        __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
 415                              EXT4_NDIR_BLOCKS)
 416
 417/**
 418 *      ext4_get_branch - read the chain of indirect blocks leading to data
 419 *      @inode: inode in question
 420 *      @depth: depth of the chain (1 - direct pointer, etc.)
 421 *      @offsets: offsets of pointers in inode/indirect blocks
 422 *      @chain: place to store the result
 423 *      @err: here we store the error value
 424 *
 425 *      Function fills the array of triples <key, p, bh> and returns %NULL
 426 *      if everything went OK or the pointer to the last filled triple
 427 *      (incomplete one) otherwise. Upon the return chain[i].key contains
 428 *      the number of (i+1)-th block in the chain (as it is stored in memory,
 429 *      i.e. little-endian 32-bit), chain[i].p contains the address of that
 430 *      number (it points into struct inode for i==0 and into the bh->b_data
 431 *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 432 *      block for i>0 and NULL for i==0. In other words, it holds the block
 433 *      numbers of the chain, addresses they were taken from (and where we can
 434 *      verify that chain did not change) and buffer_heads hosting these
 435 *      numbers.
 436 *
 437 *      Function stops when it stumbles upon zero pointer (absent block)
 438 *              (pointer to last triple returned, *@err == 0)
 439 *      or when it gets an IO error reading an indirect block
 440 *              (ditto, *@err == -EIO)
 441 *      or when it reads all @depth-1 indirect blocks successfully and finds
 442 *      the whole chain, all way to the data (returns %NULL, *err == 0).
 443 *
 444 *      Need to be called with
 445 *      down_read(&EXT4_I(inode)->i_data_sem)
 446 */
 447static Indirect *ext4_get_branch(struct inode *inode, int depth,
 448                                 ext4_lblk_t  *offsets,
 449                                 Indirect chain[4], int *err)
 450{
 451        struct super_block *sb = inode->i_sb;
 452        Indirect *p = chain;
 453        struct buffer_head *bh;
 454
 455        *err = 0;
 456        /* i_data is not going away, no lock needed */
 457        add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
 458        if (!p->key)
 459                goto no_block;
 460        while (--depth) {
 461                bh = sb_getblk(sb, le32_to_cpu(p->key));
 462                if (unlikely(!bh))
 463                        goto failure;
 464
 465                if (!bh_uptodate_or_lock(bh)) {
 466                        if (bh_submit_read(bh) < 0) {
 467                                put_bh(bh);
 468                                goto failure;
 469                        }
 470                        /* validate block references */
 471                        if (ext4_check_indirect_blockref(inode, bh)) {
 472                                put_bh(bh);
 473                                goto failure;
 474                        }
 475                }
 476
 477                add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
 478                /* Reader: end */
 479                if (!p->key)
 480                        goto no_block;
 481        }
 482        return NULL;
 483
 484failure:
 485        *err = -EIO;
 486no_block:
 487        return p;
 488}
 489
 490/**
 491 *      ext4_find_near - find a place for allocation with sufficient locality
 492 *      @inode: owner
 493 *      @ind: descriptor of indirect block.
 494 *
 495 *      This function returns the preferred place for block allocation.
 496 *      It is used when heuristic for sequential allocation fails.
 497 *      Rules are:
 498 *        + if there is a block to the left of our position - allocate near it.
 499 *        + if pointer will live in indirect block - allocate near that block.
 500 *        + if pointer will live in inode - allocate in the same
 501 *          cylinder group.
 502 *
 503 * In the latter case we colour the starting block by the callers PID to
 504 * prevent it from clashing with concurrent allocations for a different inode
 505 * in the same block group.   The PID is used here so that functionally related
 506 * files will be close-by on-disk.
 507 *
 508 *      Caller must make sure that @ind is valid and will stay that way.
 509 */
 510static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
 511{
 512        struct ext4_inode_info *ei = EXT4_I(inode);
 513        __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
 514        __le32 *p;
 515        ext4_fsblk_t bg_start;
 516        ext4_fsblk_t last_block;
 517        ext4_grpblk_t colour;
 518        ext4_group_t block_group;
 519        int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
 520
 521        /* Try to find previous block */
 522        for (p = ind->p - 1; p >= start; p--) {
 523                if (*p)
 524                        return le32_to_cpu(*p);
 525        }
 526
 527        /* No such thing, so let's try location of indirect block */
 528        if (ind->bh)
 529                return ind->bh->b_blocknr;
 530
 531        /*
 532         * It is going to be referred to from the inode itself? OK, just put it
 533         * into the same cylinder group then.
 534         */
 535        block_group = ei->i_block_group;
 536        if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
 537                block_group &= ~(flex_size-1);
 538                if (S_ISREG(inode->i_mode))
 539                        block_group++;
 540        }
 541        bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
 542        last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
 543
 544        /*
 545         * If we are doing delayed allocation, we don't need take
 546         * colour into account.
 547         */
 548        if (test_opt(inode->i_sb, DELALLOC))
 549                return bg_start;
 550
 551        if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
 552                colour = (current->pid % 16) *
 553                        (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
 554        else
 555                colour = (current->pid % 16) * ((last_block - bg_start) / 16);
 556        return bg_start + colour;
 557}
 558
 559/**
 560 *      ext4_find_goal - find a preferred place for allocation.
 561 *      @inode: owner
 562 *      @block:  block we want
 563 *      @partial: pointer to the last triple within a chain
 564 *
 565 *      Normally this function find the preferred place for block allocation,
 566 *      returns it.
 567 *      Because this is only used for non-extent files, we limit the block nr
 568 *      to 32 bits.
 569 */
 570static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
 571                                   Indirect *partial)
 572{
 573        ext4_fsblk_t goal;
 574
 575        /*
 576         * XXX need to get goal block from mballoc's data structures
 577         */
 578
 579        goal = ext4_find_near(inode, partial);
 580        goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
 581        return goal;
 582}
 583
 584/**
 585 *      ext4_blks_to_allocate: Look up the block map and count the number
 586 *      of direct blocks need to be allocated for the given branch.
 587 *
 588 *      @branch: chain of indirect blocks
 589 *      @k: number of blocks need for indirect blocks
 590 *      @blks: number of data blocks to be mapped.
 591 *      @blocks_to_boundary:  the offset in the indirect block
 592 *
 593 *      return the total number of blocks to be allocate, including the
 594 *      direct and indirect blocks.
 595 */
 596static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
 597                                 int blocks_to_boundary)
 598{
 599        unsigned int count = 0;
 600
 601        /*
 602         * Simple case, [t,d]Indirect block(s) has not allocated yet
 603         * then it's clear blocks on that path have not allocated
 604         */
 605        if (k > 0) {
 606                /* right now we don't handle cross boundary allocation */
 607                if (blks < blocks_to_boundary + 1)
 608                        count += blks;
 609                else
 610                        count += blocks_to_boundary + 1;
 611                return count;
 612        }
 613
 614        count++;
 615        while (count < blks && count <= blocks_to_boundary &&
 616                le32_to_cpu(*(branch[0].p + count)) == 0) {
 617                count++;
 618        }
 619        return count;
 620}
 621
 622/**
 623 *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
 624 *      @indirect_blks: the number of blocks need to allocate for indirect
 625 *                      blocks
 626 *
 627 *      @new_blocks: on return it will store the new block numbers for
 628 *      the indirect blocks(if needed) and the first direct block,
 629 *      @blks:  on return it will store the total number of allocated
 630 *              direct blocks
 631 */
 632static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
 633                             ext4_lblk_t iblock, ext4_fsblk_t goal,
 634                             int indirect_blks, int blks,
 635                             ext4_fsblk_t new_blocks[4], int *err)
 636{
 637        struct ext4_allocation_request ar;
 638        int target, i;
 639        unsigned long count = 0, blk_allocated = 0;
 640        int index = 0;
 641        ext4_fsblk_t current_block = 0;
 642        int ret = 0;
 643
 644        /*
 645         * Here we try to allocate the requested multiple blocks at once,
 646         * on a best-effort basis.
 647         * To build a branch, we should allocate blocks for
 648         * the indirect blocks(if not allocated yet), and at least
 649         * the first direct block of this branch.  That's the
 650         * minimum number of blocks need to allocate(required)
 651         */
 652        /* first we try to allocate the indirect blocks */
 653        target = indirect_blks;
 654        while (target > 0) {
 655                count = target;
 656                /* allocating blocks for indirect blocks and direct blocks */
 657                current_block = ext4_new_meta_blocks(handle, inode,
 658                                                        goal, &count, err);
 659                if (*err)
 660                        goto failed_out;
 661
 662                BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
 663
 664                target -= count;
 665                /* allocate blocks for indirect blocks */
 666                while (index < indirect_blks && count) {
 667                        new_blocks[index++] = current_block++;
 668                        count--;
 669                }
 670                if (count > 0) {
 671                        /*
 672                         * save the new block number
 673                         * for the first direct block
 674                         */
 675                        new_blocks[index] = current_block;
 676                        printk(KERN_INFO "%s returned more blocks than "
 677                                                "requested\n", __func__);
 678                        WARN_ON(1);
 679                        break;
 680                }
 681        }
 682
 683        target = blks - count ;
 684        blk_allocated = count;
 685        if (!target)
 686                goto allocated;
 687        /* Now allocate data blocks */
 688        memset(&ar, 0, sizeof(ar));
 689        ar.inode = inode;
 690        ar.goal = goal;
 691        ar.len = target;
 692        ar.logical = iblock;
 693        if (S_ISREG(inode->i_mode))
 694                /* enable in-core preallocation only for regular files */
 695                ar.flags = EXT4_MB_HINT_DATA;
 696
 697        current_block = ext4_mb_new_blocks(handle, &ar, err);
 698        BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
 699
 700        if (*err && (target == blks)) {
 701                /*
 702                 * if the allocation failed and we didn't allocate
 703                 * any blocks before
 704                 */
 705                goto failed_out;
 706        }
 707        if (!*err) {
 708                if (target == blks) {
 709                        /*
 710                         * save the new block number
 711                         * for the first direct block
 712                         */
 713                        new_blocks[index] = current_block;
 714                }
 715                blk_allocated += ar.len;
 716        }
 717allocated:
 718        /* total number of blocks allocated for direct blocks */
 719        ret = blk_allocated;
 720        *err = 0;
 721        return ret;
 722failed_out:
 723        for (i = 0; i < index; i++)
 724                ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
 725        return ret;
 726}
 727
 728/**
 729 *      ext4_alloc_branch - allocate and set up a chain of blocks.
 730 *      @inode: owner
 731 *      @indirect_blks: number of allocated indirect blocks
 732 *      @blks: number of allocated direct blocks
 733 *      @offsets: offsets (in the blocks) to store the pointers to next.
 734 *      @branch: place to store the chain in.
 735 *
 736 *      This function allocates blocks, zeroes out all but the last one,
 737 *      links them into chain and (if we are synchronous) writes them to disk.
 738 *      In other words, it prepares a branch that can be spliced onto the
 739 *      inode. It stores the information about that chain in the branch[], in
 740 *      the same format as ext4_get_branch() would do. We are calling it after
 741 *      we had read the existing part of chain and partial points to the last
 742 *      triple of that (one with zero ->key). Upon the exit we have the same
 743 *      picture as after the successful ext4_get_block(), except that in one
 744 *      place chain is disconnected - *branch->p is still zero (we did not
 745 *      set the last link), but branch->key contains the number that should
 746 *      be placed into *branch->p to fill that gap.
 747 *
 748 *      If allocation fails we free all blocks we've allocated (and forget
 749 *      their buffer_heads) and return the error value the from failed
 750 *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
 751 *      as described above and return 0.
 752 */
 753static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
 754                             ext4_lblk_t iblock, int indirect_blks,
 755                             int *blks, ext4_fsblk_t goal,
 756                             ext4_lblk_t *offsets, Indirect *branch)
 757{
 758        int blocksize = inode->i_sb->s_blocksize;
 759        int i, n = 0;
 760        int err = 0;
 761        struct buffer_head *bh;
 762        int num;
 763        ext4_fsblk_t new_blocks[4];
 764        ext4_fsblk_t current_block;
 765
 766        num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
 767                                *blks, new_blocks, &err);
 768        if (err)
 769                return err;
 770
 771        branch[0].key = cpu_to_le32(new_blocks[0]);
 772        /*
 773         * metadata blocks and data blocks are allocated.
 774         */
 775        for (n = 1; n <= indirect_blks;  n++) {
 776                /*
 777                 * Get buffer_head for parent block, zero it out
 778                 * and set the pointer to new one, then send
 779                 * parent to disk.
 780                 */
 781                bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
 782                branch[n].bh = bh;
 783                lock_buffer(bh);
 784                BUFFER_TRACE(bh, "call get_create_access");
 785                err = ext4_journal_get_create_access(handle, bh);
 786                if (err) {
 787                        /* Don't brelse(bh) here; it's done in
 788                         * ext4_journal_forget() below */
 789                        unlock_buffer(bh);
 790                        goto failed;
 791                }
 792
 793                memset(bh->b_data, 0, blocksize);
 794                branch[n].p = (__le32 *) bh->b_data + offsets[n];
 795                branch[n].key = cpu_to_le32(new_blocks[n]);
 796                *branch[n].p = branch[n].key;
 797                if (n == indirect_blks) {
 798                        current_block = new_blocks[n];
 799                        /*
 800                         * End of chain, update the last new metablock of
 801                         * the chain to point to the new allocated
 802                         * data blocks numbers
 803                         */
 804                        for (i = 1; i < num; i++)
 805                                *(branch[n].p + i) = cpu_to_le32(++current_block);
 806                }
 807                BUFFER_TRACE(bh, "marking uptodate");
 808                set_buffer_uptodate(bh);
 809                unlock_buffer(bh);
 810
 811                BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 812                err = ext4_handle_dirty_metadata(handle, inode, bh);
 813                if (err)
 814                        goto failed;
 815        }
 816        *blks = num;
 817        return err;
 818failed:
 819        /* Allocation failed, free what we already allocated */
 820        for (i = 1; i <= n ; i++) {
 821                BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
 822                ext4_journal_forget(handle, branch[i].bh);
 823        }
 824        for (i = 0; i < indirect_blks; i++)
 825                ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
 826
 827        ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
 828
 829        return err;
 830}
 831
 832/**
 833 * ext4_splice_branch - splice the allocated branch onto inode.
 834 * @inode: owner
 835 * @block: (logical) number of block we are adding
 836 * @chain: chain of indirect blocks (with a missing link - see
 837 *      ext4_alloc_branch)
 838 * @where: location of missing link
 839 * @num:   number of indirect blocks we are adding
 840 * @blks:  number of direct blocks we are adding
 841 *
 842 * This function fills the missing link and does all housekeeping needed in
 843 * inode (->i_blocks, etc.). In case of success we end up with the full
 844 * chain to new block and return 0.
 845 */
 846static int ext4_splice_branch(handle_t *handle, struct inode *inode,
 847                              ext4_lblk_t block, Indirect *where, int num,
 848                              int blks)
 849{
 850        int i;
 851        int err = 0;
 852        ext4_fsblk_t current_block;
 853
 854        /*
 855         * If we're splicing into a [td]indirect block (as opposed to the
 856         * inode) then we need to get write access to the [td]indirect block
 857         * before the splice.
 858         */
 859        if (where->bh) {
 860                BUFFER_TRACE(where->bh, "get_write_access");
 861                err = ext4_journal_get_write_access(handle, where->bh);
 862                if (err)
 863                        goto err_out;
 864        }
 865        /* That's it */
 866
 867        *where->p = where->key;
 868
 869        /*
 870         * Update the host buffer_head or inode to point to more just allocated
 871         * direct blocks blocks
 872         */
 873        if (num == 0 && blks > 1) {
 874                current_block = le32_to_cpu(where->key) + 1;
 875                for (i = 1; i < blks; i++)
 876                        *(where->p + i) = cpu_to_le32(current_block++);
 877        }
 878
 879        /* We are done with atomic stuff, now do the rest of housekeeping */
 880        /* had we spliced it onto indirect block? */
 881        if (where->bh) {
 882                /*
 883                 * If we spliced it onto an indirect block, we haven't
 884                 * altered the inode.  Note however that if it is being spliced
 885                 * onto an indirect block at the very end of the file (the
 886                 * file is growing) then we *will* alter the inode to reflect
 887                 * the new i_size.  But that is not done here - it is done in
 888                 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
 889                 */
 890                jbd_debug(5, "splicing indirect only\n");
 891                BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
 892                err = ext4_handle_dirty_metadata(handle, inode, where->bh);
 893                if (err)
 894                        goto err_out;
 895        } else {
 896                /*
 897                 * OK, we spliced it into the inode itself on a direct block.
 898                 */
 899                ext4_mark_inode_dirty(handle, inode);
 900                jbd_debug(5, "splicing direct\n");
 901        }
 902        return err;
 903
 904err_out:
 905        for (i = 1; i <= num; i++) {
 906                BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
 907                ext4_journal_forget(handle, where[i].bh);
 908                ext4_free_blocks(handle, inode,
 909                                        le32_to_cpu(where[i-1].key), 1, 0);
 910        }
 911        ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
 912
 913        return err;
 914}
 915
 916/*
 917 * The ext4_ind_get_blocks() function handles non-extents inodes
 918 * (i.e., using the traditional indirect/double-indirect i_blocks
 919 * scheme) for ext4_get_blocks().
 920 *
 921 * Allocation strategy is simple: if we have to allocate something, we will
 922 * have to go the whole way to leaf. So let's do it before attaching anything
 923 * to tree, set linkage between the newborn blocks, write them if sync is
 924 * required, recheck the path, free and repeat if check fails, otherwise
 925 * set the last missing link (that will protect us from any truncate-generated
 926 * removals - all blocks on the path are immune now) and possibly force the
 927 * write on the parent block.
 928 * That has a nice additional property: no special recovery from the failed
 929 * allocations is needed - we simply release blocks and do not touch anything
 930 * reachable from inode.
 931 *
 932 * `handle' can be NULL if create == 0.
 933 *
 934 * return > 0, # of blocks mapped or allocated.
 935 * return = 0, if plain lookup failed.
 936 * return < 0, error case.
 937 *
 938 * The ext4_ind_get_blocks() function should be called with
 939 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 940 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 941 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 942 * blocks.
 943 */
 944static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
 945                               ext4_lblk_t iblock, unsigned int maxblocks,
 946                               struct buffer_head *bh_result,
 947                               int flags)
 948{
 949        int err = -EIO;
 950        ext4_lblk_t offsets[4];
 951        Indirect chain[4];
 952        Indirect *partial;
 953        ext4_fsblk_t goal;
 954        int indirect_blks;
 955        int blocks_to_boundary = 0;
 956        int depth;
 957        int count = 0;
 958        ext4_fsblk_t first_block = 0;
 959
 960        J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
 961        J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
 962        depth = ext4_block_to_path(inode, iblock, offsets,
 963                                   &blocks_to_boundary);
 964
 965        if (depth == 0)
 966                goto out;
 967
 968        partial = ext4_get_branch(inode, depth, offsets, chain, &err);
 969
 970        /* Simplest case - block found, no allocation needed */
 971        if (!partial) {
 972                first_block = le32_to_cpu(chain[depth - 1].key);
 973                clear_buffer_new(bh_result);
 974                count++;
 975                /*map more blocks*/
 976                while (count < maxblocks && count <= blocks_to_boundary) {
 977                        ext4_fsblk_t blk;
 978
 979                        blk = le32_to_cpu(*(chain[depth-1].p + count));
 980
 981                        if (blk == first_block + count)
 982                                count++;
 983                        else
 984                                break;
 985                }
 986                goto got_it;
 987        }
 988
 989        /* Next simple case - plain lookup or failed read of indirect block */
 990        if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
 991                goto cleanup;
 992
 993        /*
 994         * Okay, we need to do block allocation.
 995        */
 996        goal = ext4_find_goal(inode, iblock, partial);
 997
 998        /* the number of blocks need to allocate for [d,t]indirect blocks */
 999        indirect_blks = (chain + depth) - partial - 1;
1000
1001        /*
1002         * Next look up the indirect map to count the totoal number of
1003         * direct blocks to allocate for this branch.
1004         */
1005        count = ext4_blks_to_allocate(partial, indirect_blks,
1006                                        maxblocks, blocks_to_boundary);
1007        /*
1008         * Block out ext4_truncate while we alter the tree
1009         */
1010        err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
1011                                &count, goal,
1012                                offsets + (partial - chain), partial);
1013
1014        /*
1015         * The ext4_splice_branch call will free and forget any buffers
1016         * on the new chain if there is a failure, but that risks using
1017         * up transaction credits, especially for bitmaps where the
1018         * credits cannot be returned.  Can we handle this somehow?  We
1019         * may need to return -EAGAIN upwards in the worst case.  --sct
1020         */
1021        if (!err)
1022                err = ext4_splice_branch(handle, inode, iblock,
1023                                         partial, indirect_blks, count);
1024        else
1025                goto cleanup;
1026
1027        set_buffer_new(bh_result);
1028got_it:
1029        map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1030        if (count > blocks_to_boundary)
1031                set_buffer_boundary(bh_result);
1032        err = count;
1033        /* Clean up and exit */
1034        partial = chain + depth - 1;    /* the whole chain */
1035cleanup:
1036        while (partial > chain) {
1037                BUFFER_TRACE(partial->bh, "call brelse");
1038                brelse(partial->bh);
1039                partial--;
1040        }
1041        BUFFER_TRACE(bh_result, "returned");
1042out:
1043        return err;
1044}
1045
1046qsize_t ext4_get_reserved_space(struct inode *inode)
1047{
1048        unsigned long long total;
1049
1050        spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1051        total = EXT4_I(inode)->i_reserved_data_blocks +
1052                EXT4_I(inode)->i_reserved_meta_blocks;
1053        spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1054
1055        return total;
1056}
1057/*
1058 * Calculate the number of metadata blocks need to reserve
1059 * to allocate @blocks for non extent file based file
1060 */
1061static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1062{
1063        int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1064        int ind_blks, dind_blks, tind_blks;
1065
1066        /* number of new indirect blocks needed */
1067        ind_blks = (blocks + icap - 1) / icap;
1068
1069        dind_blks = (ind_blks + icap - 1) / icap;
1070
1071        tind_blks = 1;
1072
1073        return ind_blks + dind_blks + tind_blks;
1074}
1075
1076/*
1077 * Calculate the number of metadata blocks need to reserve
1078 * to allocate given number of blocks
1079 */
1080static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1081{
1082        if (!blocks)
1083                return 0;
1084
1085        if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1086                return ext4_ext_calc_metadata_amount(inode, blocks);
1087
1088        return ext4_indirect_calc_metadata_amount(inode, blocks);
1089}
1090
1091static void ext4_da_update_reserve_space(struct inode *inode, int used)
1092{
1093        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1094        int total, mdb, mdb_free;
1095
1096        spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1097        /* recalculate the number of metablocks still need to be reserved */
1098        total = EXT4_I(inode)->i_reserved_data_blocks - used;
1099        mdb = ext4_calc_metadata_amount(inode, total);
1100
1101        /* figure out how many metablocks to release */
1102        BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1103        mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1104
1105        if (mdb_free) {
1106                /* Account for allocated meta_blocks */
1107                mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1108
1109                /* update fs dirty blocks counter */
1110                percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1111                EXT4_I(inode)->i_allocated_meta_blocks = 0;
1112                EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1113        }
1114
1115        /* update per-inode reservations */
1116        BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1117        EXT4_I(inode)->i_reserved_data_blocks -= used;
1118        spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1119
1120        /*
1121         * free those over-booking quota for metadata blocks
1122         */
1123        if (mdb_free)
1124                vfs_dq_release_reservation_block(inode, mdb_free);
1125
1126        /*
1127         * If we have done all the pending block allocations and if
1128         * there aren't any writers on the inode, we can discard the
1129         * inode's preallocations.
