linux/fs/jfs/jfs_dmap.c
<<
>>
Prefs
   1/*
   2 *   Copyright (C) International Business Machines Corp., 2000-2004
   3 *
   4 *   This program is free software;  you can redistribute it and/or modify
   5 *   it under the terms of the GNU General Public License as published by
   6 *   the Free Software Foundation; either version 2 of the License, or
   7 *   (at your option) any later version.
   8 *
   9 *   This program is distributed in the hope that it will be useful,
  10 *   but WITHOUT ANY WARRANTY;  without even the implied warranty of
  11 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
  12 *   the GNU General Public License for more details.
  13 *
  14 *   You should have received a copy of the GNU General Public License
  15 *   along with this program;  if not, write to the Free Software
  16 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17 */
  18
  19#include <linux/fs.h>
  20#include "jfs_incore.h"
  21#include "jfs_superblock.h"
  22#include "jfs_dmap.h"
  23#include "jfs_imap.h"
  24#include "jfs_lock.h"
  25#include "jfs_metapage.h"
  26#include "jfs_debug.h"
  27
  28/*
  29 *      SERIALIZATION of the Block Allocation Map.
  30 *
  31 *      the working state of the block allocation map is accessed in
  32 *      two directions:
  33 *
  34 *      1) allocation and free requests that start at the dmap
  35 *         level and move up through the dmap control pages (i.e.
  36 *         the vast majority of requests).
  37 *
  38 *      2) allocation requests that start at dmap control page
  39 *         level and work down towards the dmaps.
  40 *
  41 *      the serialization scheme used here is as follows.
  42 *
  43 *      requests which start at the bottom are serialized against each
  44 *      other through buffers and each requests holds onto its buffers
  45 *      as it works it way up from a single dmap to the required level
  46 *      of dmap control page.
  47 *      requests that start at the top are serialized against each other
  48 *      and request that start from the bottom by the multiple read/single
  49 *      write inode lock of the bmap inode. requests starting at the top
  50 *      take this lock in write mode while request starting at the bottom
  51 *      take the lock in read mode.  a single top-down request may proceed
  52 *      exclusively while multiple bottoms-up requests may proceed
  53 *      simultaneously (under the protection of busy buffers).
  54 *
  55 *      in addition to information found in dmaps and dmap control pages,
  56 *      the working state of the block allocation map also includes read/
  57 *      write information maintained in the bmap descriptor (i.e. total
  58 *      free block count, allocation group level free block counts).
  59 *      a single exclusive lock (BMAP_LOCK) is used to guard this information
  60 *      in the face of multiple-bottoms up requests.
  61 *      (lock ordering: IREAD_LOCK, BMAP_LOCK);
  62 *
  63 *      accesses to the persistent state of the block allocation map (limited
  64 *      to the persistent bitmaps in dmaps) is guarded by (busy) buffers.
  65 */
  66
  67#define BMAP_LOCK_INIT(bmp)     mutex_init(&bmp->db_bmaplock)
  68#define BMAP_LOCK(bmp)          mutex_lock(&bmp->db_bmaplock)
  69#define BMAP_UNLOCK(bmp)        mutex_unlock(&bmp->db_bmaplock)
  70
  71/*
  72 * forward references
  73 */
  74static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
  75                        int nblocks);
  76static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval);
  77static int dbBackSplit(dmtree_t * tp, int leafno);
  78static int dbJoin(dmtree_t * tp, int leafno, int newval);
  79static void dbAdjTree(dmtree_t * tp, int leafno, int newval);
  80static int dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc,
  81                    int level);
  82static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results);
  83static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
  84                       int nblocks);
  85static int dbAllocNear(struct bmap * bmp, struct dmap * dp, s64 blkno,
  86                       int nblocks,
  87                       int l2nb, s64 * results);
  88static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
  89                       int nblocks);
  90static int dbAllocDmapLev(struct bmap * bmp, struct dmap * dp, int nblocks,
  91                          int l2nb,
  92                          s64 * results);
  93static int dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb,
  94                     s64 * results);
  95static int dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno,
  96                      s64 * results);
  97static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks);
  98static int dbFindBits(u32 word, int l2nb);
  99static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno);
 100static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx);
 101static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
 102                      int nblocks);
 103static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
 104                      int nblocks);
 105static int dbMaxBud(u8 * cp);
 106s64 dbMapFileSizeToMapSize(struct inode *ipbmap);
 107static int blkstol2(s64 nb);
 108
 109static int cntlz(u32 value);
 110static int cnttz(u32 word);
 111
 112static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
 113                         int nblocks);
 114static int dbInitDmap(struct dmap * dp, s64 blkno, int nblocks);
 115static int dbInitDmapTree(struct dmap * dp);
 116static int dbInitTree(struct dmaptree * dtp);
 117static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i);
 118static int dbGetL2AGSize(s64 nblocks);
 119
 120/*
 121 *      buddy table
 122 *
 123 * table used for determining buddy sizes within characters of
 124 * dmap bitmap words.  the characters themselves serve as indexes
 125 * into the table, with the table elements yielding the maximum
 126 * binary buddy of free bits within the character.
 127 */
 128static const s8 budtab[256] = {
 129        3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
 130        2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 131        2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 132        2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 133        2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 134        2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
 135        2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
 136        2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
 137        2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 138        2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
 139        2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
 140        2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
 141        2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 142        2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
 143        2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
 144        2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, -1
 145};
 146
 147
 148/*
 149 * NAME:        dbMount()
 150 *
 151 * FUNCTION:    initializate the block allocation map.
 152 *
 153 *              memory is allocated for the in-core bmap descriptor and
 154 *              the in-core descriptor is initialized from disk.
 155 *
 156 * PARAMETERS:
 157 *      ipbmap  - pointer to in-core inode for the block map.
 158 *
 159 * RETURN VALUES:
 160 *      0       - success
 161 *      -ENOMEM - insufficient memory
 162 *      -EIO    - i/o error
 163 */
 164int dbMount(struct inode *ipbmap)
 165{
 166        struct bmap *bmp;
 167        struct dbmap_disk *dbmp_le;
 168        struct metapage *mp;
 169        int i;
 170
 171        /*
 172         * allocate/initialize the in-memory bmap descriptor
 173         */
 174        /* allocate memory for the in-memory bmap descriptor */
 175        bmp = kmalloc(sizeof(struct bmap), GFP_KERNEL);
 176        if (bmp == NULL)
 177                return -ENOMEM;
 178
 179        /* read the on-disk bmap descriptor. */
 180        mp = read_metapage(ipbmap,
 181                           BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
 182                           PSIZE, 0);
 183        if (mp == NULL) {
 184                kfree(bmp);
 185                return -EIO;
 186        }
 187
 188        /* copy the on-disk bmap descriptor to its in-memory version. */
 189        dbmp_le = (struct dbmap_disk *) mp->data;
 190        bmp->db_mapsize = le64_to_cpu(dbmp_le->dn_mapsize);
 191        bmp->db_nfree = le64_to_cpu(dbmp_le->dn_nfree);
 192        bmp->db_l2nbperpage = le32_to_cpu(dbmp_le->dn_l2nbperpage);
 193        bmp->db_numag = le32_to_cpu(dbmp_le->dn_numag);
 194        bmp->db_maxlevel = le32_to_cpu(dbmp_le->dn_maxlevel);
 195        bmp->db_maxag = le32_to_cpu(dbmp_le->dn_maxag);
 196        bmp->db_agpref = le32_to_cpu(dbmp_le->dn_agpref);
 197        bmp->db_aglevel = le32_to_cpu(dbmp_le->dn_aglevel);
 198        bmp->db_agheigth = le32_to_cpu(dbmp_le->dn_agheigth);
 199        bmp->db_agwidth = le32_to_cpu(dbmp_le->dn_agwidth);
 200        bmp->db_agstart = le32_to_cpu(dbmp_le->dn_agstart);
 201        bmp->db_agl2size = le32_to_cpu(dbmp_le->dn_agl2size);
 202        for (i = 0; i < MAXAG; i++)
 203                bmp->db_agfree[i] = le64_to_cpu(dbmp_le->dn_agfree[i]);
 204        bmp->db_agsize = le64_to_cpu(dbmp_le->dn_agsize);
 205        bmp->db_maxfreebud = dbmp_le->dn_maxfreebud;
 206
 207        /* release the buffer. */
 208        release_metapage(mp);
 209
 210        /* bind the bmap inode and the bmap descriptor to each other. */
 211        bmp->db_ipbmap = ipbmap;
 212        JFS_SBI(ipbmap->i_sb)->bmap = bmp;
 213
 214        memset(bmp->db_active, 0, sizeof(bmp->db_active));
 215
 216        /*
 217         * allocate/initialize the bmap lock
 218         */
 219        BMAP_LOCK_INIT(bmp);
 220
 221        return (0);
 222}
 223
 224
 225/*
 226 * NAME:        dbUnmount()
 227 *
 228 * FUNCTION:    terminate the block allocation map in preparation for
 229 *              file system unmount.
 230 *
 231 *              the in-core bmap descriptor is written to disk and
 232 *              the memory for this descriptor is freed.
 233 *
 234 * PARAMETERS:
 235 *      ipbmap  - pointer to in-core inode for the block map.
 236 *
 237 * RETURN VALUES:
 238 *      0       - success
 239 *      -EIO    - i/o error
 240 */
 241int dbUnmount(struct inode *ipbmap, int mounterror)
 242{
 243        struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
 244
 245        if (!(mounterror || isReadOnly(ipbmap)))
 246                dbSync(ipbmap);
 247
 248        /*
 249         * Invalidate the page cache buffers
 250         */
 251        truncate_inode_pages(ipbmap->i_mapping, 0);
 252
 253        /* free the memory for the in-memory bmap. */
 254        kfree(bmp);
 255
 256        return (0);
 257}
 258
 259/*
 260 *      dbSync()
 261 */
 262int dbSync(struct inode *ipbmap)
 263{
 264        struct dbmap_disk *dbmp_le;
 265        struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
 266        struct metapage *mp;
 267        int i;
 268
 269        /*
 270         * write bmap global control page
 271         */
 272        /* get the buffer for the on-disk bmap descriptor. */
 273        mp = read_metapage(ipbmap,
 274                           BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
 275                           PSIZE, 0);
 276        if (mp == NULL) {
 277                jfs_err("dbSync: read_metapage failed!");
 278                return -EIO;
 279        }
 280        /* copy the in-memory version of the bmap to the on-disk version */
 281        dbmp_le = (struct dbmap_disk *) mp->data;
 282        dbmp_le->dn_mapsize = cpu_to_le64(bmp->db_mapsize);
 283        dbmp_le->dn_nfree = cpu_to_le64(bmp->db_nfree);
 284        dbmp_le->dn_l2nbperpage = cpu_to_le32(bmp->db_l2nbperpage);
 285        dbmp_le->dn_numag = cpu_to_le32(bmp->db_numag);
 286        dbmp_le->dn_maxlevel = cpu_to_le32(bmp->db_maxlevel);
 287        dbmp_le->dn_maxag = cpu_to_le32(bmp->db_maxag);
 288        dbmp_le->dn_agpref = cpu_to_le32(bmp->db_agpref);
 289        dbmp_le->dn_aglevel = cpu_to_le32(bmp->db_aglevel);
 290        dbmp_le->dn_agheigth = cpu_to_le32(bmp->db_agheigth);
 291        dbmp_le->dn_agwidth = cpu_to_le32(bmp->db_agwidth);
 292        dbmp_le->dn_agstart = cpu_to_le32(bmp->db_agstart);
 293        dbmp_le->dn_agl2size = cpu_to_le32(bmp->db_agl2size);
 294        for (i = 0; i < MAXAG; i++)
 295                dbmp_le->dn_agfree[i] = cpu_to_le64(bmp->db_agfree[i]);
 296        dbmp_le->dn_agsize = cpu_to_le64(bmp->db_agsize);
 297        dbmp_le->dn_maxfreebud = bmp->db_maxfreebud;
 298
 299        /* write the buffer */
 300        write_metapage(mp);
 301
 302        /*
 303         * write out dirty pages of bmap
 304         */
 305        filemap_write_and_wait(ipbmap->i_mapping);
 306
 307        diWriteSpecial(ipbmap, 0);
 308
 309        return (0);
 310}
 311
 312
 313/*
 314 * NAME:        dbFree()
 315 *
 316 * FUNCTION:    free the specified block range from the working block
 317 *              allocation map.
 318 *
 319 *              the blocks will be free from the working map one dmap
 320 *              at a time.
 321 *
 322 * PARAMETERS:
 323 *      ip      - pointer to in-core inode;
 324 *      blkno   - starting block number to be freed.
 325 *      nblocks - number of blocks to be freed.
 326 *
 327 * RETURN VALUES:
 328 *      0       - success
 329 *      -EIO    - i/o error
 330 */
 331int dbFree(struct inode *ip, s64 blkno, s64 nblocks)
 332{
 333        struct metapage *mp;
 334        struct dmap *dp;
 335        int nb, rc;
 336        s64 lblkno, rem;
 337        struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
 338        struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
 339
 340        IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
 341
 342        /* block to be freed better be within the mapsize. */
 343        if (unlikely((blkno == 0) || (blkno + nblocks > bmp->db_mapsize))) {
 344                IREAD_UNLOCK(ipbmap);
 345                printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
 346                       (unsigned long long) blkno,
 347                       (unsigned long long) nblocks);
 348                jfs_error(ip->i_sb,
 349                          "dbFree: block to be freed is outside the map");
 350                return -EIO;
 351        }
 352
 353        /*
 354         * free the blocks a dmap at a time.
 355         */
 356        mp = NULL;
 357        for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
 358                /* release previous dmap if any */
 359                if (mp) {
 360                        write_metapage(mp);
 361                }
 362
 363                /* get the buffer for the current dmap. */
 364                lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
 365                mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
 366                if (mp == NULL) {
 367                        IREAD_UNLOCK(ipbmap);
 368                        return -EIO;
 369                }
 370                dp = (struct dmap *) mp->data;
 371
 372                /* determine the number of blocks to be freed from
 373                 * this dmap.
 374                 */
 375                nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
 376
 377                /* free the blocks. */
 378                if ((rc = dbFreeDmap(bmp, dp, blkno, nb))) {
 379                        jfs_error(ip->i_sb, "dbFree: error in block map\n");
 380                        release_metapage(mp);
 381                        IREAD_UNLOCK(ipbmap);
 382                        return (rc);
 383                }
 384        }
 385
 386        /* write the last buffer. */
 387        write_metapage(mp);
 388
 389        IREAD_UNLOCK(ipbmap);
 390
 391        return (0);
 392}
 393
 394
 395/*
 396 * NAME:        dbUpdatePMap()
 397 *
 398 * FUNCTION:    update the allocation state (free or allocate) of the
 399 *              specified block range in the persistent block allocation map.
 400 *
 401 *              the blocks will be updated in the persistent map one
 402 *              dmap at a time.
 403 *
 404 * PARAMETERS:
 405 *      ipbmap  - pointer to in-core inode for the block map.
 406 *      free    - 'true' if block range is to be freed from the persistent
 407 *                map; 'false' if it is to be allocated.
 408 *      blkno   - starting block number of the range.
 409 *      nblocks - number of contiguous blocks in the range.
 410 *      tblk    - transaction block;
 411 *
 412 * RETURN VALUES:
 413 *      0       - success
 414 *      -EIO    - i/o error
 415 */
 416int
 417dbUpdatePMap(struct inode *ipbmap,
 418             int free, s64 blkno, s64 nblocks, struct tblock * tblk)
 419{
 420        int nblks, dbitno, wbitno, rbits;
 421        int word, nbits, nwords;
 422        struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
 423        s64 lblkno, rem, lastlblkno;
 424        u32 mask;
 425        struct dmap *dp;
 426        struct metapage *mp;
 427        struct jfs_log *log;
 428        int lsn, difft, diffp;
 429        unsigned long flags;
 430
 431        /* the blocks better be within the mapsize. */
 432        if (blkno + nblocks > bmp->db_mapsize) {
 433                printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
 434                       (unsigned long long) blkno,
 435                       (unsigned long long) nblocks);
 436                jfs_error(ipbmap->i_sb,
 437                          "dbUpdatePMap: blocks are outside the map");
 438                return -EIO;
 439        }
 440
 441        /* compute delta of transaction lsn from log syncpt */
 442        lsn = tblk->lsn;
 443        log = (struct jfs_log *) JFS_SBI(tblk->sb)->log;
 444        logdiff(difft, lsn, log);
 445
 446        /*
 447         * update the block state a dmap at a time.
 448         */
 449        mp = NULL;
 450        lastlblkno = 0;
 451        for (rem = nblocks; rem > 0; rem -= nblks, blkno += nblks) {
 452                /* get the buffer for the current dmap. */
 453                lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
 454                if (lblkno != lastlblkno) {
 455                        if (mp) {
 456                                write_metapage(mp);
 457                        }
 458
 459                        mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE,
 460                                           0);
 461                        if (mp == NULL)
 462                                return -EIO;
 463                        metapage_wait_for_io(mp);
 464                }
 465                dp = (struct dmap *) mp->data;
 466
 467                /* determine the bit number and word within the dmap of
 468                 * the starting block.  also determine how many blocks
 469                 * are to be updated within this dmap.
 470                 */
 471                dbitno = blkno & (BPERDMAP - 1);
 472                word = dbitno >> L2DBWORD;
 473                nblks = min(rem, (s64)BPERDMAP - dbitno);
 474
 475                /* update the bits of the dmap words. the first and last
 476                 * words may only have a subset of their bits updated. if
 477                 * this is the case, we'll work against that word (i.e.
