linux/fs/jbd/revoke.c
<<
>>
Prefs
   1/*
   2 * linux/fs/jbd/revoke.c
   3 *
   4 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
   5 *
   6 * Copyright 2000 Red Hat corp --- All Rights Reserved
   7 *
   8 * This file is part of the Linux kernel and is made available under
   9 * the terms of the GNU General Public License, version 2, or at your
  10 * option, any later version, incorporated herein by reference.
  11 *
  12 * Journal revoke routines for the generic filesystem journaling code;
  13 * part of the ext2fs journaling system.
  14 *
  15 * Revoke is the mechanism used to prevent old log records for deleted
  16 * metadata from being replayed on top of newer data using the same
  17 * blocks.  The revoke mechanism is used in two separate places:
  18 *
  19 * + Commit: during commit we write the entire list of the current
  20 *   transaction's revoked blocks to the journal
  21 *
  22 * + Recovery: during recovery we record the transaction ID of all
  23 *   revoked blocks.  If there are multiple revoke records in the log
  24 *   for a single block, only the last one counts, and if there is a log
  25 *   entry for a block beyond the last revoke, then that log entry still
  26 *   gets replayed.
  27 *
  28 * We can get interactions between revokes and new log data within a
  29 * single transaction:
  30 *
  31 * Block is revoked and then journaled:
  32 *   The desired end result is the journaling of the new block, so we
  33 *   cancel the revoke before the transaction commits.
  34 *
  35 * Block is journaled and then revoked:
  36 *   The revoke must take precedence over the write of the block, so we
  37 *   need either to cancel the journal entry or to write the revoke
  38 *   later in the log than the log block.  In this case, we choose the
  39 *   latter: journaling a block cancels any revoke record for that block
  40 *   in the current transaction, so any revoke for that block in the
  41 *   transaction must have happened after the block was journaled and so
  42 *   the revoke must take precedence.
  43 *
  44 * Block is revoked and then written as data:
  45 *   The data write is allowed to succeed, but the revoke is _not_
  46 *   cancelled.  We still need to prevent old log records from
  47 *   overwriting the new data.  We don't even need to clear the revoke
  48 *   bit here.
  49 *
  50 * Revoke information on buffers is a tri-state value:
  51 *
  52 * RevokeValid clear:   no cached revoke status, need to look it up
  53 * RevokeValid set, Revoked clear:
  54 *                      buffer has not been revoked, and cancel_revoke
  55 *                      need do nothing.
  56 * RevokeValid set, Revoked set:
  57 *                      buffer has been revoked.
  58 *
  59 * Locking rules:
  60 * We keep two hash tables of revoke records. One hashtable belongs to the
  61 * running transaction (is pointed to by journal->j_revoke), the other one
  62 * belongs to the committing transaction. Accesses to the second hash table
  63 * happen only from the kjournald and no other thread touches this table.  Also
  64 * journal_switch_revoke_table() which switches which hashtable belongs to the
  65 * running and which to the committing transaction is called only from
  66 * kjournald. Therefore we need no locks when accessing the hashtable belonging
  67 * to the committing transaction.
  68 *
  69 * All users operating on the hash table belonging to the running transaction
  70 * have a handle to the transaction. Therefore they are safe from kjournald
  71 * switching hash tables under them. For operations on the lists of entries in
  72 * the hash table j_revoke_lock is used.
  73 *
  74 * Finally, also replay code uses the hash tables but at this moment noone else
  75 * can touch them (filesystem isn't mounted yet) and hence no locking is
  76 * needed.