1130         */
1131        if (!total && (atomic_read(&inode->i_writecount) == 0))
1132                ext4_discard_preallocations(inode);
1133}
1134
1135static int check_block_validity(struct inode *inode, const char *msg,
1136                                sector_t logical, sector_t phys, int len)
1137{
1138        if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1139                ext4_error(inode->i_sb, msg,
1140                           "inode #%lu logical block %llu mapped to %llu "
1141                           "(size %d)", inode->i_ino,
1142                           (unsigned long long) logical,
1143                           (unsigned long long) phys, len);
1144                return -EIO;
1145        }
1146        return 0;
1147}
1148
1149/*
1150 * Return the number of contiguous dirty pages in a given inode
1151 * starting at page frame idx.
1152 */
1153static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1154                                    unsigned int max_pages)
1155{
1156        struct address_space *mapping = inode->i_mapping;
1157        pgoff_t index;
1158        struct pagevec pvec;
1159        pgoff_t num = 0;
1160        int i, nr_pages, done = 0;
1161
1162        if (max_pages == 0)
1163                return 0;
1164        pagevec_init(&pvec, 0);
1165        while (!done) {
1166                index = idx;
1167                nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1168                                              PAGECACHE_TAG_DIRTY,
1169                                              (pgoff_t)PAGEVEC_SIZE);
1170                if (nr_pages == 0)
1171                        break;
1172                for (i = 0; i < nr_pages; i++) {
1173                        struct page *page = pvec.pages[i];
1174                        struct buffer_head *bh, *head;
1175
1176                        lock_page(page);
1177                        if (unlikely(page->mapping != mapping) ||
1178                            !PageDirty(page) ||
1179                            PageWriteback(page) ||
1180                            page->index != idx) {
1181                                done = 1;
1182                                unlock_page(page);
1183                                break;
1184                        }
1185                        if (page_has_buffers(page)) {
1186                                bh = head = page_buffers(page);
1187                                do {
1188                                        if (!buffer_delay(bh) &&
1189                                            !buffer_unwritten(bh))
1190                                                done = 1;
1191                                        bh = bh->b_this_page;
1192                                } while (!done && (bh != head));
1193                        }
1194                        unlock_page(page);
1195                        if (done)
1196                                break;
1197                        idx++;
1198                        num++;
1199                        if (num >= max_pages)
1200                                break;
1201                }
1202                pagevec_release(&pvec);
1203        }
1204        return num;
1205}
1206
1207/*
1208 * The ext4_get_blocks() function tries to look up the requested blocks,
1209 * and returns if the blocks are already mapped.
1210 *
1211 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1212 * and store the allocated blocks in the result buffer head and mark it
1213 * mapped.
1214 *
1215 * If file type is extents based, it will call ext4_ext_get_blocks(),
1216 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1217 * based files
1218 *
1219 * On success, it returns the number of blocks being mapped or allocate.
1220 * if create==0 and the blocks are pre-allocated and uninitialized block,
1221 * the result buffer head is unmapped. If the create ==1, it will make sure
1222 * the buffer head is mapped.
1223 *
1224 * It returns 0 if plain look up failed (blocks have not been allocated), in
1225 * that casem, buffer head is unmapped
1226 *
1227 * It returns the error in case of allocation failure.
1228 */
1229int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1230                    unsigned int max_blocks, struct buffer_head *bh,
1231                    int flags)
1232{
1233        int retval;
1234
1235        clear_buffer_mapped(bh);
1236        clear_buffer_unwritten(bh);
1237
1238        ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1239                  "logical block %lu\n", inode->i_ino, flags, max_blocks,
1240                  (unsigned long)block);
1241        /*
1242         * Try to see if we can get the block without requesting a new
1243         * file system block.
1244         */
1245        down_read((&EXT4_I(inode)->i_data_sem));
1246        if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1247                retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1248                                bh, 0);
1249        } else {
1250                retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1251                                             bh, 0);
1252        }
1253        up_read((&EXT4_I(inode)->i_data_sem));
1254
1255        if (retval > 0 && buffer_mapped(bh)) {
1256                int ret = check_block_validity(inode, "file system corruption",
1257                                               block, bh->b_blocknr, retval);
1258                if (ret != 0)
1259                        return ret;
1260        }
1261
1262        /* If it is only a block(s) look up */
1263        if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1264                return retval;
1265
1266        /*
1267         * Returns if the blocks have already allocated
1268         *
1269         * Note that if blocks have been preallocated
1270         * ext4_ext_get_block() returns th create = 0
1271         * with buffer head unmapped.
1272         */
1273        if (retval > 0 && buffer_mapped(bh))
1274                return retval;
1275
1276        /*
1277         * When we call get_blocks without the create flag, the
1278         * BH_Unwritten flag could have gotten set if the blocks
1279         * requested were part of a uninitialized extent.  We need to
1280         * clear this flag now that we are committed to convert all or
1281         * part of the uninitialized extent to be an initialized
1282         * extent.  This is because we need to avoid the combination
1283         * of BH_Unwritten and BH_Mapped flags being simultaneously
1284         * set on the buffer_head.
1285         */
1286        clear_buffer_unwritten(bh);
1287
1288        /*
1289         * New blocks allocate and/or writing to uninitialized extent
1290         * will possibly result in updating i_data, so we take
1291         * the write lock of i_data_sem, and call get_blocks()
1292         * with create == 1 flag.
1293         */
1294        down_write((&EXT4_I(inode)->i_data_sem));
1295
1296        /*
1297         * if the caller is from delayed allocation writeout path
1298         * we have already reserved fs blocks for allocation
1299         * let the underlying get_block() function know to
1300         * avoid double accounting
1301         */
1302        if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1303                EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1304        /*
1305         * We need to check for EXT4 here because migrate
1306         * could have changed the inode type in between
1307         */
1308        if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1309                retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1310                                              bh, flags);
1311        } else {
1312                retval = ext4_ind_get_blocks(handle, inode, block,
1313                                             max_blocks, bh, flags);
1314
1315                if (retval > 0 && buffer_new(bh)) {
1316                        /*
1317                         * We allocated new blocks which will result in
1318                         * i_data's format changing.  Force the migrate
1319                         * to fail by clearing migrate flags
1320                         */
1321                        EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE;
1322                }
1323        }
1324
1325        if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1326                EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1327
1328        /*
1329         * Update reserved blocks/metadata blocks after successful
1330         * block allocation which had been deferred till now.
1331         */
1332        if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1333                ext4_da_update_reserve_space(inode, retval);
1334
1335        up_write((&EXT4_I(inode)->i_data_sem));
1336        if (retval > 0 && buffer_mapped(bh)) {
1337                int ret = check_block_validity(inode, "file system "
1338                                               "corruption after allocation",
1339                                               block, bh->b_blocknr, retval);
1340                if (ret != 0)
1341                        return ret;
1342        }
1343        return retval;
1344}
1345
1346/* Maximum number of blocks we map for direct IO at once. */
1347#define DIO_MAX_BLOCKS 4096
1348
1349int ext4_get_block(struct inode *inode, sector_t iblock,
1350                   struct buffer_head *bh_result, int create)
1351{
1352        handle_t *handle = ext4_journal_current_handle();
1353        int ret = 0, started = 0;
1354        unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1355        int dio_credits;
1356
1357        if (create && !handle) {
1358                /* Direct IO write... */
1359                if (max_blocks > DIO_MAX_BLOCKS)
1360                        max_blocks = DIO_MAX_BLOCKS;
1361                dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1362                handle = ext4_journal_start(inode, dio_credits);
1363                if (IS_ERR(handle)) {
1364                        ret = PTR_ERR(handle);
1365                        goto out;
1366                }
1367                started = 1;
1368        }
1369
1370        ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1371                              create ? EXT4_GET_BLOCKS_CREATE : 0);
1372        if (ret > 0) {
1373                bh_result->b_size = (ret << inode->i_blkbits);
1374                ret = 0;
1375        }
1376        if (started)
1377                ext4_journal_stop(handle);
1378out:
1379        return ret;
1380}
1381
1382/*
1383 * `handle' can be NULL if create is zero
1384 */
1385struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1386                                ext4_lblk_t block, int create, int *errp)
1387{
1388        struct buffer_head dummy;
1389        int fatal = 0, err;
1390        int flags = 0;
1391
1392        J_ASSERT(handle != NULL || create == 0);
1393
1394        dummy.b_state = 0;
1395        dummy.b_blocknr = -1000;
1396        buffer_trace_init(&dummy.b_history);
1397        if (create)
1398                flags |= EXT4_GET_BLOCKS_CREATE;
1399        err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1400        /*
1401         * ext4_get_blocks() returns number of blocks mapped. 0 in
1402         * case of a HOLE.
1403         */
1404        if (err > 0) {
1405                if (err > 1)
1406                        WARN_ON(1);
1407                err = 0;
1408        }
1409        *errp = err;
1410        if (!err && buffer_mapped(&dummy)) {
1411                struct buffer_head *bh;
1412                bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1413                if (!bh) {
1414                        *errp = -EIO;
1415                        goto err;
1416                }
1417                if (buffer_new(&dummy)) {
1418                        J_ASSERT(create != 0);
1419                        J_ASSERT(handle != NULL);
1420
1421                        /*
1422                         * Now that we do not always journal data, we should
1423                         * keep in mind whether this should always journal the
1424                         * new buffer as metadata.  For now, regular file
1425                         * writes use ext4_get_block instead, so it's not a
1426                         * problem.
1427                         */
1428                        lock_buffer(bh);
1429                        BUFFER_TRACE(bh, "call get_create_access");
1430                        fatal = ext4_journal_get_create_access(handle, bh);
1431                        if (!fatal && !buffer_uptodate(bh)) {
1432                                memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1433                                set_buffer_uptodate(bh);
1434                        }
1435                        unlock_buffer(bh);
1436                        BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1437                        err = ext4_handle_dirty_metadata(handle, inode, bh);
1438                        if (!fatal)
1439                                fatal = err;
1440                } else {
1441                        BUFFER_TRACE(bh, "not a new buffer");
1442                }
1443                if (fatal) {
1444                        *errp = fatal;
1445                        brelse(bh);
1446                        bh = NULL;
1447                }
1448                return bh;
1449        }
1450err:
1451        return NULL;
1452}
1453
1454struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1455                               ext4_lblk_t block, int create, int *err)
1456{
1457        struct buffer_head *bh;
1458
1459        bh = ext4_getblk(handle, inode, block, create, err);
1460        if (!bh)
1461                return bh;
1462        if (buffer_uptodate(bh))
1463                return bh;
1464        ll_rw_block(READ_META, 1, &bh);
1465        wait_on_buffer(bh);
1466        if (buffer_uptodate(bh))
1467                return bh;
1468        put_bh(bh);
1469        *err = -EIO;
1470        return NULL;
1471}
1472
1473static int walk_page_buffers(handle_t *handle,
1474                             struct buffer_head *head,
1475                             unsigned from,
1476                             unsigned to,
1477                             int *partial,
1478                             int (*fn)(handle_t *handle,
1479                                       struct buffer_head *bh))
1480{
1481        struct buffer_head *bh;
1482        unsigned block_start, block_end;
1483        unsigned blocksize = head->b_size;
1484        int err, ret = 0;
1485        struct buffer_head *next;
1486
1487        for (bh = head, block_start = 0;
1488             ret == 0 && (bh != head || !block_start);
1489             block_start = block_end, bh = next) {
1490                next = bh->b_this_page;
1491                block_end = block_start + blocksize;
1492                if (block_end <= from || block_start >= to) {
1493                        if (partial && !buffer_uptodate(bh))
1494                                *partial = 1;
1495                        continue;
1496                }
1497                err = (*fn)(handle, bh);
1498                if (!ret)
1499                        ret = err;
1500        }
1501        return ret;
1502}
1503
1504/*
1505 * To preserve ordering, it is essential that the hole instantiation and
1506 * the data write be encapsulated in a single transaction.  We cannot
1507 * close off a transaction and start a new one between the ext4_get_block()
1508 * and the commit_write().  So doing the jbd2_journal_start at the start of
1509 * prepare_write() is the right place.
1510 *
1511 * Also, this function can nest inside ext4_writepage() ->
1512 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1513 * has generated enough buffer credits to do the whole page.  So we won't
1514 * block on the journal in that case, which is good, because the caller may
1515 * be PF_MEMALLOC.
1516 *
1517 * By accident, ext4 can be reentered when a transaction is open via
1518 * quota file writes.  If we were to commit the transaction while thus
1519 * reentered, there can be a deadlock - we would be holding a quota
1520 * lock, and the commit would never complete if another thread had a
1521 * transaction open and was blocking on the quota lock - a ranking
1522 * violation.
1523 *
1524 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1525 * will _not_ run commit under these circumstances because handle->h_ref
1526 * is elevated.  We'll still have enough credits for the tiny quotafile
1527 * write.
1528 */
1529static int do_journal_get_write_access(handle_t *handle,
1530                                       struct buffer_head *bh)
1531{
1532        if (!buffer_mapped(bh) || buffer_freed(bh))
1533                return 0;
1534        return ext4_journal_get_write_access(handle, bh);
1535}
1536
1537static int ext4_write_begin(struct file *file, struct address_space *mapping,
1538                            loff_t pos, unsigned len, unsigned flags,
1539                            struct page **pagep, void **fsdata)
1540{
1541        struct inode *inode = mapping->host;
1542        int ret, needed_blocks;
1543        handle_t *handle;
1544        int retries = 0;
1545        struct page *page;
1546        pgoff_t index;
1547        unsigned from, to;
1548
1549        trace_ext4_write_begin(inode, pos, len, flags);
1550        /*
1551         * Reserve one block more for addition to orphan list in case
1552         * we allocate blocks but write fails for some reason
1553         */
1554        needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1555        index = pos >> PAGE_CACHE_SHIFT;
1556        from = pos & (PAGE_CACHE_SIZE - 1);
1557        to = from + len;
1558
1559retry:
1560        handle = ext4_journal_start(inode, needed_blocks);
1561        if (IS_ERR(handle)) {
1562                ret = PTR_ERR(handle);
1563                goto out;
1564        }
1565
1566        /* We cannot recurse into the filesystem as the transaction is already
1567         * started */
1568        flags |= AOP_FLAG_NOFS;
1569
1570        page = grab_cache_page_write_begin(mapping, index, flags);
1571        if (!page) {
1572                ext4_journal_stop(handle);
1573                ret = -ENOMEM;
1574                goto out;
1575        }
1576        *pagep = page;
1577
1578        ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1579                                ext4_get_block);
1580
1581        if (!ret && ext4_should_journal_data(inode)) {
1582                ret = walk_page_buffers(handle, page_buffers(page),
1583                                from, to, NULL, do_journal_get_write_access);
1584        }
1585
1586        if (ret) {
1587                unlock_page(page);
1588                page_cache_release(page);
1589                /*
1590                 * block_write_begin may have instantiated a few blocks
1591                 * outside i_size.  Trim these off again. Don't need
1592                 * i_size_read because we hold i_mutex.
1593                 *
1594                 * Add inode to orphan list in case we crash before
1595                 * truncate finishes
1596                 */
1597                if (pos + len > inode->i_size && ext4_can_truncate(inode))
1598                        ext4_orphan_add(handle, inode);
1599
1600                ext4_journal_stop(handle);
1601                if (pos + len > inode->i_size) {
1602                        ext4_truncate(inode);
1603                        /*
1604                         * If truncate failed early the inode might
1605                         * still be on the orphan list; we need to
1606                         * make sure the inode is removed from the
1607                         * orphan list in that case.
1608                         */
1609                        if (inode->i_nlink)
1610                                ext4_orphan_del(NULL, inode);
1611                }
1612        }
1613
1614        if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1615                goto retry;
1616out:
1617        return ret;
1618}
1619
1620/* For write_end() in data=journal mode */
1621static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1622{
1623        if (!buffer_mapped(bh) || buffer_freed(bh))
1624                return 0;
1625        set_buffer_uptodate(bh);
1626        return ext4_handle_dirty_metadata(handle, NULL, bh);
1627}
1628
1629static int ext4_generic_write_end(struct file *file,
1630                                  struct address_space *mapping,
1631                                  loff_t pos, unsigned len, unsigned copied,
1632                                  struct page *page, void *fsdata)
1633{
1634        int i_size_changed = 0;
1635        struct inode *inode = mapping->host;
1636        handle_t *handle = ext4_journal_current_handle();
1637
1638        copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1639
1640        /*
1641         * No need to use i_size_read() here, the i_size
1642         * cannot change under us because we hold i_mutex.
1643         *
1644         * But it's important to update i_size while still holding page lock:
1645         * page writeout could otherwise come in and zero beyond i_size.
1646         */
1647        if (pos + copied > inode->i_size) {
1648                i_size_write(inode, pos + copied);
1649                i_size_changed = 1;
1650        }
1651
1652        if (pos + copied >  EXT4_I(inode)->i_disksize) {
1653                /* We need to mark inode dirty even if
1654                 * new_i_size is less that inode->i_size
1655                 * bu greater than i_disksize.(hint delalloc)
1656                 */
1657                ext4_update_i_disksize(inode, (pos + copied));
1658                i_size_changed = 1;
1659        }
1660        unlock_page(page);
1661        page_cache_release(page);
1662
1663        /*
1664         * Don't mark the inode dirty under page lock. First, it unnecessarily
1665         * makes the holding time of page lock longer. Second, it forces lock
1666         * ordering of page lock and transaction start for journaling
1667         * filesystems.
1668         */
1669        if (i_size_changed)
1670                ext4_mark_inode_dirty(handle, inode);
1671
1672        return copied;
1673}
1674
1675/*
1676 * We need to pick up the new inode size which generic_commit_write gave us
1677 * `file' can be NULL - eg, when called from page_symlink().
1678 *
1679 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1680 * buffers are managed internally.
1681 */
1682static int ext4_ordered_write_end(struct file *file,
1683                                  struct address_space *mapping,
1684                                  loff_t pos, unsigned len, unsigned copied,
1685                                  struct page *page, void *fsdata)
1686{
1687        handle_t *handle = ext4_journal_current_handle();
1688        struct inode *inode = mapping->host;
1689        int ret = 0, ret2;
1690
1691        trace_ext4_ordered_write_end(inode, pos, len, copied);
1692        ret = ext4_jbd2_file_inode(handle, inode);
1693
1694        if (ret == 0) {
1695                ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1696                                                        page, fsdata);
1697                copied = ret2;
1698                if (pos + len > inode->i_size && ext4_can_truncate(inode))
1699                        /* if we have allocated more blocks and copied
1700                         * less. We will have blocks allocated outside
1701                         * inode->i_size. So truncate them
1702                         */
1703                        ext4_orphan_add(handle, inode);
1704                if (ret2 < 0)
1705                        ret = ret2;
1706        }
1707        ret2 = ext4_journal_stop(handle);
1708        if (!ret)
1709                ret = ret2;
1710
1711        if (pos + len > inode->i_size) {
1712                ext4_truncate(inode);
1713                /*
1714                 * If truncate failed early the inode might still be
1715                 * on the orphan list; we need to make sure the inode
1716                 * is removed from the orphan list in that case.
1717                 */
1718                if (inode->i_nlink)
1719                        ext4_orphan_del(NULL, inode);
1720        }
1721
1722
1723        return ret ? ret : copied;
1724}
1725
1726static int ext4_writeback_write_end(struct file *file,
1727                                    struct address_space *mapping,
1728                                    loff_t pos, unsigned len, unsigned copied,
1729                                    struct page *page, void *fsdata)
1730{
1731        handle_t *handle = ext4_journal_current_handle();
1732        struct inode *inode = mapping->host;
1733        int ret = 0, ret2;
1734
1735        trace_ext4_writeback_write_end(inode, pos, len, copied);
1736        ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1737                                                        page, fsdata);
1738        copied = ret2;
1739        if (pos + len > inode->i_size && ext4_can_truncate(inode))
1740                /* if we have allocated more blocks and copied
1741                 * less. We will have blocks allocated outside
1742                 * inode->i_size. So truncate them
1743                 */
1744                ext4_orphan_add(handle, inode);
1745
1746        if (ret2 < 0)
1747                ret = ret2;
1748
1749        ret2 = ext4_journal_stop(handle);
1750        if (!ret)
1751                ret = ret2;
1752
1753        if (pos + len > inode->i_size) {
1754                ext4_truncate(inode);
1755                /*
1756                 * If truncate failed early the inode might still be
1757                 * on the orphan list; we need to make sure the inode
1758                 * is removed from the orphan list in that case.