 478                 * partial first and/or last) only in a single pass.  a
 479                 * single pass will also be used to update all words that
 480                 * are to have all their bits updated.
 481                 */
 482                for (rbits = nblks; rbits > 0;
 483                     rbits -= nbits, dbitno += nbits) {
 484                        /* determine the bit number within the word and
 485                         * the number of bits within the word.
 486                         */
 487                        wbitno = dbitno & (DBWORD - 1);
 488                        nbits = min(rbits, DBWORD - wbitno);
 489
 490                        /* check if only part of the word is to be updated. */
 491                        if (nbits < DBWORD) {
 492                                /* update (free or allocate) the bits
 493                                 * in this word.
 494                                 */
 495                                mask =
 496                                    (ONES << (DBWORD - nbits) >> wbitno);
 497                                if (free)
 498                                        dp->pmap[word] &=
 499                                            cpu_to_le32(~mask);
 500                                else
 501                                        dp->pmap[word] |=
 502                                            cpu_to_le32(mask);
 503
 504                                word += 1;
 505                        } else {
 506                                /* one or more words are to have all
 507                                 * their bits updated.  determine how
 508                                 * many words and how many bits.
 509                                 */
 510                                nwords = rbits >> L2DBWORD;
 511                                nbits = nwords << L2DBWORD;
 512
 513                                /* update (free or allocate) the bits
 514                                 * in these words.
 515                                 */
 516                                if (free)
 517                                        memset(&dp->pmap[word], 0,
 518                                               nwords * 4);
 519                                else
 520                                        memset(&dp->pmap[word], (int) ONES,
 521                                               nwords * 4);
 522
 523                                word += nwords;
 524                        }
 525                }
 526
 527                /*
 528                 * update dmap lsn
 529                 */
 530                if (lblkno == lastlblkno)
 531                        continue;
 532
 533                lastlblkno = lblkno;
 534
 535                LOGSYNC_LOCK(log, flags);
 536                if (mp->lsn != 0) {
 537                        /* inherit older/smaller lsn */
 538                        logdiff(diffp, mp->lsn, log);
 539                        if (difft < diffp) {
 540                                mp->lsn = lsn;
 541
 542                                /* move bp after tblock in logsync list */
 543                                list_move(&mp->synclist, &tblk->synclist);
 544                        }
 545
 546                        /* inherit younger/larger clsn */
 547                        logdiff(difft, tblk->clsn, log);
 548                        logdiff(diffp, mp->clsn, log);
 549                        if (difft > diffp)
 550                                mp->clsn = tblk->clsn;
 551                } else {
 552                        mp->log = log;
 553                        mp->lsn = lsn;
 554
 555                        /* insert bp after tblock in logsync list */
 556                        log->count++;
 557                        list_add(&mp->synclist, &tblk->synclist);
 558
 559                        mp->clsn = tblk->clsn;
 560                }
 561                LOGSYNC_UNLOCK(log, flags);
 562        }
 563
 564        /* write the last buffer. */
 565        if (mp) {
 566                write_metapage(mp);
 567        }
 568
 569        return (0);
 570}
 571
 572
 573/*
 574 * NAME:        dbNextAG()
 575 *
 576 * FUNCTION:    find the preferred allocation group for new allocations.
 577 *
 578 *              Within the allocation groups, we maintain a preferred
 579 *              allocation group which consists of a group with at least
 580 *              average free space.  It is the preferred group that we target
 581 *              new inode allocation towards.  The tie-in between inode
 582 *              allocation and block allocation occurs as we allocate the
 583 *              first (data) block of an inode and specify the inode (block)
 584 *              as the allocation hint for this block.
 585 *
 586 *              We try to avoid having more than one open file growing in
 587 *              an allocation group, as this will lead to fragmentation.
 588 *              This differs from the old OS/2 method of trying to keep
 589 *              empty ags around for large allocations.
 590 *
 591 * PARAMETERS:
 592 *      ipbmap  - pointer to in-core inode for the block map.
 593 *
 594 * RETURN VALUES:
 595 *      the preferred allocation group number.
 596 */
 597int dbNextAG(struct inode *ipbmap)
 598{
 599        s64 avgfree;
 600        int agpref;
 601        s64 hwm = 0;
 602        int i;
 603        int next_best = -1;
 604        struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
 605
 606        BMAP_LOCK(bmp);
 607
 608        /* determine the average number of free blocks within the ags. */
 609        avgfree = (u32)bmp->db_nfree / bmp->db_numag;
 610
 611        /*
 612         * if the current preferred ag does not have an active allocator
 613         * and has at least average freespace, return it
 614         */
 615        agpref = bmp->db_agpref;
 616        if ((atomic_read(&bmp->db_active[agpref]) == 0) &&
 617            (bmp->db_agfree[agpref] >= avgfree))
 618                goto unlock;
 619
 620        /* From the last preferred ag, find the next one with at least
 621         * average free space.
 622         */
 623        for (i = 0 ; i < bmp->db_numag; i++, agpref++) {
 624                if (agpref == bmp->db_numag)
 625                        agpref = 0;
 626
 627                if (atomic_read(&bmp->db_active[agpref]))
 628                        /* open file is currently growing in this ag */
 629                        continue;
 630                if (bmp->db_agfree[agpref] >= avgfree) {
 631                        /* Return this one */
 632                        bmp->db_agpref = agpref;
 633                        goto unlock;
 634                } else if (bmp->db_agfree[agpref] > hwm) {
 635                        /* Less than avg. freespace, but best so far */
 636                        hwm = bmp->db_agfree[agpref];
 637                        next_best = agpref;
 638                }
 639        }
 640
 641        /*
 642         * If no inactive ag was found with average freespace, use the
 643         * next best
 644         */
 645        if (next_best != -1)
 646                bmp->db_agpref = next_best;
 647        /* else leave db_agpref unchanged */
 648unlock:
 649        BMAP_UNLOCK(bmp);
 650
 651        /* return the preferred group.
 652         */
 653        return (bmp->db_agpref);
 654}
 655
 656/*
 657 * NAME:        dbAlloc()
 658 *
 659 * FUNCTION:    attempt to allocate a specified number of contiguous free
 660 *              blocks from the working allocation block map.
 661 *
 662 *              the block allocation policy uses hints and a multi-step
 663 *              approach.
 664 *
 665 *              for allocation requests smaller than the number of blocks
 666 *              per dmap, we first try to allocate the new blocks
 667 *              immediately following the hint.  if these blocks are not
 668 *              available, we try to allocate blocks near the hint.  if
 669 *              no blocks near the hint are available, we next try to
 670 *              allocate within the same dmap as contains the hint.
 671 *
 672 *              if no blocks are available in the dmap or the allocation
 673 *              request is larger than the dmap size, we try to allocate
 674 *              within the same allocation group as contains the hint. if
 675 *              this does not succeed, we finally try to allocate anywhere
 676 *              within the aggregate.
 677 *
 678 *              we also try to allocate anywhere within the aggregate for
 679 *              for allocation requests larger than the allocation group
 680 *              size or requests that specify no hint value.
 681 *
 682 * PARAMETERS:
 683 *      ip      - pointer to in-core inode;
 684 *      hint    - allocation hint.
 685 *      nblocks - number of contiguous blocks in the range.
 686 *      results - on successful return, set to the starting block number
 687 *                of the newly allocated contiguous range.
 688 *
 689 * RETURN VALUES:
 690 *      0       - success
 691 *      -ENOSPC - insufficient disk resources
 692 *      -EIO    - i/o error
 693 */
 694int dbAlloc(struct inode *ip, s64 hint, s64 nblocks, s64 * results)
 695{
 696        int rc, agno;
 697        struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
 698        struct bmap *bmp;
 699        struct metapage *mp;
 700        s64 lblkno, blkno;
 701        struct dmap *dp;
 702        int l2nb;
 703        s64 mapSize;
 704        int writers;
 705
 706        /* assert that nblocks is valid */
 707        assert(nblocks > 0);
 708
 709        /* get the log2 number of blocks to be allocated.
 710         * if the number of blocks is not a log2 multiple,
 711         * it will be rounded up to the next log2 multiple.
 712         */
 713        l2nb = BLKSTOL2(nblocks);
 714
 715        bmp = JFS_SBI(ip->i_sb)->bmap;
 716
 717        mapSize = bmp->db_mapsize;
 718
 719        /* the hint should be within the map */
 720        if (hint >= mapSize) {
 721                jfs_error(ip->i_sb, "dbAlloc: the hint is outside the map");
 722                return -EIO;
 723        }
 724
 725        /* if the number of blocks to be allocated is greater than the
 726         * allocation group size, try to allocate anywhere.
 727         */
 728        if (l2nb > bmp->db_agl2size) {
 729                IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
 730
 731                rc = dbAllocAny(bmp, nblocks, l2nb, results);
 732
 733                goto write_unlock;
 734        }
 735
 736        /*
 737         * If no hint, let dbNextAG recommend an allocation group
 738         */
 739        if (hint == 0)
 740                goto pref_ag;
 741
 742        /* we would like to allocate close to the hint.  adjust the
 743         * hint to the block following the hint since the allocators
 744         * will start looking for free space starting at this point.
 745         */
 746        blkno = hint + 1;
 747
 748        if (blkno >= bmp->db_mapsize)
 749                goto pref_ag;
 750
 751        agno = blkno >> bmp->db_agl2size;
 752
 753        /* check if blkno crosses over into a new allocation group.
 754         * if so, check if we should allow allocations within this
 755         * allocation group.
 756         */
 757        if ((blkno & (bmp->db_agsize - 1)) == 0)
 758                /* check if the AG is currenly being written to.
 759                 * if so, call dbNextAG() to find a non-busy
 760                 * AG with sufficient free space.
 761                 */
 762                if (atomic_read(&bmp->db_active[agno]))
 763                        goto pref_ag;
 764
 765        /* check if the allocation request size can be satisfied from a
 766         * single dmap.  if so, try to allocate from the dmap containing
 767         * the hint using a tiered strategy.
 768         */
 769        if (nblocks <= BPERDMAP) {
 770                IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
 771
 772                /* get the buffer for the dmap containing the hint.
 773                 */
 774                rc = -EIO;
 775                lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
 776                mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
 777                if (mp == NULL)
 778                        goto read_unlock;
 779
 780                dp = (struct dmap *) mp->data;
 781
 782                /* first, try to satisfy the allocation request with the
 783                 * blocks beginning at the hint.
 784                 */
 785                if ((rc = dbAllocNext(bmp, dp, blkno, (int) nblocks))
 786                    != -ENOSPC) {
 787                        if (rc == 0) {
 788                                *results = blkno;
 789                                mark_metapage_dirty(mp);
 790                        }
 791
 792                        release_metapage(mp);
 793                        goto read_unlock;
 794                }
 795
 796                writers = atomic_read(&bmp->db_active[agno]);
 797                if ((writers > 1) ||
 798                    ((writers == 1) && (JFS_IP(ip)->active_ag != agno))) {
 799                        /*
 800                         * Someone else is writing in this allocation
 801                         * group.  To avoid fragmenting, try another ag
 802                         */
 803                        release_metapage(mp);
 804                        IREAD_UNLOCK(ipbmap);
 805                        goto pref_ag;
 806                }
 807
 808                /* next, try to satisfy the allocation request with blocks
 809                 * near the hint.
 810                 */
 811                if ((rc =
 812                     dbAllocNear(bmp, dp, blkno, (int) nblocks, l2nb, results))
 813                    != -ENOSPC) {
 814                        if (rc == 0)
 815                                mark_metapage_dirty(mp);
 816
 817                        release_metapage(mp);
 818                        goto read_unlock;
 819                }
 820
 821                /* try to satisfy the allocation request with blocks within
 822                 * the same dmap as the hint.
 823                 */
 824                if ((rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results))
 825                    != -ENOSPC) {
 826                        if (rc == 0)
 827                                mark_metapage_dirty(mp);
 828
 829                        release_metapage(mp);
 830                        goto read_unlock;
 831                }
 832
 833                release_metapage(mp);
 834                IREAD_UNLOCK(ipbmap);
 835        }
 836
 837        /* try to satisfy the allocation request with blocks within
 838         * the same allocation group as the hint.
 839         */
 840        IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
 841        if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) != -ENOSPC)
 842                goto write_unlock;
 843
 844        IWRITE_UNLOCK(ipbmap);
 845
 846
 847      pref_ag:
 848        /*
 849         * Let dbNextAG recommend a preferred allocation group
 850         */
 851        agno = dbNextAG(ipbmap);
 852        IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
 853
 854        /* Try to allocate within this allocation group.  if that fails, try to
 855         * allocate anywhere in the map.
 856         */
 857        if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) == -ENOSPC)
 858                rc = dbAllocAny(bmp, nblocks, l2nb, results);
 859
 860      write_unlock:
 861        IWRITE_UNLOCK(ipbmap);
 862
 863        return (rc);
 864
 865      read_unlock:
 866        IREAD_UNLOCK(ipbmap);
 867
 868        return (rc);
 869}
 870
 871#ifdef _NOTYET
 872/*
 873 * NAME:        dbAllocExact()
 874 *
 875 * FUNCTION:    try to allocate the requested extent;
 876 *
 877 * PARAMETERS:
 878 *      ip      - pointer to in-core inode;
 879 *      blkno   - extent address;
 880 *      nblocks - extent length;
 881 *
 882 * RETURN VALUES:
 883 *      0       - success
 884 *      -ENOSPC - insufficient disk resources
 885 *      -EIO    - i/o error
 886 */
 887int dbAllocExact(struct inode *ip, s64 blkno, int nblocks)
 888{
 889        int rc;
 890        struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
 891        struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
 892        struct dmap *dp;
 893        s64 lblkno;
 894        struct metapage *mp;
 895
 896        IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
 897
 898        /*
 899         * validate extent request:
 900         *
 901         * note: defragfs policy:
 902         *  max 64 blocks will be moved.
 903         *  allocation request size must be satisfied from a single dmap.
 904         */
 905        if (nblocks <= 0 || nblocks > BPERDMAP || blkno >= bmp->db_mapsize) {
 906                IREAD_UNLOCK(ipbmap);
 907                return -EINVAL;
 908        }
 909
 910        if (nblocks > ((s64) 1 << bmp->db_maxfreebud)) {
 911                /* the free space is no longer available */
 912                IREAD_UNLOCK(ipbmap);
 913                return -ENOSPC;
 914        }
 915
 916        /* read in the dmap covering the extent */
 917        lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
 918        mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
 919        if (mp == NULL) {
 920                IREAD_UNLOCK(ipbmap);
 921                return -EIO;
 922        }
 923        dp = (struct dmap *) mp->data;
 924
 925        /* try to allocate the requested extent */
 926        rc = dbAllocNext(bmp, dp, blkno, nblocks);
 927
 928        IREAD_UNLOCK(ipbmap);
 929
 930        if (rc == 0)
 931                mark_metapage_dirty(mp);
 932
 933        release_metapage(mp);
 934
 935        return (rc);
 936}
 937#endif /* _NOTYET */
 938
 939/*
 940 * NAME:        dbReAlloc()
 941 *
 942 * FUNCTION:    attempt to extend a current allocation by a specified
 943 *              number of blocks.
 944 *
 945 *              this routine attempts to satisfy the allocation request
 946 *              by first trying to extend the existing allocation in
 947 *              place by allocating the additional blocks as the blocks
 948 *              immediately following the current allocation.  if these
 949 *              blocks are not available, this routine will attempt to
 950 *              allocate a new set of contiguous blocks large enough
 951 *              to cover the existing allocation plus the additional
 952 *              number of blocks required.
 953 *
 954 * PARAMETERS:
 955 *      ip          -  pointer to in-core inode requiring allocation.
 956 *      blkno       -  starting block of the current allocation.
 957 *      nblocks     -  number of contiguous blocks within the current
 958 *                     allocation.
 959 *      addnblocks  -  number of blocks to add to the allocation.
 960 *      results -      on successful return, set to the starting block number
 961 *                     of the existing allocation if the existing allocation
 962 *                     was extended in place or to a newly allocated contiguous
 963 *                     range if the existing allocation could not be extended
 964 *                     in place.
 965 *
 966 * RETURN VALUES:
 967 *      0       - success
 968 *      -ENOSPC - insufficient disk resources
 969 *      -EIO    - i/o error
 970 */
 971int
 972dbReAlloc(struct inode *ip,
 973          s64 blkno, s64 nblocks, s64 addnblocks, s64 * results)
 974{
 975        int rc;
 976
 977        /* try to extend the allocation in place.
 978         */
 979        if ((rc = dbExtend(ip, blkno, nblocks, addnblocks)) == 0) {
 980                *results = blkno;
 981                return (0);
 982        } else {
 983                if (rc != -ENOSPC)
 984                        return (rc);
 985        }
 986
 987        /* could not extend the allocation in place, so allocate a
 988         * new set of blocks for the entire request (i.e. try to get
 989         * a range of contiguous blocks large enough to cover the
 990         * existing allocation plus the additional blocks.)
 991         */
 992        return (dbAlloc
 993                (ip, blkno + nblocks - 1, addnblocks + nblocks, results));
 994}
 995
 996
 997/*
 998 * NAME:        dbExtend()
 999 *
1000 * FUNCTION:    attempt to extend a current allocation by a specified
1001 *              number of blocks.
1002 *
1003 *              this routine attempts to satisfy the allocation request
1004 *              by first trying to extend the existing allocation in
1005 *              place by allocating the additional blocks as the blocks
1006 *              immediately following the current allocation.
1007 *
1008 * PARAMETERS:
1009 *      ip          -  pointer to in-core inode requiring allocation.
