linux/fs/jbd/journal.c
<<
>>
Prefs
   1/*
   2 * linux/fs/jbd/journal.c
   3 *
   4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
   5 *
   6 * Copyright 1998 Red Hat corp --- All Rights Reserved
   7 *
   8 * This file is part of the Linux kernel and is made available under
   9 * the terms of the GNU General Public License, version 2, or at your
  10 * option, any later version, incorporated herein by reference.
  11 *
  12 * Generic filesystem journal-writing code; part of the ext2fs
  13 * journaling system.
  14 *
  15 * This file manages journals: areas of disk reserved for logging
  16 * transactional updates.  This includes the kernel journaling thread
  17 * which is responsible for scheduling updates to the log.
  18 *
  19 * We do not actually manage the physical storage of the journal in this
  20 * file: that is left to a per-journal policy function, which allows us
  21 * to store the journal within a filesystem-specified area for ext2
  22 * journaling (ext2 can use a reserved inode for storing the log).
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/time.h>
  27#include <linux/fs.h>
  28#include <linux/jbd.h>
  29#include <linux/errno.h>
  30#include <linux/slab.h>
  31#include <linux/init.h>
  32#include <linux/mm.h>
  33#include <linux/freezer.h>
  34#include <linux/pagemap.h>
  35#include <linux/kthread.h>
  36#include <linux/poison.h>
  37#include <linux/proc_fs.h>
  38#include <linux/debugfs.h>
  39
  40#include <asm/uaccess.h>
  41#include <asm/page.h>
  42
  43EXPORT_SYMBOL(journal_start);
  44EXPORT_SYMBOL(journal_restart);
  45EXPORT_SYMBOL(journal_extend);
  46EXPORT_SYMBOL(journal_stop);
  47EXPORT_SYMBOL(journal_lock_updates);
  48EXPORT_SYMBOL(journal_unlock_updates);
  49EXPORT_SYMBOL(journal_get_write_access);
  50EXPORT_SYMBOL(journal_get_create_access);
  51EXPORT_SYMBOL(journal_get_undo_access);
  52EXPORT_SYMBOL(journal_dirty_data);
  53EXPORT_SYMBOL(journal_dirty_metadata);
  54EXPORT_SYMBOL(journal_release_buffer);
  55EXPORT_SYMBOL(journal_forget);
  56#if 0
  57EXPORT_SYMBOL(journal_sync_buffer);
  58#endif
  59EXPORT_SYMBOL(journal_flush);
  60EXPORT_SYMBOL(journal_revoke);
  61
  62EXPORT_SYMBOL(journal_init_dev);
  63EXPORT_SYMBOL(journal_init_inode);
  64EXPORT_SYMBOL(journal_update_format);
  65EXPORT_SYMBOL(journal_check_used_features);
  66EXPORT_SYMBOL(journal_check_available_features);
  67EXPORT_SYMBOL(journal_set_features);
  68EXPORT_SYMBOL(journal_create);
  69EXPORT_SYMBOL(journal_load);
  70EXPORT_SYMBOL(journal_destroy);
  71EXPORT_SYMBOL(journal_abort);
  72EXPORT_SYMBOL(journal_errno);
  73EXPORT_SYMBOL(journal_ack_err);
  74EXPORT_SYMBOL(journal_clear_err);
  75EXPORT_SYMBOL(log_wait_commit);
  76EXPORT_SYMBOL(log_start_commit);
  77EXPORT_SYMBOL(journal_start_commit);
  78EXPORT_SYMBOL(journal_force_commit_nested);
  79EXPORT_SYMBOL(journal_wipe);
  80EXPORT_SYMBOL(journal_blocks_per_page);
  81EXPORT_SYMBOL(journal_invalidatepage);
  82EXPORT_SYMBOL(journal_try_to_free_buffers);
  83EXPORT_SYMBOL(journal_force_commit);
  84
  85static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
  86static void __journal_abort_soft (journal_t *journal, int errno);
  87
  88/*
  89 * Helper function used to manage commit timeouts
  90 */
  91
  92static void commit_timeout(unsigned long __data)
  93{
  94        struct task_struct * p = (struct task_struct *) __data;
  95
  96        wake_up_process(p);
  97}
  98
  99/*
 100 * kjournald: The main thread function used to manage a logging device
 101 * journal.
 102 *
 103 * This kernel thread is responsible for two things:
 104 *
 105 * 1) COMMIT:  Every so often we need to commit the current state of the
 106 *    filesystem to disk.  The journal thread is responsible for writing
 107 *    all of the metadata buffers to disk.
 108 *
 109 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
 110 *    of the data in that part of the log has been rewritten elsewhere on
 111 *    the disk.  Flushing these old buffers to reclaim space in the log is
 112 *    known as checkpointing, and this thread is responsible for that job.
 113 */
 114
 115static int kjournald(void *arg)
 116{
 117        journal_t *journal = arg;
 118        transaction_t *transaction;
 119
 120        /*
 121         * Set up an interval timer which can be used to trigger a commit wakeup
 122         * after the commit interval expires
 123         */
 124        setup_timer(&journal->j_commit_timer, commit_timeout,
 125                        (unsigned long)current);
 126
 127        /* Record that the journal thread is running */
 128        journal->j_task = current;
 129        wake_up(&journal->j_wait_done_commit);
 130
 131        printk(KERN_INFO "kjournald starting.  Commit interval %ld seconds\n",
 132                        journal->j_commit_interval / HZ);
 133
 134        /*
 135         * And now, wait forever for commit wakeup events.
 136         */
 137        spin_lock(&journal->j_state_lock);
 138
 139loop:
 140        if (journal->j_flags & JFS_UNMOUNT)
 141                goto end_loop;
 142
 143        jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
 144                journal->j_commit_sequence, journal->j_commit_request);
 145
 146        if (journal->j_commit_sequence != journal->j_commit_request) {
 147                jbd_debug(1, "OK, requests differ\n");
 148                spin_unlock(&journal->j_state_lock);
 149                del_timer_sync(&journal->j_commit_timer);
 150                journal_commit_transaction(journal);
 151                spin_lock(&journal->j_state_lock);
 152                goto loop;
 153        }
 154
 155        wake_up(&journal->j_wait_done_commit);
 156        if (freezing(current)) {
 157                /*
 158                 * The simpler the better. Flushing journal isn't a
 159                 * good idea, because that depends on threads that may
 160                 * be already stopped.
 161                 */
 162                jbd_debug(1, "Now suspending kjournald\n");
 163                spin_unlock(&journal->j_state_lock);
 164                refrigerator();
 165                spin_lock(&journal->j_state_lock);
 166        } else {
 167                /*
 168                 * We assume on resume that commits are already there,
 169                 * so we don't sleep
 170                 */
 171                DEFINE_WAIT(wait);
 172                int should_sleep = 1;
 173
 174                prepare_to_wait(&journal->j_wait_commit, &wait,
 175                                TASK_INTERRUPTIBLE);
 176                if (journal->j_commit_sequence != journal->j_commit_request)
 177                        should_sleep = 0;
 178                transaction = journal->j_running_transaction;
 179                if (transaction && time_after_eq(jiffies,
 180                                                transaction->t_expires))
 181                        should_sleep = 0;
 182                if (journal->j_flags & JFS_UNMOUNT)
 183                        should_sleep = 0;
 184                if (should_sleep) {
 185                        spin_unlock(&journal->j_state_lock);
 186                        schedule();
 187                        spin_lock(&journal->j_state_lock);
 188                }
 189                finish_wait(&journal->j_wait_commit, &wait);
 190        }
 191
 192        jbd_debug(1, "kjournald wakes\n");
 193
 194        /*
 195         * Were we woken up by a commit wakeup event?
 196         */
 197        transaction = journal->j_running_transaction;
 198        if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
 199                journal->j_commit_request = transaction->t_tid;
 200                jbd_debug(1, "woke because of timeout\n");
 201        }
 202        goto loop;
 203
 204end_loop:
 205        spin_unlock(&journal->j_state_lock);
 206        del_timer_sync(&journal->j_commit_timer);
 207        journal->j_task = NULL;
 208        wake_up(&journal->j_wait_done_commit);
 209        jbd_debug(1, "Journal thread exiting.\n");
 210        return 0;
 211}
 212
 213static int journal_start_thread(journal_t *journal)
 214{
 215        struct task_struct *t;
 216
 217        t = kthread_run(kjournald, journal, "kjournald");
 218        if (IS_ERR(t))
 219                return PTR_ERR(t);
 220
 221        wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
 222        return 0;
 223}
 224
 225static void journal_kill_thread(journal_t *journal)
 226{
 227        spin_lock(&journal->j_state_lock);
 228        journal->j_flags |= JFS_UNMOUNT;
 229
 230        while (journal->j_task) {
 231                wake_up(&journal->j_wait_commit);
 232                spin_unlock(&journal->j_state_lock);
 233                wait_event(journal->j_wait_done_commit,
 234                                journal->j_task == NULL);
 235                spin_lock(&journal->j_state_lock);
 236        }
 237        spin_unlock(&journal->j_state_lock);
 238}
 239
 240/*
 241 * journal_write_metadata_buffer: write a metadata buffer to the journal.