1759                 */
1760                if (inode->i_nlink)
1761                        ext4_orphan_del(NULL, inode);
1762        }
1763
1764        return ret ? ret : copied;
1765}
1766
1767static int ext4_journalled_write_end(struct file *file,
1768                                     struct address_space *mapping,
1769                                     loff_t pos, unsigned len, unsigned copied,
1770                                     struct page *page, void *fsdata)
1771{
1772        handle_t *handle = ext4_journal_current_handle();
1773        struct inode *inode = mapping->host;
1774        int ret = 0, ret2;
1775        int partial = 0;
1776        unsigned from, to;
1777        loff_t new_i_size;
1778
1779        trace_ext4_journalled_write_end(inode, pos, len, copied);
1780        from = pos & (PAGE_CACHE_SIZE - 1);
1781        to = from + len;
1782
1783        if (copied < len) {
1784                if (!PageUptodate(page))
1785                        copied = 0;
1786                page_zero_new_buffers(page, from+copied, to);
1787        }
1788
1789        ret = walk_page_buffers(handle, page_buffers(page), from,
1790                                to, &partial, write_end_fn);
1791        if (!partial)
1792                SetPageUptodate(page);
1793        new_i_size = pos + copied;
1794        if (new_i_size > inode->i_size)
1795                i_size_write(inode, pos+copied);
1796        EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1797        if (new_i_size > EXT4_I(inode)->i_disksize) {
1798                ext4_update_i_disksize(inode, new_i_size);
1799                ret2 = ext4_mark_inode_dirty(handle, inode);
1800                if (!ret)
1801                        ret = ret2;
1802        }
1803
1804        unlock_page(page);
1805        page_cache_release(page);
1806        if (pos + len > inode->i_size && ext4_can_truncate(inode))
1807                /* if we have allocated more blocks and copied
1808                 * less. We will have blocks allocated outside
1809                 * inode->i_size. So truncate them
1810                 */
1811                ext4_orphan_add(handle, inode);
1812
1813        ret2 = ext4_journal_stop(handle);
1814        if (!ret)
1815                ret = ret2;
1816        if (pos + len > inode->i_size) {
1817                ext4_truncate(inode);
1818                /*
1819                 * If truncate failed early the inode might still be
1820                 * on the orphan list; we need to make sure the inode
1821                 * is removed from the orphan list in that case.
1822                 */
1823                if (inode->i_nlink)
1824                        ext4_orphan_del(NULL, inode);
1825        }
1826
1827        return ret ? ret : copied;
1828}
1829
1830static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1831{
1832        int retries = 0;
1833        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1834        unsigned long md_needed, mdblocks, total = 0;
1835
1836        /*
1837         * recalculate the amount of metadata blocks to reserve
1838         * in order to allocate nrblocks
1839         * worse case is one extent per block
1840         */
1841repeat:
1842        spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1843        total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1844        mdblocks = ext4_calc_metadata_amount(inode, total);
1845        BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1846
1847        md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1848        total = md_needed + nrblocks;
1849
1850        /*
1851         * Make quota reservation here to prevent quota overflow
1852         * later. Real quota accounting is done at pages writeout
1853         * time.
1854         */
1855        if (vfs_dq_reserve_block(inode, total)) {
1856                spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1857                return -EDQUOT;
1858        }
1859
1860        if (ext4_claim_free_blocks(sbi, total)) {
1861                spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1862                vfs_dq_release_reservation_block(inode, total);
1863                if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1864                        yield();
1865                        goto repeat;
1866                }
1867                return -ENOSPC;
1868        }
1869        EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1870        EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1871
1872        spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1873        return 0;       /* success */
1874}
1875
1876static void ext4_da_release_space(struct inode *inode, int to_free)
1877{
1878        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1879        int total, mdb, mdb_free, release;
1880
1881        if (!to_free)
1882                return;         /* Nothing to release, exit */
1883
1884        spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1885
1886        if (!EXT4_I(inode)->i_reserved_data_blocks) {
1887                /*
1888                 * if there is no reserved blocks, but we try to free some
1889                 * then the counter is messed up somewhere.
1890                 * but since this function is called from invalidate
1891                 * page, it's harmless to return without any action
1892                 */
1893                printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1894                            "blocks for inode %lu, but there is no reserved "
1895                            "data blocks\n", to_free, inode->i_ino);
1896                spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1897                return;
1898        }
1899
1900        /* recalculate the number of metablocks still need to be reserved */
1901        total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1902        mdb = ext4_calc_metadata_amount(inode, total);
1903
1904        /* figure out how many metablocks to release */
1905        BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1906        mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1907
1908        release = to_free + mdb_free;
1909
1910        /* update fs dirty blocks counter for truncate case */
1911        percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1912
1913        /* update per-inode reservations */
1914        BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1915        EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1916
1917        BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1918        EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1919        spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1920
1921        vfs_dq_release_reservation_block(inode, release);
1922}
1923
1924static void ext4_da_page_release_reservation(struct page *page,
1925                                             unsigned long offset)
1926{
1927        int to_release = 0;
1928        struct buffer_head *head, *bh;
1929        unsigned int curr_off = 0;
1930
1931        head = page_buffers(page);
1932        bh = head;
1933        do {
1934                unsigned int next_off = curr_off + bh->b_size;
1935
1936                if ((offset <= curr_off) && (buffer_delay(bh))) {
1937                        to_release++;
1938                        clear_buffer_delay(bh);
1939                }
1940                curr_off = next_off;
1941        } while ((bh = bh->b_this_page) != head);
1942        ext4_da_release_space(page->mapping->host, to_release);
1943}
1944
1945/*
1946 * Delayed allocation stuff
1947 */
1948
1949/*
1950 * mpage_da_submit_io - walks through extent of pages and try to write
1951 * them with writepage() call back
1952 *
1953 * @mpd->inode: inode
1954 * @mpd->first_page: first page of the extent
1955 * @mpd->next_page: page after the last page of the extent
1956 *
1957 * By the time mpage_da_submit_io() is called we expect all blocks
1958 * to be allocated. this may be wrong if allocation failed.
1959 *
1960 * As pages are already locked by write_cache_pages(), we can't use it
1961 */
1962static int mpage_da_submit_io(struct mpage_da_data *mpd)
1963{
1964        long pages_skipped;
1965        struct pagevec pvec;
1966        unsigned long index, end;
1967        int ret = 0, err, nr_pages, i;
1968        struct inode *inode = mpd->inode;
1969        struct address_space *mapping = inode->i_mapping;
1970
1971        BUG_ON(mpd->next_page <= mpd->first_page);
1972        /*
1973         * We need to start from the first_page to the next_page - 1
1974         * to make sure we also write the mapped dirty buffer_heads.
1975         * If we look at mpd->b_blocknr we would only be looking
1976         * at the currently mapped buffer_heads.
1977         */
1978        index = mpd->first_page;
1979        end = mpd->next_page - 1;
1980
1981        pagevec_init(&pvec, 0);
1982        while (index <= end) {
1983                nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1984                if (nr_pages == 0)
1985                        break;
1986                for (i = 0; i < nr_pages; i++) {
1987                        struct page *page = pvec.pages[i];
1988
1989                        index = page->index;
1990                        if (index > end)
1991                                break;
1992                        index++;
1993
1994                        BUG_ON(!PageLocked(page));
1995                        BUG_ON(PageWriteback(page));
1996
1997                        pages_skipped = mpd->wbc->pages_skipped;
1998                        err = mapping->a_ops->writepage(page, mpd->wbc);
1999                        if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2000                                /*
2001                                 * have successfully written the page
2002                                 * without skipping the same
2003                                 */
2004                                mpd->pages_written++;
2005                        /*
2006                         * In error case, we have to continue because
2007                         * remaining pages are still locked
2008                         * XXX: unlock and re-dirty them?
2009                         */
2010                        if (ret == 0)
2011                                ret = err;
2012                }
2013                pagevec_release(&pvec);
2014        }
2015        return ret;
2016}
2017
2018/*
2019 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2020 *
2021 * @mpd->inode - inode to walk through
2022 * @exbh->b_blocknr - first block on a disk
2023 * @exbh->b_size - amount of space in bytes
2024 * @logical - first logical block to start assignment with
2025 *
2026 * the function goes through all passed space and put actual disk
2027 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2028 */
2029static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2030                                 struct buffer_head *exbh)
2031{
2032        struct inode *inode = mpd->inode;
2033        struct address_space *mapping = inode->i_mapping;
2034        int blocks = exbh->b_size >> inode->i_blkbits;
2035        sector_t pblock = exbh->b_blocknr, cur_logical;
2036        struct buffer_head *head, *bh;
2037        pgoff_t index, end;
2038        struct pagevec pvec;
2039        int nr_pages, i;
2040
2041        index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2042        end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2043        cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2044
2045        pagevec_init(&pvec, 0);
2046
2047        while (index <= end) {
2048                /* XXX: optimize tail */
2049                nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2050                if (nr_pages == 0)
2051                        break;
2052                for (i = 0; i < nr_pages; i++) {
2053                        struct page *page = pvec.pages[i];
2054
2055                        index = page->index;
2056                        if (index > end)
2057                                break;
2058                        index++;
2059
2060                        BUG_ON(!PageLocked(page));
2061                        BUG_ON(PageWriteback(page));
2062                        BUG_ON(!page_has_buffers(page));
2063
2064                        bh = page_buffers(page);
2065                        head = bh;
2066
2067                        /* skip blocks out of the range */
2068                        do {
2069                                if (cur_logical >= logical)
2070                                        break;
2071                                cur_logical++;
2072                        } while ((bh = bh->b_this_page) != head);
2073
2074                        do {
2075                                if (cur_logical >= logical + blocks)
2076                                        break;
2077
2078                                if (buffer_delay(bh) ||
2079                                                buffer_unwritten(bh)) {
2080
2081                                        BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2082
2083                                        if (buffer_delay(bh)) {
2084                                                clear_buffer_delay(bh);
2085                                                bh->b_blocknr = pblock;
2086                                        } else {
2087                                                /*
2088                                                 * unwritten already should have
2089                                                 * blocknr assigned. Verify that
2090                                                 */
2091                                                clear_buffer_unwritten(bh);
2092                                                BUG_ON(bh->b_blocknr != pblock);
2093                                        }
2094
2095                                } else if (buffer_mapped(bh))
2096                                        BUG_ON(bh->b_blocknr != pblock);
2097
2098                                cur_logical++;
2099                                pblock++;
2100                        } while ((bh = bh->b_this_page) != head);
2101                }
2102                pagevec_release(&pvec);
2103        }
2104}
2105
2106
2107/*
2108 * __unmap_underlying_blocks - just a helper function to unmap
2109 * set of blocks described by @bh
2110 */
2111static inline void __unmap_underlying_blocks(struct inode *inode,
2112                                             struct buffer_head *bh)
2113{
2114        struct block_device *bdev = inode->i_sb->s_bdev;
2115        int blocks, i;
2116
2117        blocks = bh->b_size >> inode->i_blkbits;
2118        for (i = 0; i < blocks; i++)
2119                unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2120}
2121
2122static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2123                                        sector_t logical, long blk_cnt)
2124{
2125        int nr_pages, i;
2126        pgoff_t index, end;
2127        struct pagevec pvec;
2128        struct inode *inode = mpd->inode;
2129        struct address_space *mapping = inode->i_mapping;
2130
2131        index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2132        end   = (logical + blk_cnt - 1) >>
2133                                (PAGE_CACHE_SHIFT - inode->i_blkbits);
2134        while (index <= end) {
2135                nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2136                if (nr_pages == 0)
2137                        break;
2138                for (i = 0; i < nr_pages; i++) {
2139                        struct page *page = pvec.pages[i];
2140                        index = page->index;
2141                        if (index > end)
2142                                break;
2143                        index++;
2144
2145                        BUG_ON(!PageLocked(page));
2146                        BUG_ON(PageWriteback(page));
2147                        block_invalidatepage(page, 0);
2148                        ClearPageUptodate(page);
2149                        unlock_page(page);
2150                }
2151        }
2152        return;
2153}
2154
2155static void ext4_print_free_blocks(struct inode *inode)
2156{
2157        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2158        printk(KERN_CRIT "Total free blocks count %lld\n",
2159               ext4_count_free_blocks(inode->i_sb));
2160        printk(KERN_CRIT "Free/Dirty block details\n");
2161        printk(KERN_CRIT "free_blocks=%lld\n",
2162               (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2163        printk(KERN_CRIT "dirty_blocks=%lld\n",
2164               (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2165        printk(KERN_CRIT "Block reservation details\n");
2166        printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2167               EXT4_I(inode)->i_reserved_data_blocks);
2168        printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2169               EXT4_I(inode)->i_reserved_meta_blocks);
2170        return;
2171}
2172
2173/*
2174 * mpage_da_map_blocks - go through given space
2175 *
2176 * @mpd - bh describing space
2177 *
2178 * The function skips space we know is already mapped to disk blocks.
2179 *
2180 */
2181static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2182{
2183        int err, blks, get_blocks_flags;
2184        struct buffer_head new;
2185        sector_t next = mpd->b_blocknr;
2186        unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2187        loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2188        handle_t *handle = NULL;
2189
2190        /*
2191         * We consider only non-mapped and non-allocated blocks
2192         */
2193        if ((mpd->b_state  & (1 << BH_Mapped)) &&
2194                !(mpd->b_state & (1 << BH_Delay)) &&
2195                !(mpd->b_state & (1 << BH_Unwritten)))
2196                return 0;
2197
2198        /*
2199         * If we didn't accumulate anything to write simply return
2200         */
2201        if (!mpd->b_size)
2202                return 0;
2203
2204        handle = ext4_journal_current_handle();
2205        BUG_ON(!handle);
2206
2207        /*
2208         * Call ext4_get_blocks() to allocate any delayed allocation
2209         * blocks, or to convert an uninitialized extent to be
2210         * initialized (in the case where we have written into
2211         * one or more preallocated blocks).
2212         *
2213         * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2214         * indicate that we are on the delayed allocation path.  This
2215         * affects functions in many different parts of the allocation
2216         * call path.  This flag exists primarily because we don't
2217         * want to change *many* call functions, so ext4_get_blocks()
2218         * will set the magic i_delalloc_reserved_flag once the
2219         * inode's allocation semaphore is taken.
2220         *
2221         * If the blocks in questions were delalloc blocks, set
2222         * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2223         * variables are updated after the blocks have been allocated.
2224         */
2225        new.b_state = 0;
2226        get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2227                            EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2228        if (mpd->b_state & (1 << BH_Delay))
2229                get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2230        blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2231                               &new, get_blocks_flags);
2232        if (blks < 0) {
2233                err = blks;
2234                /*
2235                 * If get block returns with error we simply
2236                 * return. Later writepage will redirty the page and
2237                 * writepages will find the dirty page again
2238                 */
2239                if (err == -EAGAIN)
2240                        return 0;
2241
2242                if (err == -ENOSPC &&
2243                    ext4_count_free_blocks(mpd->inode->i_sb)) {
2244                        mpd->retval = err;
2245                        return 0;
2246                }
2247
2248                /*
2249                 * get block failure will cause us to loop in
2250                 * writepages, because a_ops->writepage won't be able
2251                 * to make progress. The page will be redirtied by
2252                 * writepage and writepages will again try to write
2253                 * the same.
2254                 */
2255                ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2256                         "delayed block allocation failed for inode %lu at "
2257                         "logical offset %llu with max blocks %zd with "
2258                         "error %d\n", mpd->inode->i_ino,
2259                         (unsigned long long) next,
2260                         mpd->b_size >> mpd->inode->i_blkbits, err);
2261                printk(KERN_CRIT "This should not happen!!  "
2262                       "Data will be lost\n");
2263                if (err == -ENOSPC) {
2264                        ext4_print_free_blocks(mpd->inode);
2265                }
2266                /* invalidate all the pages */
2267                ext4_da_block_invalidatepages(mpd, next,
2268                                mpd->b_size >> mpd->inode->i_blkbits);
2269                return err;
2270        }
2271        BUG_ON(blks == 0);
2272
2273        new.b_size = (blks << mpd->inode->i_blkbits);
2274
2275        if (buffer_new(&new))
2276                __unmap_underlying_blocks(mpd->inode, &new);
2277
2278        /*
2279         * If blocks are delayed marked, we need to
2280         * put actual blocknr and drop delayed bit
2281         */
2282        if ((mpd->b_state & (1 << BH_Delay)) ||
2283            (mpd->b_state & (1 << BH_Unwritten)))
2284                mpage_put_bnr_to_bhs(mpd, next, &new);
2285
2286        if (ext4_should_order_data(mpd->inode)) {
2287                err = ext4_jbd2_file_inode(handle, mpd->inode);
2288                if (err)
2289                        return err;
2290        }
2291
2292        /*
2293         * Update on-disk size along with block allocation.
2294         */
2295        disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2296        if (disksize > i_size_read(mpd->inode))
2297                disksize = i_size_read(mpd->inode);
2298        if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2299                ext4_update_i_disksize(mpd->inode, disksize);
2300                return ext4_mark_inode_dirty(handle, mpd->inode);
2301        }
2302
2303        return 0;
2304}
2305
2306#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2307                (1 << BH_Delay) | (1 << BH_Unwritten))
2308
2309/*
2310 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2311 *
2312 * @mpd->lbh - extent of blocks
2313 * @logical - logical number of the block in the file
2314 * @bh - bh of the block (used to access block's state)
2315 *
2316 * the function is used to collect contig. blocks in same state
2317 */
2318static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2319                                   sector_t logical, size_t b_size,
2320                                   unsigned long b_state)
2321{
2322        sector_t next;
2323        int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2324
2325        /* check if thereserved journal credits might overflow */
2326        if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2327                if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2328                        /*
2329                         * With non-extent format we are limited by the journal
2330                         * credit available.  Total credit needed to insert
2331                         * nrblocks contiguous blocks is dependent on the
2332                         * nrblocks.  So limit nrblocks.
2333                         */
2334                        goto flush_it;
2335                } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2336                                EXT4_MAX_TRANS_DATA) {
2337                        /*
2338                         * Adding the new buffer_head would make it cross the
2339                         * allowed limit for which we have journal credit
2340                         * reserved. So limit the new bh->b_size
2341                         */
2342                        b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2343                                                mpd->inode->i_blkbits;
2344                        /* we will do mpage_da_submit_io in the next loop */
2345                }
2346        }
2347        /*
2348         * First block in the extent
2349         */
2350        if (mpd->b_size == 0) {
2351                mpd->b_blocknr = logical;
2352                mpd->b_size = b_size;
2353                mpd->b_state = b_state & BH_FLAGS;
2354                return;
2355        }
2356
2357        next = mpd->b_blocknr + nrblocks;
2358        /*
2359         * Can we merge the block to our big extent?
2360         */
2361        if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2362                mpd->b_size += b_size;
2363                return;
2364        }
2365
2366flush_it:
2367        /*
2368         * We couldn't merge the block to our extent, so we
2369         * need to flush current  extent and start new one
2370         */
2371        if (mpage_da_map_blocks(mpd) == 0)
2372                mpage_da_submit_io(mpd);
2373        mpd->io_done = 1;
2374        return;
2375}
2376
2377static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2378{
2379        return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2380}
2381
2382/*
2383 * __mpage_da_writepage - finds extent of pages and blocks
2384 *
2385 * @page: page to consider
2386 * @wbc: not used, we just follow rules
2387 * @data: context
2388 *
2389 * The function finds extents of pages and scan them for all blocks.
2390 */
2391static int __mpage_da_writepage(struct page *page,
2392                                struct writeback_control *wbc, void *data)
2393{
2394        struct mpage_da_data *mpd = data;
2395        struct inode *inode = mpd->inode;
2396        struct buffer_head *bh, *head;
2397        sector_t logical;
2398
2399        if (mpd->io_done) {
2400                /*
2401                 * Rest of the page in the page_vec
2402                 * redirty then and skip then. We will
2403                 * try to write them again after
2404                 * starting a new transaction
2405                 */
2406                redirty_page_for_writepage(wbc, page);
2407                unlock_page(page);
2408                return MPAGE_DA_EXTENT_TAIL;
2409        }
2410        /*
2411         * Can we merge this page to current extent?
2412         */
2413        if (mpd->next_page != page->index) {
2414                /*
2415                 * Nope, we can't. So, we map non-allocated blocks
2416                 * and start IO on them using writepage()
2417                 */
2418                if (mpd->next_page != mpd->first_page) {
2419                        if (mpage_da_map_blocks(mpd) == 0)
2420                                mpage_da_submit_io(mpd);
2421                        /*
2422                         * skip rest of the page in the page_vec
2423                         */
2424                        mpd->io_done = 1;
2425                        redirty_page_for_writepage(wbc, page);
2426                        unlock_page(page);
2427                        return MPAGE_DA_EXTENT_TAIL;
2428                }
2429
2430                /*
2431                 * Start next extent of pages ...
2432                 */
2433                mpd->first_page = page->index;
2434
2435                /*
2436                 * ... and blocks
2437                 */
2438                mpd->b_size = 0;
2439                mpd->b_state = 0;
2440                mpd->b_blocknr = 0;
2441        }
2442
2443        mpd->next_page = page->index + 1;
2444        logical = (sector_t) page->index <<
2445                  (PAGE_CACHE_SHIFT - inode->i_blkbits);
2446
2447        if (!page_has_buffers(page)) {
2448                mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2449                                       (1 << BH_Dirty) | (1 << BH_Uptodate));
2450                if (mpd->io_done)
2451                        return MPAGE_DA_EXTENT_TAIL;
2452        } else {
2453                /*
2454                 * Page with regular buffer heads, just add all dirty ones
2455                 */
2456                head = page_buffers(page);
2457                bh = head;
2458                do {
2459                        BUG_ON(buffer_locked(bh));
2460                        /*
2461                         * We need to try to allocate
2462                         * unmapped blocks in the same page.
2463                         * Otherwise we won't make progress
2464                         * with the page in ext4_writepage
2465                         */
2466                        if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2467                                mpage_add_bh_to_extent(mpd, logical,
2468                                                       bh->b_size,
2469                                                       bh->b_state);
2470                                if (mpd->io_done)
2471                                        return MPAGE_DA_EXTENT_TAIL;
2472                        } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2473                                /*
2474                                 * mapped dirty buffer. We need to update
2475                                 * the b_state because we look at
2476                                 * b_state in mpage_da_map_blocks. We don't
2477                                 * update b_size because if we find an
2478                                 * unmapped buffer_head later we need to
2479                                 * use the b_state flag of that buffer_head.
2480                                 */
2481                                if (mpd->b_size == 0)
2482                                        mpd->b_state = bh->b_state & BH_FLAGS;
2483                        }
2484                        logical++;
2485                } while ((bh = bh->b_this_page) != head);
2486        }
2487
2488        return 0;
2489}
2490
2491/*
2492 * This is a special get_blocks_t callback which is used by
2493 * ext4_da_write_begin().  It will either return mapped block or
2494 * reserve space for a single block.