1010 *      blkno       -  starting block of the current allocation.
1011 *      nblocks     -  number of contiguous blocks within the current
1012 *                     allocation.
1013 *      addnblocks  -  number of blocks to add to the allocation.
1014 *
1015 * RETURN VALUES:
1016 *      0       - success
1017 *      -ENOSPC - insufficient disk resources
1018 *      -EIO    - i/o error
1019 */
1020static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks)
1021{
1022        struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
1023        s64 lblkno, lastblkno, extblkno;
1024        uint rel_block;
1025        struct metapage *mp;
1026        struct dmap *dp;
1027        int rc;
1028        struct inode *ipbmap = sbi->ipbmap;
1029        struct bmap *bmp;
1030
1031        /*
1032         * We don't want a non-aligned extent to cross a page boundary
1033         */
1034        if (((rel_block = blkno & (sbi->nbperpage - 1))) &&
1035            (rel_block + nblocks + addnblocks > sbi->nbperpage))
1036                return -ENOSPC;
1037
1038        /* get the last block of the current allocation */
1039        lastblkno = blkno + nblocks - 1;
1040
1041        /* determine the block number of the block following
1042         * the existing allocation.
1043         */
1044        extblkno = lastblkno + 1;
1045
1046        IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
1047
1048        /* better be within the file system */
1049        bmp = sbi->bmap;
1050        if (lastblkno < 0 || lastblkno >= bmp->db_mapsize) {
1051                IREAD_UNLOCK(ipbmap);
1052                jfs_error(ip->i_sb,
1053                          "dbExtend: the block is outside the filesystem");
1054                return -EIO;
1055        }
1056
1057        /* we'll attempt to extend the current allocation in place by
1058         * allocating the additional blocks as the blocks immediately
1059         * following the current allocation.  we only try to extend the
1060         * current allocation in place if the number of additional blocks
1061         * can fit into a dmap, the last block of the current allocation
1062         * is not the last block of the file system, and the start of the
1063         * inplace extension is not on an allocation group boundary.
1064         */
1065        if (addnblocks > BPERDMAP || extblkno >= bmp->db_mapsize ||
1066            (extblkno & (bmp->db_agsize - 1)) == 0) {
1067                IREAD_UNLOCK(ipbmap);
1068                return -ENOSPC;
1069        }
1070
1071        /* get the buffer for the dmap containing the first block
1072         * of the extension.
1073         */
1074        lblkno = BLKTODMAP(extblkno, bmp->db_l2nbperpage);
1075        mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
1076        if (mp == NULL) {
1077                IREAD_UNLOCK(ipbmap);
1078                return -EIO;
1079        }
1080
1081        dp = (struct dmap *) mp->data;
1082
1083        /* try to allocate the blocks immediately following the
1084         * current allocation.
1085         */
1086        rc = dbAllocNext(bmp, dp, extblkno, (int) addnblocks);
1087
1088        IREAD_UNLOCK(ipbmap);
1089
1090        /* were we successful ? */
1091        if (rc == 0)
1092                write_metapage(mp);
1093        else
1094                /* we were not successful */
1095                release_metapage(mp);
1096
1097
1098        return (rc);
1099}
1100
1101
1102/*
1103 * NAME:        dbAllocNext()
1104 *
1105 * FUNCTION:    attempt to allocate the blocks of the specified block
1106 *              range within a dmap.
1107 *
1108 * PARAMETERS:
1109 *      bmp     -  pointer to bmap descriptor
1110 *      dp      -  pointer to dmap.
1111 *      blkno   -  starting block number of the range.
1112 *      nblocks -  number of contiguous free blocks of the range.
1113 *
1114 * RETURN VALUES:
1115 *      0       - success
1116 *      -ENOSPC - insufficient disk resources
1117 *      -EIO    - i/o error
1118 *
1119 * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1120 */
1121static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
1122                       int nblocks)
1123{
1124        int dbitno, word, rembits, nb, nwords, wbitno, nw;
1125        int l2size;
1126        s8 *leaf;
1127        u32 mask;
1128
1129        if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1130                jfs_error(bmp->db_ipbmap->i_sb,
1131                          "dbAllocNext: Corrupt dmap page");
1132                return -EIO;
1133        }
1134
1135        /* pick up a pointer to the leaves of the dmap tree.
1136         */
1137        leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1138
1139        /* determine the bit number and word within the dmap of the
1140         * starting block.
1141         */
1142        dbitno = blkno & (BPERDMAP - 1);
1143        word = dbitno >> L2DBWORD;
1144
1145        /* check if the specified block range is contained within
1146         * this dmap.
1147         */
1148        if (dbitno + nblocks > BPERDMAP)
1149                return -ENOSPC;
1150
1151        /* check if the starting leaf indicates that anything
1152         * is free.
1153         */
1154        if (leaf[word] == NOFREE)
1155                return -ENOSPC;
1156
1157        /* check the dmaps words corresponding to block range to see
1158         * if the block range is free.  not all bits of the first and
1159         * last words may be contained within the block range.  if this
1160         * is the case, we'll work against those words (i.e. partial first
1161         * and/or last) on an individual basis (a single pass) and examine
1162         * the actual bits to determine if they are free.  a single pass
1163         * will be used for all dmap words fully contained within the
1164         * specified range.  within this pass, the leaves of the dmap
1165         * tree will be examined to determine if the blocks are free. a
1166         * single leaf may describe the free space of multiple dmap
1167         * words, so we may visit only a subset of the actual leaves
1168         * corresponding to the dmap words of the block range.
1169         */
1170        for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
1171                /* determine the bit number within the word and
1172                 * the number of bits within the word.
1173                 */
1174                wbitno = dbitno & (DBWORD - 1);
1175                nb = min(rembits, DBWORD - wbitno);
1176
1177                /* check if only part of the word is to be examined.
1178                 */
1179                if (nb < DBWORD) {
1180                        /* check if the bits are free.
1181                         */
1182                        mask = (ONES << (DBWORD - nb) >> wbitno);
1183                        if ((mask & ~le32_to_cpu(dp->wmap[word])) != mask)
1184                                return -ENOSPC;
1185
1186                        word += 1;
1187                } else {
1188                        /* one or more dmap words are fully contained
1189                         * within the block range.  determine how many
1190                         * words and how many bits.
1191                         */
1192                        nwords = rembits >> L2DBWORD;
1193                        nb = nwords << L2DBWORD;
1194
1195                        /* now examine the appropriate leaves to determine
1196                         * if the blocks are free.
1197                         */
1198                        while (nwords > 0) {
1199                                /* does the leaf describe any free space ?
1200                                 */
1201                                if (leaf[word] < BUDMIN)
1202                                        return -ENOSPC;
1203
1204                                /* determine the l2 number of bits provided
1205                                 * by this leaf.
1206                                 */
1207                                l2size =
1208                                    min((int)leaf[word], NLSTOL2BSZ(nwords));
1209
1210                                /* determine how many words were handled.
1211                                 */
1212                                nw = BUDSIZE(l2size, BUDMIN);
1213
1214                                nwords -= nw;
1215                                word += nw;
1216                        }
1217                }
1218        }
1219
1220        /* allocate the blocks.
1221         */
1222        return (dbAllocDmap(bmp, dp, blkno, nblocks));
1223}
1224
1225
1226/*
1227 * NAME:        dbAllocNear()
1228 *
1229 * FUNCTION:    attempt to allocate a number of contiguous free blocks near
1230 *              a specified block (hint) within a dmap.
1231 *
1232 *              starting with the dmap leaf that covers the hint, we'll
1233 *              check the next four contiguous leaves for sufficient free
1234 *              space.  if sufficient free space is found, we'll allocate
1235 *              the desired free space.
1236 *
1237 * PARAMETERS:
1238 *      bmp     -  pointer to bmap descriptor
1239 *      dp      -  pointer to dmap.
1240 *      blkno   -  block number to allocate near.
1241 *      nblocks -  actual number of contiguous free blocks desired.
1242 *      l2nb    -  log2 number of contiguous free blocks desired.
1243 *      results -  on successful return, set to the starting block number
1244 *                 of the newly allocated range.
1245 *
1246 * RETURN VALUES:
1247 *      0       - success
1248 *      -ENOSPC - insufficient disk resources
1249 *      -EIO    - i/o error
1250 *
1251 * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1252 */
1253static int
1254dbAllocNear(struct bmap * bmp,
1255            struct dmap * dp, s64 blkno, int nblocks, int l2nb, s64 * results)
1256{
1257        int word, lword, rc;
1258        s8 *leaf;
1259
1260        if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1261                jfs_error(bmp->db_ipbmap->i_sb,
1262                          "dbAllocNear: Corrupt dmap page");
1263                return -EIO;
1264        }
1265
1266        leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1267
1268        /* determine the word within the dmap that holds the hint
1269         * (i.e. blkno).  also, determine the last word in the dmap
1270         * that we'll include in our examination.
1271         */
1272        word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
1273        lword = min(word + 4, LPERDMAP);
1274
1275        /* examine the leaves for sufficient free space.
1276         */
1277        for (; word < lword; word++) {
1278                /* does the leaf describe sufficient free space ?
1279                 */
1280                if (leaf[word] < l2nb)
1281                        continue;
1282
1283                /* determine the block number within the file system
1284                 * of the first block described by this dmap word.
1285                 */
1286                blkno = le64_to_cpu(dp->start) + (word << L2DBWORD);
1287
1288                /* if not all bits of the dmap word are free, get the
1289                 * starting bit number within the dmap word of the required
1290                 * string of free bits and adjust the block number with the
1291                 * value.
1292                 */
1293                if (leaf[word] < BUDMIN)
1294                        blkno +=
1295                            dbFindBits(le32_to_cpu(dp->wmap[word]), l2nb);
1296
1297                /* allocate the blocks.
1298                 */
1299                if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1300                        *results = blkno;
1301
1302                return (rc);
1303        }
1304
1305        return -ENOSPC;
1306}
1307
1308
1309/*
1310 * NAME:        dbAllocAG()
1311 *
1312 * FUNCTION:    attempt to allocate the specified number of contiguous
1313 *              free blocks within the specified allocation group.
1314 *
1315 *              unless the allocation group size is equal to the number
1316 *              of blocks per dmap, the dmap control pages will be used to
1317 *              find the required free space, if available.  we start the
1318 *              search at the highest dmap control page level which
1319 *              distinctly describes the allocation group's free space
1320 *              (i.e. the highest level at which the allocation group's
1321 *              free space is not mixed in with that of any other group).
1322 *              in addition, we start the search within this level at a
1323 *              height of the dmapctl dmtree at which the nodes distinctly
1324 *              describe the allocation group's free space.  at this height,
1325 *              the allocation group's free space may be represented by 1
1326 *              or two sub-trees, depending on the allocation group size.
1327 *              we search the top nodes of these subtrees left to right for
1328 *              sufficient free space.  if sufficient free space is found,
1329 *              the subtree is searched to find the leftmost leaf that
1330 *              has free space.  once we have made it to the leaf, we
1331 *              move the search to the next lower level dmap control page
1332 *              corresponding to this leaf.  we continue down the dmap control
1333 *              pages until we find the dmap that contains or starts the
1334 *              sufficient free space and we allocate at this dmap.
1335 *
1336 *              if the allocation group size is equal to the dmap size,
1337 *              we'll start at the dmap corresponding to the allocation
1338 *              group and attempt the allocation at this level.
1339 *
1340 *              the dmap control page search is also not performed if the
1341 *              allocation group is completely free and we go to the first
1342 *              dmap of the allocation group to do the allocation.  this is
1343 *              done because the allocation group may be part (not the first
1344 *              part) of a larger binary buddy system, causing the dmap
1345 *              control pages to indicate no free space (NOFREE) within
1346 *              the allocation group.
1347 *
1348 * PARAMETERS:
1349 *      bmp     -  pointer to bmap descriptor
1350 *      agno    - allocation group number.
1351 *      nblocks -  actual number of contiguous free blocks desired.
1352 *      l2nb    -  log2 number of contiguous free blocks desired.
1353 *      results -  on successful return, set to the starting block number
1354 *                 of the newly allocated range.
1355 *
1356 * RETURN VALUES:
1357 *      0       - success
1358 *      -ENOSPC - insufficient disk resources
1359 *      -EIO    - i/o error
1360 *
1361 * note: IWRITE_LOCK(ipmap) held on entry/exit;
1362 */
1363static int
1364dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb, s64 * results)
1365{
1366        struct metapage *mp;
1367        struct dmapctl *dcp;
1368        int rc, ti, i, k, m, n, agperlev;
1369        s64 blkno, lblkno;
1370        int budmin;
1371
1372        /* allocation request should not be for more than the
1373         * allocation group size.
1374         */
1375        if (l2nb > bmp->db_agl2size) {
1376                jfs_error(bmp->db_ipbmap->i_sb,
1377                          "dbAllocAG: allocation request is larger than the "
1378                          "allocation group size");
1379                return -EIO;
1380        }
1381
1382        /* determine the starting block number of the allocation
1383         * group.
1384         */
1385        blkno = (s64) agno << bmp->db_agl2size;
1386
1387        /* check if the allocation group size is the minimum allocation
1388         * group size or if the allocation group is completely free. if
1389         * the allocation group size is the minimum size of BPERDMAP (i.e.
1390         * 1 dmap), there is no need to search the dmap control page (below)
1391         * that fully describes the allocation group since the allocation
1392         * group is already fully described by a dmap.  in this case, we
1393         * just call dbAllocCtl() to search the dmap tree and allocate the
1394         * required space if available.
1395         *
1396         * if the allocation group is completely free, dbAllocCtl() is
1397         * also called to allocate the required space.  this is done for
1398         * two reasons.  first, it makes no sense searching the dmap control
1399         * pages for free space when we know that free space exists.  second,
1400         * the dmap control pages may indicate that the allocation group
1401         * has no free space if the allocation group is part (not the first
1402         * part) of a larger binary buddy system.
1403         */
1404        if (bmp->db_agsize == BPERDMAP
1405            || bmp->db_agfree[agno] == bmp->db_agsize) {
1406                rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1407                if ((rc == -ENOSPC) &&
1408                    (bmp->db_agfree[agno] == bmp->db_agsize)) {
1409                        printk(KERN_ERR "blkno = %Lx, blocks = %Lx\n",
1410                               (unsigned long long) blkno,
1411                               (unsigned long long) nblocks);
1412                        jfs_error(bmp->db_ipbmap->i_sb,
1413                                  "dbAllocAG: dbAllocCtl failed in free AG");
1414                }
1415                return (rc);
1416        }
1417
1418        /* the buffer for the dmap control page that fully describes the
1419         * allocation group.
1420         */
1421        lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, bmp->db_aglevel);
1422        mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1423        if (mp == NULL)
1424                return -EIO;
1425        dcp = (struct dmapctl *) mp->data;
1426        budmin = dcp->budmin;
1427
1428        if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1429                jfs_error(bmp->db_ipbmap->i_sb,
1430                          "dbAllocAG: Corrupt dmapctl page");
1431                release_metapage(mp);
1432                return -EIO;
1433        }
1434
1435        /* search the subtree(s) of the dmap control page that describes
1436         * the allocation group, looking for sufficient free space.  to begin,
1437         * determine how many allocation groups are represented in a dmap
1438         * control page at the control page level (i.e. L0, L1, L2) that
1439         * fully describes an allocation group. next, determine the starting
1440         * tree index of this allocation group within the control page.
1441         */
1442        agperlev =
1443            (1 << (L2LPERCTL - (bmp->db_agheigth << 1))) / bmp->db_agwidth;
1444        ti = bmp->db_agstart + bmp->db_agwidth * (agno & (agperlev - 1));
1445
1446        /* dmap control page trees fan-out by 4 and a single allocation
1447         * group may be described by 1 or 2 subtrees within the ag level
1448         * dmap control page, depending upon the ag size. examine the ag's
1449         * subtrees for sufficient free space, starting with the leftmost
1450         * subtree.
1451         */
1452        for (i = 0; i < bmp->db_agwidth; i++, ti++) {
1453                /* is there sufficient free space ?
1454                 */
1455                if (l2nb > dcp->stree[ti])
1456                        continue;
1457
1458                /* sufficient free space found in a subtree. now search down
1459                 * the subtree to find the leftmost leaf that describes this
1460                 * free space.
1461                 */
1462                for (k = bmp->db_agheigth; k > 0; k--) {
1463                        for (n = 0, m = (ti << 2) + 1; n < 4; n++) {
1464                                if (l2nb <= dcp->stree[m + n]) {
1465                                        ti = m + n;
1466                                        break;
1467                                }
1468                        }
1469                        if (n == 4) {
1470                                jfs_error(bmp->db_ipbmap->i_sb,
1471                                          "dbAllocAG: failed descending stree");
1472                                release_metapage(mp);
1473                                return -EIO;
1474                        }
1475                }
1476
1477                /* determine the block number within the file system
1478                 * that corresponds to this leaf.
1479                 */
1480                if (bmp->db_aglevel == 2)
1481                        blkno = 0;
1482                else if (bmp->db_aglevel == 1)
1483                        blkno &= ~(MAXL1SIZE - 1);
1484                else            /* bmp->db_aglevel == 0 */
1485                        blkno &= ~(MAXL0SIZE - 1);
1486
1487                blkno +=
1488                    ((s64) (ti - le32_to_cpu(dcp->leafidx))) << budmin;
1489
1490                /* release the buffer in preparation for going down
1491                 * the next level of dmap control pages.
1492                 */
1493                release_metapage(mp);
1494
1495                /* check if we need to continue to search down the lower
1496                 * level dmap control pages.  we need to if the number of
1497                 * blocks required is less than maximum number of blocks
1498                 * described at the next lower level.