 242 *
 243 * Writes a metadata buffer to a given disk block.  The actual IO is not
 244 * performed but a new buffer_head is constructed which labels the data
 245 * to be written with the correct destination disk block.
 246 *
 247 * Any magic-number escaping which needs to be done will cause a
 248 * copy-out here.  If the buffer happens to start with the
 249 * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
 250 * magic number is only written to the log for descripter blocks.  In
 251 * this case, we copy the data and replace the first word with 0, and we
 252 * return a result code which indicates that this buffer needs to be
 253 * marked as an escaped buffer in the corresponding log descriptor
 254 * block.  The missing word can then be restored when the block is read
 255 * during recovery.
 256 *
 257 * If the source buffer has already been modified by a new transaction
 258 * since we took the last commit snapshot, we use the frozen copy of
 259 * that data for IO.  If we end up using the existing buffer_head's data
 260 * for the write, then we *have* to lock the buffer to prevent anyone
 261 * else from using and possibly modifying it while the IO is in
 262 * progress.
 263 *
 264 * The function returns a pointer to the buffer_heads to be used for IO.
 265 *
 266 * We assume that the journal has already been locked in this function.
 267 *
 268 * Return value:
 269 *  <0: Error
 270 * >=0: Finished OK
 271 *
 272 * On success:
 273 * Bit 0 set == escape performed on the data
 274 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
 275 */
 276
 277int journal_write_metadata_buffer(transaction_t *transaction,
 278                                  struct journal_head  *jh_in,
 279                                  struct journal_head **jh_out,
 280                                  unsigned int blocknr)
 281{
 282        int need_copy_out = 0;
 283        int done_copy_out = 0;
 284        int do_escape = 0;
 285        char *mapped_data;
 286        struct buffer_head *new_bh;
 287        struct journal_head *new_jh;
 288        struct page *new_page;
 289        unsigned int new_offset;
 290        struct buffer_head *bh_in = jh2bh(jh_in);
 291        journal_t *journal = transaction->t_journal;
 292
 293        /*
 294         * The buffer really shouldn't be locked: only the current committing
 295         * transaction is allowed to write it, so nobody else is allowed
 296         * to do any IO.
 297         *
 298         * akpm: except if we're journalling data, and write() output is
 299         * also part of a shared mapping, and another thread has
 300         * decided to launch a writepage() against this buffer.
 301         */
 302        J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
 303
 304        new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
 305        /* keep subsequent assertions sane */
 306        new_bh->b_state = 0;
 307        init_buffer(new_bh, NULL, NULL);
 308        atomic_set(&new_bh->b_count, 1);
 309        new_jh = journal_add_journal_head(new_bh);      /* This sleeps */
 310
 311        /*
 312         * If a new transaction has already done a buffer copy-out, then
 313         * we use that version of the data for the commit.
 314         */
 315        jbd_lock_bh_state(bh_in);
 316repeat:
 317        if (jh_in->b_frozen_data) {
 318                done_copy_out = 1;
 319                new_page = virt_to_page(jh_in->b_frozen_data);
 320                new_offset = offset_in_page(jh_in->b_frozen_data);
 321        } else {
 322                new_page = jh2bh(jh_in)->b_page;
 323                new_offset = offset_in_page(jh2bh(jh_in)->b_data);
 324        }
 325
 326        mapped_data = kmap_atomic(new_page, KM_USER0);
 327        /*
 328         * Check for escaping
 329         */
 330        if (*((__be32 *)(mapped_data + new_offset)) ==
 331                                cpu_to_be32(JFS_MAGIC_NUMBER)) {
 332                need_copy_out = 1;
 333                do_escape = 1;
 334        }
 335        kunmap_atomic(mapped_data, KM_USER0);
 336
 337        /*
 338         * Do we need to do a data copy?
 339         */
 340        if (need_copy_out && !done_copy_out) {
 341                char *tmp;
 342
 343                jbd_unlock_bh_state(bh_in);
 344                tmp = jbd_alloc(bh_in->b_size, GFP_NOFS);
 345                jbd_lock_bh_state(bh_in);
 346                if (jh_in->b_frozen_data) {
 347                        jbd_free(tmp, bh_in->b_size);
 348                        goto repeat;
 349                }
 350
 351                jh_in->b_frozen_data = tmp;
 352                mapped_data = kmap_atomic(new_page, KM_USER0);
 353                memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
 354                kunmap_atomic(mapped_data, KM_USER0);
 355
 356                new_page = virt_to_page(tmp);
 357                new_offset = offset_in_page(tmp);
 358                done_copy_out = 1;
 359        }
 360
 361        /*
 362         * Did we need to do an escaping?  Now we've done all the
 363         * copying, we can finally do so.
 364         */
 365        if (do_escape) {
 366                mapped_data = kmap_atomic(new_page, KM_USER0);
 367                *((unsigned int *)(mapped_data + new_offset)) = 0;
 368                kunmap_atomic(mapped_data, KM_USER0);
 369        }
 370
 371        set_bh_page(new_bh, new_page, new_offset);
 372        new_jh->b_transaction = NULL;
 373        new_bh->b_size = jh2bh(jh_in)->b_size;
 374        new_bh->b_bdev = transaction->t_journal->j_dev;
 375        new_bh->b_blocknr = blocknr;
 376        set_buffer_mapped(new_bh);
 377        set_buffer_dirty(new_bh);
 378
 379        *jh_out = new_jh;
 380
 381        /*
 382         * The to-be-written buffer needs to get moved to the io queue,
 383         * and the original buffer whose contents we are shadowing or
 384         * copying is moved to the transaction's shadow queue.
 385         */
 386        JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
 387        spin_lock(&journal->j_list_lock);
 388        __journal_file_buffer(jh_in, transaction, BJ_Shadow);
 389        spin_unlock(&journal->j_list_lock);
 390        jbd_unlock_bh_state(bh_in);
 391
 392        JBUFFER_TRACE(new_jh, "file as BJ_IO");
 393        journal_file_buffer(new_jh, transaction, BJ_IO);
 394
 395        return do_escape | (done_copy_out << 1);
 396}
 397
 398/*
 399 * Allocation code for the journal file.  Manage the space left in the
 400 * journal, so that we can begin checkpointing when appropriate.
 401 */
 402
 403/*
 404 * __log_space_left: Return the number of free blocks left in the journal.
 405 *
 406 * Called with the journal already locked.
 407 *
 408 * Called under j_state_lock
 409 */
 410
 411int __log_space_left(journal_t *journal)
 412{
 413        int left = journal->j_free;
 414
 415        assert_spin_locked(&journal->j_state_lock);
 416
 417        /*
 418         * Be pessimistic here about the number of those free blocks which
 419         * might be required for log descriptor control blocks.
 420         */
 421
 422#define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
 423
 424        left -= MIN_LOG_RESERVED_BLOCKS;
 425
 426        if (left <= 0)
 427                return 0;
 428        left -= (left >> 3);
 429        return left;
 430}
 431
 432/*
 433 * Called under j_state_lock.  Returns true if a transaction commit was started.
 434 */
 435int __log_start_commit(journal_t *journal, tid_t target)
 436{
 437        /*
 438         * Are we already doing a recent enough commit?
 439         */
 440        if (!tid_geq(journal->j_commit_request, target)) {
 441                /*
 442                 * We want a new commit: OK, mark the request and wakup the
 443                 * commit thread.  We do _not_ do the commit ourselves.
 444                 */
 445
 446                journal->j_commit_request = target;
 447                jbd_debug(1, "JBD: requesting commit %d/%d\n",
 448                          journal->j_commit_request,
 449                          journal->j_commit_sequence);
 450                wake_up(&journal->j_wait_commit);
 451                return 1;
 452        }
 453        return 0;
 454}
 455
 456int log_start_commit(journal_t *journal, tid_t tid)
 457{
 458        int ret;
 459
 460        spin_lock(&journal->j_state_lock);
 461        ret = __log_start_commit(journal, tid);
 462        spin_unlock(&journal->j_state_lock);
 463        return ret;
 464}
 465
 466/*
 467 * Force and wait upon a commit if the calling process is not within
 468 * transaction.  This is used for forcing out undo-protected data which contains
 469 * bitmaps, when the fs is running out of space.