2495 *
2496 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2497 * We also have b_blocknr = -1 and b_bdev initialized properly
2498 *
2499 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2500 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2501 * initialized properly.
2502 */
2503static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2504                                  struct buffer_head *bh_result, int create)
2505{
2506        int ret = 0;
2507        sector_t invalid_block = ~((sector_t) 0xffff);
2508
2509        if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2510                invalid_block = ~0;
2511
2512        BUG_ON(create == 0);
2513        BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2514
2515        /*
2516         * first, we need to know whether the block is allocated already
2517         * preallocated blocks are unmapped but should treated
2518         * the same as allocated blocks.
2519         */
2520        ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2521        if ((ret == 0) && !buffer_delay(bh_result)) {
2522                /* the block isn't (pre)allocated yet, let's reserve space */
2523                /*
2524                 * XXX: __block_prepare_write() unmaps passed block,
2525                 * is it OK?
2526                 */
2527                ret = ext4_da_reserve_space(inode, 1);
2528                if (ret)
2529                        /* not enough space to reserve */
2530                        return ret;
2531
2532                map_bh(bh_result, inode->i_sb, invalid_block);
2533                set_buffer_new(bh_result);
2534                set_buffer_delay(bh_result);
2535        } else if (ret > 0) {
2536                bh_result->b_size = (ret << inode->i_blkbits);
2537                if (buffer_unwritten(bh_result)) {
2538                        /* A delayed write to unwritten bh should
2539                         * be marked new and mapped.  Mapped ensures
2540                         * that we don't do get_block multiple times
2541                         * when we write to the same offset and new
2542                         * ensures that we do proper zero out for
2543                         * partial write.
2544                         */
2545                        set_buffer_new(bh_result);
2546                        set_buffer_mapped(bh_result);
2547                }
2548                ret = 0;
2549        }
2550
2551        return ret;
2552}
2553
2554/*
2555 * This function is used as a standard get_block_t calback function
2556 * when there is no desire to allocate any blocks.  It is used as a
2557 * callback function for block_prepare_write(), nobh_writepage(), and
2558 * block_write_full_page().  These functions should only try to map a
2559 * single block at a time.
2560 *
2561 * Since this function doesn't do block allocations even if the caller
2562 * requests it by passing in create=1, it is critically important that
2563 * any caller checks to make sure that any buffer heads are returned
2564 * by this function are either all already mapped or marked for
2565 * delayed allocation before calling nobh_writepage() or
2566 * block_write_full_page().  Otherwise, b_blocknr could be left
2567 * unitialized, and the page write functions will be taken by
2568 * surprise.
2569 */
2570static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2571                                   struct buffer_head *bh_result, int create)
2572{
2573        int ret = 0;
2574        unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2575
2576        BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2577
2578        /*
2579         * we don't want to do block allocation in writepage
2580         * so call get_block_wrap with create = 0
2581         */
2582        ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2583        if (ret > 0) {
2584                bh_result->b_size = (ret << inode->i_blkbits);
2585                ret = 0;
2586        }
2587        return ret;
2588}
2589
2590static int bget_one(handle_t *handle, struct buffer_head *bh)
2591{
2592        get_bh(bh);
2593        return 0;
2594}
2595
2596static int bput_one(handle_t *handle, struct buffer_head *bh)
2597{
2598        put_bh(bh);
2599        return 0;
2600}
2601
2602static int __ext4_journalled_writepage(struct page *page,
2603                                       struct writeback_control *wbc,
2604                                       unsigned int len)
2605{
2606        struct address_space *mapping = page->mapping;
2607        struct inode *inode = mapping->host;
2608        struct buffer_head *page_bufs;
2609        handle_t *handle = NULL;
2610        int ret = 0;
2611        int err;
2612
2613        page_bufs = page_buffers(page);
2614        BUG_ON(!page_bufs);
2615        walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2616        /* As soon as we unlock the page, it can go away, but we have
2617         * references to buffers so we are safe */
2618        unlock_page(page);
2619
2620        handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2621        if (IS_ERR(handle)) {
2622                ret = PTR_ERR(handle);
2623                goto out;
2624        }
2625
2626        ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2627                                do_journal_get_write_access);
2628
2629        err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2630                                write_end_fn);
2631        if (ret == 0)
2632                ret = err;
2633        err = ext4_journal_stop(handle);
2634        if (!ret)
2635                ret = err;
2636
2637        walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2638        EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2639out:
2640        return ret;
2641}
2642
2643/*
2644 * Note that we don't need to start a transaction unless we're journaling data
2645 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2646 * need to file the inode to the transaction's list in ordered mode because if
2647 * we are writing back data added by write(), the inode is already there and if
2648 * we are writing back data modified via mmap(), noone guarantees in which
2649 * transaction the data will hit the disk. In case we are journaling data, we
2650 * cannot start transaction directly because transaction start ranks above page
2651 * lock so we have to do some magic.
2652 *
2653 * This function can get called via...
2654 *   - ext4_da_writepages after taking page lock (have journal handle)
2655 *   - journal_submit_inode_data_buffers (no journal handle)
2656 *   - shrink_page_list via pdflush (no journal handle)
2657 *   - grab_page_cache when doing write_begin (have journal handle)
2658 *
2659 * We don't do any block allocation in this function. If we have page with
2660 * multiple blocks we need to write those buffer_heads that are mapped. This
2661 * is important for mmaped based write. So if we do with blocksize 1K
2662 * truncate(f, 1024);
2663 * a = mmap(f, 0, 4096);
2664 * a[0] = 'a';
2665 * truncate(f, 4096);
2666 * we have in the page first buffer_head mapped via page_mkwrite call back
2667 * but other bufer_heads would be unmapped but dirty(dirty done via the
2668 * do_wp_page). So writepage should write the first block. If we modify
2669 * the mmap area beyond 1024 we will again get a page_fault and the
2670 * page_mkwrite callback will do the block allocation and mark the
2671 * buffer_heads mapped.
2672 *
2673 * We redirty the page if we have any buffer_heads that is either delay or
2674 * unwritten in the page.
2675 *
2676 * We can get recursively called as show below.
2677 *
2678 *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2679 *              ext4_writepage()
2680 *
2681 * But since we don't do any block allocation we should not deadlock.
2682 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2683 */
2684static int ext4_writepage(struct page *page,
2685                          struct writeback_control *wbc)
2686{
2687        int ret = 0;
2688        loff_t size;
2689        unsigned int len;
2690        struct buffer_head *page_bufs;
2691        struct inode *inode = page->mapping->host;
2692
2693        trace_ext4_writepage(inode, page);
2694        size = i_size_read(inode);
2695        if (page->index == size >> PAGE_CACHE_SHIFT)
2696                len = size & ~PAGE_CACHE_MASK;
2697        else
2698                len = PAGE_CACHE_SIZE;
2699
2700        if (page_has_buffers(page)) {
2701                page_bufs = page_buffers(page);
2702                if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2703                                        ext4_bh_delay_or_unwritten)) {
2704                        /*
2705                         * We don't want to do  block allocation
2706                         * So redirty the page and return
2707                         * We may reach here when we do a journal commit
2708                         * via journal_submit_inode_data_buffers.
2709                         * If we don't have mapping block we just ignore
2710                         * them. We can also reach here via shrink_page_list
2711                         */
2712                        redirty_page_for_writepage(wbc, page);
2713                        unlock_page(page);
2714                        return 0;
2715                }
2716        } else {
2717                /*
2718                 * The test for page_has_buffers() is subtle:
2719                 * We know the page is dirty but it lost buffers. That means
2720                 * that at some moment in time after write_begin()/write_end()
2721                 * has been called all buffers have been clean and thus they
2722                 * must have been written at least once. So they are all
2723                 * mapped and we can happily proceed with mapping them
2724                 * and writing the page.
2725                 *
2726                 * Try to initialize the buffer_heads and check whether
2727                 * all are mapped and non delay. We don't want to
2728                 * do block allocation here.
2729                 */
2730                ret = block_prepare_write(page, 0, len,
2731                                          noalloc_get_block_write);
2732                if (!ret) {
2733                        page_bufs = page_buffers(page);
2734                        /* check whether all are mapped and non delay */
2735                        if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2736                                                ext4_bh_delay_or_unwritten)) {
2737                                redirty_page_for_writepage(wbc, page);
2738                                unlock_page(page);
2739                                return 0;
2740                        }
2741                } else {
2742                        /*
2743                         * We can't do block allocation here
2744                         * so just redity the page and unlock
2745                         * and return
2746                         */
2747                        redirty_page_for_writepage(wbc, page);
2748                        unlock_page(page);
2749                        return 0;
2750                }
2751                /* now mark the buffer_heads as dirty and uptodate */
2752                block_commit_write(page, 0, len);
2753        }
2754
2755        if (PageChecked(page) && ext4_should_journal_data(inode)) {
2756                /*
2757                 * It's mmapped pagecache.  Add buffers and journal it.  There
2758                 * doesn't seem much point in redirtying the page here.
2759                 */
2760                ClearPageChecked(page);
2761                return __ext4_journalled_writepage(page, wbc, len);
2762        }
2763
2764        if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2765                ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2766        else
2767                ret = block_write_full_page(page, noalloc_get_block_write,
2768                                            wbc);
2769
2770        return ret;
2771}
2772
2773/*
2774 * This is called via ext4_da_writepages() to
2775 * calulate the total number of credits to reserve to fit
2776 * a single extent allocation into a single transaction,
2777 * ext4_da_writpeages() will loop calling this before
2778 * the block allocation.
2779 */
2780
2781static int ext4_da_writepages_trans_blocks(struct inode *inode)
2782{
2783        int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2784
2785        /*
2786         * With non-extent format the journal credit needed to
2787         * insert nrblocks contiguous block is dependent on
2788         * number of contiguous block. So we will limit
2789         * number of contiguous block to a sane value
2790         */
2791        if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2792            (max_blocks > EXT4_MAX_TRANS_DATA))
2793                max_blocks = EXT4_MAX_TRANS_DATA;
2794
2795        return ext4_chunk_trans_blocks(inode, max_blocks);
2796}
2797
2798static int ext4_da_writepages(struct address_space *mapping,
2799                              struct writeback_control *wbc)
2800{
2801        pgoff_t index;
2802        int range_whole = 0;
2803        handle_t *handle = NULL;
2804        struct mpage_da_data mpd;
2805        struct inode *inode = mapping->host;
2806        int no_nrwrite_index_update;
2807        int pages_written = 0;
2808        long pages_skipped;
2809        unsigned int max_pages;
2810        int range_cyclic, cycled = 1, io_done = 0;
2811        int needed_blocks, ret = 0;
2812        long desired_nr_to_write, nr_to_writebump = 0;
2813        loff_t range_start = wbc->range_start;
2814        struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2815
2816        trace_ext4_da_writepages(inode, wbc);
2817
2818        /*
2819         * No pages to write? This is mainly a kludge to avoid starting
2820         * a transaction for special inodes like journal inode on last iput()
2821         * because that could violate lock ordering on umount
2822         */
2823        if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2824                return 0;
2825
2826        /*
2827         * If the filesystem has aborted, it is read-only, so return
2828         * right away instead of dumping stack traces later on that
2829         * will obscure the real source of the problem.  We test
2830         * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2831         * the latter could be true if the filesystem is mounted
2832         * read-only, and in that case, ext4_da_writepages should
2833         * *never* be called, so if that ever happens, we would want
2834         * the stack trace.
2835         */
2836        if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2837                return -EROFS;
2838
2839        if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2840                range_whole = 1;
2841
2842        range_cyclic = wbc->range_cyclic;
2843        if (wbc->range_cyclic) {
2844                index = mapping->writeback_index;
2845                if (index)
2846                        cycled = 0;
2847                wbc->range_start = index << PAGE_CACHE_SHIFT;
2848                wbc->range_end  = LLONG_MAX;
2849                wbc->range_cyclic = 0;
2850        } else
2851                index = wbc->range_start >> PAGE_CACHE_SHIFT;
2852
2853        /*
2854         * This works around two forms of stupidity.  The first is in
2855         * the writeback code, which caps the maximum number of pages
2856         * written to be 1024 pages.  This is wrong on multiple
2857         * levels; different architectues have a different page size,
2858         * which changes the maximum amount of data which gets
2859         * written.  Secondly, 4 megabytes is way too small.  XFS
2860         * forces this value to be 16 megabytes by multiplying
2861         * nr_to_write parameter by four, and then relies on its
2862         * allocator to allocate larger extents to make them
2863         * contiguous.  Unfortunately this brings us to the second
2864         * stupidity, which is that ext4's mballoc code only allocates
2865         * at most 2048 blocks.  So we force contiguous writes up to
2866         * the number of dirty blocks in the inode, or
2867         * sbi->max_writeback_mb_bump whichever is smaller.
2868         */
2869        max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2870        if (!range_cyclic && range_whole)
2871                desired_nr_to_write = wbc->nr_to_write * 8;
2872        else
2873                desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2874                                                           max_pages);
2875        if (desired_nr_to_write > max_pages)
2876                desired_nr_to_write = max_pages;
2877
2878        if (wbc->nr_to_write < desired_nr_to_write) {
2879                nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2880                wbc->nr_to_write = desired_nr_to_write;
2881        }
2882
2883        mpd.wbc = wbc;
2884        mpd.inode = mapping->host;
2885
2886        /*
2887         * we don't want write_cache_pages to update
2888         * nr_to_write and writeback_index
2889         */
2890        no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2891        wbc->no_nrwrite_index_update = 1;
2892        pages_skipped = wbc->pages_skipped;
2893
2894retry:
2895        while (!ret && wbc->nr_to_write > 0) {
2896
2897                /*
2898                 * we  insert one extent at a time. So we need
2899                 * credit needed for single extent allocation.
2900                 * journalled mode is currently not supported
2901                 * by delalloc
2902                 */
2903                BUG_ON(ext4_should_journal_data(inode));
2904                needed_blocks = ext4_da_writepages_trans_blocks(inode);
2905
2906                /* start a new transaction*/
2907                handle = ext4_journal_start(inode, needed_blocks);
2908                if (IS_ERR(handle)) {
2909                        ret = PTR_ERR(handle);
2910                        ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2911                               "%ld pages, ino %lu; err %d\n", __func__,
2912                                wbc->nr_to_write, inode->i_ino, ret);
2913                        goto out_writepages;
2914                }
2915
2916                /*
2917                 * Now call __mpage_da_writepage to find the next
2918                 * contiguous region of logical blocks that need
2919                 * blocks to be allocated by ext4.  We don't actually
2920                 * submit the blocks for I/O here, even though
2921                 * write_cache_pages thinks it will, and will set the
2922                 * pages as clean for write before calling
2923                 * __mpage_da_writepage().
2924                 */
2925                mpd.b_size = 0;
2926                mpd.b_state = 0;
2927                mpd.b_blocknr = 0;
2928                mpd.first_page = 0;
2929                mpd.next_page = 0;
2930                mpd.io_done = 0;
2931                mpd.pages_written = 0;
2932                mpd.retval = 0;
2933                ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2934                                        &mpd);
2935                /*
2936                 * If we have a contigous extent of pages and we
2937                 * haven't done the I/O yet, map the blocks and submit
2938                 * them for I/O.
2939                 */
2940                if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2941                        if (mpage_da_map_blocks(&mpd) == 0)
2942                                mpage_da_submit_io(&mpd);
2943                        mpd.io_done = 1;
2944                        ret = MPAGE_DA_EXTENT_TAIL;
2945                }
2946                trace_ext4_da_write_pages(inode, &mpd);
2947                wbc->nr_to_write -= mpd.pages_written;
2948
2949                ext4_journal_stop(handle);
2950
2951                if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2952                        /* commit the transaction which would
2953                         * free blocks released in the transaction
2954                         * and try again
2955                         */
2956                        jbd2_journal_force_commit_nested(sbi->s_journal);
2957                        wbc->pages_skipped = pages_skipped;
2958                        ret = 0;
2959                } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2960                        /*
2961                         * got one extent now try with
2962                         * rest of the pages
2963                         */
2964                        pages_written += mpd.pages_written;
2965                        wbc->pages_skipped = pages_skipped;
2966                        ret = 0;
2967                        io_done = 1;
2968                } else if (wbc->nr_to_write)
2969                        /*
2970                         * There is no more writeout needed
2971                         * or we requested for a noblocking writeout
2972                         * and we found the device congested
2973                         */
2974                        break;
2975        }
2976        if (!io_done && !cycled) {
2977                cycled = 1;
2978                index = 0;
2979                wbc->range_start = index << PAGE_CACHE_SHIFT;
2980                wbc->range_end  = mapping->writeback_index - 1;
2981                goto retry;
2982        }
2983        if (pages_skipped != wbc->pages_skipped)
2984                ext4_msg(inode->i_sb, KERN_CRIT,
2985                         "This should not happen leaving %s "
2986                         "with nr_to_write = %ld ret = %d\n",
2987                         __func__, wbc->nr_to_write, ret);
2988
2989        /* Update index */
2990        index += pages_written;
2991        wbc->range_cyclic = range_cyclic;
2992        if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2993                /*
2994                 * set the writeback_index so that range_cyclic
2995                 * mode will write it back later
2996                 */
2997                mapping->writeback_index = index;
2998
2999out_writepages:
3000        if (!no_nrwrite_index_update)
3001                wbc->no_nrwrite_index_update = 0;
3002        if (wbc->nr_to_write > nr_to_writebump)
3003                wbc->nr_to_write -= nr_to_writebump;
3004        wbc->range_start = range_start;
3005        trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3006        return ret;
3007}
3008
3009#define FALL_BACK_TO_NONDELALLOC 1
3010static int ext4_nonda_switch(struct super_block *sb)
3011{
3012        s64 free_blocks, dirty_blocks;
3013        struct ext4_sb_info *sbi = EXT4_SB(sb);
3014
3015        /*
3016         * switch to non delalloc mode if we are running low
3017         * on free block. The free block accounting via percpu
3018         * counters can get slightly wrong with percpu_counter_batch getting
3019         * accumulated on each CPU without updating global counters
3020         * Delalloc need an accurate free block accounting. So switch
3021         * to non delalloc when we are near to error range.
3022         */
3023        free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3024        dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3025        if (2 * free_blocks < 3 * dirty_blocks ||
3026                free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3027                /*
3028                 * free block count is less that 150% of dirty blocks
3029                 * or free blocks is less that watermark
3030                 */
3031                return 1;
3032        }
3033        return 0;
3034}
3035
3036static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3037                               loff_t pos, unsigned len, unsigned flags,
3038                               struct page **pagep, void **fsdata)
3039{
3040        int ret, retries = 0;
3041        struct page *page;
3042        pgoff_t index;
3043        unsigned from, to;
3044        struct inode *inode = mapping->host;
3045        handle_t *handle;
3046
3047        index = pos >> PAGE_CACHE_SHIFT;
3048        from = pos & (PAGE_CACHE_SIZE - 1);
3049        to = from + len;
3050
3051        if (ext4_nonda_switch(inode->i_sb)) {
3052                *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3053                return ext4_write_begin(file, mapping, pos,
3054                                        len, flags, pagep, fsdata);
3055        }
3056        *fsdata = (void *)0;
3057        trace_ext4_da_write_begin(inode, pos, len, flags);
3058retry:
3059        /*
3060         * With delayed allocation, we don't log the i_disksize update
3061         * if there is delayed block allocation. But we still need
3062         * to journalling the i_disksize update if writes to the end
3063         * of file which has an already mapped buffer.
3064         */
3065        handle = ext4_journal_start(inode, 1);
3066        if (IS_ERR(handle)) {
3067                ret = PTR_ERR(handle);
3068                goto out;
3069        }
3070        /* We cannot recurse into the filesystem as the transaction is already
3071         * started */
3072        flags |= AOP_FLAG_NOFS;
3073
3074        page = grab_cache_page_write_begin(mapping, index, flags);
3075        if (!page) {
3076                ext4_journal_stop(handle);
3077                ret = -ENOMEM;
3078                goto out;
3079        }
3080        *pagep = page;
3081
3082        ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3083                                ext4_da_get_block_prep);
3084        if (ret < 0) {
3085                unlock_page(page);
3086                ext4_journal_stop(handle);
3087                page_cache_release(page);
3088                /*
3089                 * block_write_begin may have instantiated a few blocks
3090                 * outside i_size.  Trim these off again. Don't need
3091                 * i_size_read because we hold i_mutex.
3092                 */
3093                if (pos + len > inode->i_size)
3094                        ext4_truncate(inode);
3095        }
3096
3097        if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3098                goto retry;
3099out:
3100        return ret;
3101}
3102
3103/*
3104 * Check if we should update i_disksize
3105 * when write to the end of file but not require block allocation
3106 */
3107static int ext4_da_should_update_i_disksize(struct page *page,
3108                                            unsigned long offset)
3109{
3110        struct buffer_head *bh;
3111        struct inode *inode = page->mapping->host;
3112        unsigned int idx;
3113        int i;
3114
3115        bh = page_buffers(page);
3116        idx = offset >> inode->i_blkbits;
3117
3118        for (i = 0; i < idx; i++)
3119                bh = bh->b_this_page;
3120
3121        if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3122                return 0;
3123        return 1;
3124}
3125
3126static int ext4_da_write_end(struct file *file,
3127                             struct address_space *mapping,
3128                             loff_t pos, unsigned len, unsigned copied,
3129                             struct page *page, void *fsdata)
3130{
3131        struct inode *inode = mapping->host;
3132        int ret = 0, ret2;
3133        handle_t *handle = ext4_journal_current_handle();
3134        loff_t new_i_size;
3135        unsigned long start, end;
3136        int write_mode = (int)(unsigned long)fsdata;
3137
3138        if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3139                if (ext4_should_order_data(inode)) {
3140                        return ext4_ordered_write_end(file, mapping, pos,
3141                                        len, copied, page, fsdata);
3142                } else if (ext4_should_writeback_data(inode)) {
3143                        return ext4_writeback_write_end(file, mapping, pos,
3144                                        len, copied, page, fsdata);
3145                } else {
3146                        BUG();
3147                }
3148        }
3149
3150        trace_ext4_da_write_end(inode, pos, len, copied);
3151        start = pos & (PAGE_CACHE_SIZE - 1);
3152        end = start + copied - 1;
3153
3154        /*
3155         * generic_write_end() will run mark_inode_dirty() if i_size
3156         * changes.  So let's piggyback the i_disksize mark_inode_dirty
3157         * into that.