1499                 */
1500                if (l2nb < budmin) {
1501
1502                        /* search the lower level dmap control pages to get
1503                         * the starting block number of the dmap that
1504                         * contains or starts off the free space.
1505                         */
1506                        if ((rc =
1507                             dbFindCtl(bmp, l2nb, bmp->db_aglevel - 1,
1508                                       &blkno))) {
1509                                if (rc == -ENOSPC) {
1510                                        jfs_error(bmp->db_ipbmap->i_sb,
1511                                                  "dbAllocAG: control page "
1512                                                  "inconsistent");
1513                                        return -EIO;
1514                                }
1515                                return (rc);
1516                        }
1517                }
1518
1519                /* allocate the blocks.
1520                 */
1521                rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1522                if (rc == -ENOSPC) {
1523                        jfs_error(bmp->db_ipbmap->i_sb,
1524                                  "dbAllocAG: unable to allocate blocks");
1525                        rc = -EIO;
1526                }
1527                return (rc);
1528        }
1529
1530        /* no space in the allocation group.  release the buffer and
1531         * return -ENOSPC.
1532         */
1533        release_metapage(mp);
1534
1535        return -ENOSPC;
1536}
1537
1538
1539/*
1540 * NAME:        dbAllocAny()
1541 *
1542 * FUNCTION:    attempt to allocate the specified number of contiguous
1543 *              free blocks anywhere in the file system.
1544 *
1545 *              dbAllocAny() attempts to find the sufficient free space by
1546 *              searching down the dmap control pages, starting with the
1547 *              highest level (i.e. L0, L1, L2) control page.  if free space
1548 *              large enough to satisfy the desired free space is found, the
1549 *              desired free space is allocated.
1550 *
1551 * PARAMETERS:
1552 *      bmp     -  pointer to bmap descriptor
1553 *      nblocks  -  actual number of contiguous free blocks desired.
1554 *      l2nb     -  log2 number of contiguous free blocks desired.
1555 *      results -  on successful return, set to the starting block number
1556 *                 of the newly allocated range.
1557 *
1558 * RETURN VALUES:
1559 *      0       - success
1560 *      -ENOSPC - insufficient disk resources
1561 *      -EIO    - i/o error
1562 *
1563 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1564 */
1565static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results)
1566{
1567        int rc;
1568        s64 blkno = 0;
1569
1570        /* starting with the top level dmap control page, search
1571         * down the dmap control levels for sufficient free space.
1572         * if free space is found, dbFindCtl() returns the starting
1573         * block number of the dmap that contains or starts off the
1574         * range of free space.
1575         */
1576        if ((rc = dbFindCtl(bmp, l2nb, bmp->db_maxlevel, &blkno)))
1577                return (rc);
1578
1579        /* allocate the blocks.
1580         */
1581        rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1582        if (rc == -ENOSPC) {
1583                jfs_error(bmp->db_ipbmap->i_sb,
1584                          "dbAllocAny: unable to allocate blocks");
1585                return -EIO;
1586        }
1587        return (rc);
1588}
1589
1590
1591/*
1592 * NAME:        dbFindCtl()
1593 *
1594 * FUNCTION:    starting at a specified dmap control page level and block
1595 *              number, search down the dmap control levels for a range of
1596 *              contiguous free blocks large enough to satisfy an allocation
1597 *              request for the specified number of free blocks.
1598 *
1599 *              if sufficient contiguous free blocks are found, this routine
1600 *              returns the starting block number within a dmap page that
1601 *              contains or starts a range of contiqious free blocks that
1602 *              is sufficient in size.
1603 *
1604 * PARAMETERS:
1605 *      bmp     -  pointer to bmap descriptor
1606 *      level   -  starting dmap control page level.
1607 *      l2nb    -  log2 number of contiguous free blocks desired.
1608 *      *blkno  -  on entry, starting block number for conducting the search.
1609 *                 on successful return, the first block within a dmap page
1610 *                 that contains or starts a range of contiguous free blocks.
1611 *
1612 * RETURN VALUES:
1613 *      0       - success
1614 *      -ENOSPC - insufficient disk resources
1615 *      -EIO    - i/o error
1616 *
1617 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1618 */
1619static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno)
1620{
1621        int rc, leafidx, lev;
1622        s64 b, lblkno;
1623        struct dmapctl *dcp;
1624        int budmin;
1625        struct metapage *mp;
1626
1627        /* starting at the specified dmap control page level and block
1628         * number, search down the dmap control levels for the starting
1629         * block number of a dmap page that contains or starts off
1630         * sufficient free blocks.
1631         */
1632        for (lev = level, b = *blkno; lev >= 0; lev--) {
1633                /* get the buffer of the dmap control page for the block
1634                 * number and level (i.e. L0, L1, L2).
1635                 */
1636                lblkno = BLKTOCTL(b, bmp->db_l2nbperpage, lev);
1637                mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1638                if (mp == NULL)
1639                        return -EIO;
1640                dcp = (struct dmapctl *) mp->data;
1641                budmin = dcp->budmin;
1642
1643                if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1644                        jfs_error(bmp->db_ipbmap->i_sb,
1645                                  "dbFindCtl: Corrupt dmapctl page");
1646                        release_metapage(mp);
1647                        return -EIO;
1648                }
1649
1650                /* search the tree within the dmap control page for
1651                 * sufficent free space.  if sufficient free space is found,
1652                 * dbFindLeaf() returns the index of the leaf at which
1653                 * free space was found.
1654                 */
1655                rc = dbFindLeaf((dmtree_t *) dcp, l2nb, &leafidx);
1656
1657                /* release the buffer.
1658                 */
1659                release_metapage(mp);
1660
1661                /* space found ?
1662                 */
1663                if (rc) {
1664                        if (lev != level) {
1665                                jfs_error(bmp->db_ipbmap->i_sb,
1666                                          "dbFindCtl: dmap inconsistent");
1667                                return -EIO;
1668                        }
1669                        return -ENOSPC;
1670                }
1671
1672                /* adjust the block number to reflect the location within
1673                 * the dmap control page (i.e. the leaf) at which free
1674                 * space was found.
1675                 */
1676                b += (((s64) leafidx) << budmin);
1677
1678                /* we stop the search at this dmap control page level if
1679                 * the number of blocks required is greater than or equal
1680                 * to the maximum number of blocks described at the next
1681                 * (lower) level.
1682                 */
1683                if (l2nb >= budmin)
1684                        break;
1685        }
1686
1687        *blkno = b;
1688        return (0);
1689}
1690
1691
1692/*
1693 * NAME:        dbAllocCtl()
1694 *
1695 * FUNCTION:    attempt to allocate a specified number of contiguous
1696 *              blocks starting within a specific dmap.
1697 *
1698 *              this routine is called by higher level routines that search
1699 *              the dmap control pages above the actual dmaps for contiguous
1700 *              free space.  the result of successful searches by these
1701 *              routines are the starting block numbers within dmaps, with
1702 *              the dmaps themselves containing the desired contiguous free
1703 *              space or starting a contiguous free space of desired size
1704 *              that is made up of the blocks of one or more dmaps. these
1705 *              calls should not fail due to insufficent resources.
1706 *
1707 *              this routine is called in some cases where it is not known
1708 *              whether it will fail due to insufficient resources.  more
1709 *              specifically, this occurs when allocating from an allocation
1710 *              group whose size is equal to the number of blocks per dmap.
1711 *              in this case, the dmap control pages are not examined prior
1712 *              to calling this routine (to save pathlength) and the call
1713 *              might fail.
1714 *
1715 *              for a request size that fits within a dmap, this routine relies
1716 *              upon the dmap's dmtree to find the requested contiguous free
1717 *              space.  for request sizes that are larger than a dmap, the
1718 *              requested free space will start at the first block of the
1719 *              first dmap (i.e. blkno).
1720 *
1721 * PARAMETERS:
1722 *      bmp     -  pointer to bmap descriptor
1723 *      nblocks  -  actual number of contiguous free blocks to allocate.
1724 *      l2nb     -  log2 number of contiguous free blocks to allocate.
1725 *      blkno    -  starting block number of the dmap to start the allocation
1726 *                  from.
1727 *      results -  on successful return, set to the starting block number
1728 *                 of the newly allocated range.
1729 *
1730 * RETURN VALUES:
1731 *      0       - success
1732 *      -ENOSPC - insufficient disk resources
1733 *      -EIO    - i/o error
1734 *
1735 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1736 */
1737static int
1738dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno, s64 * results)
1739{
1740        int rc, nb;
1741        s64 b, lblkno, n;
1742        struct metapage *mp;
1743        struct dmap *dp;
1744
1745        /* check if the allocation request is confined to a single dmap.
1746         */
1747        if (l2nb <= L2BPERDMAP) {
1748                /* get the buffer for the dmap.
1749                 */
1750                lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
1751                mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1752                if (mp == NULL)
1753                        return -EIO;
1754                dp = (struct dmap *) mp->data;
1755
1756                /* try to allocate the blocks.
1757                 */
1758                rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results);
1759                if (rc == 0)
1760                        mark_metapage_dirty(mp);
1761
1762                release_metapage(mp);
1763
1764                return (rc);
1765        }
1766
1767        /* allocation request involving multiple dmaps. it must start on
1768         * a dmap boundary.
1769         */
1770        assert((blkno & (BPERDMAP - 1)) == 0);
1771
1772        /* allocate the blocks dmap by dmap.
1773         */
1774        for (n = nblocks, b = blkno; n > 0; n -= nb, b += nb) {
1775                /* get the buffer for the dmap.
1776                 */
1777                lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1778                mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1779                if (mp == NULL) {
1780                        rc = -EIO;
1781                        goto backout;
1782                }
1783                dp = (struct dmap *) mp->data;
1784
1785                /* the dmap better be all free.
1786                 */
1787                if (dp->tree.stree[ROOT] != L2BPERDMAP) {
1788                        release_metapage(mp);
1789                        jfs_error(bmp->db_ipbmap->i_sb,
1790                                  "dbAllocCtl: the dmap is not all free");
1791                        rc = -EIO;
1792                        goto backout;
1793                }
1794
1795                /* determine how many blocks to allocate from this dmap.
1796                 */
1797                nb = min(n, (s64)BPERDMAP);
1798
1799                /* allocate the blocks from the dmap.
1800                 */
1801                if ((rc = dbAllocDmap(bmp, dp, b, nb))) {
1802                        release_metapage(mp);
1803                        goto backout;
1804                }
1805
1806                /* write the buffer.
1807                 */
1808                write_metapage(mp);
1809        }
1810
1811        /* set the results (starting block number) and return.
1812         */
1813        *results = blkno;
1814        return (0);
1815
1816        /* something failed in handling an allocation request involving
1817         * multiple dmaps.  we'll try to clean up by backing out any
1818         * allocation that has already happened for this request.  if
1819         * we fail in backing out the allocation, we'll mark the file
1820         * system to indicate that blocks have been leaked.
1821         */
1822      backout:
1823
1824        /* try to backout the allocations dmap by dmap.
1825         */
1826        for (n = nblocks - n, b = blkno; n > 0;
1827             n -= BPERDMAP, b += BPERDMAP) {
1828                /* get the buffer for this dmap.
1829                 */
1830                lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1831                mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1832                if (mp == NULL) {
1833                        /* could not back out.  mark the file system
1834                         * to indicate that we have leaked blocks.
1835                         */
1836                        jfs_error(bmp->db_ipbmap->i_sb,
1837                                  "dbAllocCtl: I/O Error: Block Leakage.");
1838                        continue;
1839                }
1840                dp = (struct dmap *) mp->data;
1841
1842                /* free the blocks is this dmap.
1843                 */
1844                if (dbFreeDmap(bmp, dp, b, BPERDMAP)) {
1845                        /* could not back out.  mark the file system
1846                         * to indicate that we have leaked blocks.
1847                         */
1848                        release_metapage(mp);
1849                        jfs_error(bmp->db_ipbmap->i_sb,
1850                                  "dbAllocCtl: Block Leakage.");
1851                        continue;
1852                }
1853
1854                /* write the buffer.
1855                 */
1856                write_metapage(mp);
1857        }
1858
1859        return (rc);
1860}
1861
1862
1863/*
1864 * NAME:        dbAllocDmapLev()
1865 *
1866 * FUNCTION:    attempt to allocate a specified number of contiguous blocks
1867 *              from a specified dmap.
1868 *
1869 *              this routine checks if the contiguous blocks are available.
1870 *              if so, nblocks of blocks are allocated; otherwise, ENOSPC is
1871 *              returned.
1872 *
1873 * PARAMETERS:
1874 *      mp      -  pointer to bmap descriptor
1875 *      dp      -  pointer to dmap to attempt to allocate blocks from.
1876 *      l2nb    -  log2 number of contiguous block desired.
1877 *      nblocks -  actual number of contiguous block desired.
1878 *      results -  on successful return, set to the starting block number
1879 *                 of the newly allocated range.
1880 *
1881 * RETURN VALUES:
1882 *      0       - success
1883 *      -ENOSPC - insufficient disk resources
1884 *      -EIO    - i/o error
1885 *
1886 * serialization: IREAD_LOCK(ipbmap), e.g., from dbAlloc(), or
1887 *      IWRITE_LOCK(ipbmap), e.g., dbAllocCtl(), held on entry/exit;
1888 */
1889static int
1890dbAllocDmapLev(struct bmap * bmp,
1891               struct dmap * dp, int nblocks, int l2nb, s64 * results)
1892{
1893        s64 blkno;
1894        int leafidx, rc;
1895
1896        /* can't be more than a dmaps worth of blocks */
1897        assert(l2nb <= L2BPERDMAP);
1898
1899        /* search the tree within the dmap page for sufficient
1900         * free space.  if sufficient free space is found, dbFindLeaf()
1901         * returns the index of the leaf at which free space was found.
1902         */
1903        if (dbFindLeaf((dmtree_t *) & dp->tree, l2nb, &leafidx))
1904                return -ENOSPC;
1905
1906        /* determine the block number within the file system corresponding
1907         * to the leaf at which free space was found.
1908         */
1909        blkno = le64_to_cpu(dp->start) + (leafidx << L2DBWORD);
1910
1911        /* if not all bits of the dmap word are free, get the starting
1912         * bit number within the dmap word of the required string of free
1913         * bits and adjust the block number with this value.
1914         */
1915        if (dp->tree.stree[leafidx + LEAFIND] < BUDMIN)
1916                blkno += dbFindBits(le32_to_cpu(dp->wmap[leafidx]), l2nb);
1917
1918        /* allocate the blocks */
1919        if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1920                *results = blkno;
1921
1922        return (rc);
1923}
1924
1925
1926/*
1927 * NAME:        dbAllocDmap()
1928 *
1929 * FUNCTION:    adjust the disk allocation map to reflect the allocation
1930 *              of a specified block range within a dmap.
1931 *
1932 *              this routine allocates the specified blocks from the dmap
1933 *              through a call to dbAllocBits(). if the allocation of the
1934 *              block range causes the maximum string of free blocks within
1935 *              the dmap to change (i.e. the value of the root of the dmap's
1936 *              dmtree), this routine will cause this change to be reflected
1937 *              up through the appropriate levels of the dmap control pages
1938 *              by a call to dbAdjCtl() for the L0 dmap control page that
1939 *              covers this dmap.
1940 *
1941 * PARAMETERS:
1942 *      bmp     -  pointer to bmap descriptor
1943 *      dp      -  pointer to dmap to allocate the block range from.
1944 *      blkno   -  starting block number of the block to be allocated.
1945 *      nblocks -  number of blocks to be allocated.
1946 *
1947 * RETURN VALUES:
1948 *      0       - success
1949 *      -EIO    - i/o error
1950 *
1951 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
1952 */
1953static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
1954                       int nblocks)
1955{
1956        s8 oldroot;
1957        int rc;
1958
1959        /* save the current value of the root (i.e. maximum free string)
1960         * of the dmap tree.
1961         */
1962        oldroot = dp->tree.stree[ROOT];
1963
1964        /* allocate the specified (blocks) bits */
1965        dbAllocBits(bmp, dp, blkno, nblocks);
1966
1967        /* if the root has not changed, done. */
1968        if (dp->tree.stree[ROOT] == oldroot)
1969                return (0);
1970
1971        /* root changed. bubble the change up to the dmap control pages.
1972         * if the adjustment of the upper level control pages fails,
1973         * backout the bit allocation (thus making everything consistent).
1974         */
1975        if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 1, 0)))
1976                dbFreeBits(bmp, dp, blkno, nblocks);
1977
1978        return (rc);
1979}
1980
1981
1982/*
1983 * NAME:        dbFreeDmap()
1984 *
1985 * FUNCTION:    adjust the disk allocation map to reflect the allocation
1986 *              of a specified block range within a dmap.
1987 *
1988 *              this routine frees the specified blocks from the dmap through
1989 *              a call to dbFreeBits(). if the deallocation of the block range
1990 *              causes the maximum string of free blocks within the dmap to
1991 *              change (i.e. the value of the root of the dmap's dmtree), this
1992 *              routine will cause this change to be reflected up through the
1993 *              appropriate levels of the dmap control pages by a call to
1994 *              dbAdjCtl() for the L0 dmap control page that covers this dmap.
1995 *
1996 * PARAMETERS:
1997 *      bmp     -  pointer to bmap descriptor
1998 *      dp      -  pointer to dmap to free the block range from.
1999 *      blkno   -  starting block number of the block to be freed.
2000 *      nblocks -  number of blocks to be freed.