 470 *
 471 * We can only force the running transaction if we don't have an active handle;
 472 * otherwise, we will deadlock.
 473 *
 474 * Returns true if a transaction was started.
 475 */
 476int journal_force_commit_nested(journal_t *journal)
 477{
 478        transaction_t *transaction = NULL;
 479        tid_t tid;
 480
 481        spin_lock(&journal->j_state_lock);
 482        if (journal->j_running_transaction && !current->journal_info) {
 483                transaction = journal->j_running_transaction;
 484                __log_start_commit(journal, transaction->t_tid);
 485        } else if (journal->j_committing_transaction)
 486                transaction = journal->j_committing_transaction;
 487
 488        if (!transaction) {
 489                spin_unlock(&journal->j_state_lock);
 490                return 0;       /* Nothing to retry */
 491        }
 492
 493        tid = transaction->t_tid;
 494        spin_unlock(&journal->j_state_lock);
 495        log_wait_commit(journal, tid);
 496        return 1;
 497}
 498
 499/*
 500 * Start a commit of the current running transaction (if any).  Returns true
 501 * if a transaction is going to be committed (or is currently already
 502 * committing), and fills its tid in at *ptid
 503 */
 504int journal_start_commit(journal_t *journal, tid_t *ptid)
 505{
 506        int ret = 0;
 507
 508        spin_lock(&journal->j_state_lock);
 509        if (journal->j_running_transaction) {
 510                tid_t tid = journal->j_running_transaction->t_tid;
 511
 512                __log_start_commit(journal, tid);
 513                /* There's a running transaction and we've just made sure
 514                 * it's commit has been scheduled. */
 515                if (ptid)
 516                        *ptid = tid;
 517                ret = 1;
 518        } else if (journal->j_committing_transaction) {
 519                /*
 520                 * If ext3_write_super() recently started a commit, then we
 521                 * have to wait for completion of that transaction
 522                 */
 523                if (ptid)
 524                        *ptid = journal->j_committing_transaction->t_tid;
 525                ret = 1;
 526        }
 527        spin_unlock(&journal->j_state_lock);
 528        return ret;
 529}
 530
 531/*
 532 * Wait for a specified commit to complete.
 533 * The caller may not hold the journal lock.
 534 */
 535int log_wait_commit(journal_t *journal, tid_t tid)
 536{
 537        int err = 0;
 538
 539#ifdef CONFIG_JBD_DEBUG
 540        spin_lock(&journal->j_state_lock);
 541        if (!tid_geq(journal->j_commit_request, tid)) {
 542                printk(KERN_EMERG
 543                       "%s: error: j_commit_request=%d, tid=%d\n",
 544                       __func__, journal->j_commit_request, tid);
 545        }
 546        spin_unlock(&journal->j_state_lock);
 547#endif
 548        spin_lock(&journal->j_state_lock);
 549        while (tid_gt(tid, journal->j_commit_sequence)) {
 550                jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
 551                                  tid, journal->j_commit_sequence);
 552                wake_up(&journal->j_wait_commit);
 553                spin_unlock(&journal->j_state_lock);
 554                wait_event(journal->j_wait_done_commit,
 555                                !tid_gt(tid, journal->j_commit_sequence));
 556                spin_lock(&journal->j_state_lock);
 557        }
 558        spin_unlock(&journal->j_state_lock);
 559
 560        if (unlikely(is_journal_aborted(journal))) {
 561                printk(KERN_EMERG "journal commit I/O error\n");
 562                err = -EIO;
 563        }
 564        return err;
 565}
 566
 567/*
 568 * Log buffer allocation routines:
 569 */
 570
 571int journal_next_log_block(journal_t *journal, unsigned int *retp)
 572{
 573        unsigned int blocknr;
 574
 575        spin_lock(&journal->j_state_lock);
 576        J_ASSERT(journal->j_free > 1);
 577
 578        blocknr = journal->j_head;
 579        journal->j_head++;
 580        journal->j_free--;
 581        if (journal->j_head == journal->j_last)
 582                journal->j_head = journal->j_first;
 583        spin_unlock(&journal->j_state_lock);
 584        return journal_bmap(journal, blocknr, retp);
 585}
 586
 587/*
 588 * Conversion of logical to physical block numbers for the journal
 589 *
 590 * On external journals the journal blocks are identity-mapped, so
 591 * this is a no-op.  If needed, we can use j_blk_offset - everything is
 592 * ready.
 593 */
 594int journal_bmap(journal_t *journal, unsigned int blocknr,
 595                 unsigned int *retp)
 596{
 597        int err = 0;
 598        unsigned int ret;
 599
 600        if (journal->j_inode) {
 601                ret = bmap(journal->j_inode, blocknr);
 602                if (ret)
 603                        *retp = ret;
 604                else {
 605                        char b[BDEVNAME_SIZE];
 606
 607                        printk(KERN_ALERT "%s: journal block not found "
 608                                        "at offset %u on %s\n",
 609                                __func__,
 610                                blocknr,
 611                                bdevname(journal->j_dev, b));
 612                        err = -EIO;
 613                        __journal_abort_soft(journal, err);
 614                }
 615        } else {
 616                *retp = blocknr; /* +journal->j_blk_offset */
 617        }
 618        return err;
 619}
 620
 621/*
 622 * We play buffer_head aliasing tricks to write data/metadata blocks to
 623 * the journal without copying their contents, but for journal
 624 * descriptor blocks we do need to generate bona fide buffers.
 625 *
 626 * After the caller of journal_get_descriptor_buffer() has finished modifying
 627 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
 628 * But we don't bother doing that, so there will be coherency problems with
 629 * mmaps of blockdevs which hold live JBD-controlled filesystems.
 630 */
 631struct journal_head *journal_get_descriptor_buffer(journal_t *journal)
 632{
 633        struct buffer_head *bh;
 634        unsigned int blocknr;
 635        int err;
 636
 637        err = journal_next_log_block(journal, &blocknr);
 638
 639        if (err)
 640                return NULL;
 641
 642        bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
 643        if (!bh)
 644                return NULL;
 645        lock_buffer(bh);
 646        memset(bh->b_data, 0, journal->j_blocksize);
 647        set_buffer_uptodate(bh);
 648        unlock_buffer(bh);
 649        BUFFER_TRACE(bh, "return this buffer");
 650        return journal_add_journal_head(bh);
 651}
 652
 653/*
 654 * Management for journal control blocks: functions to create and
 655 * destroy journal_t structures, and to initialise and read existing
 656 * journal blocks from disk.  */
 657
 658/* First: create and setup a journal_t object in memory.  We initialise
 659 * very few fields yet: that has to wait until we have created the
 660 * journal structures from from scratch, or loaded them from disk. */
 661
 662static journal_t * journal_init_common (void)
 663{
 664        journal_t *journal;
 665        int err;
 666
 667        journal = kzalloc(sizeof(*journal), GFP_KERNEL);
 668        if (!journal)
 669                goto fail;
 670
 671        init_waitqueue_head(&journal->j_wait_transaction_locked);
 672        init_waitqueue_head(&journal->j_wait_logspace);
 673        init_waitqueue_head(&journal->j_wait_done_commit);
 674        init_waitqueue_head(&journal->j_wait_checkpoint);
 675        init_waitqueue_head(&journal->j_wait_commit);
 676        init_waitqueue_head(&journal->j_wait_updates);
 677        mutex_init(&journal->j_barrier);
 678        mutex_init(&journal->j_checkpoint_mutex);
 679        spin_lock_init(&journal->j_revoke_lock);
 680        spin_lock_init(&journal->j_list_lock);
 681        spin_lock_init(&journal->j_state_lock);
 682
 683        journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE);
 684
 685        /* The journal is marked for error until we succeed with recovery! */
 686        journal->j_flags = JFS_ABORT;
 687
 688        /* Set up a default-sized revoke table for the new mount. */
 689        err = journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
 690        if (err) {
 691                kfree(journal);
 692                goto fail;
 693        }
 694        return journal;
 695fail:
 696        return NULL;
 697}
 698
 699/* journal_init_dev and journal_init_inode:
 700 *
 701 * Create a journal structure assigned some fixed set of disk blocks to
 702 * the journal.  We don't actually touch those disk blocks yet, but we
 703 * need to set up all of the mapping information to tell the journaling
 704 * system where the journal blocks are.
 705 *
 706 */
 707
 708/**
 709 *  journal_t * journal_init_dev() - creates and initialises a journal structure
 710 *  @bdev: Block device on which to create the journal
 711 *  @fs_dev: Device which hold journalled filesystem for this journal.