3158         */
3159
3160        new_i_size = pos + copied;
3161        if (new_i_size > EXT4_I(inode)->i_disksize) {
3162                if (ext4_da_should_update_i_disksize(page, end)) {
3163                        down_write(&EXT4_I(inode)->i_data_sem);
3164                        if (new_i_size > EXT4_I(inode)->i_disksize) {
3165                                /*
3166                                 * Updating i_disksize when extending file
3167                                 * without needing block allocation
3168                                 */
3169                                if (ext4_should_order_data(inode))
3170                                        ret = ext4_jbd2_file_inode(handle,
3171                                                                   inode);
3172
3173                                EXT4_I(inode)->i_disksize = new_i_size;
3174                        }
3175                        up_write(&EXT4_I(inode)->i_data_sem);
3176                        /* We need to mark inode dirty even if
3177                         * new_i_size is less that inode->i_size
3178                         * bu greater than i_disksize.(hint delalloc)
3179                         */
3180                        ext4_mark_inode_dirty(handle, inode);
3181                }
3182        }
3183        ret2 = generic_write_end(file, mapping, pos, len, copied,
3184                                                        page, fsdata);
3185        copied = ret2;
3186        if (ret2 < 0)
3187                ret = ret2;
3188        ret2 = ext4_journal_stop(handle);
3189        if (!ret)
3190                ret = ret2;
3191
3192        return ret ? ret : copied;
3193}
3194
3195static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3196{
3197        /*
3198         * Drop reserved blocks
3199         */
3200        BUG_ON(!PageLocked(page));
3201        if (!page_has_buffers(page))
3202                goto out;
3203
3204        ext4_da_page_release_reservation(page, offset);
3205
3206out:
3207        ext4_invalidatepage(page, offset);
3208
3209        return;
3210}
3211
3212/*
3213 * Force all delayed allocation blocks to be allocated for a given inode.
3214 */
3215int ext4_alloc_da_blocks(struct inode *inode)
3216{
3217        trace_ext4_alloc_da_blocks(inode);
3218
3219        if (!EXT4_I(inode)->i_reserved_data_blocks &&
3220            !EXT4_I(inode)->i_reserved_meta_blocks)
3221                return 0;
3222
3223        /*
3224         * We do something simple for now.  The filemap_flush() will
3225         * also start triggering a write of the data blocks, which is
3226         * not strictly speaking necessary (and for users of
3227         * laptop_mode, not even desirable).  However, to do otherwise
3228         * would require replicating code paths in:
3229         *
3230         * ext4_da_writepages() ->
3231         *    write_cache_pages() ---> (via passed in callback function)
3232         *        __mpage_da_writepage() -->
3233         *           mpage_add_bh_to_extent()
3234         *           mpage_da_map_blocks()
3235         *
3236         * The problem is that write_cache_pages(), located in
3237         * mm/page-writeback.c, marks pages clean in preparation for
3238         * doing I/O, which is not desirable if we're not planning on
3239         * doing I/O at all.
3240         *
3241         * We could call write_cache_pages(), and then redirty all of
3242         * the pages by calling redirty_page_for_writeback() but that
3243         * would be ugly in the extreme.  So instead we would need to
3244         * replicate parts of the code in the above functions,
3245         * simplifying them becuase we wouldn't actually intend to
3246         * write out the pages, but rather only collect contiguous
3247         * logical block extents, call the multi-block allocator, and
3248         * then update the buffer heads with the block allocations.
3249         *
3250         * For now, though, we'll cheat by calling filemap_flush(),
3251         * which will map the blocks, and start the I/O, but not
3252         * actually wait for the I/O to complete.
3253         */
3254        return filemap_flush(inode->i_mapping);
3255}
3256
3257/*
3258 * bmap() is special.  It gets used by applications such as lilo and by
3259 * the swapper to find the on-disk block of a specific piece of data.
3260 *
3261 * Naturally, this is dangerous if the block concerned is still in the
3262 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3263 * filesystem and enables swap, then they may get a nasty shock when the
3264 * data getting swapped to that swapfile suddenly gets overwritten by
3265 * the original zero's written out previously to the journal and
3266 * awaiting writeback in the kernel's buffer cache.
3267 *
3268 * So, if we see any bmap calls here on a modified, data-journaled file,
3269 * take extra steps to flush any blocks which might be in the cache.
3270 */
3271static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3272{
3273        struct inode *inode = mapping->host;
3274        journal_t *journal;
3275        int err;
3276
3277        if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3278                        test_opt(inode->i_sb, DELALLOC)) {
3279                /*
3280                 * With delalloc we want to sync the file
3281                 * so that we can make sure we allocate
3282                 * blocks for file
3283                 */
3284                filemap_write_and_wait(mapping);
3285        }
3286
3287        if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3288                /*
3289                 * This is a REALLY heavyweight approach, but the use of
3290                 * bmap on dirty files is expected to be extremely rare:
3291                 * only if we run lilo or swapon on a freshly made file
3292                 * do we expect this to happen.
3293                 *
3294                 * (bmap requires CAP_SYS_RAWIO so this does not
3295                 * represent an unprivileged user DOS attack --- we'd be
3296                 * in trouble if mortal users could trigger this path at
3297                 * will.)
3298                 *
3299                 * NB. EXT4_STATE_JDATA is not set on files other than
3300                 * regular files.  If somebody wants to bmap a directory
3301                 * or symlink and gets confused because the buffer
3302                 * hasn't yet been flushed to disk, they deserve
3303                 * everything they get.
3304                 */
3305
3306                EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3307                journal = EXT4_JOURNAL(inode);
3308                jbd2_journal_lock_updates(journal);
3309                err = jbd2_journal_flush(journal);
3310                jbd2_journal_unlock_updates(journal);
3311
3312                if (err)
3313                        return 0;
3314        }
3315
3316        return generic_block_bmap(mapping, block, ext4_get_block);
3317}
3318
3319static int ext4_readpage(struct file *file, struct page *page)
3320{
3321        return mpage_readpage(page, ext4_get_block);
3322}
3323
3324static int
3325ext4_readpages(struct file *file, struct address_space *mapping,
3326                struct list_head *pages, unsigned nr_pages)
3327{
3328        return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3329}
3330
3331static void ext4_invalidatepage(struct page *page, unsigned long offset)
3332{
3333        journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3334
3335        /*
3336         * If it's a full truncate we just forget about the pending dirtying
3337         */
3338        if (offset == 0)
3339                ClearPageChecked(page);
3340
3341        if (journal)
3342                jbd2_journal_invalidatepage(journal, page, offset);
3343        else
3344                block_invalidatepage(page, offset);
3345}
3346
3347static int ext4_releasepage(struct page *page, gfp_t wait)
3348{
3349        journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3350
3351        WARN_ON(PageChecked(page));
3352        if (!page_has_buffers(page))
3353                return 0;
3354        if (journal)
3355                return jbd2_journal_try_to_free_buffers(journal, page, wait);
3356        else
3357                return try_to_free_buffers(page);
3358}
3359
3360/*
3361 * O_DIRECT for ext3 (or indirect map) based files
3362 *
3363 * If the O_DIRECT write will extend the file then add this inode to the
3364 * orphan list.  So recovery will truncate it back to the original size
3365 * if the machine crashes during the write.
3366 *
3367 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3368 * crashes then stale disk data _may_ be exposed inside the file. But current
3369 * VFS code falls back into buffered path in that case so we are safe.
3370 */
3371static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3372                              const struct iovec *iov, loff_t offset,
3373                              unsigned long nr_segs)
3374{
3375        struct file *file = iocb->ki_filp;
3376        struct inode *inode = file->f_mapping->host;
3377        struct ext4_inode_info *ei = EXT4_I(inode);
3378        handle_t *handle;
3379        ssize_t ret;
3380        int orphan = 0;
3381        size_t count = iov_length(iov, nr_segs);
3382        int retries = 0;
3383
3384        if (rw == WRITE) {
3385                loff_t final_size = offset + count;
3386
3387                if (final_size > inode->i_size) {
3388                        /* Credits for sb + inode write */
3389                        handle = ext4_journal_start(inode, 2);
3390                        if (IS_ERR(handle)) {
3391                                ret = PTR_ERR(handle);
3392                                goto out;
3393                        }
3394                        ret = ext4_orphan_add(handle, inode);
3395                        if (ret) {
3396                                ext4_journal_stop(handle);
3397                                goto out;
3398                        }
3399                        orphan = 1;
3400                        ei->i_disksize = inode->i_size;
3401                        ext4_journal_stop(handle);
3402                }
3403        }
3404
3405retry:
3406        ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3407                                 offset, nr_segs,
3408                                 ext4_get_block, NULL);
3409        if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3410                goto retry;
3411
3412        if (orphan) {
3413                int err;
3414
3415                /* Credits for sb + inode write */
3416                handle = ext4_journal_start(inode, 2);
3417                if (IS_ERR(handle)) {
3418                        /* This is really bad luck. We've written the data
3419                         * but cannot extend i_size. Bail out and pretend
3420                         * the write failed... */
3421                        ret = PTR_ERR(handle);
3422                        goto out;
3423                }
3424                if (inode->i_nlink)
3425                        ext4_orphan_del(handle, inode);
3426                if (ret > 0) {
3427                        loff_t end = offset + ret;
3428                        if (end > inode->i_size) {
3429                                ei->i_disksize = end;
3430                                i_size_write(inode, end);
3431                                /*
3432                                 * We're going to return a positive `ret'
3433                                 * here due to non-zero-length I/O, so there's
3434                                 * no way of reporting error returns from
3435                                 * ext4_mark_inode_dirty() to userspace.  So
3436                                 * ignore it.
3437                                 */
3438                                ext4_mark_inode_dirty(handle, inode);
3439                        }
3440                }
3441                err = ext4_journal_stop(handle);
3442                if (ret == 0)
3443                        ret = err;
3444        }
3445out:
3446        return ret;
3447}
3448
3449static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock,
3450                   struct buffer_head *bh_result, int create)
3451{
3452        handle_t *handle = NULL;
3453        int ret = 0;
3454        unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3455        int dio_credits;
3456
3457        ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
3458                   inode->i_ino, create);
3459        /*
3460         * DIO VFS code passes create = 0 flag for write to
3461         * the middle of file. It does this to avoid block
3462         * allocation for holes, to prevent expose stale data
3463         * out when there is parallel buffered read (which does
3464         * not hold the i_mutex lock) while direct IO write has
3465         * not completed. DIO request on holes finally falls back
3466         * to buffered IO for this reason.
3467         *
3468         * For ext4 extent based file, since we support fallocate,
3469         * new allocated extent as uninitialized, for holes, we
3470         * could fallocate blocks for holes, thus parallel
3471         * buffered IO read will zero out the page when read on
3472         * a hole while parallel DIO write to the hole has not completed.
3473         *
3474         * when we come here, we know it's a direct IO write to
3475         * to the middle of file (<i_size)
3476         * so it's safe to override the create flag from VFS.
3477         */
3478        create = EXT4_GET_BLOCKS_DIO_CREATE_EXT;
3479
3480        if (max_blocks > DIO_MAX_BLOCKS)
3481                max_blocks = DIO_MAX_BLOCKS;
3482        dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3483        handle = ext4_journal_start(inode, dio_credits);
3484        if (IS_ERR(handle)) {
3485                ret = PTR_ERR(handle);
3486                goto out;
3487        }
3488        ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3489                              create);
3490        if (ret > 0) {
3491                bh_result->b_size = (ret << inode->i_blkbits);
3492                ret = 0;
3493        }
3494        ext4_journal_stop(handle);
3495out:
3496        return ret;
3497}
3498
3499static void ext4_free_io_end(ext4_io_end_t *io)
3500{
3501        BUG_ON(!io);
3502        iput(io->inode);
3503        kfree(io);
3504}
3505static void dump_aio_dio_list(struct inode * inode)
3506{
3507#ifdef  EXT4_DEBUG
3508        struct list_head *cur, *before, *after;
3509        ext4_io_end_t *io, *io0, *io1;
3510
3511        if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3512                ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino);
3513                return;
3514        }
3515
3516        ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino);
3517        list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){
3518                cur = &io->list;
3519                before = cur->prev;
3520                io0 = container_of(before, ext4_io_end_t, list);
3521                after = cur->next;
3522                io1 = container_of(after, ext4_io_end_t, list);
3523
3524                ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3525                            io, inode->i_ino, io0, io1);
3526        }
3527#endif
3528}
3529
3530/*
3531 * check a range of space and convert unwritten extents to written.
3532 */
3533static int ext4_end_aio_dio_nolock(ext4_io_end_t *io)
3534{
3535        struct inode *inode = io->inode;
3536        loff_t offset = io->offset;
3537        size_t size = io->size;
3538        int ret = 0;
3539
3540        ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
3541                   "list->prev 0x%p\n",
3542                   io, inode->i_ino, io->list.next, io->list.prev);
3543
3544        if (list_empty(&io->list))
3545                return ret;
3546
3547        if (io->flag != DIO_AIO_UNWRITTEN)
3548                return ret;
3549
3550        if (offset + size <= i_size_read(inode))
3551                ret = ext4_convert_unwritten_extents(inode, offset, size);
3552
3553        if (ret < 0) {
3554                printk(KERN_EMERG "%s: failed to convert unwritten"
3555                        "extents to written extents, error is %d"
3556                        " io is still on inode %lu aio dio list\n",
3557                       __func__, ret, inode->i_ino);
3558                return ret;
3559        }
3560
3561        /* clear the DIO AIO unwritten flag */
3562        io->flag = 0;
3563        return ret;
3564}
3565/*
3566 * work on completed aio dio IO, to convert unwritten extents to extents
3567 */
3568static void ext4_end_aio_dio_work(struct work_struct *work)
3569{
3570        ext4_io_end_t *io  = container_of(work, ext4_io_end_t, work);
3571        struct inode *inode = io->inode;
3572        int ret = 0;
3573
3574        mutex_lock(&inode->i_mutex);
3575        ret = ext4_end_aio_dio_nolock(io);
3576        if (ret >= 0) {
3577                if (!list_empty(&io->list))
3578                        list_del_init(&io->list);
3579                ext4_free_io_end(io);
3580        }
3581        mutex_unlock(&inode->i_mutex);
3582}
3583/*
3584 * This function is called from ext4_sync_file().
3585 *
3586 * When AIO DIO IO is completed, the work to convert unwritten
3587 * extents to written is queued on workqueue but may not get immediately
3588 * scheduled. When fsync is called, we need to ensure the
3589 * conversion is complete before fsync returns.
3590 * The inode keeps track of a list of completed AIO from DIO path
3591 * that might needs to do the conversion. This function walks through
3592 * the list and convert the related unwritten extents to written.
3593 */
3594int flush_aio_dio_completed_IO(struct inode *inode)
3595{
3596        ext4_io_end_t *io;
3597        int ret = 0;
3598        int ret2 = 0;
3599
3600        if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list))
3601                return ret;
3602
3603        dump_aio_dio_list(inode);
3604        while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3605                io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next,
3606                                ext4_io_end_t, list);
3607                /*
3608                 * Calling ext4_end_aio_dio_nolock() to convert completed
3609                 * IO to written.
3610                 *
3611                 * When ext4_sync_file() is called, run_queue() may already
3612                 * about to flush the work corresponding to this io structure.
3613                 * It will be upset if it founds the io structure related
3614                 * to the work-to-be schedule is freed.
3615                 *
3616                 * Thus we need to keep the io structure still valid here after
3617                 * convertion finished. The io structure has a flag to
3618                 * avoid double converting from both fsync and background work
3619                 * queue work.
3620                 */
3621                ret = ext4_end_aio_dio_nolock(io);
3622                if (ret < 0)
3623                        ret2 = ret;
3624                else
3625                        list_del_init(&io->list);
3626        }
3627        return (ret2 < 0) ? ret2 : 0;
3628}
3629
3630static ext4_io_end_t *ext4_init_io_end (struct inode *inode)
3631{
3632        ext4_io_end_t *io = NULL;
3633
3634        io = kmalloc(sizeof(*io), GFP_NOFS);
3635
3636        if (io) {
3637                igrab(inode);
3638                io->inode = inode;
3639                io->flag = 0;
3640                io->offset = 0;
3641                io->size = 0;
3642                io->error = 0;
3643                INIT_WORK(&io->work, ext4_end_aio_dio_work);
3644                INIT_LIST_HEAD(&io->list);
3645        }
3646
3647        return io;
3648}
3649
3650static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3651                            ssize_t size, void *private)
3652{
3653        ext4_io_end_t *io_end = iocb->private;
3654        struct workqueue_struct *wq;
3655
3656        /* if not async direct IO or dio with 0 bytes write, just return */
3657        if (!io_end || !size)
3658                return;
3659
3660        ext_debug("ext4_end_io_dio(): io_end 0x%p"
3661                  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3662                  iocb->private, io_end->inode->i_ino, iocb, offset,
3663                  size);
3664
3665        /* if not aio dio with unwritten extents, just free io and return */
3666        if (io_end->flag != DIO_AIO_UNWRITTEN){
3667                ext4_free_io_end(io_end);
3668                iocb->private = NULL;
3669                return;
3670        }
3671
3672        io_end->offset = offset;
3673        io_end->size = size;
3674        wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3675
3676        /* queue the work to convert unwritten extents to written */
3677        queue_work(wq, &io_end->work);
3678
3679        /* Add the io_end to per-inode completed aio dio list*/
3680        list_add_tail(&io_end->list,
3681                 &EXT4_I(io_end->inode)->i_aio_dio_complete_list);
3682        iocb->private = NULL;
3683}
3684/*
3685 * For ext4 extent files, ext4 will do direct-io write to holes,
3686 * preallocated extents, and those write extend the file, no need to
3687 * fall back to buffered IO.
3688 *
3689 * For holes, we fallocate those blocks, mark them as unintialized
3690 * If those blocks were preallocated, we mark sure they are splited, but
3691 * still keep the range to write as unintialized.
3692 *
3693 * The unwrritten extents will be converted to written when DIO is completed.
3694 * For async direct IO, since the IO may still pending when return, we
3695 * set up an end_io call back function, which will do the convertion
3696 * when async direct IO completed.
3697 *
3698 * If the O_DIRECT write will extend the file then add this inode to the
3699 * orphan list.  So recovery will truncate it back to the original size
3700 * if the machine crashes during the write.
3701 *
3702 */
3703static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3704                              const struct iovec *iov, loff_t offset,
3705                              unsigned long nr_segs)
3706{
3707        struct file *file = iocb->ki_filp;
3708        struct inode *inode = file->f_mapping->host;
3709        ssize_t ret;
3710        size_t count = iov_length(iov, nr_segs);
3711
3712        loff_t final_size = offset + count;
3713        if (rw == WRITE && final_size <= inode->i_size) {
3714                /*
3715                 * We could direct write to holes and fallocate.
3716                 *
3717                 * Allocated blocks to fill the hole are marked as uninitialized
3718                 * to prevent paralel buffered read to expose the stale data
3719                 * before DIO complete the data IO.
3720                 *
3721                 * As to previously fallocated extents, ext4 get_block
3722                 * will just simply mark the buffer mapped but still
3723                 * keep the extents uninitialized.
3724                 *
3725                 * for non AIO case, we will convert those unwritten extents
3726                 * to written after return back from blockdev_direct_IO.
3727                 *
3728                 * for async DIO, the conversion needs to be defered when
3729                 * the IO is completed. The ext4 end_io callback function
3730                 * will be called to take care of the conversion work.
3731                 * Here for async case, we allocate an io_end structure to
3732                 * hook to the iocb.
3733                 */
3734                iocb->private = NULL;
3735                EXT4_I(inode)->cur_aio_dio = NULL;
3736                if (!is_sync_kiocb(iocb)) {
3737                        iocb->private = ext4_init_io_end(inode);
3738                        if (!iocb->private)
3739                                return -ENOMEM;
3740                        /*
3741                         * we save the io structure for current async
3742                         * direct IO, so that later ext4_get_blocks()
3743                         * could flag the io structure whether there
3744                         * is a unwritten extents needs to be converted
3745                         * when IO is completed.
3746                         */
3747                        EXT4_I(inode)->cur_aio_dio = iocb->private;
3748                }
3749
3750                ret = blockdev_direct_IO(rw, iocb, inode,
3751                                         inode->i_sb->s_bdev, iov,
3752                                         offset, nr_segs,
3753                                         ext4_get_block_dio_write,
3754                                         ext4_end_io_dio);
3755                if (iocb->private)
3756                        EXT4_I(inode)->cur_aio_dio = NULL;
3757                /*
3758                 * The io_end structure takes a reference to the inode,
3759                 * that structure needs to be destroyed and the
3760                 * reference to the inode need to be dropped, when IO is
3761                 * complete, even with 0 byte write, or failed.
3762                 *
3763                 * In the successful AIO DIO case, the io_end structure will be
3764                 * desctroyed and the reference to the inode will be dropped
3765                 * after the end_io call back function is called.
3766                 *
3767                 * In the case there is 0 byte write, or error case, since
3768                 * VFS direct IO won't invoke the end_io call back function,
3769                 * we need to free the end_io structure here.
3770                 */
3771                if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3772                        ext4_free_io_end(iocb->private);
3773                        iocb->private = NULL;
3774                } else if (ret > 0 && (EXT4_I(inode)->i_state &
3775                                       EXT4_STATE_DIO_UNWRITTEN)) {
3776                        int err;
3777                        /*
3778                         * for non AIO case, since the IO is already
3779                         * completed, we could do the convertion right here
3780                         */
3781                        err = ext4_convert_unwritten_extents(inode,
3782                                                             offset, ret);
3783                        if (err < 0)
3784                                ret = err;
3785                        EXT4_I(inode)->i_state &= ~EXT4_STATE_DIO_UNWRITTEN;
3786                }
3787                return ret;
3788        }
3789
3790        /* for write the the end of file case, we fall back to old way */
3791        return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3792}
3793
3794static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3795                              const struct iovec *iov, loff_t offset,
3796                              unsigned long nr_segs)
3797{
3798        struct file *file = iocb->ki_filp;
3799        struct inode *inode = file->f_mapping->host;
3800
3801        if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3802                return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3803
3804        return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3805}
3806
3807/*
3808 * Pages can be marked dirty completely asynchronously from ext4's journalling
3809 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3810 * much here because ->set_page_dirty is called under VFS locks.  The page is
3811 * not necessarily locked.