  77 */
  78
  79#ifndef __KERNEL__
  80#include "jfs_user.h"
  81#else
  82#include <linux/time.h>
  83#include <linux/fs.h>
  84#include <linux/jbd.h>
  85#include <linux/errno.h>
  86#include <linux/slab.h>
  87#include <linux/list.h>
  88#include <linux/init.h>
  89#include <linux/bio.h>
  90#endif
  91#include <linux/log2.h>
  92
  93static struct kmem_cache *revoke_record_cache;
  94static struct kmem_cache *revoke_table_cache;
  95
  96/* Each revoke record represents one single revoked block.  During
  97   journal replay, this involves recording the transaction ID of the
  98   last transaction to revoke this block. */
  99
 100struct jbd_revoke_record_s
 101{
 102        struct list_head  hash;
 103        tid_t             sequence;     /* Used for recovery only */
 104        unsigned int      blocknr;
 105};
 106
 107
 108/* The revoke table is just a simple hash table of revoke records. */
 109struct jbd_revoke_table_s
 110{
 111        /* It is conceivable that we might want a larger hash table
 112         * for recovery.  Must be a power of two. */
 113        int               hash_size;
 114        int               hash_shift;
 115        struct list_head *hash_table;
 116};
 117
 118
 119#ifdef __KERNEL__
 120static void write_one_revoke_record(journal_t *, transaction_t *,
 121                                    struct journal_head **, int *,
 122                                    struct jbd_revoke_record_s *, int);
 123static void flush_descriptor(journal_t *, struct journal_head *, int, int);
 124#endif
 125
 126/* Utility functions to maintain the revoke table */
 127
 128/* Borrowed from buffer.c: this is a tried and tested block hash function */
 129static inline int hash(journal_t *journal, unsigned int block)
 130{
 131        struct jbd_revoke_table_s *table = journal->j_revoke;
 132        int hash_shift = table->hash_shift;
 133
 134        return ((block << (hash_shift - 6)) ^
 135                (block >> 13) ^
 136                (block << (hash_shift - 12))) & (table->hash_size - 1);
 137}
 138
 139static int insert_revoke_hash(journal_t *journal, unsigned int blocknr,
 140                              tid_t seq)
 141{
 142        struct list_head *hash_list;
 143        struct jbd_revoke_record_s *record;
 144
 145repeat:
 146        record = kmem_cache_alloc(revoke_record_cache, GFP_NOFS);
 147        if (!record)
 148                goto oom;
 149
 150        record->sequence = seq;
 151        record->blocknr = blocknr;
 152        hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
 153        spin_lock(&journal->j_revoke_lock);
 154        list_add(&record->hash, hash_list);
 155        spin_unlock(&journal->j_revoke_lock);
 156        return 0;
 157
 158oom:
 159        if (!journal_oom_retry)
 160                return -ENOMEM;
 161        jbd_debug(1, "ENOMEM in %s, retrying\n", __func__);
 162        yield();
 163        goto repeat;
 164}
 165
 166/* Find a revoke record in the journal's hash table. */
 167
 168static struct jbd_revoke_record_s *find_revoke_record(journal_t *journal,
 169                                                      unsigned int blocknr)
 170{
 171        struct list_head *hash_list;
 172        struct jbd_revoke_record_s *record;
 173
 174        hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
 175
 176        spin_lock(&journal->j_revoke_lock);
 177        record = (struct jbd_revoke_record_s *) hash_list->next;
 178        while (&(record->hash) != hash_list) {
 179                if (record->blocknr == blocknr) {
 180                        spin_unlock(&journal->j_revoke_lock);
 181                        return record;
 182                }
 183                record = (struct jbd_revoke_record_s *) record->hash.next;
 184        }
 185        spin_unlock(&journal->j_revoke_lock);
 186        return NULL;
 187}
 188
 189void journal_destroy_revoke_caches(void)
 190{
 191        if (revoke_record_cache) {
 192                kmem_cache_destroy(revoke_record_cache);
 193                revoke_record_cache = NULL;
 194        }
 195        if (revoke_table_cache) {
 196                kmem_cache_destroy(revoke_table_cache);
 197                revoke_table_cache = NULL;
 198        }
 199}
 200
 201int __init journal_init_revoke_caches(void)
 202{
 203        J_ASSERT(!revoke_record_cache);
 204        J_ASSERT(!revoke_table_cache);
 205
 206        revoke_record_cache = kmem_cache_create("revoke_record",
 207                                           sizeof(struct jbd_revoke_record_s),