2001 *
2002 * RETURN VALUES:
2003 *      0       - success
2004 *      -EIO    - i/o error
2005 *
2006 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2007 */
2008static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2009                      int nblocks)
2010{
2011        s8 oldroot;
2012        int rc = 0, word;
2013
2014        /* save the current value of the root (i.e. maximum free string)
2015         * of the dmap tree.
2016         */
2017        oldroot = dp->tree.stree[ROOT];
2018
2019        /* free the specified (blocks) bits */
2020        rc = dbFreeBits(bmp, dp, blkno, nblocks);
2021
2022        /* if error or the root has not changed, done. */
2023        if (rc || (dp->tree.stree[ROOT] == oldroot))
2024                return (rc);
2025
2026        /* root changed. bubble the change up to the dmap control pages.
2027         * if the adjustment of the upper level control pages fails,
2028         * backout the deallocation.
2029         */
2030        if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 0, 0))) {
2031                word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
2032
2033                /* as part of backing out the deallocation, we will have
2034                 * to back split the dmap tree if the deallocation caused
2035                 * the freed blocks to become part of a larger binary buddy
2036                 * system.
2037                 */
2038                if (dp->tree.stree[word] == NOFREE)
2039                        dbBackSplit((dmtree_t *) & dp->tree, word);
2040
2041                dbAllocBits(bmp, dp, blkno, nblocks);
2042        }
2043
2044        return (rc);
2045}
2046
2047
2048/*
2049 * NAME:        dbAllocBits()
2050 *
2051 * FUNCTION:    allocate a specified block range from a dmap.
2052 *
2053 *              this routine updates the dmap to reflect the working
2054 *              state allocation of the specified block range. it directly
2055 *              updates the bits of the working map and causes the adjustment
2056 *              of the binary buddy system described by the dmap's dmtree
2057 *              leaves to reflect the bits allocated.  it also causes the
2058 *              dmap's dmtree, as a whole, to reflect the allocated range.
2059 *
2060 * PARAMETERS:
2061 *      bmp     -  pointer to bmap descriptor
2062 *      dp      -  pointer to dmap to allocate bits from.
2063 *      blkno   -  starting block number of the bits to be allocated.
2064 *      nblocks -  number of bits to be allocated.
2065 *
2066 * RETURN VALUES: none
2067 *
2068 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2069 */
2070static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2071                        int nblocks)
2072{
2073        int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2074        dmtree_t *tp = (dmtree_t *) & dp->tree;
2075        int size;
2076        s8 *leaf;
2077
2078        /* pick up a pointer to the leaves of the dmap tree */
2079        leaf = dp->tree.stree + LEAFIND;
2080
2081        /* determine the bit number and word within the dmap of the
2082         * starting block.
2083         */
2084        dbitno = blkno & (BPERDMAP - 1);
2085        word = dbitno >> L2DBWORD;
2086
2087        /* block range better be within the dmap */
2088        assert(dbitno + nblocks <= BPERDMAP);
2089
2090        /* allocate the bits of the dmap's words corresponding to the block
2091         * range. not all bits of the first and last words may be contained
2092         * within the block range.  if this is the case, we'll work against
2093         * those words (i.e. partial first and/or last) on an individual basis
2094         * (a single pass), allocating the bits of interest by hand and
2095         * updating the leaf corresponding to the dmap word. a single pass
2096         * will be used for all dmap words fully contained within the
2097         * specified range.  within this pass, the bits of all fully contained
2098         * dmap words will be marked as free in a single shot and the leaves
2099         * will be updated. a single leaf may describe the free space of
2100         * multiple dmap words, so we may update only a subset of the actual
2101         * leaves corresponding to the dmap words of the block range.
2102         */
2103        for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2104                /* determine the bit number within the word and
2105                 * the number of bits within the word.
2106                 */
2107                wbitno = dbitno & (DBWORD - 1);
2108                nb = min(rembits, DBWORD - wbitno);
2109
2110                /* check if only part of a word is to be allocated.
2111                 */
2112                if (nb < DBWORD) {
2113                        /* allocate (set to 1) the appropriate bits within
2114                         * this dmap word.
2115                         */
2116                        dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
2117                                                      >> wbitno);
2118
2119                        /* update the leaf for this dmap word. in addition
2120                         * to setting the leaf value to the binary buddy max
2121                         * of the updated dmap word, dbSplit() will split
2122                         * the binary system of the leaves if need be.
2123                         */
2124                        dbSplit(tp, word, BUDMIN,
2125                                dbMaxBud((u8 *) & dp->wmap[word]));
2126
2127                        word += 1;
2128                } else {
2129                        /* one or more dmap words are fully contained
2130                         * within the block range.  determine how many
2131                         * words and allocate (set to 1) the bits of these
2132                         * words.
2133                         */
2134                        nwords = rembits >> L2DBWORD;
2135                        memset(&dp->wmap[word], (int) ONES, nwords * 4);
2136
2137                        /* determine how many bits.
2138                         */
2139                        nb = nwords << L2DBWORD;
2140
2141                        /* now update the appropriate leaves to reflect
2142                         * the allocated words.
2143                         */
2144                        for (; nwords > 0; nwords -= nw) {
2145                                if (leaf[word] < BUDMIN) {
2146                                        jfs_error(bmp->db_ipbmap->i_sb,
2147                                                  "dbAllocBits: leaf page "
2148                                                  "corrupt");
2149                                        break;
2150                                }
2151
2152                                /* determine what the leaf value should be
2153                                 * updated to as the minimum of the l2 number
2154                                 * of bits being allocated and the l2 number
2155                                 * of bits currently described by this leaf.
2156                                 */
2157                                size = min((int)leaf[word], NLSTOL2BSZ(nwords));
2158
2159                                /* update the leaf to reflect the allocation.
2160                                 * in addition to setting the leaf value to
2161                                 * NOFREE, dbSplit() will split the binary
2162                                 * system of the leaves to reflect the current
2163                                 * allocation (size).
2164                                 */
2165                                dbSplit(tp, word, size, NOFREE);
2166
2167                                /* get the number of dmap words handled */
2168                                nw = BUDSIZE(size, BUDMIN);
2169                                word += nw;
2170                        }
2171                }
2172        }
2173
2174        /* update the free count for this dmap */
2175        le32_add_cpu(&dp->nfree, -nblocks);
2176
2177        BMAP_LOCK(bmp);
2178
2179        /* if this allocation group is completely free,
2180         * update the maximum allocation group number if this allocation
2181         * group is the new max.
2182         */
2183        agno = blkno >> bmp->db_agl2size;
2184        if (agno > bmp->db_maxag)
2185                bmp->db_maxag = agno;
2186
2187        /* update the free count for the allocation group and map */
2188        bmp->db_agfree[agno] -= nblocks;
2189        bmp->db_nfree -= nblocks;
2190
2191        BMAP_UNLOCK(bmp);
2192}
2193
2194
2195/*
2196 * NAME:        dbFreeBits()
2197 *
2198 * FUNCTION:    free a specified block range from a dmap.
2199 *
2200 *              this routine updates the dmap to reflect the working
2201 *              state allocation of the specified block range. it directly
2202 *              updates the bits of the working map and causes the adjustment
2203 *              of the binary buddy system described by the dmap's dmtree
2204 *              leaves to reflect the bits freed.  it also causes the dmap's
2205 *              dmtree, as a whole, to reflect the deallocated range.
2206 *
2207 * PARAMETERS:
2208 *      bmp     -  pointer to bmap descriptor
2209 *      dp      -  pointer to dmap to free bits from.
2210 *      blkno   -  starting block number of the bits to be freed.
2211 *      nblocks -  number of bits to be freed.
2212 *
2213 * RETURN VALUES: 0 for success
2214 *
2215 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2216 */
2217static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2218                       int nblocks)
2219{
2220        int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2221        dmtree_t *tp = (dmtree_t *) & dp->tree;
2222        int rc = 0;
2223        int size;
2224
2225        /* determine the bit number and word within the dmap of the
2226         * starting block.
2227         */
2228        dbitno = blkno & (BPERDMAP - 1);
2229        word = dbitno >> L2DBWORD;
2230
2231        /* block range better be within the dmap.
2232         */
2233        assert(dbitno + nblocks <= BPERDMAP);
2234
2235        /* free the bits of the dmaps words corresponding to the block range.
2236         * not all bits of the first and last words may be contained within
2237         * the block range.  if this is the case, we'll work against those
2238         * words (i.e. partial first and/or last) on an individual basis
2239         * (a single pass), freeing the bits of interest by hand and updating
2240         * the leaf corresponding to the dmap word. a single pass will be used
2241         * for all dmap words fully contained within the specified range.
2242         * within this pass, the bits of all fully contained dmap words will
2243         * be marked as free in a single shot and the leaves will be updated. a
2244         * single leaf may describe the free space of multiple dmap words,
2245         * so we may update only a subset of the actual leaves corresponding
2246         * to the dmap words of the block range.
2247         *
2248         * dbJoin() is used to update leaf values and will join the binary
2249         * buddy system of the leaves if the new leaf values indicate this
2250         * should be done.
2251         */
2252        for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2253                /* determine the bit number within the word and
2254                 * the number of bits within the word.
2255                 */
2256                wbitno = dbitno & (DBWORD - 1);
2257                nb = min(rembits, DBWORD - wbitno);
2258
2259                /* check if only part of a word is to be freed.
2260                 */
2261                if (nb < DBWORD) {
2262                        /* free (zero) the appropriate bits within this
2263                         * dmap word.
2264                         */
2265                        dp->wmap[word] &=
2266                            cpu_to_le32(~(ONES << (DBWORD - nb)
2267                                          >> wbitno));
2268
2269                        /* update the leaf for this dmap word.
2270                         */
2271                        rc = dbJoin(tp, word,
2272                                    dbMaxBud((u8 *) & dp->wmap[word]));
2273                        if (rc)
2274                                return rc;
2275
2276                        word += 1;
2277                } else {
2278                        /* one or more dmap words are fully contained
2279                         * within the block range.  determine how many
2280                         * words and free (zero) the bits of these words.
2281                         */
2282                        nwords = rembits >> L2DBWORD;
2283                        memset(&dp->wmap[word], 0, nwords * 4);
2284
2285                        /* determine how many bits.
2286                         */
2287                        nb = nwords << L2DBWORD;
2288
2289                        /* now update the appropriate leaves to reflect
2290                         * the freed words.
2291                         */
2292                        for (; nwords > 0; nwords -= nw) {
2293                                /* determine what the leaf value should be
2294                                 * updated to as the minimum of the l2 number
2295                                 * of bits being freed and the l2 (max) number
2296                                 * of bits that can be described by this leaf.
2297                                 */
2298                                size =
2299                                    min(LITOL2BSZ
2300                                        (word, L2LPERDMAP, BUDMIN),
2301                                        NLSTOL2BSZ(nwords));
2302
2303                                /* update the leaf.
2304                                 */
2305                                rc = dbJoin(tp, word, size);
2306                                if (rc)
2307                                        return rc;
2308
2309                                /* get the number of dmap words handled.
2310                                 */
2311                                nw = BUDSIZE(size, BUDMIN);
2312                                word += nw;
2313                        }
2314                }
2315        }
2316
2317        /* update the free count for this dmap.
2318         */
2319        le32_add_cpu(&dp->nfree, nblocks);
2320
2321        BMAP_LOCK(bmp);
2322
2323        /* update the free count for the allocation group and
2324         * map.
2325         */
2326        agno = blkno >> bmp->db_agl2size;
2327        bmp->db_nfree += nblocks;
2328        bmp->db_agfree[agno] += nblocks;
2329
2330        /* check if this allocation group is not completely free and
2331         * if it is currently the maximum (rightmost) allocation group.
2332         * if so, establish the new maximum allocation group number by
2333         * searching left for the first allocation group with allocation.
2334         */
2335        if ((bmp->db_agfree[agno] == bmp->db_agsize && agno == bmp->db_maxag) ||
2336            (agno == bmp->db_numag - 1 &&
2337             bmp->db_agfree[agno] == (bmp-> db_mapsize & (BPERDMAP - 1)))) {
2338                while (bmp->db_maxag > 0) {
2339                        bmp->db_maxag -= 1;
2340                        if (bmp->db_agfree[bmp->db_maxag] !=
2341                            bmp->db_agsize)
2342                                break;
2343                }
2344
2345                /* re-establish the allocation group preference if the
2346                 * current preference is right of the maximum allocation
2347                 * group.
2348                 */
2349                if (bmp->db_agpref > bmp->db_maxag)
2350                        bmp->db_agpref = bmp->db_maxag;
2351        }
2352
2353        BMAP_UNLOCK(bmp);
2354
2355        return 0;
2356}
2357
2358
2359/*
2360 * NAME:        dbAdjCtl()
2361 *
2362 * FUNCTION:    adjust a dmap control page at a specified level to reflect
2363 *              the change in a lower level dmap or dmap control page's
2364 *              maximum string of free blocks (i.e. a change in the root
2365 *              of the lower level object's dmtree) due to the allocation
2366 *              or deallocation of a range of blocks with a single dmap.
2367 *
2368 *              on entry, this routine is provided with the new value of
2369 *              the lower level dmap or dmap control page root and the
2370 *              starting block number of the block range whose allocation
2371 *              or deallocation resulted in the root change.  this range
2372 *              is respresented by a single leaf of the current dmapctl
2373 *              and the leaf will be updated with this value, possibly
2374 *              causing a binary buddy system within the leaves to be
2375 *              split or joined.  the update may also cause the dmapctl's
2376 *              dmtree to be updated.
2377 *
2378 *              if the adjustment of the dmap control page, itself, causes its
2379 *              root to change, this change will be bubbled up to the next dmap
2380 *              control level by a recursive call to this routine, specifying
2381 *              the new root value and the next dmap control page level to
2382 *              be adjusted.
2383 * PARAMETERS:
2384 *      bmp     -  pointer to bmap descriptor
2385 *      blkno   -  the first block of a block range within a dmap.  it is
2386 *                 the allocation or deallocation of this block range that
2387 *                 requires the dmap control page to be adjusted.
2388 *      newval  -  the new value of the lower level dmap or dmap control
2389 *                 page root.
2390 *      alloc   -  'true' if adjustment is due to an allocation.
2391 *      level   -  current level of dmap control page (i.e. L0, L1, L2) to
2392 *                 be adjusted.
2393 *
2394 * RETURN VALUES:
2395 *      0       - success
2396 *      -EIO    - i/o error
2397 *
2398 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2399 */
2400static int
2401dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc, int level)
2402{
2403        struct metapage *mp;
2404        s8 oldroot;
2405        int oldval;
2406        s64 lblkno;
2407        struct dmapctl *dcp;
2408        int rc, leafno, ti;
2409
2410        /* get the buffer for the dmap control page for the specified
2411         * block number and control page level.
2412         */
2413        lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, level);
2414        mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
2415        if (mp == NULL)
2416                return -EIO;
2417        dcp = (struct dmapctl *) mp->data;
2418
2419        if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
2420                jfs_error(bmp->db_ipbmap->i_sb,
2421                          "dbAdjCtl: Corrupt dmapctl page");
2422                release_metapage(mp);
2423                return -EIO;
2424        }
2425
2426        /* determine the leaf number corresponding to the block and
2427         * the index within the dmap control tree.
2428         */
2429        leafno = BLKTOCTLLEAF(blkno, dcp->budmin);
2430        ti = leafno + le32_to_cpu(dcp->leafidx);
2431
2432        /* save the current leaf value and the current root level (i.e.
2433         * maximum l2 free string described by this dmapctl).
2434         */
2435        oldval = dcp->stree[ti];
2436        oldroot = dcp->stree[ROOT];
2437
2438        /* check if this is a control page update for an allocation.
2439         * if so, update the leaf to reflect the new leaf value using
2440         * dbSplit(); otherwise (deallocation), use dbJoin() to udpate
2441         * the leaf with the new value.  in addition to updating the
2442         * leaf, dbSplit() will also split the binary buddy system of
2443         * the leaves, if required, and bubble new values within the
2444         * dmapctl tree, if required.  similarly, dbJoin() will join
2445         * the binary buddy system of leaves and bubble new values up
2446         * the dmapctl tree as required by the new leaf value.
2447         */
2448        if (alloc) {
2449                /* check if we are in the middle of a binary buddy
2450                 * system.  this happens when we are performing the
2451                 * first allocation out of an allocation group that
2452                 * is part (not the first part) of a larger binary
2453                 * buddy system.  if we are in the middle, back split
2454                 * the system prior to calling dbSplit() which assumes
2455                 * that it is at the front of a binary buddy system.
2456                 */
2457                if (oldval == NOFREE) {
2458                        rc = dbBackSplit((dmtree_t *) dcp, leafno);
2459                        if (rc)
2460                                return rc;
2461                        oldval = dcp->stree[ti];
2462                }
2463                dbSplit((dmtree_t *) dcp, leafno, dcp->budmin, newval);
2464        } else {
2465                rc = dbJoin((dmtree_t *) dcp, leafno, newval);
2466                if (rc)
2467                        return rc;
2468        }
2469
2470        /* check if the root of the current dmap control page changed due
2471         * to the update and if the current dmap control page is not at
2472         * the current top level (i.e. L0, L1, L2) of the map.  if so (i.e.
2473         * root changed and this is not the top level), call this routine
2474         * again (recursion) for the next higher level of the mapping to
2475         * reflect the change in root for the current dmap control page.
2476         */
2477        if (dcp->stree[ROOT] != oldroot) {
2478                /* are we below the top level of the map.  if so,
2479                 * bubble the root up to the next higher level.
2480                 */
2481                if (level < bmp->db_maxlevel) {
2482                        /* bubble up the new root of this dmap control page to
2483                         * the next level.