3812 *
3813 * We cannot just dirty the page and leave attached buffers clean, because the
3814 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3815 * or jbddirty because all the journalling code will explode.
3816 *
3817 * So what we do is to mark the page "pending dirty" and next time writepage
3818 * is called, propagate that into the buffers appropriately.
3819 */
3820static int ext4_journalled_set_page_dirty(struct page *page)
3821{
3822        SetPageChecked(page);
3823        return __set_page_dirty_nobuffers(page);
3824}
3825
3826static const struct address_space_operations ext4_ordered_aops = {
3827        .readpage               = ext4_readpage,
3828        .readpages              = ext4_readpages,
3829        .writepage              = ext4_writepage,
3830        .sync_page              = block_sync_page,
3831        .write_begin            = ext4_write_begin,
3832        .write_end              = ext4_ordered_write_end,
3833        .bmap                   = ext4_bmap,
3834        .invalidatepage         = ext4_invalidatepage,
3835        .releasepage            = ext4_releasepage,
3836        .direct_IO              = ext4_direct_IO,
3837        .migratepage            = buffer_migrate_page,
3838        .is_partially_uptodate  = block_is_partially_uptodate,
3839        .error_remove_page      = generic_error_remove_page,
3840};
3841
3842static const struct address_space_operations ext4_writeback_aops = {
3843        .readpage               = ext4_readpage,
3844        .readpages              = ext4_readpages,
3845        .writepage              = ext4_writepage,
3846        .sync_page              = block_sync_page,
3847        .write_begin            = ext4_write_begin,
3848        .write_end              = ext4_writeback_write_end,
3849        .bmap                   = ext4_bmap,
3850        .invalidatepage         = ext4_invalidatepage,
3851        .releasepage            = ext4_releasepage,
3852        .direct_IO              = ext4_direct_IO,
3853        .migratepage            = buffer_migrate_page,
3854        .is_partially_uptodate  = block_is_partially_uptodate,
3855        .error_remove_page      = generic_error_remove_page,
3856};
3857
3858static const struct address_space_operations ext4_journalled_aops = {
3859        .readpage               = ext4_readpage,
3860        .readpages              = ext4_readpages,
3861        .writepage              = ext4_writepage,
3862        .sync_page              = block_sync_page,
3863        .write_begin            = ext4_write_begin,
3864        .write_end              = ext4_journalled_write_end,
3865        .set_page_dirty         = ext4_journalled_set_page_dirty,
3866        .bmap                   = ext4_bmap,
3867        .invalidatepage         = ext4_invalidatepage,
3868        .releasepage            = ext4_releasepage,
3869        .is_partially_uptodate  = block_is_partially_uptodate,
3870        .error_remove_page      = generic_error_remove_page,
3871};
3872
3873static const struct address_space_operations ext4_da_aops = {
3874        .readpage               = ext4_readpage,
3875        .readpages              = ext4_readpages,
3876        .writepage              = ext4_writepage,
3877        .writepages             = ext4_da_writepages,
3878        .sync_page              = block_sync_page,
3879        .write_begin            = ext4_da_write_begin,
3880        .write_end              = ext4_da_write_end,
3881        .bmap                   = ext4_bmap,
3882        .invalidatepage         = ext4_da_invalidatepage,
3883        .releasepage            = ext4_releasepage,
3884        .direct_IO              = ext4_direct_IO,
3885        .migratepage            = buffer_migrate_page,
3886        .is_partially_uptodate  = block_is_partially_uptodate,
3887        .error_remove_page      = generic_error_remove_page,
3888};
3889
3890void ext4_set_aops(struct inode *inode)
3891{
3892        if (ext4_should_order_data(inode) &&
3893                test_opt(inode->i_sb, DELALLOC))
3894                inode->i_mapping->a_ops = &ext4_da_aops;
3895        else if (ext4_should_order_data(inode))
3896                inode->i_mapping->a_ops = &ext4_ordered_aops;
3897        else if (ext4_should_writeback_data(inode) &&
3898                 test_opt(inode->i_sb, DELALLOC))
3899                inode->i_mapping->a_ops = &ext4_da_aops;
3900        else if (ext4_should_writeback_data(inode))
3901                inode->i_mapping->a_ops = &ext4_writeback_aops;
3902        else
3903                inode->i_mapping->a_ops = &ext4_journalled_aops;
3904}
3905
3906/*
3907 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3908 * up to the end of the block which corresponds to `from'.
3909 * This required during truncate. We need to physically zero the tail end
3910 * of that block so it doesn't yield old data if the file is later grown.
3911 */
3912int ext4_block_truncate_page(handle_t *handle,
3913                struct address_space *mapping, loff_t from)
3914{
3915        ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3916        unsigned offset = from & (PAGE_CACHE_SIZE-1);
3917        unsigned blocksize, length, pos;
3918        ext4_lblk_t iblock;
3919        struct inode *inode = mapping->host;
3920        struct buffer_head *bh;
3921        struct page *page;
3922        int err = 0;
3923
3924        page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3925                                   mapping_gfp_mask(mapping) & ~__GFP_FS);
3926        if (!page)
3927                return -EINVAL;
3928
3929        blocksize = inode->i_sb->s_blocksize;
3930        length = blocksize - (offset & (blocksize - 1));
3931        iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3932
3933        /*
3934         * For "nobh" option,  we can only work if we don't need to
3935         * read-in the page - otherwise we create buffers to do the IO.
3936         */
3937        if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3938             ext4_should_writeback_data(inode) && PageUptodate(page)) {
3939                zero_user(page, offset, length);
3940                set_page_dirty(page);
3941                goto unlock;
3942        }
3943
3944        if (!page_has_buffers(page))
3945                create_empty_buffers(page, blocksize, 0);
3946
3947        /* Find the buffer that contains "offset" */
3948        bh = page_buffers(page);
3949        pos = blocksize;
3950        while (offset >= pos) {
3951                bh = bh->b_this_page;
3952                iblock++;
3953                pos += blocksize;
3954        }
3955
3956        err = 0;
3957        if (buffer_freed(bh)) {
3958                BUFFER_TRACE(bh, "freed: skip");
3959                goto unlock;
3960        }
3961
3962        if (!buffer_mapped(bh)) {
3963                BUFFER_TRACE(bh, "unmapped");
3964                ext4_get_block(inode, iblock, bh, 0);
3965                /* unmapped? It's a hole - nothing to do */
3966                if (!buffer_mapped(bh)) {
3967                        BUFFER_TRACE(bh, "still unmapped");
3968                        goto unlock;
3969                }
3970        }
3971
3972        /* Ok, it's mapped. Make sure it's up-to-date */
3973        if (PageUptodate(page))
3974                set_buffer_uptodate(bh);
3975
3976        if (!buffer_uptodate(bh)) {
3977                err = -EIO;
3978                ll_rw_block(READ, 1, &bh);
3979                wait_on_buffer(bh);
3980                /* Uhhuh. Read error. Complain and punt. */
3981                if (!buffer_uptodate(bh))
3982                        goto unlock;
3983        }
3984
3985        if (ext4_should_journal_data(inode)) {
3986                BUFFER_TRACE(bh, "get write access");
3987                err = ext4_journal_get_write_access(handle, bh);
3988                if (err)
3989                        goto unlock;
3990        }
3991
3992        zero_user(page, offset, length);
3993
3994        BUFFER_TRACE(bh, "zeroed end of block");
3995
3996        err = 0;
3997        if (ext4_should_journal_data(inode)) {
3998                err = ext4_handle_dirty_metadata(handle, inode, bh);
3999        } else {
4000                if (ext4_should_order_data(inode))
4001                        err = ext4_jbd2_file_inode(handle, inode);
4002                mark_buffer_dirty(bh);
4003        }
4004
4005unlock:
4006        unlock_page(page);
4007        page_cache_release(page);
4008        return err;
4009}
4010
4011/*
4012 * Probably it should be a library function... search for first non-zero word
4013 * or memcmp with zero_page, whatever is better for particular architecture.
4014 * Linus?
4015 */
4016static inline int all_zeroes(__le32 *p, __le32 *q)
4017{
4018        while (p < q)
4019                if (*p++)
4020                        return 0;
4021        return 1;
4022}
4023
4024/**
4025 *      ext4_find_shared - find the indirect blocks for partial truncation.
4026 *      @inode:   inode in question
4027 *      @depth:   depth of the affected branch
4028 *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4029 *      @chain:   place to store the pointers to partial indirect blocks
4030 *      @top:     place to the (detached) top of branch
4031 *
4032 *      This is a helper function used by ext4_truncate().
4033 *
4034 *      When we do truncate() we may have to clean the ends of several
4035 *      indirect blocks but leave the blocks themselves alive. Block is
4036 *      partially truncated if some data below the new i_size is refered
4037 *      from it (and it is on the path to the first completely truncated
4038 *      data block, indeed).  We have to free the top of that path along
4039 *      with everything to the right of the path. Since no allocation
4040 *      past the truncation point is possible until ext4_truncate()
4041 *      finishes, we may safely do the latter, but top of branch may
4042 *      require special attention - pageout below the truncation point
4043 *      might try to populate it.
4044 *
4045 *      We atomically detach the top of branch from the tree, store the
4046 *      block number of its root in *@top, pointers to buffer_heads of
4047 *      partially truncated blocks - in @chain[].bh and pointers to
4048 *      their last elements that should not be removed - in
4049 *      @chain[].p. Return value is the pointer to last filled element
4050 *      of @chain.
4051 *
4052 *      The work left to caller to do the actual freeing of subtrees:
4053 *              a) free the subtree starting from *@top
4054 *              b) free the subtrees whose roots are stored in
4055 *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4056 *              c) free the subtrees growing from the inode past the @chain[0].
4057 *                      (no partially truncated stuff there).  */
4058
4059static Indirect *ext4_find_shared(struct inode *inode, int depth,
4060                                  ext4_lblk_t offsets[4], Indirect chain[4],
4061                                  __le32 *top)
4062{
4063        Indirect *partial, *p;
4064        int k, err;
4065
4066        *top = 0;
4067        /* Make k index the deepest non-null offest + 1 */
4068        for (k = depth; k > 1 && !offsets[k-1]; k--)
4069                ;
4070        partial = ext4_get_branch(inode, k, offsets, chain, &err);
4071        /* Writer: pointers */
4072        if (!partial)
4073                partial = chain + k-1;
4074        /*
4075         * If the branch acquired continuation since we've looked at it -
4076         * fine, it should all survive and (new) top doesn't belong to us.
4077         */
4078        if (!partial->key && *partial->p)
4079                /* Writer: end */
4080                goto no_top;
4081        for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4082                ;
4083        /*
4084         * OK, we've found the last block that must survive. The rest of our
4085         * branch should be detached before unlocking. However, if that rest
4086         * of branch is all ours and does not grow immediately from the inode
4087         * it's easier to cheat and just decrement partial->p.
4088         */
4089        if (p == chain + k - 1 && p > chain) {
4090                p->p--;
4091        } else {
4092                *top = *p->p;
4093                /* Nope, don't do this in ext4.  Must leave the tree intact */
4094#if 0
4095                *p->p = 0;
4096#endif
4097        }
4098        /* Writer: end */
4099
4100        while (partial > p) {
4101                brelse(partial->bh);
4102                partial--;
4103        }
4104no_top:
4105        return partial;
4106}
4107
4108/*
4109 * Zero a number of block pointers in either an inode or an indirect block.
4110 * If we restart the transaction we must again get write access to the
4111 * indirect block for further modification.
4112 *
4113 * We release `count' blocks on disk, but (last - first) may be greater
4114 * than `count' because there can be holes in there.
4115 */
4116static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
4117                              struct buffer_head *bh,
4118                              ext4_fsblk_t block_to_free,
4119                              unsigned long count, __le32 *first,
4120                              __le32 *last)
4121{
4122        __le32 *p;
4123        if (try_to_extend_transaction(handle, inode)) {
4124                if (bh) {
4125                        BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4126                        ext4_handle_dirty_metadata(handle, inode, bh);
4127                }
4128                ext4_mark_inode_dirty(handle, inode);
4129                ext4_truncate_restart_trans(handle, inode,
4130                                            blocks_for_truncate(inode));
4131                if (bh) {
4132                        BUFFER_TRACE(bh, "retaking write access");
4133                        ext4_journal_get_write_access(handle, bh);
4134                }
4135        }
4136
4137        /*
4138         * Any buffers which are on the journal will be in memory. We
4139         * find them on the hash table so jbd2_journal_revoke() will
4140         * run jbd2_journal_forget() on them.  We've already detached
4141         * each block from the file, so bforget() in
4142         * jbd2_journal_forget() should be safe.
4143         *
4144         * AKPM: turn on bforget in jbd2_journal_forget()!!!
4145         */
4146        for (p = first; p < last; p++) {
4147                u32 nr = le32_to_cpu(*p);
4148                if (nr) {
4149                        struct buffer_head *tbh;
4150
4151                        *p = 0;
4152                        tbh = sb_find_get_block(inode->i_sb, nr);
4153                        ext4_forget(handle, 0, inode, tbh, nr);
4154                }
4155        }
4156
4157        ext4_free_blocks(handle, inode, block_to_free, count, 0);
4158}
4159
4160/**
4161 * ext4_free_data - free a list of data blocks
4162 * @handle:     handle for this transaction
4163 * @inode:      inode we are dealing with
4164 * @this_bh:    indirect buffer_head which contains *@first and *@last
4165 * @first:      array of block numbers
4166 * @last:       points immediately past the end of array
4167 *
4168 * We are freeing all blocks refered from that array (numbers are stored as
4169 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4170 *
4171 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4172 * blocks are contiguous then releasing them at one time will only affect one
4173 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4174 * actually use a lot of journal space.
4175 *
4176 * @this_bh will be %NULL if @first and @last point into the inode's direct
4177 * block pointers.
4178 */
4179static void ext4_free_data(handle_t *handle, struct inode *inode,
4180                           struct buffer_head *this_bh,
4181                           __le32 *first, __le32 *last)
4182{
4183        ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4184        unsigned long count = 0;            /* Number of blocks in the run */
4185        __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
4186                                               corresponding to
4187                                               block_to_free */
4188        ext4_fsblk_t nr;                    /* Current block # */
4189        __le32 *p;                          /* Pointer into inode/ind
4190                                               for current block */
4191        int err;
4192
4193        if (this_bh) {                          /* For indirect block */
4194                BUFFER_TRACE(this_bh, "get_write_access");
4195                err = ext4_journal_get_write_access(handle, this_bh);
4196                /* Important: if we can't update the indirect pointers
4197                 * to the blocks, we can't free them. */
4198                if (err)
4199                        return;
4200        }
4201
4202        for (p = first; p < last; p++) {
4203                nr = le32_to_cpu(*p);
4204                if (nr) {
4205                        /* accumulate blocks to free if they're contiguous */
4206                        if (count == 0) {
4207                                block_to_free = nr;
4208                                block_to_free_p = p;
4209                                count = 1;
4210                        } else if (nr == block_to_free + count) {
4211                                count++;
4212                        } else {
4213                                ext4_clear_blocks(handle, inode, this_bh,
4214                                                  block_to_free,
4215                                                  count, block_to_free_p, p);
4216                                block_to_free = nr;
4217                                block_to_free_p = p;
4218                                count = 1;
4219                        }
4220                }
4221        }
4222
4223        if (count > 0)
4224                ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4225                                  count, block_to_free_p, p);
4226
4227        if (this_bh) {
4228                BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4229
4230                /*
4231                 * The buffer head should have an attached journal head at this
4232                 * point. However, if the data is corrupted and an indirect
4233                 * block pointed to itself, it would have been detached when
4234                 * the block was cleared. Check for this instead of OOPSing.
4235                 */
4236                if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4237                        ext4_handle_dirty_metadata(handle, inode, this_bh);
4238                else
4239                        ext4_error(inode->i_sb, __func__,
4240                                   "circular indirect block detected, "
4241                                   "inode=%lu, block=%llu",
4242                                   inode->i_ino,
4243                                   (unsigned long long) this_bh->b_blocknr);
4244        }
4245}
4246
4247/**
4248 *      ext4_free_branches - free an array of branches
4249 *      @handle: JBD handle for this transaction
4250 *      @inode: inode we are dealing with
4251 *      @parent_bh: the buffer_head which contains *@first and *@last
4252 *      @first: array of block numbers
4253 *      @last:  pointer immediately past the end of array
4254 *      @depth: depth of the branches to free
4255 *
4256 *      We are freeing all blocks refered from these branches (numbers are
4257 *      stored as little-endian 32-bit) and updating @inode->i_blocks
4258 *      appropriately.
4259 */
4260static void ext4_free_branches(handle_t *handle, struct inode *inode,
4261                               struct buffer_head *parent_bh,
4262                               __le32 *first, __le32 *last, int depth)
4263{
4264        ext4_fsblk_t nr;
4265        __le32 *p;
4266
4267        if (ext4_handle_is_aborted(handle))
4268                return;
4269
4270        if (depth--) {
4271                struct buffer_head *bh;
4272                int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4273                p = last;
4274                while (--p >= first) {
4275                        nr = le32_to_cpu(*p);
4276                        if (!nr)
4277                                continue;               /* A hole */
4278
4279                        /* Go read the buffer for the next level down */
4280                        bh = sb_bread(inode->i_sb, nr);
4281
4282                        /*
4283                         * A read failure? Report error and clear slot
4284                         * (should be rare).
4285                         */
4286                        if (!bh) {
4287                                ext4_error(inode->i_sb, "ext4_free_branches",
4288                                           "Read failure, inode=%lu, block=%llu",
4289                                           inode->i_ino, nr);
4290                                continue;
4291                        }
4292
4293                        /* This zaps the entire block.  Bottom up. */
4294                        BUFFER_TRACE(bh, "free child branches");
4295                        ext4_free_branches(handle, inode, bh,
4296                                        (__le32 *) bh->b_data,
4297                                        (__le32 *) bh->b_data + addr_per_block,
4298                                        depth);
4299
4300                        /*
4301                         * We've probably journalled the indirect block several
4302                         * times during the truncate.  But it's no longer
4303                         * needed and we now drop it from the transaction via
4304                         * jbd2_journal_revoke().
4305                         *
4306                         * That's easy if it's exclusively part of this
4307                         * transaction.  But if it's part of the committing
4308                         * transaction then jbd2_journal_forget() will simply
4309                         * brelse() it.  That means that if the underlying
4310                         * block is reallocated in ext4_get_block(),
4311                         * unmap_underlying_metadata() will find this block
4312                         * and will try to get rid of it.  damn, damn.
4313                         *
4314                         * If this block has already been committed to the
4315                         * journal, a revoke record will be written.  And
4316                         * revoke records must be emitted *before* clearing
4317                         * this block's bit in the bitmaps.
4318                         */
4319                        ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4320
4321                        /*
4322                         * Everything below this this pointer has been
4323                         * released.  Now let this top-of-subtree go.
4324                         *
4325                         * We want the freeing of this indirect block to be
4326                         * atomic in the journal with the updating of the
4327                         * bitmap block which owns it.  So make some room in
4328                         * the journal.
4329                         *
4330                         * We zero the parent pointer *after* freeing its
4331                         * pointee in the bitmaps, so if extend_transaction()
4332                         * for some reason fails to put the bitmap changes and
4333                         * the release into the same transaction, recovery
4334                         * will merely complain about releasing a free block,
4335                         * rather than leaking blocks.
4336                         */
4337                        if (ext4_handle_is_aborted(handle))
4338                                return;
4339                        if (try_to_extend_transaction(handle, inode)) {
4340                                ext4_mark_inode_dirty(handle, inode);
4341                                ext4_truncate_restart_trans(handle, inode,
4342                                            blocks_for_truncate(inode));
4343                        }
4344
4345                        ext4_free_blocks(handle, inode, nr, 1, 1);
4346
4347                        if (parent_bh) {
4348                                /*
4349                                 * The block which we have just freed is
4350                                 * pointed to by an indirect block: journal it
4351                                 */
4352                                BUFFER_TRACE(parent_bh, "get_write_access");
4353                                if (!ext4_journal_get_write_access(handle,
4354                                                                   parent_bh)){
4355                                        *p = 0;
4356                                        BUFFER_TRACE(parent_bh,
4357                                        "call ext4_handle_dirty_metadata");
4358                                        ext4_handle_dirty_metadata(handle,
4359                                                                   inode,
4360                                                                   parent_bh);
4361                                }
4362                        }
4363                }
4364        } else {
4365                /* We have reached the bottom of the tree. */
4366                BUFFER_TRACE(parent_bh, "free data blocks");
4367                ext4_free_data(handle, inode, parent_bh, first, last);
4368        }
4369}
4370
4371int ext4_can_truncate(struct inode *inode)
4372{
4373        if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4374                return 0;
4375        if (S_ISREG(inode->i_mode))
4376                return 1;
4377        if (S_ISDIR(inode->i_mode))
4378                return 1;
4379        if (S_ISLNK(inode->i_mode))
4380                return !ext4_inode_is_fast_symlink(inode);
4381        return 0;
4382}
4383
4384/*
4385 * ext4_truncate()
4386 *
4387 * We block out ext4_get_block() block instantiations across the entire
4388 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4389 * simultaneously on behalf of the same inode.
4390 *
4391 * As we work through the truncate and commmit bits of it to the journal there
4392 * is one core, guiding principle: the file's tree must always be consistent on
4393 * disk.  We must be able to restart the truncate after a crash.
4394 *
4395 * The file's tree may be transiently inconsistent in memory (although it
4396 * probably isn't), but whenever we close off and commit a journal transaction,
4397 * the contents of (the filesystem + the journal) must be consistent and
4398 * restartable.  It's pretty simple, really: bottom up, right to left (although
4399 * left-to-right works OK too).
4400 *
4401 * Note that at recovery time, journal replay occurs *before* the restart of
4402 * truncate against the orphan inode list.
4403 *
4404 * The committed inode has the new, desired i_size (which is the same as
4405 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4406 * that this inode's truncate did not complete and it will again call
4407 * ext4_truncate() to have another go.  So there will be instantiated blocks
4408 * to the right of the truncation point in a crashed ext4 filesystem.  But
4409 * that's fine - as long as they are linked from the inode, the post-crash
4410 * ext4_truncate() run will find them and release them.