 208                                           0,
 209                                           SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
 210                                           NULL);
 211        if (!revoke_record_cache)
 212                goto record_cache_failure;
 213
 214        revoke_table_cache = kmem_cache_create("revoke_table",
 215                                           sizeof(struct jbd_revoke_table_s),
 216                                           0, SLAB_TEMPORARY, NULL);
 217        if (!revoke_table_cache)
 218                goto table_cache_failure;
 219
 220        return 0;
 221
 222table_cache_failure:
 223        journal_destroy_revoke_caches();
 224record_cache_failure:
 225        return -ENOMEM;
 226}
 227
 228static struct jbd_revoke_table_s *journal_init_revoke_table(int hash_size)
 229{
 230        int shift = 0;
 231        int tmp = hash_size;
 232        struct jbd_revoke_table_s *table;
 233
 234        table = kmem_cache_alloc(revoke_table_cache, GFP_KERNEL);
 235        if (!table)
 236                goto out;
 237
 238        while((tmp >>= 1UL) != 0UL)
 239                shift++;
 240
 241        table->hash_size = hash_size;
 242        table->hash_shift = shift;
 243        table->hash_table =
 244                kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
 245        if (!table->hash_table) {
 246                kmem_cache_free(revoke_table_cache, table);
 247                table = NULL;
 248                goto out;
 249        }
 250
 251        for (tmp = 0; tmp < hash_size; tmp++)
 252                INIT_LIST_HEAD(&table->hash_table[tmp]);
 253
 254out:
 255        return table;
 256}
 257
 258static void journal_destroy_revoke_table(struct jbd_revoke_table_s *table)
 259{
 260        int i;
 261        struct list_head *hash_list;
 262
 263        for (i = 0; i < table->hash_size; i++) {
 264                hash_list = &table->hash_table[i];
 265                J_ASSERT(list_empty(hash_list));
 266        }
 267
 268        kfree(table->hash_table);
 269        kmem_cache_free(revoke_table_cache, table);
 270}
 271
 272/* Initialise the revoke table for a given journal to a given size. */
 273int journal_init_revoke(journal_t *journal, int hash_size)
 274{
 275        J_ASSERT(journal->j_revoke_table[0] == NULL);
 276        J_ASSERT(is_power_of_2(hash_size));
 277
 278        journal->j_revoke_table[0] = journal_init_revoke_table(hash_size);
 279        if (!journal->j_revoke_table[0])
 280                goto fail0;
 281
 282        journal->j_revoke_table[1] = journal_init_revoke_table(hash_size);
 283        if (!journal->j_revoke_table[1])
 284                goto fail1;
 285
 286        journal->j_revoke = journal->j_revoke_table[1];
 287
 288        spin_lock_init(&journal->j_revoke_lock);
 289
 290        return 0;
 291
 292fail1:
 293        journal_destroy_revoke_table(journal->j_revoke_table[0]);
 294fail0:
 295        return -ENOMEM;
 296}
 297
 298/* Destroy a journal's revoke table.  The table must already be empty! */
 299void journal_destroy_revoke(journal_t *journal)
 300{
 301        journal->j_revoke = NULL;
 302        if (journal->j_revoke_table[0])
 303                journal_destroy_revoke_table(journal->j_revoke_table[0]);
 304        if (journal->j_revoke_table[1])
 305                journal_destroy_revoke_table(journal->j_revoke_table[1]);
 306}
 307
 308
 309#ifdef __KERNEL__
 310
 311/*
 312 * journal_revoke: revoke a given buffer_head from the journal.  This
 313 * prevents the block from being replayed during recovery if we take a
 314 * crash after this current transaction commits.  Any subsequent
 315 * metadata writes of the buffer in this transaction cancel the
 316 * revoke.
 317 *
 318 * Note that this call may block --- it is up to the caller to make
 319 * sure that there are no further calls to journal_write_metadata
 320 * before the revoke is complete.  In ext3, this implies calling the
 321 * revoke before clearing the block bitmap when we are deleting
 322 * metadata.
 323 *
 324 * Revoke performs a journal_forget on any buffer_head passed in as a
 325 * parameter, but does _not_ forget the buffer_head if the bh was only
 326 * found implicitly.
 327 *
 328 * bh_in may not be a journalled buffer - it may have come off
 329 * the hash tables without an attached journal_head.
 330 *
 331 * If bh_in is non-zero, journal_revoke() will decrement its b_count
 332 * by one.