2484                         */
2485                        if ((rc =
2486                             dbAdjCtl(bmp, blkno, dcp->stree[ROOT], alloc,
2487                                      level + 1))) {
2488                                /* something went wrong in bubbling up the new
2489                                 * root value, so backout the changes to the
2490                                 * current dmap control page.
2491                                 */
2492                                if (alloc) {
2493                                        dbJoin((dmtree_t *) dcp, leafno,
2494                                               oldval);
2495                                } else {
2496                                        /* the dbJoin() above might have
2497                                         * caused a larger binary buddy system
2498                                         * to form and we may now be in the
2499                                         * middle of it.  if this is the case,
2500                                         * back split the buddies.
2501                                         */
2502                                        if (dcp->stree[ti] == NOFREE)
2503                                                dbBackSplit((dmtree_t *)
2504                                                            dcp, leafno);
2505                                        dbSplit((dmtree_t *) dcp, leafno,
2506                                                dcp->budmin, oldval);
2507                                }
2508
2509                                /* release the buffer and return the error.
2510                                 */
2511                                release_metapage(mp);
2512                                return (rc);
2513                        }
2514                } else {
2515                        /* we're at the top level of the map. update
2516                         * the bmap control page to reflect the size
2517                         * of the maximum free buddy system.
2518                         */
2519                        assert(level == bmp->db_maxlevel);
2520                        if (bmp->db_maxfreebud != oldroot) {
2521                                jfs_error(bmp->db_ipbmap->i_sb,
2522                                          "dbAdjCtl: the maximum free buddy is "
2523                                          "not the old root");
2524                        }
2525                        bmp->db_maxfreebud = dcp->stree[ROOT];
2526                }
2527        }
2528
2529        /* write the buffer.
2530         */
2531        write_metapage(mp);
2532
2533        return (0);
2534}
2535
2536
2537/*
2538 * NAME:        dbSplit()
2539 *
2540 * FUNCTION:    update the leaf of a dmtree with a new value, splitting
2541 *              the leaf from the binary buddy system of the dmtree's
2542 *              leaves, as required.
2543 *
2544 * PARAMETERS:
2545 *      tp      - pointer to the tree containing the leaf.
2546 *      leafno  - the number of the leaf to be updated.
2547 *      splitsz - the size the binary buddy system starting at the leaf
2548 *                must be split to, specified as the log2 number of blocks.
2549 *      newval  - the new value for the leaf.
2550 *
2551 * RETURN VALUES: none
2552 *
2553 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2554 */
2555static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval)
2556{
2557        int budsz;
2558        int cursz;
2559        s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2560
2561        /* check if the leaf needs to be split.
2562         */
2563        if (leaf[leafno] > tp->dmt_budmin) {
2564                /* the split occurs by cutting the buddy system in half
2565                 * at the specified leaf until we reach the specified
2566                 * size.  pick up the starting split size (current size
2567                 * - 1 in l2) and the corresponding buddy size.
2568                 */
2569                cursz = leaf[leafno] - 1;
2570                budsz = BUDSIZE(cursz, tp->dmt_budmin);
2571
2572                /* split until we reach the specified size.
2573                 */
2574                while (cursz >= splitsz) {
2575                        /* update the buddy's leaf with its new value.
2576                         */
2577                        dbAdjTree(tp, leafno ^ budsz, cursz);
2578
2579                        /* on to the next size and buddy.
2580                         */
2581                        cursz -= 1;
2582                        budsz >>= 1;
2583                }
2584        }
2585
2586        /* adjust the dmap tree to reflect the specified leaf's new
2587         * value.
2588         */
2589        dbAdjTree(tp, leafno, newval);
2590}
2591
2592
2593/*
2594 * NAME:        dbBackSplit()
2595 *
2596 * FUNCTION:    back split the binary buddy system of dmtree leaves
2597 *              that hold a specified leaf until the specified leaf
2598 *              starts its own binary buddy system.
2599 *
2600 *              the allocators typically perform allocations at the start
2601 *              of binary buddy systems and dbSplit() is used to accomplish
2602 *              any required splits.  in some cases, however, allocation
2603 *              may occur in the middle of a binary system and requires a
2604 *              back split, with the split proceeding out from the middle of
2605 *              the system (less efficient) rather than the start of the
2606 *              system (more efficient).  the cases in which a back split
2607 *              is required are rare and are limited to the first allocation
2608 *              within an allocation group which is a part (not first part)
2609 *              of a larger binary buddy system and a few exception cases
2610 *              in which a previous join operation must be backed out.
2611 *
2612 * PARAMETERS:
2613 *      tp      - pointer to the tree containing the leaf.
2614 *      leafno  - the number of the leaf to be updated.
2615 *
2616 * RETURN VALUES: none
2617 *
2618 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2619 */
2620static int dbBackSplit(dmtree_t * tp, int leafno)
2621{
2622        int budsz, bud, w, bsz, size;
2623        int cursz;
2624        s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2625
2626        /* leaf should be part (not first part) of a binary
2627         * buddy system.
2628         */
2629        assert(leaf[leafno] == NOFREE);
2630
2631        /* the back split is accomplished by iteratively finding the leaf
2632         * that starts the buddy system that contains the specified leaf and
2633         * splitting that system in two.  this iteration continues until
2634         * the specified leaf becomes the start of a buddy system.
2635         *
2636         * determine maximum possible l2 size for the specified leaf.
2637         */
2638        size =
2639            LITOL2BSZ(leafno, le32_to_cpu(tp->dmt_l2nleafs),
2640                      tp->dmt_budmin);
2641
2642        /* determine the number of leaves covered by this size.  this
2643         * is the buddy size that we will start with as we search for
2644         * the buddy system that contains the specified leaf.
2645         */
2646        budsz = BUDSIZE(size, tp->dmt_budmin);
2647
2648        /* back split.
2649         */
2650        while (leaf[leafno] == NOFREE) {
2651                /* find the leftmost buddy leaf.
2652                 */
2653                for (w = leafno, bsz = budsz;; bsz <<= 1,
2654                     w = (w < bud) ? w : bud) {
2655                        if (bsz >= le32_to_cpu(tp->dmt_nleafs)) {
2656                                jfs_err("JFS: block map error in dbBackSplit");
2657                                return -EIO;
2658                        }
2659
2660                        /* determine the buddy.
2661                         */
2662                        bud = w ^ bsz;
2663
2664                        /* check if this buddy is the start of the system.
2665                         */
2666                        if (leaf[bud] != NOFREE) {
2667                                /* split the leaf at the start of the
2668                                 * system in two.
2669                                 */
2670                                cursz = leaf[bud] - 1;
2671                                dbSplit(tp, bud, cursz, cursz);
2672                                break;
2673                        }
2674                }
2675        }
2676
2677        if (leaf[leafno] != size) {
2678                jfs_err("JFS: wrong leaf value in dbBackSplit");
2679                return -EIO;
2680        }
2681        return 0;
2682}
2683
2684
2685/*
2686 * NAME:        dbJoin()
2687 *
2688 * FUNCTION:    update the leaf of a dmtree with a new value, joining
2689 *              the leaf with other leaves of the dmtree into a multi-leaf
2690 *              binary buddy system, as required.
2691 *
2692 * PARAMETERS:
2693 *      tp      - pointer to the tree containing the leaf.
2694 *      leafno  - the number of the leaf to be updated.
2695 *      newval  - the new value for the leaf.
2696 *
2697 * RETURN VALUES: none
2698 */
2699static int dbJoin(dmtree_t * tp, int leafno, int newval)
2700{
2701        int budsz, buddy;
2702        s8 *leaf;
2703
2704        /* can the new leaf value require a join with other leaves ?
2705         */
2706        if (newval >= tp->dmt_budmin) {
2707                /* pickup a pointer to the leaves of the tree.
2708                 */
2709                leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2710
2711                /* try to join the specified leaf into a large binary
2712                 * buddy system.  the join proceeds by attempting to join
2713                 * the specified leafno with its buddy (leaf) at new value.
2714                 * if the join occurs, we attempt to join the left leaf
2715                 * of the joined buddies with its buddy at new value + 1.
2716                 * we continue to join until we find a buddy that cannot be
2717                 * joined (does not have a value equal to the size of the
2718                 * last join) or until all leaves have been joined into a
2719                 * single system.
2720                 *
2721                 * get the buddy size (number of words covered) of
2722                 * the new value.
2723                 */
2724                budsz = BUDSIZE(newval, tp->dmt_budmin);
2725
2726                /* try to join.
2727                 */
2728                while (budsz < le32_to_cpu(tp->dmt_nleafs)) {
2729                        /* get the buddy leaf.
2730                         */
2731                        buddy = leafno ^ budsz;
2732
2733                        /* if the leaf's new value is greater than its
2734                         * buddy's value, we join no more.
2735                         */
2736                        if (newval > leaf[buddy])
2737                                break;
2738
2739                        /* It shouldn't be less */
2740                        if (newval < leaf[buddy])
2741                                return -EIO;
2742
2743                        /* check which (leafno or buddy) is the left buddy.
2744                         * the left buddy gets to claim the blocks resulting
2745                         * from the join while the right gets to claim none.
2746                         * the left buddy is also eligable to participate in
2747                         * a join at the next higher level while the right
2748                         * is not.
2749                         *
2750                         */
2751                        if (leafno < buddy) {
2752                                /* leafno is the left buddy.
2753                                 */
2754                                dbAdjTree(tp, buddy, NOFREE);
2755                        } else {
2756                                /* buddy is the left buddy and becomes
2757                                 * leafno.
2758                                 */
2759                                dbAdjTree(tp, leafno, NOFREE);
2760                                leafno = buddy;
2761                        }
2762
2763                        /* on to try the next join.
2764                         */
2765                        newval += 1;
2766                        budsz <<= 1;
2767                }
2768        }
2769
2770        /* update the leaf value.
2771         */
2772        dbAdjTree(tp, leafno, newval);
2773
2774        return 0;
2775}
2776
2777
2778/*
2779 * NAME:        dbAdjTree()
2780 *
2781 * FUNCTION:    update a leaf of a dmtree with a new value, adjusting
2782 *              the dmtree, as required, to reflect the new leaf value.
2783 *              the combination of any buddies must already be done before
2784 *              this is called.
2785 *
2786 * PARAMETERS:
2787 *      tp      - pointer to the tree to be adjusted.
2788 *      leafno  - the number of the leaf to be updated.
2789 *      newval  - the new value for the leaf.
2790 *
2791 * RETURN VALUES: none
2792 */
2793static void dbAdjTree(dmtree_t * tp, int leafno, int newval)
2794{
2795        int lp, pp, k;
2796        int max;
2797
2798        /* pick up the index of the leaf for this leafno.
2799         */
2800        lp = leafno + le32_to_cpu(tp->dmt_leafidx);
2801
2802        /* is the current value the same as the old value ?  if so,
2803         * there is nothing to do.
2804         */
2805        if (tp->dmt_stree[lp] == newval)
2806                return;
2807
2808        /* set the new value.
2809         */
2810        tp->dmt_stree[lp] = newval;
2811
2812        /* bubble the new value up the tree as required.
2813         */
2814        for (k = 0; k < le32_to_cpu(tp->dmt_height); k++) {
2815                /* get the index of the first leaf of the 4 leaf
2816                 * group containing the specified leaf (leafno).
2817                 */
2818                lp = ((lp - 1) & ~0x03) + 1;
2819
2820                /* get the index of the parent of this 4 leaf group.
2821                 */
2822                pp = (lp - 1) >> 2;
2823
2824                /* determine the maximum of the 4 leaves.
2825                 */
2826                max = TREEMAX(&tp->dmt_stree[lp]);
2827
2828                /* if the maximum of the 4 is the same as the
2829                 * parent's value, we're done.
2830                 */
2831                if (tp->dmt_stree[pp] == max)
2832                        break;
2833
2834                /* parent gets new value.
2835                 */
2836                tp->dmt_stree[pp] = max;
2837
2838                /* parent becomes leaf for next go-round.
2839                 */
2840                lp = pp;
2841        }
2842}
2843
2844
2845/*
2846 * NAME:        dbFindLeaf()
2847 *
2848 * FUNCTION:    search a dmtree_t for sufficient free blocks, returning
2849 *              the index of a leaf describing the free blocks if
2850 *              sufficient free blocks are found.
2851 *
2852 *              the search starts at the top of the dmtree_t tree and
2853 *              proceeds down the tree to the leftmost leaf with sufficient
2854 *              free space.
2855 *
2856 * PARAMETERS:
2857 *      tp      - pointer to the tree to be searched.
2858 *      l2nb    - log2 number of free blocks to search for.
2859 *      leafidx - return pointer to be set to the index of the leaf
2860 *                describing at least l2nb free blocks if sufficient
2861 *                free blocks are found.
2862 *
2863 * RETURN VALUES:
2864 *      0       - success
2865 *      -ENOSPC - insufficient free blocks.
2866 */
2867static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx)
2868{
2869        int ti, n = 0, k, x = 0;
2870
2871        /* first check the root of the tree to see if there is
2872         * sufficient free space.
2873         */
2874        if (l2nb > tp->dmt_stree[ROOT])
2875                return -ENOSPC;
2876
2877        /* sufficient free space available. now search down the tree
2878         * starting at the next level for the leftmost leaf that
2879         * describes sufficient free space.
2880         */
2881        for (k = le32_to_cpu(tp->dmt_height), ti = 1;
2882             k > 0; k--, ti = ((ti + n) << 2) + 1) {
2883                /* search the four nodes at this level, starting from
2884                 * the left.
2885                 */
2886                for (x = ti, n = 0; n < 4; n++) {
2887                        /* sufficient free space found.  move to the next
2888                         * level (or quit if this is the last level).
2889                         */
2890                        if (l2nb <= tp->dmt_stree[x + n])
2891                                break;
2892                }
2893
2894                /* better have found something since the higher
2895                 * levels of the tree said it was here.
2896                 */
2897                assert(n < 4);
2898        }
2899
2900        /* set the return to the leftmost leaf describing sufficient
2901         * free space.
2902         */
2903        *leafidx = x + n - le32_to_cpu(tp->dmt_leafidx);
2904
2905        return (0);
2906}
2907
2908
2909/*
2910 * NAME:        dbFindBits()
2911 *
2912 * FUNCTION:    find a specified number of binary buddy free bits within a
2913 *              dmap bitmap word value.
2914 *
2915 *              this routine searches the bitmap value for (1 << l2nb) free
2916 *              bits at (1 << l2nb) alignments within the value.
2917 *
2918 * PARAMETERS:
2919 *      word    -  dmap bitmap word value.
2920 *      l2nb    -  number of free bits specified as a log2 number.
2921 *
2922 * RETURN VALUES:
2923 *      starting bit number of free bits.
2924 */
2925static int dbFindBits(u32 word, int l2nb)
2926{
2927        int bitno, nb;
2928        u32 mask;
2929
2930        /* get the number of bits.
2931         */
2932        nb = 1 << l2nb;
2933        assert(nb <= DBWORD);
2934
2935        /* complement the word so we can use a mask (i.e. 0s represent
2936         * free bits) and compute the mask.
2937         */
2938        word = ~word;
2939        mask = ONES << (DBWORD - nb);
2940
2941        /* scan the word for nb free bits at nb alignments.
2942         */
2943        for (bitno = 0; mask != 0; bitno += nb, mask >>= nb) {
2944                if ((mask & word) == mask)
2945                        break;
2946        }
2947
2948        ASSERT(bitno < 32);
2949
2950        /* return the bit number.
2951         */
2952        return (bitno);
2953}
2954
2955
2956/*
2957 * NAME:        dbMaxBud(u8 *cp)
2958 *
2959 * FUNCTION:    determine the largest binary buddy string of free
2960 *              bits within 32-bits of the map.
2961 *
2962 * PARAMETERS:
2963 *      cp      -  pointer to the 32-bit value.
2964 *
2965 * RETURN VALUES:
2966 *      largest binary buddy of free bits within a dmap word.
2967 */
2968static int dbMaxBud(u8 * cp)
2969{
2970        signed char tmp1, tmp2;
2971
2972        /* check if the wmap word is all free. if so, the
2973         * free buddy size is BUDMIN.
2974         */
2975        if (*((uint *) cp) == 0)
2976                return (BUDMIN);
2977
2978        /* check if the wmap word is half free. if so, the
2979         * free buddy size is BUDMIN-1.
2980         */
2981        if (*((u16 *) cp) == 0 || *((u16 *) cp + 1) == 0)
2982                return (BUDMIN - 1);
2983
2984        /* not all free or half free. determine the free buddy
2985         * size thru table lookup using quarters of the wmap word.
2986         */
2987        tmp1 = max(budtab[cp[2]], budtab[cp[3]]);
2988        tmp2 = max(budtab[cp[0]], budtab[cp[1]]);
2989        return (max(tmp1, tmp2));
2990}
2991
2992
2993/*
2994 * NAME:        cnttz(uint word)
2995 *
2996 * FUNCTION:    determine the number of trailing zeros within a 32-bit
2997 *              value.
2998 *
2999 * PARAMETERS:
3000 *      value   -  32-bit value to be examined.
3001 *
3002 * RETURN VALUES:
3003 *      count of trailing zeros
3004 */
3005static int cnttz(u32 word)
3006{
3007        int n;
3008
3009        for (n = 0; n < 32; n++, word >>= 1) {
3010                if (word & 0x01)
3011                        break;
3012        }
3013
3014        return (n);
3015}
3016
3017
3018/*
3019 * NAME:        cntlz(u32 value)
3020 *
3021 * FUNCTION:    determine the number of leading zeros within a 32-bit
3022 *              value.