4411 */
4412void ext4_truncate(struct inode *inode)
4413{
4414        handle_t *handle;
4415        struct ext4_inode_info *ei = EXT4_I(inode);
4416        __le32 *i_data = ei->i_data;
4417        int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4418        struct address_space *mapping = inode->i_mapping;
4419        ext4_lblk_t offsets[4];
4420        Indirect chain[4];
4421        Indirect *partial;
4422        __le32 nr = 0;
4423        int n;
4424        ext4_lblk_t last_block;
4425        unsigned blocksize = inode->i_sb->s_blocksize;
4426
4427        if (!ext4_can_truncate(inode))
4428                return;
4429
4430        if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4431                ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4432
4433        if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4434                ext4_ext_truncate(inode);
4435                return;
4436        }
4437
4438        handle = start_transaction(inode);
4439        if (IS_ERR(handle))
4440                return;         /* AKPM: return what? */
4441
4442        last_block = (inode->i_size + blocksize-1)
4443                                        >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4444
4445        if (inode->i_size & (blocksize - 1))
4446                if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4447                        goto out_stop;
4448
4449        n = ext4_block_to_path(inode, last_block, offsets, NULL);
4450        if (n == 0)
4451                goto out_stop;  /* error */
4452
4453        /*
4454         * OK.  This truncate is going to happen.  We add the inode to the
4455         * orphan list, so that if this truncate spans multiple transactions,
4456         * and we crash, we will resume the truncate when the filesystem
4457         * recovers.  It also marks the inode dirty, to catch the new size.
4458         *
4459         * Implication: the file must always be in a sane, consistent
4460         * truncatable state while each transaction commits.
4461         */
4462        if (ext4_orphan_add(handle, inode))
4463                goto out_stop;
4464
4465        /*
4466         * From here we block out all ext4_get_block() callers who want to
4467         * modify the block allocation tree.
4468         */
4469        down_write(&ei->i_data_sem);
4470
4471        ext4_discard_preallocations(inode);
4472
4473        /*
4474         * The orphan list entry will now protect us from any crash which
4475         * occurs before the truncate completes, so it is now safe to propagate
4476         * the new, shorter inode size (held for now in i_size) into the
4477         * on-disk inode. We do this via i_disksize, which is the value which
4478         * ext4 *really* writes onto the disk inode.
4479         */
4480        ei->i_disksize = inode->i_size;
4481
4482        if (n == 1) {           /* direct blocks */
4483                ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4484                               i_data + EXT4_NDIR_BLOCKS);
4485                goto do_indirects;
4486        }
4487
4488        partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4489        /* Kill the top of shared branch (not detached) */
4490        if (nr) {
4491                if (partial == chain) {
4492                        /* Shared branch grows from the inode */
4493                        ext4_free_branches(handle, inode, NULL,
4494                                           &nr, &nr+1, (chain+n-1) - partial);
4495                        *partial->p = 0;
4496                        /*
4497                         * We mark the inode dirty prior to restart,
4498                         * and prior to stop.  No need for it here.
4499                         */
4500                } else {
4501                        /* Shared branch grows from an indirect block */
4502                        BUFFER_TRACE(partial->bh, "get_write_access");
4503                        ext4_free_branches(handle, inode, partial->bh,
4504                                        partial->p,
4505                                        partial->p+1, (chain+n-1) - partial);
4506                }
4507        }
4508        /* Clear the ends of indirect blocks on the shared branch */
4509        while (partial > chain) {
4510                ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4511                                   (__le32*)partial->bh->b_data+addr_per_block,
4512                                   (chain+n-1) - partial);
4513                BUFFER_TRACE(partial->bh, "call brelse");
4514                brelse(partial->bh);
4515                partial--;
4516        }
4517do_indirects:
4518        /* Kill the remaining (whole) subtrees */
4519        switch (offsets[0]) {
4520        default:
4521                nr = i_data[EXT4_IND_BLOCK];
4522                if (nr) {
4523                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4524                        i_data[EXT4_IND_BLOCK] = 0;
4525                }
4526        case EXT4_IND_BLOCK:
4527                nr = i_data[EXT4_DIND_BLOCK];
4528                if (nr) {
4529                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4530                        i_data[EXT4_DIND_BLOCK] = 0;
4531                }
4532        case EXT4_DIND_BLOCK:
4533                nr = i_data[EXT4_TIND_BLOCK];
4534                if (nr) {
4535                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4536                        i_data[EXT4_TIND_BLOCK] = 0;
4537                }
4538        case EXT4_TIND_BLOCK:
4539                ;
4540        }
4541
4542        up_write(&ei->i_data_sem);
4543        inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4544        ext4_mark_inode_dirty(handle, inode);
4545
4546        /*
4547         * In a multi-transaction truncate, we only make the final transaction
4548         * synchronous
4549         */
4550        if (IS_SYNC(inode))
4551                ext4_handle_sync(handle);
4552out_stop:
4553        /*
4554         * If this was a simple ftruncate(), and the file will remain alive
4555         * then we need to clear up the orphan record which we created above.
4556         * However, if this was a real unlink then we were called by
4557         * ext4_delete_inode(), and we allow that function to clean up the
4558         * orphan info for us.
4559         */
4560        if (inode->i_nlink)
4561                ext4_orphan_del(handle, inode);
4562
4563        ext4_journal_stop(handle);
4564}
4565
4566/*
4567 * ext4_get_inode_loc returns with an extra refcount against the inode's
4568 * underlying buffer_head on success. If 'in_mem' is true, we have all
4569 * data in memory that is needed to recreate the on-disk version of this
4570 * inode.
4571 */
4572static int __ext4_get_inode_loc(struct inode *inode,
4573                                struct ext4_iloc *iloc, int in_mem)
4574{
4575        struct ext4_group_desc  *gdp;
4576        struct buffer_head      *bh;
4577        struct super_block      *sb = inode->i_sb;
4578        ext4_fsblk_t            block;
4579        int                     inodes_per_block, inode_offset;
4580
4581        iloc->bh = NULL;
4582        if (!ext4_valid_inum(sb, inode->i_ino))
4583                return -EIO;
4584
4585        iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4586        gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4587        if (!gdp)
4588                return -EIO;
4589
4590        /*
4591         * Figure out the offset within the block group inode table
4592         */
4593        inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4594        inode_offset = ((inode->i_ino - 1) %
4595                        EXT4_INODES_PER_GROUP(sb));
4596        block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4597        iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4598
4599        bh = sb_getblk(sb, block);
4600        if (!bh) {
4601                ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4602                           "inode block - inode=%lu, block=%llu",
4603                           inode->i_ino, block);
4604                return -EIO;
4605        }
4606        if (!buffer_uptodate(bh)) {
4607                lock_buffer(bh);
4608
4609                /*
4610                 * If the buffer has the write error flag, we have failed
4611                 * to write out another inode in the same block.  In this
4612                 * case, we don't have to read the block because we may
4613                 * read the old inode data successfully.
4614                 */
4615                if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4616                        set_buffer_uptodate(bh);
4617
4618                if (buffer_uptodate(bh)) {
4619                        /* someone brought it uptodate while we waited */
4620                        unlock_buffer(bh);
4621                        goto has_buffer;
4622                }
4623
4624                /*
4625                 * If we have all information of the inode in memory and this
4626                 * is the only valid inode in the block, we need not read the
4627                 * block.
4628                 */
4629                if (in_mem) {
4630                        struct buffer_head *bitmap_bh;
4631                        int i, start;
4632
4633                        start = inode_offset & ~(inodes_per_block - 1);
4634
4635                        /* Is the inode bitmap in cache? */
4636                        bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4637                        if (!bitmap_bh)
4638                                goto make_io;
4639
4640                        /*
4641                         * If the inode bitmap isn't in cache then the
4642                         * optimisation may end up performing two reads instead
4643                         * of one, so skip it.
4644                         */
4645                        if (!buffer_uptodate(bitmap_bh)) {
4646                                brelse(bitmap_bh);
4647                                goto make_io;
4648                        }
4649                        for (i = start; i < start + inodes_per_block; i++) {
4650                                if (i == inode_offset)
4651                                        continue;
4652                                if (ext4_test_bit(i, bitmap_bh->b_data))
4653                                        break;
4654                        }
4655                        brelse(bitmap_bh);
4656                        if (i == start + inodes_per_block) {
4657                                /* all other inodes are free, so skip I/O */
4658                                memset(bh->b_data, 0, bh->b_size);
4659                                set_buffer_uptodate(bh);
4660                                unlock_buffer(bh);
4661                                goto has_buffer;
4662                        }
4663                }
4664
4665make_io:
4666                /*
4667                 * If we need to do any I/O, try to pre-readahead extra
4668                 * blocks from the inode table.
4669                 */
4670                if (EXT4_SB(sb)->s_inode_readahead_blks) {
4671                        ext4_fsblk_t b, end, table;
4672                        unsigned num;
4673
4674                        table = ext4_inode_table(sb, gdp);
4675                        /* s_inode_readahead_blks is always a power of 2 */
4676                        b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4677                        if (table > b)
4678                                b = table;
4679                        end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4680                        num = EXT4_INODES_PER_GROUP(sb);
4681                        if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4682                                       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4683                                num -= ext4_itable_unused_count(sb, gdp);
4684                        table += num / inodes_per_block;
4685                        if (end > table)
4686                                end = table;
4687                        while (b <= end)
4688                                sb_breadahead(sb, b++);
4689                }
4690
4691                /*
4692                 * There are other valid inodes in the buffer, this inode
4693                 * has in-inode xattrs, or we don't have this inode in memory.
4694                 * Read the block from disk.
4695                 */
4696                get_bh(bh);
4697                bh->b_end_io = end_buffer_read_sync;
4698                submit_bh(READ_META, bh);
4699                wait_on_buffer(bh);
4700                if (!buffer_uptodate(bh)) {
4701                        ext4_error(sb, __func__,
4702                                   "unable to read inode block - inode=%lu, "
4703                                   "block=%llu", inode->i_ino, block);
4704                        brelse(bh);
4705                        return -EIO;
4706                }
4707        }
4708has_buffer:
4709        iloc->bh = bh;
4710        return 0;
4711}
4712
4713int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4714{
4715        /* We have all inode data except xattrs in memory here. */
4716        return __ext4_get_inode_loc(inode, iloc,
4717                !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4718}
4719
4720void ext4_set_inode_flags(struct inode *inode)
4721{
4722        unsigned int flags = EXT4_I(inode)->i_flags;
4723
4724        inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4725        if (flags & EXT4_SYNC_FL)
4726                inode->i_flags |= S_SYNC;
4727        if (flags & EXT4_APPEND_FL)
4728                inode->i_flags |= S_APPEND;
4729        if (flags & EXT4_IMMUTABLE_FL)
4730                inode->i_flags |= S_IMMUTABLE;
4731        if (flags & EXT4_NOATIME_FL)
4732                inode->i_flags |= S_NOATIME;
4733        if (flags & EXT4_DIRSYNC_FL)
4734                inode->i_flags |= S_DIRSYNC;
4735}
4736
4737/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4738void ext4_get_inode_flags(struct ext4_inode_info *ei)
4739{
4740        unsigned int flags = ei->vfs_inode.i_flags;
4741
4742        ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4743                        EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4744        if (flags & S_SYNC)
4745                ei->i_flags |= EXT4_SYNC_FL;
4746        if (flags & S_APPEND)
4747                ei->i_flags |= EXT4_APPEND_FL;
4748        if (flags & S_IMMUTABLE)
4749                ei->i_flags |= EXT4_IMMUTABLE_FL;
4750        if (flags & S_NOATIME)
4751                ei->i_flags |= EXT4_NOATIME_FL;
4752        if (flags & S_DIRSYNC)
4753                ei->i_flags |= EXT4_DIRSYNC_FL;
4754}
4755
4756static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4757                                  struct ext4_inode_info *ei)
4758{
4759        blkcnt_t i_blocks ;
4760        struct inode *inode = &(ei->vfs_inode);
4761        struct super_block *sb = inode->i_sb;
4762
4763        if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4764                                EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4765                /* we are using combined 48 bit field */
4766                i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4767                                        le32_to_cpu(raw_inode->i_blocks_lo);
4768                if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4769                        /* i_blocks represent file system block size */
4770                        return i_blocks  << (inode->i_blkbits - 9);
4771                } else {
4772                        return i_blocks;
4773                }
4774        } else {
4775                return le32_to_cpu(raw_inode->i_blocks_lo);
4776        }
4777}
4778
4779struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4780{
4781        struct ext4_iloc iloc;
4782        struct ext4_inode *raw_inode;
4783        struct ext4_inode_info *ei;
4784        struct buffer_head *bh;
4785        struct inode *inode;
4786        long ret;
4787        int block;
4788
4789        inode = iget_locked(sb, ino);
4790        if (!inode)
4791                return ERR_PTR(-ENOMEM);
4792        if (!(inode->i_state & I_NEW))
4793                return inode;
4794
4795        ei = EXT4_I(inode);
4796
4797        ret = __ext4_get_inode_loc(inode, &iloc, 0);
4798        if (ret < 0)
4799                goto bad_inode;
4800        bh = iloc.bh;
4801        raw_inode = ext4_raw_inode(&iloc);
4802        inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4803        inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4804        inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4805        if (!(test_opt(inode->i_sb, NO_UID32))) {
4806                inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4807                inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4808        }
4809        inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4810
4811        ei->i_state = 0;
4812        ei->i_dir_start_lookup = 0;
4813        ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4814        /* We now have enough fields to check if the inode was active or not.
4815         * This is needed because nfsd might try to access dead inodes
4816         * the test is that same one that e2fsck uses
4817         * NeilBrown 1999oct15
4818         */
4819        if (inode->i_nlink == 0) {
4820                if (inode->i_mode == 0 ||
4821                    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4822                        /* this inode is deleted */
4823                        brelse(bh);
4824                        ret = -ESTALE;
4825                        goto bad_inode;
4826                }
4827                /* The only unlinked inodes we let through here have
4828                 * valid i_mode and are being read by the orphan
4829                 * recovery code: that's fine, we're about to complete
4830                 * the process of deleting those. */
4831        }
4832        ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4833        inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4834        ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4835        if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4836                ei->i_file_acl |=
4837                        ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4838        inode->i_size = ext4_isize(raw_inode);
4839        ei->i_disksize = inode->i_size;
4840        inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4841        ei->i_block_group = iloc.block_group;
4842        ei->i_last_alloc_group = ~0;
4843        /*
4844         * NOTE! The in-memory inode i_data array is in little-endian order
4845         * even on big-endian machines: we do NOT byteswap the block numbers!
4846         */
4847        for (block = 0; block < EXT4_N_BLOCKS; block++)
4848                ei->i_data[block] = raw_inode->i_block[block];
4849        INIT_LIST_HEAD(&ei->i_orphan);
4850
4851        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4852                ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4853                if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4854                    EXT4_INODE_SIZE(inode->i_sb)) {
4855                        brelse(bh);
4856                        ret = -EIO;
4857                        goto bad_inode;
4858                }
4859                if (ei->i_extra_isize == 0) {
4860                        /* The extra space is currently unused. Use it. */
4861                        ei->i_extra_isize = sizeof(struct ext4_inode) -
4862                                            EXT4_GOOD_OLD_INODE_SIZE;
4863                } else {
4864                        __le32 *magic = (void *)raw_inode +
4865                                        EXT4_GOOD_OLD_INODE_SIZE +
4866                                        ei->i_extra_isize;
4867                        if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4868                                ei->i_state |= EXT4_STATE_XATTR;
4869                }
4870        } else
4871                ei->i_extra_isize = 0;
4872
4873        EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4874        EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4875        EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4876        EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4877
4878        inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4879        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4880                if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4881                        inode->i_version |=
4882                        (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4883        }
4884
4885        ret = 0;
4886        if (ei->i_file_acl &&
4887            ((ei->i_file_acl <
4888              (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4889               EXT4_SB(sb)->s_gdb_count)) ||
4890             (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4891                ext4_error(sb, __func__,
4892                           "bad extended attribute block %llu in inode #%lu",
4893                           ei->i_file_acl, inode->i_ino);
4894                ret = -EIO;
4895                goto bad_inode;
4896        } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4897                if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4898                    (S_ISLNK(inode->i_mode) &&
4899                     !ext4_inode_is_fast_symlink(inode)))
4900                        /* Validate extent which is part of inode */
4901                        ret = ext4_ext_check_inode(inode);
4902        } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4903                   (S_ISLNK(inode->i_mode) &&
4904                    !ext4_inode_is_fast_symlink(inode))) {
4905                /* Validate block references which are part of inode */
4906                ret = ext4_check_inode_blockref(inode);
4907        }
4908        if (ret) {
4909                brelse(bh);
4910                goto bad_inode;
4911        }
4912
4913        if (S_ISREG(inode->i_mode)) {
4914                inode->i_op = &ext4_file_inode_operations;
4915                inode->i_fop = &ext4_file_operations;
4916                ext4_set_aops(inode);
4917        } else if (S_ISDIR(inode->i_mode)) {
4918                inode->i_op = &ext4_dir_inode_operations;
4919                inode->i_fop = &ext4_dir_operations;
4920        } else if (S_ISLNK(inode->i_mode)) {
4921                if (ext4_inode_is_fast_symlink(inode)) {
4922                        inode->i_op = &ext4_fast_symlink_inode_operations;
4923                        nd_terminate_link(ei->i_data, inode->i_size,
4924                                sizeof(ei->i_data) - 1);
4925                } else {
4926                        inode->i_op = &ext4_symlink_inode_operations;
4927                        ext4_set_aops(inode);
4928                }
4929        } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4930              S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4931                inode->i_op = &ext4_special_inode_operations;
4932                if (raw_inode->i_block[0])
4933                        init_special_inode(inode, inode->i_mode,
4934                           old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4935                else
4936                        init_special_inode(inode, inode->i_mode,
4937                           new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4938        } else {
4939                brelse(bh);
4940                ret = -EIO;
4941                ext4_error(inode->i_sb, __func__,
4942                           "bogus i_mode (%o) for inode=%lu",
4943                           inode->i_mode, inode->i_ino);
4944                goto bad_inode;
4945        }
4946        brelse(iloc.bh);
4947        ext4_set_inode_flags(inode);
4948        unlock_new_inode(inode);
4949        return inode;
4950
4951bad_inode:
4952        iget_failed(inode);
4953        return ERR_PTR(ret);
4954}
4955
4956static int ext4_inode_blocks_set(handle_t *handle,
4957                                struct ext4_inode *raw_inode,
4958                                struct ext4_inode_info *ei)
4959{
4960        struct inode *inode = &(ei->vfs_inode);
4961        u64 i_blocks = inode->i_blocks;
4962        struct super_block *sb = inode->i_sb;
4963
4964        if (i_blocks <= ~0U) {
4965                /*
4966                 * i_blocks can be represnted in a 32 bit variable
4967                 * as multiple of 512 bytes
4968                 */
4969                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4970                raw_inode->i_blocks_high = 0;
4971                ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4972                return 0;
4973        }
4974        if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4975                return -EFBIG;
4976
4977        if (i_blocks <= 0xffffffffffffULL) {
4978                /*
4979                 * i_blocks can be represented in a 48 bit variable
4980                 * as multiple of 512 bytes
4981                 */
4982                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4983                raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4984                ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4985        } else {
4986                ei->i_flags |= EXT4_HUGE_FILE_FL;
4987                /* i_block is stored in file system block size */
4988                i_blocks = i_blocks >> (inode->i_blkbits - 9);
4989                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4990                raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4991        }
4992        return 0;
4993}
4994
4995/*
4996 * Post the struct inode info into an on-disk inode location in the
4997 * buffer-cache.  This gobbles the caller's reference to the
4998 * buffer_head in the inode location struct.
4999 *
5000 * The caller must have write access to iloc->bh.
5001 */
5002static int ext4_do_update_inode(handle_t *handle,
5003                                struct inode *inode,
5004                                struct ext4_iloc *iloc)
5005{
5006        struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5007        struct ext4_inode_info *ei = EXT4_I(inode);
5008        struct buffer_head *bh = iloc->bh;
5009        int err = 0, rc, block;
5010
5011        /* For fields not not tracking in the in-memory inode,
5012         * initialise them to zero for new inodes. */
5013        if (ei->i_state & EXT4_STATE_NEW)
5014                memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5015
5016        ext4_get_inode_flags(ei);
5017        raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5018        if (!(test_opt(inode->i_sb, NO_UID32))) {
5019                raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5020                raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5021/*
5022 * Fix up interoperability with old kernels. Otherwise, old inodes get
5023 * re-used with the upper 16 bits of the uid/gid intact
5024 */
5025                if (!ei->i_dtime) {
5026                        raw_inode->i_uid_high =
5027                                cpu_to_le16(high_16_bits(inode->i_uid));
5028                        raw_inode->i_gid_high =
5029                                cpu_to_le16(high_16_bits(inode->i_gid));
5030                } else {
5031                        raw_inode->i_uid_high = 0;
5032                        raw_inode->i_gid_high = 0;
5033                }
5034        } else {
5035                raw_inode->i_uid_low =
5036                        cpu_to_le16(fs_high2lowuid(inode->i_uid));
5037                raw_inode->i_gid_low =
5038                        cpu_to_le16(fs_high2lowgid(inode->i_gid));
5039                raw_inode->i_uid_high = 0;
5040                raw_inode->i_gid_high = 0;
5041        }
5042        raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5043
5044        EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5045        EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5046        EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5047        EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5048
5049        if (ext4_inode_blocks_set(handle, raw_inode, ei))
5050                goto out_brelse;
5051        raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5052        raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5053        if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5054            cpu_to_le32(EXT4_OS_HURD))
5055                raw_inode->i_file_acl_high =
5056                        cpu_to_le16(ei->i_file_acl >> 32);
5057        raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5058        ext4_isize_set(raw_inode, ei->i_disksize);
5059        if (ei->i_disksize > 0x7fffffffULL) {
5060                struct super_block *sb = inode->i_sb;
5061                if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5062                                EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5063                                EXT4_SB(sb)->s_es->s_rev_level ==
5064                                cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5065                        /* If this is the first large file
5066                         * created, add a flag to the superblock.