 333 */
 334
 335int journal_revoke(handle_t *handle, unsigned int blocknr,
 336                   struct buffer_head *bh_in)
 337{
 338        struct buffer_head *bh = NULL;
 339        journal_t *journal;
 340        struct block_device *bdev;
 341        int err;
 342
 343        might_sleep();
 344        if (bh_in)
 345                BUFFER_TRACE(bh_in, "enter");
 346
 347        journal = handle->h_transaction->t_journal;
 348        if (!journal_set_features(journal, 0, 0, JFS_FEATURE_INCOMPAT_REVOKE)){
 349                J_ASSERT (!"Cannot set revoke feature!");
 350                return -EINVAL;
 351        }
 352
 353        bdev = journal->j_fs_dev;
 354        bh = bh_in;
 355
 356        if (!bh) {
 357                bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
 358                if (bh)
 359                        BUFFER_TRACE(bh, "found on hash");
 360        }
 361#ifdef JBD_EXPENSIVE_CHECKING
 362        else {
 363                struct buffer_head *bh2;
 364
 365                /* If there is a different buffer_head lying around in
 366                 * memory anywhere... */
 367                bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
 368                if (bh2) {
 369                        /* ... and it has RevokeValid status... */
 370                        if (bh2 != bh && buffer_revokevalid(bh2))
 371                                /* ...then it better be revoked too,
 372                                 * since it's illegal to create a revoke
 373                                 * record against a buffer_head which is
 374                                 * not marked revoked --- that would
 375                                 * risk missing a subsequent revoke
 376                                 * cancel. */
 377                                J_ASSERT_BH(bh2, buffer_revoked(bh2));
 378                        put_bh(bh2);
 379                }
 380        }
 381#endif
 382
 383        /* We really ought not ever to revoke twice in a row without
 384           first having the revoke cancelled: it's illegal to free a
 385           block twice without allocating it in between! */
 386        if (bh) {
 387                if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
 388                                 "inconsistent data on disk")) {
 389                        if (!bh_in)
 390                                brelse(bh);
 391                        return -EIO;
 392                }
 393                set_buffer_revoked(bh);
 394                set_buffer_revokevalid(bh);
 395                if (bh_in) {
 396                        BUFFER_TRACE(bh_in, "call journal_forget");
 397                        journal_forget(handle, bh_in);
 398                } else {
 399                        BUFFER_TRACE(bh, "call brelse");
 400                        __brelse(bh);
 401                }
 402        }
 403
 404        jbd_debug(2, "insert revoke for block %u, bh_in=%p\n", blocknr, bh_in);
 405        err = insert_revoke_hash(journal, blocknr,
 406                                handle->h_transaction->t_tid);
 407        BUFFER_TRACE(bh_in, "exit");
 408        return err;
 409}
 410
 411/*
 412 * Cancel an outstanding revoke.  For use only internally by the
 413 * journaling code (called from journal_get_write_access).
 414 *
 415 * We trust buffer_revoked() on the buffer if the buffer is already
 416 * being journaled: if there is no revoke pending on the buffer, then we
 417 * don't do anything here.
 418 *
 419 * This would break if it were possible for a buffer to be revoked and
 420 * discarded, and then reallocated within the same transaction.  In such
 421 * a case we would have lost the revoked bit, but when we arrived here
 422 * the second time we would still have a pending revoke to cancel.  So,
 423 * do not trust the Revoked bit on buffers unless RevokeValid is also
 424 * set.
 425 */
 426int journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
 427{
 428        struct jbd_revoke_record_s *record;
 429        journal_t *journal = handle->h_transaction->t_journal;
 430        int need_cancel;
 431        int did_revoke = 0;     /* akpm: debug */
 432        struct buffer_head *bh = jh2bh(jh);
 433
 434        jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
 435
 436        /* Is the existing Revoke bit valid?  If so, we trust it, and
 437         * only perform the full cancel if the revoke bit is set.  If
 438         * not, we can't trust the revoke bit, and we need to do the
 439         * full search for a revoke record. */
 440        if (test_set_buffer_revokevalid(bh)) {
 441                need_cancel = test_clear_buffer_revoked(bh);
 442        } else {
 443                need_cancel = 1;
 444                clear_buffer_revoked(bh);
 445        }
 446
 447        if (need_cancel) {
 448                record = find_revoke_record(journal, bh->b_blocknr);
 449                if (record) {
 450                        jbd_debug(4, "cancelled existing revoke on "
 451                                  "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
 452                        spin_lock(&journal->j_revoke_lock);
 453                        list_del(&record->hash);
 454                        spin_unlock(&journal->j_revoke_lock);
 455                        kmem_cache_free(revoke_record_cache, record);
 456                        did_revoke = 1;
 457                }
 458        }
 459
 460#ifdef JBD_EXPENSIVE_CHECKING
 461        /* There better not be one left behind by now! */
 462        record = find_revoke_record(journal, bh->b_blocknr);
 463        J_ASSERT_JH(jh, record == NULL);
 464#endif
 465
 466        /* Finally, have we just cleared revoke on an unhashed
 467         * buffer_head?  If so, we'd better make sure we clear the
 468         * revoked status on any hashed alias too, otherwise the revoke
 469         * state machine will get very upset later on. */
 470        if (need_cancel) {
 471                struct buffer_head *bh2;
 472                bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
 473                if (bh2) {
 474                        if (bh2 != bh)
 475                                clear_buffer_revoked(bh2);
 476                        __brelse(bh2);
 477                }
 478        }
 479        return did_revoke;
 480}
 481
 482/* journal_switch_revoke table select j_revoke for next transaction
 483 * we do not want to suspend any processing until all revokes are
 484 * written -bzzz
 485 */
 486void journal_switch_revoke_table(journal_t *journal)
 487{
 488        int i;
 489
 490        if (journal->j_revoke == journal->j_revoke_table[0])
 491                journal->j_revoke = journal->j_revoke_table[1];
 492        else
 493                journal->j_revoke = journal->j_revoke_table[0];
 494
 495        for (i = 0; i < journal->j_revoke->hash_size; i++)
 496                INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
 497}
 498
 499/*
 500 * Write revoke records to the journal for all entries in the current
 501 * revoke hash, deleting the entries as we go.