 712 *  @start: Block nr Start of journal.
 713 *  @len:  Length of the journal in blocks.
 714 *  @blocksize: blocksize of journalling device
 715 *
 716 *  Returns: a newly created journal_t *
 717 *
 718 *  journal_init_dev creates a journal which maps a fixed contiguous
 719 *  range of blocks on an arbitrary block device.
 720 *
 721 */
 722journal_t * journal_init_dev(struct block_device *bdev,
 723                        struct block_device *fs_dev,
 724                        int start, int len, int blocksize)
 725{
 726        journal_t *journal = journal_init_common();
 727        struct buffer_head *bh;
 728        int n;
 729
 730        if (!journal)
 731                return NULL;
 732
 733        /* journal descriptor can store up to n blocks -bzzz */
 734        journal->j_blocksize = blocksize;
 735        n = journal->j_blocksize / sizeof(journal_block_tag_t);
 736        journal->j_wbufsize = n;
 737        journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
 738        if (!journal->j_wbuf) {
 739                printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
 740                        __func__);
 741                goto out_err;
 742        }
 743        journal->j_dev = bdev;
 744        journal->j_fs_dev = fs_dev;
 745        journal->j_blk_offset = start;
 746        journal->j_maxlen = len;
 747
 748        bh = __getblk(journal->j_dev, start, journal->j_blocksize);
 749        if (!bh) {
 750                printk(KERN_ERR
 751                       "%s: Cannot get buffer for journal superblock\n",
 752                       __func__);
 753                goto out_err;
 754        }
 755        journal->j_sb_buffer = bh;
 756        journal->j_superblock = (journal_superblock_t *)bh->b_data;
 757
 758        return journal;
 759out_err:
 760        kfree(journal->j_wbuf);
 761        kfree(journal);
 762        return NULL;
 763}
 764
 765/**
 766 *  journal_t * journal_init_inode () - creates a journal which maps to a inode.
 767 *  @inode: An inode to create the journal in
 768 *
 769 * journal_init_inode creates a journal which maps an on-disk inode as
 770 * the journal.  The inode must exist already, must support bmap() and
 771 * must have all data blocks preallocated.
 772 */
 773journal_t * journal_init_inode (struct inode *inode)
 774{
 775        struct buffer_head *bh;
 776        journal_t *journal = journal_init_common();
 777        int err;
 778        int n;
 779        unsigned int blocknr;
 780
 781        if (!journal)
 782                return NULL;
 783
 784        journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
 785        journal->j_inode = inode;
 786        jbd_debug(1,
 787                  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
 788                  journal, inode->i_sb->s_id, inode->i_ino,
 789                  (long long) inode->i_size,
 790                  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
 791
 792        journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
 793        journal->j_blocksize = inode->i_sb->s_blocksize;
 794
 795        /* journal descriptor can store up to n blocks -bzzz */
 796        n = journal->j_blocksize / sizeof(journal_block_tag_t);
 797        journal->j_wbufsize = n;
 798        journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
 799        if (!journal->j_wbuf) {
 800                printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
 801                        __func__);
 802                goto out_err;
 803        }
 804
 805        err = journal_bmap(journal, 0, &blocknr);
 806        /* If that failed, give up */
 807        if (err) {
 808                printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
 809                       __func__);
 810                goto out_err;
 811        }
 812
 813        bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
 814        if (!bh) {
 815                printk(KERN_ERR
 816                       "%s: Cannot get buffer for journal superblock\n",
 817                       __func__);
 818                goto out_err;
 819        }
 820        journal->j_sb_buffer = bh;
 821        journal->j_superblock = (journal_superblock_t *)bh->b_data;
 822
 823        return journal;
 824out_err:
 825        kfree(journal->j_wbuf);
 826        kfree(journal);
 827        return NULL;
 828}
 829
 830/*
 831 * If the journal init or create aborts, we need to mark the journal
 832 * superblock as being NULL to prevent the journal destroy from writing
 833 * back a bogus superblock.
 834 */
 835static void journal_fail_superblock (journal_t *journal)
 836{
 837        struct buffer_head *bh = journal->j_sb_buffer;
 838        brelse(bh);
 839        journal->j_sb_buffer = NULL;
 840}
 841
 842/*
 843 * Given a journal_t structure, initialise the various fields for
 844 * startup of a new journaling session.  We use this both when creating
 845 * a journal, and after recovering an old journal to reset it for
 846 * subsequent use.
 847 */
 848
 849static int journal_reset(journal_t *journal)
 850{
 851        journal_superblock_t *sb = journal->j_superblock;
 852        unsigned int first, last;
 853
 854        first = be32_to_cpu(sb->s_first);
 855        last = be32_to_cpu(sb->s_maxlen);
 856        if (first + JFS_MIN_JOURNAL_BLOCKS > last + 1) {
 857                printk(KERN_ERR "JBD: Journal too short (blocks %u-%u).\n",
 858                       first, last);
 859                journal_fail_superblock(journal);
 860                return -EINVAL;
 861        }
 862
 863        journal->j_first = first;
 864        journal->j_last = last;
 865
 866        journal->j_head = first;
 867        journal->j_tail = first;
 868        journal->j_free = last - first;
 869
 870        journal->j_tail_sequence = journal->j_transaction_sequence;
 871        journal->j_commit_sequence = journal->j_transaction_sequence - 1;
 872        journal->j_commit_request = journal->j_commit_sequence;
 873
 874        journal->j_max_transaction_buffers = journal->j_maxlen / 4;
 875
 876        /* Add the dynamic fields and write it to disk. */
 877        journal_update_superblock(journal, 1);
 878        return journal_start_thread(journal);
 879}
 880
 881/**
 882 * int journal_create() - Initialise the new journal file
 883 * @journal: Journal to create. This structure must have been initialised
 884 *
 885 * Given a journal_t structure which tells us which disk blocks we can
 886 * use, create a new journal superblock and initialise all of the
 887 * journal fields from scratch.
 888 **/
 889int journal_create(journal_t *journal)
 890{
 891        unsigned int blocknr;
 892        struct buffer_head *bh;
 893        journal_superblock_t *sb;
 894        int i, err;
 895
 896        if (journal->j_maxlen < JFS_MIN_JOURNAL_BLOCKS) {
 897                printk (KERN_ERR "Journal length (%d blocks) too short.\n",
 898                        journal->j_maxlen);
 899                journal_fail_superblock(journal);
 900                return -EINVAL;
 901        }
 902
 903        if (journal->j_inode == NULL) {
 904                /*
 905                 * We don't know what block to start at!
 906                 */
 907                printk(KERN_EMERG
 908                       "%s: creation of journal on external device!\n",
 909                       __func__);
 910                BUG();
 911        }
 912
 913        /* Zero out the entire journal on disk.  We cannot afford to
 914           have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
 915        jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
 916        for (i = 0; i < journal->j_maxlen; i++) {
 917                err = journal_bmap(journal, i, &blocknr);
 918                if (err)
 919                        return err;
 920                bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
 921                lock_buffer(bh);
 922                memset (bh->b_data, 0, journal->j_blocksize);
 923                BUFFER_TRACE(bh, "marking dirty");
 924                mark_buffer_dirty(bh);
 925                BUFFER_TRACE(bh, "marking uptodate");
 926                set_buffer_uptodate(bh);
 927                unlock_buffer(bh);
 928                __brelse(bh);
 929        }
 930
 931        sync_blockdev(journal->j_dev);
 932        jbd_debug(1, "JBD: journal cleared.\n");
 933
 934        /* OK, fill in the initial static fields in the new superblock */
 935        sb = journal->j_superblock;
 936
 937        sb->s_header.h_magic     = cpu_to_be32(JFS_MAGIC_NUMBER);
 938        sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
 939
 940        sb->s_blocksize = cpu_to_be32(journal->j_blocksize);
 941        sb->s_maxlen    = cpu_to_be32(journal->j_maxlen);
 942        sb->s_first     = cpu_to_be32(1);
 943
 944        journal->j_transaction_sequence = 1;
 945
 946        journal->j_flags &= ~JFS_ABORT;
 947        journal->j_format_version = 2;
 948
 949        return journal_reset(journal);
 950}
 951
 952/**
 953 * void journal_update_superblock() - Update journal sb on disk.
 954 * @journal: The journal to update.
 955 * @wait: Set to '0' if you don't want to wait for IO completion.
 956 *
 957 * Update a journal's dynamic superblock fields and write it to disk,
 958 * optionally waiting for the IO to complete.