3023 *
3024 * PARAMETERS:
3025 *      value   -  32-bit value to be examined.
3026 *
3027 * RETURN VALUES:
3028 *      count of leading zeros
3029 */
3030static int cntlz(u32 value)
3031{
3032        int n;
3033
3034        for (n = 0; n < 32; n++, value <<= 1) {
3035                if (value & HIGHORDER)
3036                        break;
3037        }
3038        return (n);
3039}
3040
3041
3042/*
3043 * NAME:        blkstol2(s64 nb)
3044 *
3045 * FUNCTION:    convert a block count to its log2 value. if the block
3046 *              count is not a l2 multiple, it is rounded up to the next
3047 *              larger l2 multiple.
3048 *
3049 * PARAMETERS:
3050 *      nb      -  number of blocks
3051 *
3052 * RETURN VALUES:
3053 *      log2 number of blocks
3054 */
3055static int blkstol2(s64 nb)
3056{
3057        int l2nb;
3058        s64 mask;               /* meant to be signed */
3059
3060        mask = (s64) 1 << (64 - 1);
3061
3062        /* count the leading bits.
3063         */
3064        for (l2nb = 0; l2nb < 64; l2nb++, mask >>= 1) {
3065                /* leading bit found.
3066                 */
3067                if (nb & mask) {
3068                        /* determine the l2 value.
3069                         */
3070                        l2nb = (64 - 1) - l2nb;
3071
3072                        /* check if we need to round up.
3073                         */
3074                        if (~mask & nb)
3075                                l2nb++;
3076
3077                        return (l2nb);
3078                }
3079        }
3080        assert(0);
3081        return 0;               /* fix compiler warning */
3082}
3083
3084
3085/*
3086 * NAME:        dbAllocBottomUp()
3087 *
3088 * FUNCTION:    alloc the specified block range from the working block
3089 *              allocation map.
3090 *
3091 *              the blocks will be alloc from the working map one dmap
3092 *              at a time.
3093 *
3094 * PARAMETERS:
3095 *      ip      -  pointer to in-core inode;
3096 *      blkno   -  starting block number to be freed.
3097 *      nblocks -  number of blocks to be freed.
3098 *
3099 * RETURN VALUES:
3100 *      0       - success
3101 *      -EIO    - i/o error
3102 */
3103int dbAllocBottomUp(struct inode *ip, s64 blkno, s64 nblocks)
3104{
3105        struct metapage *mp;
3106        struct dmap *dp;
3107        int nb, rc;
3108        s64 lblkno, rem;
3109        struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
3110        struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
3111
3112        IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
3113
3114        /* block to be allocated better be within the mapsize. */
3115        ASSERT(nblocks <= bmp->db_mapsize - blkno);
3116
3117        /*
3118         * allocate the blocks a dmap at a time.
3119         */
3120        mp = NULL;
3121        for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
3122                /* release previous dmap if any */
3123                if (mp) {
3124                        write_metapage(mp);
3125                }
3126
3127                /* get the buffer for the current dmap. */
3128                lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
3129                mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
3130                if (mp == NULL) {
3131                        IREAD_UNLOCK(ipbmap);
3132                        return -EIO;
3133                }
3134                dp = (struct dmap *) mp->data;
3135
3136                /* determine the number of blocks to be allocated from
3137                 * this dmap.
3138                 */
3139                nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
3140
3141                /* allocate the blocks. */
3142                if ((rc = dbAllocDmapBU(bmp, dp, blkno, nb))) {
3143                        release_metapage(mp);
3144                        IREAD_UNLOCK(ipbmap);
3145                        return (rc);
3146                }
3147        }
3148
3149        /* write the last buffer. */
3150        write_metapage(mp);
3151
3152        IREAD_UNLOCK(ipbmap);
3153
3154        return (0);
3155}
3156
3157
3158static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
3159                         int nblocks)
3160{
3161        int rc;
3162        int dbitno, word, rembits, nb, nwords, wbitno, agno;
3163        s8 oldroot, *leaf;
3164        struct dmaptree *tp = (struct dmaptree *) & dp->tree;
3165
3166        /* save the current value of the root (i.e. maximum free string)
3167         * of the dmap tree.
3168         */
3169        oldroot = tp->stree[ROOT];
3170
3171        /* pick up a pointer to the leaves of the dmap tree */
3172        leaf = tp->stree + LEAFIND;
3173
3174        /* determine the bit number and word within the dmap of the
3175         * starting block.
3176         */
3177        dbitno = blkno & (BPERDMAP - 1);
3178        word = dbitno >> L2DBWORD;
3179
3180        /* block range better be within the dmap */
3181        assert(dbitno + nblocks <= BPERDMAP);
3182
3183        /* allocate the bits of the dmap's words corresponding to the block
3184         * range. not all bits of the first and last words may be contained
3185         * within the block range.  if this is the case, we'll work against
3186         * those words (i.e. partial first and/or last) on an individual basis
3187         * (a single pass), allocating the bits of interest by hand and
3188         * updating the leaf corresponding to the dmap word. a single pass
3189         * will be used for all dmap words fully contained within the
3190         * specified range.  within this pass, the bits of all fully contained
3191         * dmap words will be marked as free in a single shot and the leaves
3192         * will be updated. a single leaf may describe the free space of
3193         * multiple dmap words, so we may update only a subset of the actual
3194         * leaves corresponding to the dmap words of the block range.
3195         */
3196        for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
3197                /* determine the bit number within the word and
3198                 * the number of bits within the word.
3199                 */
3200                wbitno = dbitno & (DBWORD - 1);
3201                nb = min(rembits, DBWORD - wbitno);
3202
3203                /* check if only part of a word is to be allocated.
3204                 */
3205                if (nb < DBWORD) {
3206                        /* allocate (set to 1) the appropriate bits within
3207                         * this dmap word.
3208                         */
3209                        dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
3210                                                      >> wbitno);
3211
3212                        word++;
3213                } else {
3214                        /* one or more dmap words are fully contained
3215                         * within the block range.  determine how many
3216                         * words and allocate (set to 1) the bits of these
3217                         * words.
3218                         */
3219                        nwords = rembits >> L2DBWORD;
3220                        memset(&dp->wmap[word], (int) ONES, nwords * 4);
3221
3222                        /* determine how many bits */
3223                        nb = nwords << L2DBWORD;
3224                        word += nwords;
3225                }
3226        }
3227
3228        /* update the free count for this dmap */
3229        le32_add_cpu(&dp->nfree, -nblocks);
3230
3231        /* reconstruct summary tree */
3232        dbInitDmapTree(dp);
3233
3234        BMAP_LOCK(bmp);
3235
3236        /* if this allocation group is completely free,
3237         * update the highest active allocation group number
3238         * if this allocation group is the new max.
3239         */
3240        agno = blkno >> bmp->db_agl2size;
3241        if (agno > bmp->db_maxag)
3242                bmp->db_maxag = agno;
3243
3244        /* update the free count for the allocation group and map */
3245        bmp->db_agfree[agno] -= nblocks;
3246        bmp->db_nfree -= nblocks;
3247
3248        BMAP_UNLOCK(bmp);
3249
3250        /* if the root has not changed, done. */
3251        if (tp->stree[ROOT] == oldroot)
3252                return (0);
3253
3254        /* root changed. bubble the change up to the dmap control pages.
3255         * if the adjustment of the upper level control pages fails,
3256         * backout the bit allocation (thus making everything consistent).
3257         */
3258        if ((rc = dbAdjCtl(bmp, blkno, tp->stree[ROOT], 1, 0)))
3259                dbFreeBits(bmp, dp, blkno, nblocks);
3260
3261        return (rc);
3262}
3263
3264
3265/*
3266 * NAME:        dbExtendFS()
3267 *
3268 * FUNCTION:    extend bmap from blkno for nblocks;
3269 *              dbExtendFS() updates bmap ready for dbAllocBottomUp();
3270 *
3271 * L2
3272 *  |
3273 *   L1---------------------------------L1
3274 *    |                                  |
3275 *     L0---------L0---------L0           L0---------L0---------L0
3276 *      |          |          |            |          |          |
3277 *       d0,...,dn  d0,...,dn  d0,...,dn    d0,...,dn  d0,...,dn  d0,.,dm;
3278 * L2L1L0d0,...,dnL0d0,...,dnL0d0,...,dnL1L0d0,...,dnL0d0,...,dnL0d0,..dm
3279 *
3280 * <---old---><----------------------------extend----------------------->
3281 */
3282int dbExtendFS(struct inode *ipbmap, s64 blkno, s64 nblocks)
3283{
3284        struct jfs_sb_info *sbi = JFS_SBI(ipbmap->i_sb);
3285        int nbperpage = sbi->nbperpage;
3286        int i, i0 = true, j, j0 = true, k, n;
3287        s64 newsize;
3288        s64 p;
3289        struct metapage *mp, *l2mp, *l1mp = NULL, *l0mp = NULL;
3290        struct dmapctl *l2dcp, *l1dcp, *l0dcp;
3291        struct dmap *dp;
3292        s8 *l0leaf, *l1leaf, *l2leaf;
3293        struct bmap *bmp = sbi->bmap;
3294        int agno, l2agsize, oldl2agsize;
3295        s64 ag_rem;
3296
3297        newsize = blkno + nblocks;
3298
3299        jfs_info("dbExtendFS: blkno:%Ld nblocks:%Ld newsize:%Ld",
3300                 (long long) blkno, (long long) nblocks, (long long) newsize);
3301
3302        /*
3303         *      initialize bmap control page.
3304         *
3305         * all the data in bmap control page should exclude
3306         * the mkfs hidden dmap page.
3307         */
3308
3309        /* update mapsize */
3310        bmp->db_mapsize = newsize;
3311        bmp->db_maxlevel = BMAPSZTOLEV(bmp->db_mapsize);
3312
3313        /* compute new AG size */
3314        l2agsize = dbGetL2AGSize(newsize);
3315        oldl2agsize = bmp->db_agl2size;
3316
3317        bmp->db_agl2size = l2agsize;
3318        bmp->db_agsize = 1 << l2agsize;
3319
3320        /* compute new number of AG */
3321        agno = bmp->db_numag;
3322        bmp->db_numag = newsize >> l2agsize;
3323        bmp->db_numag += ((u32) newsize % (u32) bmp->db_agsize) ? 1 : 0;
3324
3325        /*
3326         *      reconfigure db_agfree[]
3327         * from old AG configuration to new AG configuration;
3328         *
3329         * coalesce contiguous k (newAGSize/oldAGSize) AGs;
3330         * i.e., (AGi, ..., AGj) where i = k*n and j = k*(n+1) - 1 to AGn;
3331         * note: new AG size = old AG size * (2**x).
3332         */
3333        if (l2agsize == oldl2agsize)
3334                goto extend;
3335        k = 1 << (l2agsize - oldl2agsize);
3336        ag_rem = bmp->db_agfree[0];     /* save agfree[0] */
3337        for (i = 0, n = 0; i < agno; n++) {
3338                bmp->db_agfree[n] = 0;  /* init collection point */
3339
3340                /* coalesce cotiguous k AGs; */
3341                for (j = 0; j < k && i < agno; j++, i++) {
3342                        /* merge AGi to AGn */
3343                        bmp->db_agfree[n] += bmp->db_agfree[i];
3344                }
3345        }
3346        bmp->db_agfree[0] += ag_rem;    /* restore agfree[0] */
3347
3348        for (; n < MAXAG; n++)
3349                bmp->db_agfree[n] = 0;
3350
3351        /*
3352         * update highest active ag number
3353         */
3354
3355        bmp->db_maxag = bmp->db_maxag / k;
3356
3357        /*
3358         *      extend bmap
3359         *
3360         * update bit maps and corresponding level control pages;
3361         * global control page db_nfree, db_agfree[agno], db_maxfreebud;
3362         */
3363      extend:
3364        /* get L2 page */
3365        p = BMAPBLKNO + nbperpage;      /* L2 page */
3366        l2mp = read_metapage(ipbmap, p, PSIZE, 0);
3367        if (!l2mp) {
3368                jfs_error(ipbmap->i_sb, "dbExtendFS: L2 page could not be read");
3369                return -EIO;
3370        }
3371        l2dcp = (struct dmapctl *) l2mp->data;
3372
3373        /* compute start L1 */
3374        k = blkno >> L2MAXL1SIZE;
3375        l2leaf = l2dcp->stree + CTLLEAFIND + k;
3376        p = BLKTOL1(blkno, sbi->l2nbperpage);   /* L1 page */
3377
3378        /*
3379         * extend each L1 in L2
3380         */
3381        for (; k < LPERCTL; k++, p += nbperpage) {
3382                /* get L1 page */
3383                if (j0) {
3384                        /* read in L1 page: (blkno & (MAXL1SIZE - 1)) */
3385                        l1mp = read_metapage(ipbmap, p, PSIZE, 0);
3386                        if (l1mp == NULL)
3387                                goto errout;
3388                        l1dcp = (struct dmapctl *) l1mp->data;
3389
3390                        /* compute start L0 */
3391                        j = (blkno & (MAXL1SIZE - 1)) >> L2MAXL0SIZE;
3392                        l1leaf = l1dcp->stree + CTLLEAFIND + j;
3393                        p = BLKTOL0(blkno, sbi->l2nbperpage);
3394                        j0 = false;
3395                } else {
3396                        /* assign/init L1 page */
3397                        l1mp = get_metapage(ipbmap, p, PSIZE, 0);
3398                        if (l1mp == NULL)
3399                                goto errout;
3400
3401                        l1dcp = (struct dmapctl *) l1mp->data;
3402
3403                        /* compute start L0 */
3404                        j = 0;
3405                        l1leaf = l1dcp->stree + CTLLEAFIND;
3406                        p += nbperpage; /* 1st L0 of L1.k */
3407                }
3408
3409                /*
3410                 * extend each L0 in L1
3411                 */
3412                for (; j < LPERCTL; j++) {
3413                        /* get L0 page */
3414                        if (i0) {
3415                                /* read in L0 page: (blkno & (MAXL0SIZE - 1)) */
3416
3417                                l0mp = read_metapage(ipbmap, p, PSIZE, 0);
3418                                if (l0mp == NULL)
3419                                        goto errout;
3420                                l0dcp = (struct dmapctl *) l0mp->data;
3421
3422                                /* compute start dmap */
3423                                i = (blkno & (MAXL0SIZE - 1)) >>
3424                                    L2BPERDMAP;
3425                                l0leaf = l0dcp->stree + CTLLEAFIND + i;
3426                                p = BLKTODMAP(blkno,
3427                                              sbi->l2nbperpage);
3428                                i0 = false;
3429                        } else {
3430                                /* assign/init L0 page */
3431                                l0mp = get_metapage(ipbmap, p, PSIZE, 0);
3432                                if (l0mp == NULL)
3433                                        goto errout;
3434
3435                                l0dcp = (struct dmapctl *) l0mp->data;
3436
3437                                /* compute start dmap */
3438                                i = 0;
3439                                l0leaf = l0dcp->stree + CTLLEAFIND;
3440                                p += nbperpage; /* 1st dmap of L0.j */
3441                        }
3442
3443                        /*
3444                         * extend each dmap in L0
3445                         */
3446                        for (; i < LPERCTL; i++) {
3447                                /*
3448                                 * reconstruct the dmap page, and
3449                                 * initialize corresponding parent L0 leaf
3450                                 */
3451                                if ((n = blkno & (BPERDMAP - 1))) {
3452                                        /* read in dmap page: */
3453                                        mp = read_metapage(ipbmap, p,
3454                                                           PSIZE, 0);
3455                                        if (mp == NULL)
3456                                                goto errout;
3457                                        n = min(nblocks, (s64)BPERDMAP - n);
3458                                } else {
3459                                        /* assign/init dmap page */
3460                                        mp = read_metapage(ipbmap, p,
3461                                                           PSIZE, 0);
3462                                        if (mp == NULL)
3463                                                goto errout;
3464
3465                                        n = min(nblocks, (s64)BPERDMAP);
3466                                }
3467
3468                                dp = (struct dmap *) mp->data;
3469                                *l0leaf = dbInitDmap(dp, blkno, n);
3470
3471                                bmp->db_nfree += n;
3472                                agno = le64_to_cpu(dp->start) >> l2agsize;
3473                                bmp->db_agfree[agno] += n;
3474
3475                                write_metapage(mp);
3476
3477                                l0leaf++;
3478                                p += nbperpage;
3479
3480                                blkno += n;
3481                                nblocks -= n;
3482                                if (nblocks == 0)
3483                                        break;
3484                        }       /* for each dmap in a L0 */
3485
3486                        /*
3487                         * build current L0 page from its leaves, and
3488                         * initialize corresponding parent L1 leaf
3489                         */
3490                        *l1leaf = dbInitDmapCtl(l0dcp, 0, ++i);
3491                        write_metapage(l0mp);
3492                        l0mp = NULL;
3493
3494                        if (nblocks)
3495                                l1leaf++;       /* continue for next L0 */
3496                        else {
3497                                /* more than 1 L0 ? */
3498                                if (j > 0)
3499                                        break;  /* build L1 page */
3500                                else {
3501                                        /* summarize in global bmap page */
3502                                        bmp->db_maxfreebud = *l1leaf;
3503                                        release_metapage(l1mp);
3504                                        release_metapage(l2mp);
3505                                        goto finalize;
3506                                }
3507                        }
3508                }               /* for each L0 in a L1 */
3509
3510                /*
3511                 * build current L1 page from its leaves, and
3512                 * initialize corresponding parent L2 leaf
3513                 */
3514                *l2leaf = dbInitDmapCtl(l1dcp, 1, ++j);
3515                write_metapage(l1mp);
3516                l1mp = NULL;
3517
3518                if (nblocks)
3519                        l2leaf++;       /* continue for next L1 */
3520                else {
3521                        /* more than 1 L1 ? */
3522                        if (k > 0)
3523                                break;  /* build L2 page */
3524                        else {
3525                                /* summarize in global bmap page */
3526                                bmp->db_maxfreebud = *l2leaf;
3527                                release_metapage(l2mp);
3528                                goto finalize;
3529                        }
3530                }
3531        }                       /* for each L1 in a L2 */
3532
3533        jfs_error(ipbmap->i_sb,
3534                  "dbExtendFS: function has not returned as expected");
3535errout:
3536        if (l0mp)
3537                release_metapage(l0mp);
3538        if (l1mp)
3539                release_metapage(l1mp);
3540        release_metapage(l2mp);
3541        return -EIO;
3542
3543        /*
3544         *      finalize bmap control page
3545         */
3546finalize:
3547
3548        return 0;
3549}
3550
3551
3552/*
3553 *      dbFinalizeBmap()
3554 */
3555void dbFinalizeBmap(struct inode *ipbmap)
3556{
3557        struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
3558        int actags, inactags, l2nl;
3559        s64 ag_rem, actfree, inactfree, avgfree;
3560        int i, n;
3561
3562        /*
3563         *      finalize bmap control page
3564         */
3565//finalize:
3566        /*
3567         * compute db_agpref: preferred ag to allocate from
3568         * (the leftmost ag with average free space in it);
3569         */
3570//agpref:
3571        /* get the number of active ags and inacitve ags */
3572        actags = bmp->db_maxag + 1;
3573        inactags = bmp->db_numag - actags;
3574        ag_rem = bmp->db_mapsize & (bmp->db_agsize - 1);        /* ??? */
3575
3576        /* determine how many blocks are in the inactive allocation
3577         * groups. in doing this, we must account for the fact that
3578         * the rightmost group might be a partial group (i.e. file
3579         * system size is not a multiple of the group size).