 502 */
 503void journal_write_revoke_records(journal_t *journal,
 504                                  transaction_t *transaction, int write_op)
 505{
 506        struct journal_head *descriptor;
 507        struct jbd_revoke_record_s *record;
 508        struct jbd_revoke_table_s *revoke;
 509        struct list_head *hash_list;
 510        int i, offset, count;
 511
 512        descriptor = NULL;
 513        offset = 0;
 514        count = 0;
 515
 516        /* select revoke table for committing transaction */
 517        revoke = journal->j_revoke == journal->j_revoke_table[0] ?
 518                journal->j_revoke_table[1] : journal->j_revoke_table[0];
 519
 520        for (i = 0; i < revoke->hash_size; i++) {
 521                hash_list = &revoke->hash_table[i];
 522
 523                while (!list_empty(hash_list)) {
 524                        record = (struct jbd_revoke_record_s *)
 525                                hash_list->next;
 526                        write_one_revoke_record(journal, transaction,
 527                                                &descriptor, &offset,
 528                                                record, write_op);
 529                        count++;
 530                        list_del(&record->hash);
 531                        kmem_cache_free(revoke_record_cache, record);
 532                }
 533        }
 534        if (descriptor)
 535                flush_descriptor(journal, descriptor, offset, write_op);
 536        jbd_debug(1, "Wrote %d revoke records\n", count);
 537}
 538
 539/*
 540 * Write out one revoke record.  We need to create a new descriptor
 541 * block if the old one is full or if we have not already created one.
 542 */
 543
 544static void write_one_revoke_record(journal_t *journal,
 545                                    transaction_t *transaction,
 546                                    struct journal_head **descriptorp,
 547                                    int *offsetp,
 548                                    struct jbd_revoke_record_s *record,
 549                                    int write_op)
 550{
 551        struct journal_head *descriptor;
 552        int offset;
 553        journal_header_t *header;
 554
 555        /* If we are already aborting, this all becomes a noop.  We
 556           still need to go round the loop in
 557           journal_write_revoke_records in order to free all of the
 558           revoke records: only the IO to the journal is omitted. */
 559        if (is_journal_aborted(journal))
 560                return;
 561
 562        descriptor = *descriptorp;
 563        offset = *offsetp;
 564
 565        /* Make sure we have a descriptor with space left for the record */
 566        if (descriptor) {
 567                if (offset == journal->j_blocksize) {
 568                        flush_descriptor(journal, descriptor, offset, write_op);
 569                        descriptor = NULL;
 570                }
 571        }
 572
 573        if (!descriptor) {
 574                descriptor = journal_get_descriptor_buffer(journal);
 575                if (!descriptor)
 576                        return;
 577                header = (journal_header_t *) &jh2bh(descriptor)->b_data[0];
 578                header->h_magic     = cpu_to_be32(JFS_MAGIC_NUMBER);
 579                header->h_blocktype = cpu_to_be32(JFS_REVOKE_BLOCK);
 580                header->h_sequence  = cpu_to_be32(transaction->t_tid);
 581
 582                /* Record it so that we can wait for IO completion later */
 583                JBUFFER_TRACE(descriptor, "file as BJ_LogCtl");
 584                journal_file_buffer(descriptor, transaction, BJ_LogCtl);
 585
 586                offset = sizeof(journal_revoke_header_t);
 587                *descriptorp = descriptor;
 588        }
 589
 590        * ((__be32 *)(&jh2bh(descriptor)->b_data[offset])) =
 591                cpu_to_be32(record->blocknr);
 592        offset += 4;
 593        *offsetp = offset;
 594}
 595
 596/*
 597 * Flush a revoke descriptor out to the journal.  If we are aborting,
 598 * this is a noop; otherwise we are generating a buffer which needs to
 599 * be waited for during commit, so it has to go onto the appropriate
 600 * journal buffer list.