 959 */
 960void journal_update_superblock(journal_t *journal, int wait)
 961{
 962        journal_superblock_t *sb = journal->j_superblock;
 963        struct buffer_head *bh = journal->j_sb_buffer;
 964
 965        /*
 966         * As a special case, if the on-disk copy is already marked as needing
 967         * no recovery (s_start == 0) and there are no outstanding transactions
 968         * in the filesystem, then we can safely defer the superblock update
 969         * until the next commit by setting JFS_FLUSHED.  This avoids
 970         * attempting a write to a potential-readonly device.
 971         */
 972        if (sb->s_start == 0 && journal->j_tail_sequence ==
 973                                journal->j_transaction_sequence) {
 974                jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
 975                        "(start %u, seq %d, errno %d)\n",
 976                        journal->j_tail, journal->j_tail_sequence,
 977                        journal->j_errno);
 978                goto out;
 979        }
 980
 981        spin_lock(&journal->j_state_lock);
 982        jbd_debug(1,"JBD: updating superblock (start %u, seq %d, errno %d)\n",
 983                  journal->j_tail, journal->j_tail_sequence, journal->j_errno);
 984
 985        sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
 986        sb->s_start    = cpu_to_be32(journal->j_tail);
 987        sb->s_errno    = cpu_to_be32(journal->j_errno);
 988        spin_unlock(&journal->j_state_lock);
 989
 990        BUFFER_TRACE(bh, "marking dirty");
 991        mark_buffer_dirty(bh);
 992        if (wait)
 993                sync_dirty_buffer(bh);
 994        else
 995                ll_rw_block(SWRITE, 1, &bh);
 996
 997out:
 998        /* If we have just flushed the log (by marking s_start==0), then
 999         * any future commit will have to be careful to update the
1000         * superblock again to re-record the true start of the log. */
1001
1002        spin_lock(&journal->j_state_lock);
1003        if (sb->s_start)
1004                journal->j_flags &= ~JFS_FLUSHED;
1005        else
1006                journal->j_flags |= JFS_FLUSHED;
1007        spin_unlock(&journal->j_state_lock);
1008}
1009
1010/*
1011 * Read the superblock for a given journal, performing initial
1012 * validation of the format.
1013 */
1014
1015static int journal_get_superblock(journal_t *journal)
1016{
1017        struct buffer_head *bh;
1018        journal_superblock_t *sb;
1019        int err = -EIO;
1020
1021        bh = journal->j_sb_buffer;
1022
1023        J_ASSERT(bh != NULL);
1024        if (!buffer_uptodate(bh)) {
1025                ll_rw_block(READ, 1, &bh);
1026                wait_on_buffer(bh);
1027                if (!buffer_uptodate(bh)) {
1028                        printk (KERN_ERR
1029                                "JBD: IO error reading journal superblock\n");
1030                        goto out;
1031                }
1032        }
1033
1034        sb = journal->j_superblock;
1035
1036        err = -EINVAL;
1037
1038        if (sb->s_header.h_magic != cpu_to_be32(JFS_MAGIC_NUMBER) ||
1039            sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1040                printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1041                goto out;
1042        }
1043
1044        switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1045        case JFS_SUPERBLOCK_V1:
1046                journal->j_format_version = 1;
1047                break;
1048        case JFS_SUPERBLOCK_V2:
1049                journal->j_format_version = 2;
1050                break;
1051        default:
1052                printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1053                goto out;
1054        }
1055
1056        if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1057                journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1058        else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1059                printk (KERN_WARNING "JBD: journal file too short\n");
1060                goto out;
1061        }
1062
1063        return 0;
1064
1065out:
1066        journal_fail_superblock(journal);
1067        return err;
1068}
1069
1070/*
1071 * Load the on-disk journal superblock and read the key fields into the
1072 * journal_t.
1073 */
1074
1075static int load_superblock(journal_t *journal)
1076{
1077        int err;
1078        journal_superblock_t *sb;
1079
1080        err = journal_get_superblock(journal);
1081        if (err)
1082                return err;
1083
1084        sb = journal->j_superblock;
1085
1086        journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1087        journal->j_tail = be32_to_cpu(sb->s_start);
1088        journal->j_first = be32_to_cpu(sb->s_first);
1089        journal->j_last = be32_to_cpu(sb->s_maxlen);
1090        journal->j_errno = be32_to_cpu(sb->s_errno);
1091
1092        return 0;
1093}
1094
1095
1096/**
1097 * int journal_load() - Read journal from disk.
1098 * @journal: Journal to act on.
1099 *
1100 * Given a journal_t structure which tells us which disk blocks contain
1101 * a journal, read the journal from disk to initialise the in-memory
1102 * structures.
1103 */
1104int journal_load(journal_t *journal)
1105{
1106        int err;
1107        journal_superblock_t *sb;
1108
1109        err = load_superblock(journal);
1110        if (err)
1111                return err;
1112
1113        sb = journal->j_superblock;
1114        /* If this is a V2 superblock, then we have to check the
1115         * features flags on it. */
1116
1117        if (journal->j_format_version >= 2) {
1118                if ((sb->s_feature_ro_compat &
1119                     ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES)) ||
1120                    (sb->s_feature_incompat &
1121                     ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES))) {
1122                        printk (KERN_WARNING
1123                                "JBD: Unrecognised features on journal\n");
1124                        return -EINVAL;
1125                }
1126        }
1127
1128        /* Let the recovery code check whether it needs to recover any
1129         * data from the journal. */
1130        if (journal_recover(journal))
1131                goto recovery_error;
1132
1133        /* OK, we've finished with the dynamic journal bits:
1134         * reinitialise the dynamic contents of the superblock in memory
1135         * and reset them on disk. */
1136        if (journal_reset(journal))
1137                goto recovery_error;
1138
1139        journal->j_flags &= ~JFS_ABORT;
1140        journal->j_flags |= JFS_LOADED;
1141        return 0;
1142
1143recovery_error:
1144        printk (KERN_WARNING "JBD: recovery failed\n");
1145        return -EIO;
1146}
1147
1148/**
1149 * void journal_destroy() - Release a journal_t structure.
1150 * @journal: Journal to act on.
1151 *
1152 * Release a journal_t structure once it is no longer in use by the
1153 * journaled object.
1154 * Return <0 if we couldn't clean up the journal.
1155 */
1156int journal_destroy(journal_t *journal)
1157{
1158        int err = 0;
1159
1160        /* Wait for the commit thread to wake up and die. */
1161        journal_kill_thread(journal);
1162
1163        /* Force a final log commit */
1164        if (journal->j_running_transaction)
1165                journal_commit_transaction(journal);
1166
1167        /* Force any old transactions to disk */
1168
1169        /* Totally anal locking here... */
1170        spin_lock(&journal->j_list_lock);
1171        while (journal->j_checkpoint_transactions != NULL) {
1172                spin_unlock(&journal->j_list_lock);
1173                log_do_checkpoint(journal);
1174                spin_lock(&journal->j_list_lock);
1175        }
1176
1177        J_ASSERT(journal->j_running_transaction == NULL);
1178        J_ASSERT(journal->j_committing_transaction == NULL);
1179        J_ASSERT(journal->j_checkpoint_transactions == NULL);
1180        spin_unlock(&journal->j_list_lock);
1181
1182        if (journal->j_sb_buffer) {
1183                if (!is_journal_aborted(journal)) {
1184                        /* We can now mark the journal as empty. */
1185                        journal->j_tail = 0;
1186                        journal->j_tail_sequence =
1187                                ++journal->j_transaction_sequence;
1188                        journal_update_superblock(journal, 1);
1189                } else {
1190                        err = -EIO;
1191                }
1192                brelse(journal->j_sb_buffer);
1193        }
1194
1195        if (journal->j_inode)
1196                iput(journal->j_inode);
1197        if (journal->j_revoke)
1198                journal_destroy_revoke(journal);
1199        kfree(journal->j_wbuf);
1200        kfree(journal);
1201
1202        return err;
1203}
1204
1205
1206/**
1207 *int journal_check_used_features () - Check if features specified are used.
1208 * @journal: Journal to check.
1209 * @compat: bitmask of compatible features
1210 * @ro: bitmask of features that force read-only mount
1211 * @incompat: bitmask of incompatible features
1212 *
1213 * Check whether the journal uses all of a given set of
1214 * features.  Return true (non-zero) if it does.
1215 **/
1216
1217int journal_check_used_features (journal_t *journal, unsigned long compat,
1218                                 unsigned long ro, unsigned long incompat)
1219{
1220        journal_superblock_t *sb;
1221
1222        if (!compat && !ro && !incompat)
1223                return 1;
1224        if (journal->j_format_version == 1)
1225                return 0;
1226
1227        sb = journal->j_superblock;
1228
1229        if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1230            ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1231            ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1232                return 1;
1233
1234        return 0;
1235}
1236
1237/**
1238 * int journal_check_available_features() - Check feature set in journalling layer
1239 * @journal: Journal to check.