3580         */
3581        inactfree = (inactags && ag_rem) ?
3582            ((inactags - 1) << bmp->db_agl2size) + ag_rem
3583            : inactags << bmp->db_agl2size;
3584
3585        /* determine how many free blocks are in the active
3586         * allocation groups plus the average number of free blocks
3587         * within the active ags.
3588         */
3589        actfree = bmp->db_nfree - inactfree;
3590        avgfree = (u32) actfree / (u32) actags;
3591
3592        /* if the preferred allocation group has not average free space.
3593         * re-establish the preferred group as the leftmost
3594         * group with average free space.
3595         */
3596        if (bmp->db_agfree[bmp->db_agpref] < avgfree) {
3597                for (bmp->db_agpref = 0; bmp->db_agpref < actags;
3598                     bmp->db_agpref++) {
3599                        if (bmp->db_agfree[bmp->db_agpref] >= avgfree)
3600                                break;
3601                }
3602                if (bmp->db_agpref >= bmp->db_numag) {
3603                        jfs_error(ipbmap->i_sb,
3604                                  "cannot find ag with average freespace");
3605                }
3606        }
3607
3608        /*
3609         * compute db_aglevel, db_agheigth, db_width, db_agstart:
3610         * an ag is covered in aglevel dmapctl summary tree,
3611         * at agheight level height (from leaf) with agwidth number of nodes
3612         * each, which starts at agstart index node of the smmary tree node
3613         * array;
3614         */
3615        bmp->db_aglevel = BMAPSZTOLEV(bmp->db_agsize);
3616        l2nl =
3617            bmp->db_agl2size - (L2BPERDMAP + bmp->db_aglevel * L2LPERCTL);
3618        bmp->db_agheigth = l2nl >> 1;
3619        bmp->db_agwidth = 1 << (l2nl - (bmp->db_agheigth << 1));
3620        for (i = 5 - bmp->db_agheigth, bmp->db_agstart = 0, n = 1; i > 0;
3621             i--) {
3622                bmp->db_agstart += n;
3623                n <<= 2;
3624        }
3625
3626}
3627
3628
3629/*
3630 * NAME:        dbInitDmap()/ujfs_idmap_page()
3631 *
3632 * FUNCTION:    initialize working/persistent bitmap of the dmap page
3633 *              for the specified number of blocks:
3634 *
3635 *              at entry, the bitmaps had been initialized as free (ZEROS);
3636 *              The number of blocks will only account for the actually
3637 *              existing blocks. Blocks which don't actually exist in
3638 *              the aggregate will be marked as allocated (ONES);
3639 *
3640 * PARAMETERS:
3641 *      dp      - pointer to page of map
3642 *      nblocks - number of blocks this page
3643 *
3644 * RETURNS: NONE
3645 */
3646static int dbInitDmap(struct dmap * dp, s64 Blkno, int nblocks)
3647{
3648        int blkno, w, b, r, nw, nb, i;
3649
3650        /* starting block number within the dmap */
3651        blkno = Blkno & (BPERDMAP - 1);
3652
3653        if (blkno == 0) {
3654                dp->nblocks = dp->nfree = cpu_to_le32(nblocks);
3655                dp->start = cpu_to_le64(Blkno);
3656
3657                if (nblocks == BPERDMAP) {
3658                        memset(&dp->wmap[0], 0, LPERDMAP * 4);
3659                        memset(&dp->pmap[0], 0, LPERDMAP * 4);
3660                        goto initTree;
3661                }
3662        } else {
3663                le32_add_cpu(&dp->nblocks, nblocks);
3664                le32_add_cpu(&dp->nfree, nblocks);
3665        }
3666
3667        /* word number containing start block number */
3668        w = blkno >> L2DBWORD;
3669
3670        /*
3671         * free the bits corresponding to the block range (ZEROS):
3672         * note: not all bits of the first and last words may be contained
3673         * within the block range.
3674         */
3675        for (r = nblocks; r > 0; r -= nb, blkno += nb) {
3676                /* number of bits preceding range to be freed in the word */
3677                b = blkno & (DBWORD - 1);
3678                /* number of bits to free in the word */
3679                nb = min(r, DBWORD - b);
3680
3681                /* is partial word to be freed ? */
3682                if (nb < DBWORD) {
3683                        /* free (set to 0) from the bitmap word */
3684                        dp->wmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3685                                                     >> b));
3686                        dp->pmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3687                                                     >> b));
3688
3689                        /* skip the word freed */
3690                        w++;
3691                } else {
3692                        /* free (set to 0) contiguous bitmap words */
3693                        nw = r >> L2DBWORD;
3694                        memset(&dp->wmap[w], 0, nw * 4);
3695                        memset(&dp->pmap[w], 0, nw * 4);
3696
3697                        /* skip the words freed */
3698                        nb = nw << L2DBWORD;
3699                        w += nw;
3700                }
3701        }
3702
3703        /*
3704         * mark bits following the range to be freed (non-existing
3705         * blocks) as allocated (ONES)
3706         */
3707
3708        if (blkno == BPERDMAP)
3709                goto initTree;
3710
3711        /* the first word beyond the end of existing blocks */
3712        w = blkno >> L2DBWORD;
3713
3714        /* does nblocks fall on a 32-bit boundary ? */
3715        b = blkno & (DBWORD - 1);
3716        if (b) {
3717                /* mark a partial word allocated */
3718                dp->wmap[w] = dp->pmap[w] = cpu_to_le32(ONES >> b);
3719                w++;
3720        }
3721
3722        /* set the rest of the words in the page to allocated (ONES) */
3723        for (i = w; i < LPERDMAP; i++)
3724                dp->pmap[i] = dp->wmap[i] = cpu_to_le32(ONES);
3725
3726        /*
3727         * init tree
3728         */
3729      initTree:
3730        return (dbInitDmapTree(dp));
3731}
3732
3733
3734/*
3735 * NAME:        dbInitDmapTree()/ujfs_complete_dmap()
3736 *
3737 * FUNCTION:    initialize summary tree of the specified dmap:
3738 *
3739 *              at entry, bitmap of the dmap has been initialized;
3740 *
3741 * PARAMETERS:
3742 *      dp      - dmap to complete
3743 *      blkno   - starting block number for this dmap
3744 *      treemax - will be filled in with max free for this dmap
3745 *
3746 * RETURNS:     max free string at the root of the tree
3747 */
3748static int dbInitDmapTree(struct dmap * dp)
3749{
3750        struct dmaptree *tp;
3751        s8 *cp;
3752        int i;
3753
3754        /* init fixed info of tree */
3755        tp = &dp->tree;
3756        tp->nleafs = cpu_to_le32(LPERDMAP);
3757        tp->l2nleafs = cpu_to_le32(L2LPERDMAP);
3758        tp->leafidx = cpu_to_le32(LEAFIND);
3759        tp->height = cpu_to_le32(4);
3760        tp->budmin = BUDMIN;
3761
3762        /* init each leaf from corresponding wmap word:
3763         * note: leaf is set to NOFREE(-1) if all blocks of corresponding
3764         * bitmap word are allocated.
3765         */
3766        cp = tp->stree + le32_to_cpu(tp->leafidx);
3767        for (i = 0; i < LPERDMAP; i++)
3768                *cp++ = dbMaxBud((u8 *) & dp->wmap[i]);
3769
3770        /* build the dmap's binary buddy summary tree */
3771        return (dbInitTree(tp));
3772}
3773
3774
3775/*
3776 * NAME:        dbInitTree()/ujfs_adjtree()
3777 *
3778 * FUNCTION:    initialize binary buddy summary tree of a dmap or dmapctl.
3779 *
3780 *              at entry, the leaves of the tree has been initialized
3781 *              from corresponding bitmap word or root of summary tree
3782 *              of the child control page;
3783 *              configure binary buddy system at the leaf level, then
3784 *              bubble up the values of the leaf nodes up the tree.
3785 *
3786 * PARAMETERS:
3787 *      cp      - Pointer to the root of the tree
3788 *      l2leaves- Number of leaf nodes as a power of 2
3789 *      l2min   - Number of blocks that can be covered by a leaf
3790 *                as a power of 2
3791 *
3792 * RETURNS: max free string at the root of the tree
3793 */
3794static int dbInitTree(struct dmaptree * dtp)
3795{
3796        int l2max, l2free, bsize, nextb, i;
3797        int child, parent, nparent;
3798        s8 *tp, *cp, *cp1;
3799
3800        tp = dtp->stree;
3801
3802        /* Determine the maximum free string possible for the leaves */
3803        l2max = le32_to_cpu(dtp->l2nleafs) + dtp->budmin;
3804
3805        /*
3806         * configure the leaf levevl into binary buddy system
3807         *
3808         * Try to combine buddies starting with a buddy size of 1
3809         * (i.e. two leaves). At a buddy size of 1 two buddy leaves
3810         * can be combined if both buddies have a maximum free of l2min;
3811         * the combination will result in the left-most buddy leaf having
3812         * a maximum free of l2min+1.
3813         * After processing all buddies for a given size, process buddies
3814         * at the next higher buddy size (i.e. current size * 2) and
3815         * the next maximum free (current free + 1).
3816         * This continues until the maximum possible buddy combination
3817         * yields maximum free.
3818         */
3819        for (l2free = dtp->budmin, bsize = 1; l2free < l2max;
3820             l2free++, bsize = nextb) {
3821                /* get next buddy size == current buddy pair size */
3822                nextb = bsize << 1;
3823
3824                /* scan each adjacent buddy pair at current buddy size */
3825                for (i = 0, cp = tp + le32_to_cpu(dtp->leafidx);
3826                     i < le32_to_cpu(dtp->nleafs);
3827                     i += nextb, cp += nextb) {
3828                        /* coalesce if both adjacent buddies are max free */
3829                        if (*cp == l2free && *(cp + bsize) == l2free) {
3830                                *cp = l2free + 1;       /* left take right */
3831                                *(cp + bsize) = -1;     /* right give left */
3832                        }
3833                }
3834        }
3835
3836        /*
3837         * bubble summary information of leaves up the tree.
3838         *
3839         * Starting at the leaf node level, the four nodes described by
3840         * the higher level parent node are compared for a maximum free and
3841         * this maximum becomes the value of the parent node.
3842         * when all lower level nodes are processed in this fashion then
3843         * move up to the next level (parent becomes a lower level node) and
3844         * continue the process for that level.
3845         */
3846        for (child = le32_to_cpu(dtp->leafidx),
3847             nparent = le32_to_cpu(dtp->nleafs) >> 2;
3848             nparent > 0; nparent >>= 2, child = parent) {
3849                /* get index of 1st node of parent level */
3850                parent = (child - 1) >> 2;
3851
3852                /* set the value of the parent node as the maximum
3853                 * of the four nodes of the current level.
3854                 */
3855                for (i = 0, cp = tp + child, cp1 = tp + parent;
3856                     i < nparent; i++, cp += 4, cp1++)
3857                        *cp1 = TREEMAX(cp);
3858        }
3859
3860        return (*tp);
3861}
3862
3863
3864/*
3865 *      dbInitDmapCtl()
3866 *
3867 * function: initialize dmapctl page
3868 */
3869static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i)
3870{                               /* start leaf index not covered by range */
3871        s8 *cp;
3872
3873        dcp->nleafs = cpu_to_le32(LPERCTL);
3874        dcp->l2nleafs = cpu_to_le32(L2LPERCTL);
3875        dcp->leafidx = cpu_to_le32(CTLLEAFIND);
3876        dcp->height = cpu_to_le32(5);
3877        dcp->budmin = L2BPERDMAP + L2LPERCTL * level;
3878
3879        /*
3880         * initialize the leaves of current level that were not covered
3881         * by the specified input block range (i.e. the leaves have no
3882         * low level dmapctl or dmap).
3883         */
3884        cp = &dcp->stree[CTLLEAFIND + i];
3885        for (; i < LPERCTL; i++)
3886                *cp++ = NOFREE;
3887
3888        /* build the dmap's binary buddy summary tree */
3889        return (dbInitTree((struct dmaptree *) dcp));
3890}
3891
3892
3893/*
3894 * NAME:        dbGetL2AGSize()/ujfs_getagl2size()
3895 *
3896 * FUNCTION:    Determine log2(allocation group size) from aggregate size
3897 *
3898 * PARAMETERS:
3899 *      nblocks - Number of blocks in aggregate
3900 *
3901 * RETURNS: log2(allocation group size) in aggregate blocks
3902 */
3903static int dbGetL2AGSize(s64 nblocks)
3904{
3905        s64 sz;
3906        s64 m;
3907        int l2sz;
3908
3909        if (nblocks < BPERDMAP * MAXAG)
3910                return (L2BPERDMAP);
3911
3912        /* round up aggregate size to power of 2 */
3913        m = ((u64) 1 << (64 - 1));
3914        for (l2sz = 64; l2sz >= 0; l2sz--, m >>= 1) {
3915                if (m & nblocks)
3916                        break;
3917        }
3918
3919        sz = (s64) 1 << l2sz;
3920        if (sz < nblocks)
3921                l2sz += 1;
3922
3923        /* agsize = roundupSize/max_number_of_ag */
3924        return (l2sz - L2MAXAG);
3925}
3926
3927
3928/*
3929 * NAME:        dbMapFileSizeToMapSize()
3930 *
3931 * FUNCTION:    compute number of blocks the block allocation map file
3932 *              can cover from the map file size;
3933 *
3934 * RETURNS:     Number of blocks which can be covered by this block map file;
3935 */
3936
3937/*
3938 * maximum number of map pages at each level including control pages
3939 */
3940#define MAXL0PAGES      (1 + LPERCTL)
3941#define MAXL1PAGES      (1 + LPERCTL * MAXL0PAGES)
3942#define MAXL2PAGES      (1 + LPERCTL * MAXL1PAGES)
3943
3944/*
3945 * convert number of map pages to the zero origin top dmapctl level
3946 */
3947#define BMAPPGTOLEV(npages)     \
3948        (((npages) <= 3 + MAXL0PAGES) ? 0 : \
3949         ((npages) <= 2 + MAXL1PAGES) ? 1 : 2)
3950
3951s64 dbMapFileSizeToMapSize(struct inode * ipbmap)
3952{
3953        struct super_block *sb = ipbmap->i_sb;
3954        s64 nblocks;
3955        s64 npages, ndmaps;
3956        int level, i;
3957        int complete, factor;
3958
3959        nblocks = ipbmap->i_size >> JFS_SBI(sb)->l2bsize;
3960        npages = nblocks >> JFS_SBI(sb)->l2nbperpage;
3961        level = BMAPPGTOLEV(npages);
3962
3963        /* At each level, accumulate the number of dmap pages covered by
3964         * the number of full child levels below it;
3965         * repeat for the last incomplete child level.
3966         */
3967        ndmaps = 0;
3968        npages--;               /* skip the first global control page */
3969        /* skip higher level control pages above top level covered by map */
3970        npages -= (2 - level);
3971        npages--;               /* skip top level's control page */
3972        for (i = level; i >= 0; i--) {
3973                factor =
3974                    (i == 2) ? MAXL1PAGES : ((i == 1) ? MAXL0PAGES : 1);
3975                complete = (u32) npages / factor;
3976                ndmaps += complete * ((i == 2) ? LPERCTL * LPERCTL :
3977                                      ((i == 1) ? LPERCTL : 1));
3978
3979                /* pages in last/incomplete child */
3980                npages = (u32) npages % factor;
3981                /* skip incomplete child's level control page */
3982                npages--;
3983        }
3984
3985        /* convert the number of dmaps into the number of blocks
3986         * which can be covered by the dmaps;
3987         */
3988        nblocks = ndmaps << L2BPERDMAP;
3989
3990        return (nblocks);
3991}
3992