 601 */
 602
 603static void flush_descriptor(journal_t *journal,
 604                             struct journal_head *descriptor,
 605                             int offset, int write_op)
 606{
 607        journal_revoke_header_t *header;
 608        struct buffer_head *bh = jh2bh(descriptor);
 609
 610        if (is_journal_aborted(journal)) {
 611                put_bh(bh);
 612                return;
 613        }
 614
 615        header = (journal_revoke_header_t *) jh2bh(descriptor)->b_data;
 616        header->r_count = cpu_to_be32(offset);
 617        set_buffer_jwrite(bh);
 618        BUFFER_TRACE(bh, "write");
 619        set_buffer_dirty(bh);
 620        ll_rw_block((write_op == WRITE) ? SWRITE : SWRITE_SYNC_PLUG, 1, &bh);
 621}
 622#endif
 623
 624/*
 625 * Revoke support for recovery.
 626 *
 627 * Recovery needs to be able to:
 628 *
 629 *  record all revoke records, including the tid of the latest instance
 630 *  of each revoke in the journal
 631 *
 632 *  check whether a given block in a given transaction should be replayed
 633 *  (ie. has not been revoked by a revoke record in that or a subsequent
 634 *  transaction)
 635 *
 636 *  empty the revoke table after recovery.
 637 */
 638
 639/*
 640 * First, setting revoke records.  We create a new revoke record for
 641 * every block ever revoked in the log as we scan it for recovery, and
 642 * we update the existing records if we find multiple revokes for a
 643 * single block.
 644 */
 645
 646int journal_set_revoke(journal_t *journal,
 647                       unsigned int blocknr,
 648                       tid_t sequence)
 649{
 650        struct jbd_revoke_record_s *record;
 651
 652        record = find_revoke_record(journal, blocknr);
 653        if (record) {
 654                /* If we have multiple occurrences, only record the
 655                 * latest sequence number in the hashed record */
 656                if (tid_gt(sequence, record->sequence))
 657                        record->sequence = sequence;
 658                return 0;
 659        }
 660        return insert_revoke_hash(journal, blocknr, sequence);
 661}
 662
 663/*
 664 * Test revoke records.  For a given block referenced in the log, has
 665 * that block been revoked?  A revoke record with a given transaction
 666 * sequence number revokes all blocks in that transaction and earlier
 667 * ones, but later transactions still need replayed.
 668 */
 669
 670int journal_test_revoke(journal_t *journal,
 671                        unsigned int blocknr,
 672                        tid_t sequence)
 673{
 674        struct jbd_revoke_record_s *record;
 675
 676        record = find_revoke_record(journal, blocknr);
 677        if (!record)
 678                return 0;
 679        if (tid_gt(sequence, record->sequence))
 680                return 0;
 681        return 1;
 682}
 683
 684/*
 685 * Finally, once recovery is over, we need to clear the revoke table so
 686 * that it can be reused by the running filesystem.
 687 */
 688
 689void journal_clear_revoke(journal_t *journal)
 690{
 691        int i;
 692        struct list_head *hash_list;
 693        struct jbd_revoke_record_s *record;
 694        struct jbd_revoke_table_s *revoke;
 695
 696        revoke = journal->j_revoke;
 697
 698        for (i = 0; i < revoke->hash_size; i++) {
 699                hash_list = &revoke->hash_table[i];
 700                while (!list_empty(hash_list)) {
 701                        record = (struct jbd_revoke_record_s*) hash_list->next;
 702                        list_del(&record->hash);
 703                        kmem_cache_free(revoke_record_cache, record);
 704                }
 705        }
 706}
 707