1240 * @compat: bitmask of compatible features
1241 * @ro: bitmask of features that force read-only mount
1242 * @incompat: bitmask of incompatible features
1243 *
1244 * Check whether the journaling code supports the use of
1245 * all of a given set of features on this journal.  Return true
1246 * (non-zero) if it can. */
1247
1248int journal_check_available_features (journal_t *journal, unsigned long compat,
1249                                      unsigned long ro, unsigned long incompat)
1250{
1251        journal_superblock_t *sb;
1252
1253        if (!compat && !ro && !incompat)
1254                return 1;
1255
1256        sb = journal->j_superblock;
1257
1258        /* We can support any known requested features iff the
1259         * superblock is in version 2.  Otherwise we fail to support any
1260         * extended sb features. */
1261
1262        if (journal->j_format_version != 2)
1263                return 0;
1264
1265        if ((compat   & JFS_KNOWN_COMPAT_FEATURES) == compat &&
1266            (ro       & JFS_KNOWN_ROCOMPAT_FEATURES) == ro &&
1267            (incompat & JFS_KNOWN_INCOMPAT_FEATURES) == incompat)
1268                return 1;
1269
1270        return 0;
1271}
1272
1273/**
1274 * int journal_set_features () - Mark a given journal feature in the superblock
1275 * @journal: Journal to act on.
1276 * @compat: bitmask of compatible features
1277 * @ro: bitmask of features that force read-only mount
1278 * @incompat: bitmask of incompatible features
1279 *
1280 * Mark a given journal feature as present on the
1281 * superblock.  Returns true if the requested features could be set.
1282 *
1283 */
1284
1285int journal_set_features (journal_t *journal, unsigned long compat,
1286                          unsigned long ro, unsigned long incompat)
1287{
1288        journal_superblock_t *sb;
1289
1290        if (journal_check_used_features(journal, compat, ro, incompat))
1291                return 1;
1292
1293        if (!journal_check_available_features(journal, compat, ro, incompat))
1294                return 0;
1295
1296        jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1297                  compat, ro, incompat);
1298
1299        sb = journal->j_superblock;
1300
1301        sb->s_feature_compat    |= cpu_to_be32(compat);
1302        sb->s_feature_ro_compat |= cpu_to_be32(ro);
1303        sb->s_feature_incompat  |= cpu_to_be32(incompat);
1304
1305        return 1;
1306}
1307
1308
1309/**
1310 * int journal_update_format () - Update on-disk journal structure.
1311 * @journal: Journal to act on.
1312 *
1313 * Given an initialised but unloaded journal struct, poke about in the
1314 * on-disk structure to update it to the most recent supported version.
1315 */
1316int journal_update_format (journal_t *journal)
1317{
1318        journal_superblock_t *sb;
1319        int err;
1320
1321        err = journal_get_superblock(journal);
1322        if (err)
1323                return err;
1324
1325        sb = journal->j_superblock;
1326
1327        switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1328        case JFS_SUPERBLOCK_V2:
1329                return 0;
1330        case JFS_SUPERBLOCK_V1:
1331                return journal_convert_superblock_v1(journal, sb);
1332        default:
1333                break;
1334        }
1335        return -EINVAL;
1336}
1337
1338static int journal_convert_superblock_v1(journal_t *journal,
1339                                         journal_superblock_t *sb)
1340{
1341        int offset, blocksize;
1342        struct buffer_head *bh;
1343
1344        printk(KERN_WARNING
1345                "JBD: Converting superblock from version 1 to 2.\n");
1346
1347        /* Pre-initialise new fields to zero */
1348        offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1349        blocksize = be32_to_cpu(sb->s_blocksize);
1350        memset(&sb->s_feature_compat, 0, blocksize-offset);
1351
1352        sb->s_nr_users = cpu_to_be32(1);
1353        sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1354        journal->j_format_version = 2;
1355
1356        bh = journal->j_sb_buffer;
1357        BUFFER_TRACE(bh, "marking dirty");
1358        mark_buffer_dirty(bh);
1359        sync_dirty_buffer(bh);
1360        return 0;
1361}
1362
1363
1364/**
1365 * int journal_flush () - Flush journal
1366 * @journal: Journal to act on.
1367 *
1368 * Flush all data for a given journal to disk and empty the journal.
1369 * Filesystems can use this when remounting readonly to ensure that
1370 * recovery does not need to happen on remount.
1371 */
1372
1373int journal_flush(journal_t *journal)
1374{
1375        int err = 0;
1376        transaction_t *transaction = NULL;
1377        unsigned int old_tail;
1378
1379        spin_lock(&journal->j_state_lock);
1380
1381        /* Force everything buffered to the log... */
1382        if (journal->j_running_transaction) {
1383                transaction = journal->j_running_transaction;
1384                __log_start_commit(journal, transaction->t_tid);
1385        } else if (journal->j_committing_transaction)
1386                transaction = journal->j_committing_transaction;
1387
1388        /* Wait for the log commit to complete... */
1389        if (transaction) {
1390                tid_t tid = transaction->t_tid;
1391
1392                spin_unlock(&journal->j_state_lock);
1393                log_wait_commit(journal, tid);
1394        } else {
1395                spin_unlock(&journal->j_state_lock);
1396        }
1397
1398        /* ...and flush everything in the log out to disk. */
1399        spin_lock(&journal->j_list_lock);
1400        while (!err && journal->j_checkpoint_transactions != NULL) {
1401                spin_unlock(&journal->j_list_lock);
1402                mutex_lock(&journal->j_checkpoint_mutex);
1403                err = log_do_checkpoint(journal);
1404                mutex_unlock(&journal->j_checkpoint_mutex);
1405                spin_lock(&journal->j_list_lock);
1406        }
1407        spin_unlock(&journal->j_list_lock);
1408
1409        if (is_journal_aborted(journal))
1410                return -EIO;
1411
1412        cleanup_journal_tail(journal);
1413
1414        /* Finally, mark the journal as really needing no recovery.
1415         * This sets s_start==0 in the underlying superblock, which is
1416         * the magic code for a fully-recovered superblock.  Any future
1417         * commits of data to the journal will restore the current
1418         * s_start value. */
1419        spin_lock(&journal->j_state_lock);
1420        old_tail = journal->j_tail;
1421        journal->j_tail = 0;
1422        spin_unlock(&journal->j_state_lock);
1423        journal_update_superblock(journal, 1);
1424        spin_lock(&journal->j_state_lock);
1425        journal->j_tail = old_tail;
1426
1427        J_ASSERT(!journal->j_running_transaction);
1428        J_ASSERT(!journal->j_committing_transaction);
1429        J_ASSERT(!journal->j_checkpoint_transactions);
1430        J_ASSERT(journal->j_head == journal->j_tail);
1431        J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1432        spin_unlock(&journal->j_state_lock);
1433        return 0;
1434}
1435
1436/**
1437 * int journal_wipe() - Wipe journal contents
1438 * @journal: Journal to act on.
1439 * @write: flag (see below)
1440 *
1441 * Wipe out all of the contents of a journal, safely.  This will produce
1442 * a warning if the journal contains any valid recovery information.
1443 * Must be called between journal_init_*() and journal_load().
1444 *
1445 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1446 * we merely suppress recovery.
1447 */
1448
1449int journal_wipe(journal_t *journal, int write)
1450{
1451        journal_superblock_t *sb;
1452        int err = 0;
1453
1454        J_ASSERT (!(journal->j_flags & JFS_LOADED));
1455
1456        err = load_superblock(journal);
1457        if (err)
1458                return err;
1459
1460        sb = journal->j_superblock;
1461
1462        if (!journal->j_tail)
1463                goto no_recovery;
1464
1465        printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1466                write ? "Clearing" : "Ignoring");
1467
1468        err = journal_skip_recovery(journal);
1469        if (write)
1470                journal_update_superblock(journal, 1);
1471
1472 no_recovery:
1473        return err;
1474}
1475
1476/*
1477 * journal_dev_name: format a character string to describe on what
1478 * device this journal is present.
1479 */
1480
1481static const char *journal_dev_name(journal_t *journal, char *buffer)
1482{
1483        struct block_device *bdev;
1484
1485        if (journal->j_inode)
1486                bdev = journal->j_inode->i_sb->s_bdev;
1487        else
1488                bdev = journal->j_dev;
1489
1490        return bdevname(bdev, buffer);
1491}
1492
1493/*
1494 * Journal abort has very specific semantics, which we describe
1495 * for journal abort.