5067                         */
5068                        err = ext4_journal_get_write_access(handle,
5069                                        EXT4_SB(sb)->s_sbh);
5070                        if (err)
5071                                goto out_brelse;
5072                        ext4_update_dynamic_rev(sb);
5073                        EXT4_SET_RO_COMPAT_FEATURE(sb,
5074                                        EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5075                        sb->s_dirt = 1;
5076                        ext4_handle_sync(handle);
5077                        err = ext4_handle_dirty_metadata(handle, inode,
5078                                        EXT4_SB(sb)->s_sbh);
5079                }
5080        }
5081        raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5082        if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5083                if (old_valid_dev(inode->i_rdev)) {
5084                        raw_inode->i_block[0] =
5085                                cpu_to_le32(old_encode_dev(inode->i_rdev));
5086                        raw_inode->i_block[1] = 0;
5087                } else {
5088                        raw_inode->i_block[0] = 0;
5089                        raw_inode->i_block[1] =
5090                                cpu_to_le32(new_encode_dev(inode->i_rdev));
5091                        raw_inode->i_block[2] = 0;
5092                }
5093        } else
5094                for (block = 0; block < EXT4_N_BLOCKS; block++)
5095                        raw_inode->i_block[block] = ei->i_data[block];
5096
5097        raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5098        if (ei->i_extra_isize) {
5099                if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5100                        raw_inode->i_version_hi =
5101                        cpu_to_le32(inode->i_version >> 32);
5102                raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5103        }
5104
5105        BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5106        rc = ext4_handle_dirty_metadata(handle, inode, bh);
5107        if (!err)
5108                err = rc;
5109        ei->i_state &= ~EXT4_STATE_NEW;
5110
5111out_brelse:
5112        brelse(bh);
5113        ext4_std_error(inode->i_sb, err);
5114        return err;
5115}
5116
5117/*
5118 * ext4_write_inode()
5119 *
5120 * We are called from a few places:
5121 *
5122 * - Within generic_file_write() for O_SYNC files.
5123 *   Here, there will be no transaction running. We wait for any running
5124 *   trasnaction to commit.
5125 *
5126 * - Within sys_sync(), kupdate and such.
5127 *   We wait on commit, if tol to.
5128 *
5129 * - Within prune_icache() (PF_MEMALLOC == true)
5130 *   Here we simply return.  We can't afford to block kswapd on the
5131 *   journal commit.
5132 *
5133 * In all cases it is actually safe for us to return without doing anything,
5134 * because the inode has been copied into a raw inode buffer in
5135 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5136 * knfsd.
5137 *
5138 * Note that we are absolutely dependent upon all inode dirtiers doing the
5139 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5140 * which we are interested.
5141 *
5142 * It would be a bug for them to not do this.  The code:
5143 *
5144 *      mark_inode_dirty(inode)
5145 *      stuff();
5146 *      inode->i_size = expr;
5147 *
5148 * is in error because a kswapd-driven write_inode() could occur while
5149 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5150 * will no longer be on the superblock's dirty inode list.
5151 */
5152int ext4_write_inode(struct inode *inode, int wait)
5153{
5154        int err;
5155
5156        if (current->flags & PF_MEMALLOC)
5157                return 0;
5158
5159        if (EXT4_SB(inode->i_sb)->s_journal) {
5160                if (ext4_journal_current_handle()) {
5161                        jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5162                        dump_stack();
5163                        return -EIO;
5164                }
5165
5166                if (!wait)
5167                        return 0;
5168
5169                err = ext4_force_commit(inode->i_sb);
5170        } else {
5171                struct ext4_iloc iloc;
5172
5173                err = ext4_get_inode_loc(inode, &iloc);
5174                if (err)
5175                        return err;
5176                if (wait)
5177                        sync_dirty_buffer(iloc.bh);
5178                if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5179                        ext4_error(inode->i_sb, __func__,
5180                                   "IO error syncing inode, "
5181                                   "inode=%lu, block=%llu",
5182                                   inode->i_ino,
5183                                   (unsigned long long)iloc.bh->b_blocknr);
5184                        err = -EIO;
5185                }
5186        }
5187        return err;
5188}
5189
5190/*
5191 * ext4_setattr()
5192 *
5193 * Called from notify_change.
5194 *
5195 * We want to trap VFS attempts to truncate the file as soon as
5196 * possible.  In particular, we want to make sure that when the VFS
5197 * shrinks i_size, we put the inode on the orphan list and modify
5198 * i_disksize immediately, so that during the subsequent flushing of
5199 * dirty pages and freeing of disk blocks, we can guarantee that any
5200 * commit will leave the blocks being flushed in an unused state on
5201 * disk.  (On recovery, the inode will get truncated and the blocks will
5202 * be freed, so we have a strong guarantee that no future commit will
5203 * leave these blocks visible to the user.)
5204 *
5205 * Another thing we have to assure is that if we are in ordered mode
5206 * and inode is still attached to the committing transaction, we must
5207 * we start writeout of all the dirty pages which are being truncated.
5208 * This way we are sure that all the data written in the previous
5209 * transaction are already on disk (truncate waits for pages under
5210 * writeback).
5211 *
5212 * Called with inode->i_mutex down.
5213 */
5214int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5215{
5216        struct inode *inode = dentry->d_inode;
5217        int error, rc = 0;
5218        const unsigned int ia_valid = attr->ia_valid;
5219
5220        error = inode_change_ok(inode, attr);
5221        if (error)
5222                return error;
5223
5224        if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5225                (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5226                handle_t *handle;
5227
5228                /* (user+group)*(old+new) structure, inode write (sb,
5229                 * inode block, ? - but truncate inode update has it) */
5230                handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
5231                                        EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
5232                if (IS_ERR(handle)) {
5233                        error = PTR_ERR(handle);
5234                        goto err_out;
5235                }
5236                error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
5237                if (error) {
5238                        ext4_journal_stop(handle);
5239                        return error;
5240                }
5241                /* Update corresponding info in inode so that everything is in
5242                 * one transaction */
5243                if (attr->ia_valid & ATTR_UID)
5244                        inode->i_uid = attr->ia_uid;
5245                if (attr->ia_valid & ATTR_GID)
5246                        inode->i_gid = attr->ia_gid;
5247                error = ext4_mark_inode_dirty(handle, inode);
5248                ext4_journal_stop(handle);
5249        }
5250
5251        if (attr->ia_valid & ATTR_SIZE) {
5252                if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5253                        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5254
5255                        if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5256                                error = -EFBIG;
5257                                goto err_out;
5258                        }
5259                }
5260        }
5261
5262        if (S_ISREG(inode->i_mode) &&
5263            attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
5264                handle_t *handle;
5265
5266                handle = ext4_journal_start(inode, 3);
5267                if (IS_ERR(handle)) {
5268                        error = PTR_ERR(handle);
5269                        goto err_out;
5270                }
5271
5272                error = ext4_orphan_add(handle, inode);
5273                EXT4_I(inode)->i_disksize = attr->ia_size;
5274                rc = ext4_mark_inode_dirty(handle, inode);
5275                if (!error)
5276                        error = rc;
5277                ext4_journal_stop(handle);
5278
5279                if (ext4_should_order_data(inode)) {
5280                        error = ext4_begin_ordered_truncate(inode,
5281                                                            attr->ia_size);
5282                        if (error) {
5283                                /* Do as much error cleanup as possible */
5284                                handle = ext4_journal_start(inode, 3);
5285                                if (IS_ERR(handle)) {
5286                                        ext4_orphan_del(NULL, inode);
5287                                        goto err_out;
5288                                }
5289                                ext4_orphan_del(handle, inode);
5290                                ext4_journal_stop(handle);
5291                                goto err_out;
5292                        }
5293                }
5294        }
5295
5296        rc = inode_setattr(inode, attr);
5297
5298        /* If inode_setattr's call to ext4_truncate failed to get a
5299         * transaction handle at all, we need to clean up the in-core
5300         * orphan list manually. */
5301        if (inode->i_nlink)
5302                ext4_orphan_del(NULL, inode);
5303
5304        if (!rc && (ia_valid & ATTR_MODE))
5305                rc = ext4_acl_chmod(inode);
5306
5307err_out:
5308        ext4_std_error(inode->i_sb, error);
5309        if (!error)
5310                error = rc;
5311        return error;
5312}
5313
5314int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5315                 struct kstat *stat)
5316{
5317        struct inode *inode;
5318        unsigned long delalloc_blocks;
5319
5320        inode = dentry->d_inode;
5321        generic_fillattr(inode, stat);
5322
5323        /*
5324         * We can't update i_blocks if the block allocation is delayed
5325         * otherwise in the case of system crash before the real block
5326         * allocation is done, we will have i_blocks inconsistent with
5327         * on-disk file blocks.
5328         * We always keep i_blocks updated together with real
5329         * allocation. But to not confuse with user, stat
5330         * will return the blocks that include the delayed allocation
5331         * blocks for this file.
5332         */
5333        spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5334        delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5335        spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5336
5337        stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5338        return 0;
5339}
5340
5341static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5342                                      int chunk)
5343{
5344        int indirects;
5345
5346        /* if nrblocks are contiguous */
5347        if (chunk) {
5348                /*
5349                 * With N contiguous data blocks, it need at most
5350                 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5351                 * 2 dindirect blocks
5352                 * 1 tindirect block
5353                 */
5354                indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5355                return indirects + 3;
5356        }
5357        /*
5358         * if nrblocks are not contiguous, worse case, each block touch
5359         * a indirect block, and each indirect block touch a double indirect
5360         * block, plus a triple indirect block
5361         */
5362        indirects = nrblocks * 2 + 1;
5363        return indirects;
5364}
5365
5366static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5367{
5368        if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5369                return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5370        return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5371}
5372
5373/*
5374 * Account for index blocks, block groups bitmaps and block group
5375 * descriptor blocks if modify datablocks and index blocks
5376 * worse case, the indexs blocks spread over different block groups
5377 *
5378 * If datablocks are discontiguous, they are possible to spread over
5379 * different block groups too. If they are contiugous, with flexbg,
5380 * they could still across block group boundary.
5381 *
5382 * Also account for superblock, inode, quota and xattr blocks
5383 */
5384int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5385{
5386        ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5387        int gdpblocks;
5388        int idxblocks;
5389        int ret = 0;
5390
5391        /*
5392         * How many index blocks need to touch to modify nrblocks?
5393         * The "Chunk" flag indicating whether the nrblocks is
5394         * physically contiguous on disk
5395         *
5396         * For Direct IO and fallocate, they calls get_block to allocate
5397         * one single extent at a time, so they could set the "Chunk" flag
5398         */
5399        idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5400
5401        ret = idxblocks;
5402
5403        /*
5404         * Now let's see how many group bitmaps and group descriptors need
5405         * to account
5406         */
5407        groups = idxblocks;
5408        if (chunk)
5409                groups += 1;
5410        else
5411                groups += nrblocks;
5412
5413        gdpblocks = groups;
5414        if (groups > ngroups)
5415                groups = ngroups;
5416        if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5417                gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5418
5419        /* bitmaps and block group descriptor blocks */
5420        ret += groups + gdpblocks;
5421
5422        /* Blocks for super block, inode, quota and xattr blocks */
5423        ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5424
5425        return ret;
5426}
5427
5428/*
5429 * Calulate the total number of credits to reserve to fit
5430 * the modification of a single pages into a single transaction,
5431 * which may include multiple chunks of block allocations.
5432 *
5433 * This could be called via ext4_write_begin()
5434 *
5435 * We need to consider the worse case, when
5436 * one new block per extent.
5437 */
5438int ext4_writepage_trans_blocks(struct inode *inode)
5439{
5440        int bpp = ext4_journal_blocks_per_page(inode);
5441        int ret;
5442
5443        ret = ext4_meta_trans_blocks(inode, bpp, 0);
5444
5445        /* Account for data blocks for journalled mode */
5446        if (ext4_should_journal_data(inode))
5447                ret += bpp;
5448        return ret;
5449}
5450
5451/*
5452 * Calculate the journal credits for a chunk of data modification.
5453 *
5454 * This is called from DIO, fallocate or whoever calling
5455 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5456 *
5457 * journal buffers for data blocks are not included here, as DIO
5458 * and fallocate do no need to journal data buffers.
5459 */
5460int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5461{
5462        return ext4_meta_trans_blocks(inode, nrblocks, 1);
5463}
5464
5465/*
5466 * The caller must have previously called ext4_reserve_inode_write().
5467 * Give this, we know that the caller already has write access to iloc->bh.
5468 */
5469int ext4_mark_iloc_dirty(handle_t *handle,
5470                         struct inode *inode, struct ext4_iloc *iloc)
5471{
5472        int err = 0;
5473
5474        if (test_opt(inode->i_sb, I_VERSION))
5475                inode_inc_iversion(inode);
5476
5477        /* the do_update_inode consumes one bh->b_count */
5478        get_bh(iloc->bh);
5479
5480        /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5481        err = ext4_do_update_inode(handle, inode, iloc);
5482        put_bh(iloc->bh);
5483        return err;
5484}
5485
5486/*
5487 * On success, We end up with an outstanding reference count against
5488 * iloc->bh.  This _must_ be cleaned up later.
5489 */
5490
5491int
5492ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5493                         struct ext4_iloc *iloc)
5494{
5495        int err;
5496
5497        err = ext4_get_inode_loc(inode, iloc);
5498        if (!err) {
5499                BUFFER_TRACE(iloc->bh, "get_write_access");
5500                err = ext4_journal_get_write_access(handle, iloc->bh);
5501                if (err) {
5502                        brelse(iloc->bh);
5503                        iloc->bh = NULL;
5504                }
5505        }
5506        ext4_std_error(inode->i_sb, err);
5507        return err;
5508}
5509
5510/*
5511 * Expand an inode by new_extra_isize bytes.
5512 * Returns 0 on success or negative error number on failure.
5513 */
5514static int ext4_expand_extra_isize(struct inode *inode,
5515                                   unsigned int new_extra_isize,
5516                                   struct ext4_iloc iloc,
5517                                   handle_t *handle)
5518{
5519        struct ext4_inode *raw_inode;
5520        struct ext4_xattr_ibody_header *header;
5521        struct ext4_xattr_entry *entry;
5522
5523        if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5524                return 0;
5525
5526        raw_inode = ext4_raw_inode(&iloc);
5527
5528        header = IHDR(inode, raw_inode);
5529        entry = IFIRST(header);
5530
5531        /* No extended attributes present */
5532        if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5533                header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5534                memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5535                        new_extra_isize);
5536                EXT4_I(inode)->i_extra_isize = new_extra_isize;
5537                return 0;
5538        }
5539
5540        /* try to expand with EAs present */
5541        return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5542                                          raw_inode, handle);
5543}
5544
5545/*
5546 * What we do here is to mark the in-core inode as clean with respect to inode
5547 * dirtiness (it may still be data-dirty).
5548 * This means that the in-core inode may be reaped by prune_icache
5549 * without having to perform any I/O.  This is a very good thing,
5550 * because *any* task may call prune_icache - even ones which
5551 * have a transaction open against a different journal.
5552 *
5553 * Is this cheating?  Not really.  Sure, we haven't written the
5554 * inode out, but prune_icache isn't a user-visible syncing function.
5555 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5556 * we start and wait on commits.
5557 *
5558 * Is this efficient/effective?  Well, we're being nice to the system
5559 * by cleaning up our inodes proactively so they can be reaped
5560 * without I/O.  But we are potentially leaving up to five seconds'
5561 * worth of inodes floating about which prune_icache wants us to
5562 * write out.  One way to fix that would be to get prune_icache()
5563 * to do a write_super() to free up some memory.  It has the desired
5564 * effect.
5565 */
5566int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5567{
5568        struct ext4_iloc iloc;
5569        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5570        static unsigned int mnt_count;
5571        int err, ret;
5572
5573        might_sleep();
5574        err = ext4_reserve_inode_write(handle, inode, &iloc);
5575        if (ext4_handle_valid(handle) &&
5576            EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5577            !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5578                /*
5579                 * We need extra buffer credits since we may write into EA block
5580                 * with this same handle. If journal_extend fails, then it will
5581                 * only result in a minor loss of functionality for that inode.
5582                 * If this is felt to be critical, then e2fsck should be run to
5583                 * force a large enough s_min_extra_isize.
5584                 */
5585                if ((jbd2_journal_extend(handle,
5586                             EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5587                        ret = ext4_expand_extra_isize(inode,
5588                                                      sbi->s_want_extra_isize,
5589                                                      iloc, handle);
5590                        if (ret) {
5591                                EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5592                                if (mnt_count !=
5593                                        le16_to_cpu(sbi->s_es->s_mnt_count)) {
5594                                        ext4_warning(inode->i_sb, __func__,
5595                                        "Unable to expand inode %lu. Delete"
5596                                        " some EAs or run e2fsck.",
5597                                        inode->i_ino);
5598                                        mnt_count =
5599                                          le16_to_cpu(sbi->s_es->s_mnt_count);
5600                                }
5601                        }
5602                }
5603        }
5604        if (!err)
5605                err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5606        return err;
5607}
5608
5609/*
5610 * ext4_dirty_inode() is called from __mark_inode_dirty()
5611 *
5612 * We're really interested in the case where a file is being extended.
5613 * i_size has been changed by generic_commit_write() and we thus need
5614 * to include the updated inode in the current transaction.
5615 *
5616 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5617 * are allocated to the file.
5618 *
5619 * If the inode is marked synchronous, we don't honour that here - doing
5620 * so would cause a commit on atime updates, which we don't bother doing.
5621 * We handle synchronous inodes at the highest possible level.
5622 */
5623void ext4_dirty_inode(struct inode *inode)
5624{
5625        handle_t *handle;
5626
5627        handle = ext4_journal_start(inode, 2);
5628        if (IS_ERR(handle))
5629                goto out;
5630
5631        ext4_mark_inode_dirty(handle, inode);
5632
5633        ext4_journal_stop(handle);
5634out:
5635        return;
5636}
5637
5638#if 0
5639/*
5640 * Bind an inode's backing buffer_head into this transaction, to prevent
5641 * it from being flushed to disk early.  Unlike
5642 * ext4_reserve_inode_write, this leaves behind no bh reference and
5643 * returns no iloc structure, so the caller needs to repeat the iloc
5644 * lookup to mark the inode dirty later.
5645 */
5646static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5647{
5648        struct ext4_iloc iloc;
5649
5650        int err = 0;
5651        if (handle) {
5652                err = ext4_get_inode_loc(inode, &iloc);
5653                if (!err) {
5654                        BUFFER_TRACE(iloc.bh, "get_write_access");
5655                        err = jbd2_journal_get_write_access(handle, iloc.bh);
5656                        if (!err)
5657                                err = ext4_handle_dirty_metadata(handle,
5658                                                                 inode,
5659                                                                 iloc.bh);
5660                        brelse(iloc.bh);
5661                }
5662        }
5663        ext4_std_error(inode->i_sb, err);
5664        return err;
5665}
5666#endif
5667
5668int ext4_change_inode_journal_flag(struct inode *inode, int val)
5669{
5670        journal_t *journal;
5671        handle_t *handle;
5672        int err;
5673
5674        /*
5675         * We have to be very careful here: changing a data block's
5676         * journaling status dynamically is dangerous.  If we write a
5677         * data block to the journal, change the status and then delete
5678         * that block, we risk forgetting to revoke the old log record
5679         * from the journal and so a subsequent replay can corrupt data.
5680         * So, first we make sure that the journal is empty and that
5681         * nobody is changing anything.
5682         */
5683
5684        journal = EXT4_JOURNAL(inode);
5685        if (!journal)
5686                return 0;
5687        if (is_journal_aborted(journal))
5688                return -EROFS;
5689
5690        jbd2_journal_lock_updates(journal);
5691        jbd2_journal_flush(journal);
5692
5693        /*
5694         * OK, there are no updates running now, and all cached data is
5695         * synced to disk.  We are now in a completely consistent state
5696         * which doesn't have anything in the journal, and we know that
5697         * no filesystem updates are running, so it is safe to modify
5698         * the inode's in-core data-journaling state flag now.
5699         */
5700
5701        if (val)
5702                EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5703        else
5704                EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5705        ext4_set_aops(inode);
5706
5707        jbd2_journal_unlock_updates(journal);
5708
5709        /* Finally we can mark the inode as dirty. */
5710
5711        handle = ext4_journal_start(inode, 1);
5712        if (IS_ERR(handle))
5713                return PTR_ERR(handle);
5714
5715        err = ext4_mark_inode_dirty(handle, inode);
5716        ext4_handle_sync(handle);
5717        ext4_journal_stop(handle);
5718        ext4_std_error(inode->i_sb, err);
5719
5720        return err;
5721}
5722
5723static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5724{
5725        return !buffer_mapped(bh);
5726}
5727
5728int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5729{
5730        struct page *page = vmf->page;
5731        loff_t size;
5732        unsigned long len;
5733        int ret = -EINVAL;
5734        void *fsdata;
5735        struct file *file = vma->vm_file;
5736        struct inode *inode = file->f_path.dentry->d_inode;
5737        struct address_space *mapping = inode->i_mapping;
5738
5739        /*
5740         * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5741         * get i_mutex because we are already holding mmap_sem.
5742         */
5743        down_read(&inode->i_alloc_sem);
5744        size = i_size_read(inode);
5745        if (page->mapping != mapping || size <= page_offset(page)
5746            || !PageUptodate(page)) {
5747                /* page got truncated from under us? */
5748                goto out_unlock;
5749        }
5750        ret = 0;
5751        if (PageMappedToDisk(page))
5752                goto out_unlock;
5753
5754        if (page->index == size >> PAGE_CACHE_SHIFT)
5755                len = size & ~PAGE_CACHE_MASK;
5756        else
5757                len = PAGE_CACHE_SIZE;
5758
5759        lock_page(page);
5760        /*
5761         * return if we have all the buffers mapped. This avoid
5762         * the need to call write_begin/write_end which does a
5763         * journal_start/journal_stop which can block and take
5764         * long time
5765         */
5766        if (page_has_buffers(page)) {
5767                if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5768                                        ext4_bh_unmapped)) {
5769                        unlock_page(page);
5770                        goto out_unlock;
5771                }
5772        }
5773        unlock_page(page);
5774        /*
5775         * OK, we need to fill the hole... Do write_begin write_end
5776         * to do block allocation/reservation.We are not holding
5777         * inode.i__mutex here. That allow * parallel write_begin,
5778         * write_end call. lock_page prevent this from happening
5779         * on the same page though
5780         */
5781        ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5782                        len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5783        if (ret < 0)
5784                goto out_unlock;
5785        ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5786                        len, len, page, fsdata);
5787        if (ret < 0)
5788                goto out_unlock;
5789        ret = 0;
5790out_unlock:
5791        if (ret)
5792                ret = VM_FAULT_SIGBUS;
5793        up_read(&inode->i_alloc_sem);
5794        return ret;
5795}
5796