1496 *
1497 * Two internal function, which provide abort to te jbd layer
1498 * itself are here.
1499 */
1500
1501/*
1502 * Quick version for internal journal use (doesn't lock the journal).
1503 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1504 * and don't attempt to make any other journal updates.
1505 */
1506static void __journal_abort_hard(journal_t *journal)
1507{
1508        transaction_t *transaction;
1509        char b[BDEVNAME_SIZE];
1510
1511        if (journal->j_flags & JFS_ABORT)
1512                return;
1513
1514        printk(KERN_ERR "Aborting journal on device %s.\n",
1515                journal_dev_name(journal, b));
1516
1517        spin_lock(&journal->j_state_lock);
1518        journal->j_flags |= JFS_ABORT;
1519        transaction = journal->j_running_transaction;
1520        if (transaction)
1521                __log_start_commit(journal, transaction->t_tid);
1522        spin_unlock(&journal->j_state_lock);
1523}
1524
1525/* Soft abort: record the abort error status in the journal superblock,
1526 * but don't do any other IO. */
1527static void __journal_abort_soft (journal_t *journal, int errno)
1528{
1529        if (journal->j_flags & JFS_ABORT)
1530                return;
1531
1532        if (!journal->j_errno)
1533                journal->j_errno = errno;
1534
1535        __journal_abort_hard(journal);
1536
1537        if (errno)
1538                journal_update_superblock(journal, 1);
1539}
1540
1541/**
1542 * void journal_abort () - Shutdown the journal immediately.
1543 * @journal: the journal to shutdown.
1544 * @errno:   an error number to record in the journal indicating
1545 *           the reason for the shutdown.
1546 *
1547 * Perform a complete, immediate shutdown of the ENTIRE
1548 * journal (not of a single transaction).  This operation cannot be
1549 * undone without closing and reopening the journal.
1550 *
1551 * The journal_abort function is intended to support higher level error
1552 * recovery mechanisms such as the ext2/ext3 remount-readonly error
1553 * mode.
1554 *
1555 * Journal abort has very specific semantics.  Any existing dirty,
1556 * unjournaled buffers in the main filesystem will still be written to
1557 * disk by bdflush, but the journaling mechanism will be suspended
1558 * immediately and no further transaction commits will be honoured.
1559 *
1560 * Any dirty, journaled buffers will be written back to disk without
1561 * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1562 * filesystem, but we _do_ attempt to leave as much data as possible
1563 * behind for fsck to use for cleanup.
1564 *
1565 * Any attempt to get a new transaction handle on a journal which is in
1566 * ABORT state will just result in an -EROFS error return.  A
1567 * journal_stop on an existing handle will return -EIO if we have
1568 * entered abort state during the update.
1569 *
1570 * Recursive transactions are not disturbed by journal abort until the
1571 * final journal_stop, which will receive the -EIO error.
1572 *
1573 * Finally, the journal_abort call allows the caller to supply an errno
1574 * which will be recorded (if possible) in the journal superblock.  This
1575 * allows a client to record failure conditions in the middle of a
1576 * transaction without having to complete the transaction to record the
1577 * failure to disk.  ext3_error, for example, now uses this
1578 * functionality.
1579 *
1580 * Errors which originate from within the journaling layer will NOT
1581 * supply an errno; a null errno implies that absolutely no further
1582 * writes are done to the journal (unless there are any already in
1583 * progress).
1584 *
1585 */
1586
1587void journal_abort(journal_t *journal, int errno)
1588{
1589        __journal_abort_soft(journal, errno);
1590}
1591
1592/**
1593 * int journal_errno () - returns the journal's error state.
1594 * @journal: journal to examine.
1595 *
1596 * This is the errno numbet set with journal_abort(), the last
1597 * time the journal was mounted - if the journal was stopped
1598 * without calling abort this will be 0.
1599 *
1600 * If the journal has been aborted on this mount time -EROFS will
1601 * be returned.
1602 */
1603int journal_errno(journal_t *journal)
1604{
1605        int err;
1606
1607        spin_lock(&journal->j_state_lock);
1608        if (journal->j_flags & JFS_ABORT)
1609                err = -EROFS;
1610        else
1611                err = journal->j_errno;
1612        spin_unlock(&journal->j_state_lock);
1613        return err;
1614}
1615
1616/**
1617 * int journal_clear_err () - clears the journal's error state
1618 * @journal: journal to act on.
1619 *
1620 * An error must be cleared or Acked to take a FS out of readonly
1621 * mode.
1622 */
1623int journal_clear_err(journal_t *journal)
1624{
1625        int err = 0;
1626
1627        spin_lock(&journal->j_state_lock);
1628        if (journal->j_flags & JFS_ABORT)
1629                err = -EROFS;
1630        else
1631                journal->j_errno = 0;
1632        spin_unlock(&journal->j_state_lock);
1633        return err;
1634}
1635
1636/**
1637 * void journal_ack_err() - Ack journal err.
1638 * @journal: journal to act on.
1639 *
1640 * An error must be cleared or Acked to take a FS out of readonly
1641 * mode.
1642 */
1643void journal_ack_err(journal_t *journal)
1644{
1645        spin_lock(&journal->j_state_lock);
1646        if (journal->j_errno)
1647                journal->j_flags |= JFS_ACK_ERR;
1648        spin_unlock(&journal->j_state_lock);
1649}
1650
1651int journal_blocks_per_page(struct inode *inode)
1652{
1653        return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1654}
1655
1656/*
1657 * Journal_head storage management
1658 */
1659static struct kmem_cache *journal_head_cache;
1660#ifdef CONFIG_JBD_DEBUG
1661static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1662#endif
1663
1664static int journal_init_journal_head_cache(void)
1665{
1666        int retval;
1667
1668        J_ASSERT(journal_head_cache == NULL);
1669        journal_head_cache = kmem_cache_create("journal_head",
1670                                sizeof(struct journal_head),
1671                                0,              /* offset */
1672                                SLAB_TEMPORARY, /* flags */
1673                                NULL);          /* ctor */
1674        retval = 0;
1675        if (!journal_head_cache) {
1676                retval = -ENOMEM;
1677                printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1678        }
1679        return retval;
1680}
1681
1682static void journal_destroy_journal_head_cache(void)
1683{
1684        if (journal_head_cache) {
1685                kmem_cache_destroy(journal_head_cache);
1686                journal_head_cache = NULL;
1687        }
1688}
1689
1690/*
1691 * journal_head splicing and dicing
1692 */
1693static struct journal_head *journal_alloc_journal_head(void)
1694{
1695        struct journal_head *ret;
1696        static unsigned long last_warning;
1697
1698#ifdef CONFIG_JBD_DEBUG
1699        atomic_inc(&nr_journal_heads);
1700#endif
1701        ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1702        if (ret == NULL) {
1703                jbd_debug(1, "out of memory for journal_head\n");
1704                if (time_after(jiffies, last_warning + 5*HZ)) {
1705                        printk(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1706                               __func__);
1707                        last_warning = jiffies;
1708                }
1709                while (ret == NULL) {
1710                        yield();
1711                        ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1712                }
1713        }
1714        return ret;
1715}
1716
1717static void journal_free_journal_head(struct journal_head *jh)
1718{
1719#ifdef CONFIG_JBD_DEBUG
1720        atomic_dec(&nr_journal_heads);
1721        memset(jh, JBD_POISON_FREE, sizeof(*jh));
1722#endif
1723        kmem_cache_free(journal_head_cache, jh);
1724}
1725
1726/*
1727 * A journal_head is attached to a buffer_head whenever JBD has an
1728 * interest in the buffer.
1729 *
1730 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1731 * is set.  This bit is tested in core kernel code where we need to take
1732 * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
1733 * there.
1734 *
1735 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1736 *
1737 * When a buffer has its BH_JBD bit set it is immune from being released by
1738 * core kernel code, mainly via ->b_count.
1739 *
1740 * A journal_head may be detached from its buffer_head when the journal_head's
1741 * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
1742 * Various places in JBD call journal_remove_journal_head() to indicate that the
1743 * journal_head can be dropped if needed.
1744 *
1745 * Various places in the kernel want to attach a journal_head to a buffer_head
1746 * _before_ attaching the journal_head to a transaction.  To protect the
1747 * journal_head in this situation, journal_add_journal_head elevates the
1748 * journal_head's b_jcount refcount by one.  The caller must call
1749 * journal_put_journal_head() to undo this.
1750 *
1751 * So the typical usage would be:
1752 *
1753 *      (Attach a journal_head if needed.  Increments b_jcount)
1754 *      struct journal_head *jh = journal_add_journal_head(bh);
1755 *      ...
1756 *      jh->b_transaction = xxx;
1757 *      journal_put_journal_head(jh);
1758 *
1759 * Now, the journal_head's b_jcount is zero, but it is safe from being released
1760 * because it has a non-zero b_transaction.
1761 */
1762
1763/*
1764 * Give a buffer_head a journal_head.
1765 *
1766 * Doesn't need the journal lock.
1767 * May sleep.
1768 */
1769struct journal_head *journal_add_journal_head(struct buffer_head *bh)
1770{
1771        struct journal_head *jh;
1772        struct journal_head *new_jh = NULL;
1773
1774repeat:
1775        if (!buffer_jbd(bh)) {
1776                new_jh = journal_alloc_journal_head();
1777                memset(new_jh, 0, sizeof(*new_jh));
1778        }
1779
1780        jbd_lock_bh_journal_head(bh);
1781        if (buffer_jbd(bh)) {
1782                jh = bh2jh(bh);
1783        } else {
1784                J_ASSERT_BH(bh,
1785                        (atomic_read(&bh->b_count) > 0) ||
1786                        (bh->b_page && bh->b_page->mapping));
1787
1788                if (!new_jh) {
1789                        jbd_unlock_bh_journal_head(bh);
1790                        goto repeat;
1791                }
1792
1793                jh = new_jh;
1794                new_jh = NULL;          /* We consumed it */
1795                set_buffer_jbd(bh);
1796                bh->b_private = jh;
1797                jh->b_bh = bh;
1798                get_bh(bh);
1799                BUFFER_TRACE(bh, "added journal_head");
1800        }
1801        jh->b_jcount++;
1802        jbd_unlock_bh_journal_head(bh);
1803        if (new_jh)
1804                journal_free_journal_head(new_jh);
1805        return bh->b_private;
1806}
1807
1808/*
1809 * Grab a ref against this buffer_head's journal_head.  If it ended up not
1810 * having a journal_head, return NULL
1811 */
1812struct journal_head *journal_grab_journal_head(struct buffer_head *bh)
1813{
1814        struct journal_head *jh = NULL;
1815
1816        jbd_lock_bh_journal_head(bh);
1817        if (buffer_jbd(bh)) {
1818                jh = bh2jh(bh);
1819                jh->b_jcount++;
1820        }
1821        jbd_unlock_bh_journal_head(bh);
1822        return jh;
1823}
1824
1825static void __journal_remove_journal_head(struct buffer_head *bh)
1826{
1827        struct journal_head *jh = bh2jh(bh);
1828
1829        J_ASSERT_JH(jh, jh->b_jcount >= 0);
1830
1831        get_bh(bh);
1832        if (jh->b_jcount == 0) {
1833                if (jh->b_transaction == NULL &&
1834                                jh->b_next_transaction == NULL &&
1835                                jh->b_cp_transaction == NULL) {
1836                        J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
1837                        J_ASSERT_BH(bh, buffer_jbd(bh));
1838                        J_ASSERT_BH(bh, jh2bh(jh) == bh);
1839                        BUFFER_TRACE(bh, "remove journal_head");
1840                        if (jh->b_frozen_data) {
1841                                printk(KERN_WARNING "%s: freeing "
1842                                                "b_frozen_data\n",
1843                                                __func__);
1844                                jbd_free(jh->b_frozen_data, bh->b_size);
1845                        }
1846                        if (jh->b_committed_data) {
1847                                printk(KERN_WARNING "%s: freeing "
1848                                                "b_committed_data\n",
1849                                                __func__);
1850                                jbd_free(jh->b_committed_data, bh->b_size);
1851                        }
1852                        bh->b_private = NULL;
1853                        jh->b_bh = NULL;        /* debug, really */
1854                        clear_buffer_jbd(bh);
1855                        __brelse(bh);
1856                        journal_free_journal_head(jh);
1857                } else {
1858                        BUFFER_TRACE(bh, "journal_head was locked");
1859                }
1860        }
1861}
1862
1863/*
1864 * journal_remove_journal_head(): if the buffer isn't attached to a transaction
1865 * and has a zero b_jcount then remove and release its journal_head.   If we did
1866 * see that the buffer is not used by any transaction we also "logically"
1867 * decrement ->b_count.
1868 *
1869 * We in fact take an additional increment on ->b_count as a convenience,
1870 * because the caller usually wants to do additional things with the bh
1871 * after calling here.
1872 * The caller of journal_remove_journal_head() *must* run __brelse(bh) at some
1873 * time.  Once the caller has run __brelse(), the buffer is eligible for
1874 * reaping by try_to_free_buffers().
1875 */
1876void journal_remove_journal_head(struct buffer_head *bh)
1877{
1878        jbd_lock_bh_journal_head(bh);
1879        __journal_remove_journal_head(bh);
1880        jbd_unlock_bh_journal_head(bh);
1881}
1882
1883/*
1884 * Drop a reference on the passed journal_head.  If it fell to zero then try to
1885 * release the journal_head from the buffer_head.
1886 */
1887void journal_put_journal_head(struct journal_head *jh)
1888{
1889        struct buffer_head *bh = jh2bh(jh);
1890
1891        jbd_lock_bh_journal_head(bh);
1892        J_ASSERT_JH(jh, jh->b_jcount > 0);
1893        --jh->b_jcount;
1894        if (!jh->b_jcount && !jh->b_transaction) {
1895                __journal_remove_journal_head(bh);
1896                __brelse(bh);
1897        }
1898        jbd_unlock_bh_journal_head(bh);
1899}
1900
1901/*
1902 * debugfs tunables
1903 */
1904#ifdef CONFIG_JBD_DEBUG
1905
1906u8 journal_enable_debug __read_mostly;
1907EXPORT_SYMBOL(journal_enable_debug);
1908
1909static struct dentry *jbd_debugfs_dir;
1910static struct dentry *jbd_debug;
1911
1912static void __init jbd_create_debugfs_entry(void)
1913{
1914        jbd_debugfs_dir = debugfs_create_dir("jbd", NULL);
1915        if (jbd_debugfs_dir)
1916                jbd_debug = debugfs_create_u8("jbd-debug", S_IRUGO,
1917                                               jbd_debugfs_dir,
1918                                               &journal_enable_debug);
1919}
1920
1921static void __exit jbd_remove_debugfs_entry(void)
1922{
1923        debugfs_remove(jbd_debug);
1924        debugfs_remove(jbd_debugfs_dir);
1925}
1926
1927#else
1928
1929static inline void jbd_create_debugfs_entry(void)
1930{
1931}
1932
1933static inline void jbd_remove_debugfs_entry(void)
1934{
1935}
1936
1937#endif
1938
1939struct kmem_cache *jbd_handle_cache;
1940
1941static int __init journal_init_handle_cache(void)
1942{
1943        jbd_handle_cache = kmem_cache_create("journal_handle",
1944                                sizeof(handle_t),
1945                                0,              /* offset */
1946                                SLAB_TEMPORARY, /* flags */
1947                                NULL);          /* ctor */
1948        if (jbd_handle_cache == NULL) {
1949                printk(KERN_EMERG "JBD: failed to create handle cache\n");
1950                return -ENOMEM;
1951        }
1952        return 0;
1953}
1954
1955static void journal_destroy_handle_cache(void)
1956{
1957        if (jbd_handle_cache)
1958                kmem_cache_destroy(jbd_handle_cache);
1959}
1960
1961/*
1962 * Module startup and shutdown
1963 */
1964
1965static int __init journal_init_caches(void)
1966{
1967        int ret;
1968
1969        ret = journal_init_revoke_caches();
1970        if (ret == 0)
1971                ret = journal_init_journal_head_cache();
1972        if (ret == 0)
1973                ret = journal_init_handle_cache();
1974        return ret;
1975}
1976
1977static void journal_destroy_caches(void)
1978{
1979        journal_destroy_revoke_caches();
1980        journal_destroy_journal_head_cache();
1981        journal_destroy_handle_cache();
1982}
1983
1984static int __init journal_init(void)
1985{
1986        int ret;
1987
1988        BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
1989
1990        ret = journal_init_caches();
1991        if (ret != 0)
1992                journal_destroy_caches();
1993        jbd_create_debugfs_entry();
1994        return ret;
1995}
1996
1997static void __exit journal_exit(void)
1998{
1999#ifdef CONFIG_JBD_DEBUG
2000        int n = atomic_read(&nr_journal_heads);
2001        if (n)
2002                printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2003#endif
2004        jbd_remove_debugfs_entry();
2005        journal_destroy_caches();
2006}
2007
2008MODULE_LICENSE("GPL");
2009module_init(journal_init);
2010module_exit(journal_exit);
2011
2012