linux/fs/libfs.c
<<
>>
Prefs
   1/*
   2 *      fs/libfs.c
   3 *      Library for filesystems writers.
   4 */
   5
   6#include <linux/module.h>
   7#include <linux/pagemap.h>
   8#include <linux/mount.h>
   9#include <linux/vfs.h>
  10#include <linux/mutex.h>
  11#include <linux/exportfs.h>
  12#include <linux/writeback.h>
  13#include <linux/buffer_head.h>
  14
  15#include <asm/uaccess.h>
  16
  17int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
  18                   struct kstat *stat)
  19{
  20        struct inode *inode = dentry->d_inode;
  21        generic_fillattr(inode, stat);
  22        stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
  23        return 0;
  24}
  25
  26int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
  27{
  28        buf->f_type = dentry->d_sb->s_magic;
  29        buf->f_bsize = PAGE_CACHE_SIZE;
  30        buf->f_namelen = NAME_MAX;
  31        return 0;
  32}
  33
  34/*
  35 * Retaining negative dentries for an in-memory filesystem just wastes
  36 * memory and lookup time: arrange for them to be deleted immediately.
  37 */
  38static int simple_delete_dentry(struct dentry *dentry)
  39{
  40        return 1;
  41}
  42
  43/*
  44 * Lookup the data. This is trivial - if the dentry didn't already
  45 * exist, we know it is negative.  Set d_op to delete negative dentries.
  46 */
  47struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
  48{
  49        static const struct dentry_operations simple_dentry_operations = {
  50                .d_delete = simple_delete_dentry,
  51        };
  52
  53        if (dentry->d_name.len > NAME_MAX)
  54                return ERR_PTR(-ENAMETOOLONG);
  55        dentry->d_op = &simple_dentry_operations;
  56        d_add(dentry, NULL);
  57        return NULL;
  58}
  59
  60int simple_sync_file(struct file * file, struct dentry *dentry, int datasync)
  61{
  62        return 0;
  63}
  64 
  65int dcache_dir_open(struct inode *inode, struct file *file)
  66{
  67        static struct qstr cursor_name = {.len = 1, .name = "."};
  68
  69        file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
  70
  71        return file->private_data ? 0 : -ENOMEM;
  72}
  73
  74int dcache_dir_close(struct inode *inode, struct file *file)
  75{
  76        dput(file->private_data);
  77        return 0;
  78}
  79
  80loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin)
  81{
  82        mutex_lock(&file->f_path.dentry->d_inode->i_mutex);
  83        switch (origin) {
  84                case 1:
  85                        offset += file->f_pos;
  86                case 0:
  87                        if (offset >= 0)
  88                                break;
  89                default:
  90                        mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
  91                        return -EINVAL;
  92        }
  93        if (offset != file->f_pos) {
  94                file->f_pos = offset;
  95                if (file->f_pos >= 2) {
  96                        struct list_head *p;
  97                        struct dentry *cursor = file->private_data;
  98                        loff_t n = file->f_pos - 2;
  99
 100                        spin_lock(&dcache_lock);
 101                        list_del(&cursor->d_u.d_child);
 102                        p = file->f_path.dentry->d_subdirs.next;
 103                        while (n && p != &file->f_path.dentry->d_subdirs) {
 104                                struct dentry *next;
 105                                next = list_entry(p, struct dentry, d_u.d_child);
 106                                if (!d_unhashed(next) && next->d_inode)
 107                                        n--;
 108                                p = p->next;
 109                        }
 110                        list_add_tail(&cursor->d_u.d_child, p);
 111                        spin_unlock(&dcache_lock);
 112                }
 113        }
 114        mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
 115        return offset;
 116}
 117
 118/* Relationship between i_mode and the DT_xxx types */
 119static inline unsigned char dt_type(struct inode *inode)
 120{
 121        return (inode->i_mode >> 12) & 15;
 122}
 123
 124/*
 125 * Directory is locked and all positive dentries in it are safe, since
 126 * for ramfs-type trees they can't go away without unlink() or rmdir(),
 127 * both impossible due to the lock on directory.
 128 */
 129
 130int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir)
 131{
 132        struct dentry *dentry = filp->f_path.dentry;
 133        struct dentry *cursor = filp->private_data;
 134        struct list_head *p, *q = &cursor->d_u.d_child;
 135        ino_t ino;
 136        int i = filp->f_pos;
 137
 138        switch (i) {
 139                case 0:
 140                        ino = dentry->d_inode->i_ino;
 141                        if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
 142                                break;
 143                        filp->f_pos++;
 144                        i++;
 145                        /* fallthrough */
 146                case 1:
 147                        ino = parent_ino(dentry);
 148                        if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
 149                                break;
 150                        filp->f_pos++;
 151                        i++;
 152                        /* fallthrough */
 153                default:
 154                        spin_lock(&dcache_lock);
 155                        if (filp->f_pos == 2)
 156                                list_move(q, &dentry->d_subdirs);
 157
 158                        for (p=q->next; p != &dentry->d_subdirs; p=p->next) {
 159                                struct dentry *next;
 160                                next = list_entry(p, struct dentry, d_u.d_child);
 161                                if (d_unhashed(next) || !next->d_inode)
 162                                        continue;
 163
 164                                spin_unlock(&dcache_lock);
 165                                if (filldir(dirent, next->d_name.name, 
 166                                            next->d_name.len, filp->f_pos, 
 167                                            next->d_inode->i_ino, 
 168                                            dt_type(next->d_inode)) < 0)
 169                                        return 0;
 170                                spin_lock(&dcache_lock);
 171                                /* next is still alive */
 172                                list_move(q, p);
 173                                p = q;
 174                                filp->f_pos++;
 175                        }
 176                        spin_unlock(&dcache_lock);
 177        }
 178        return 0;
 179}
 180
 181ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
 182{
 183        return -EISDIR;
 184}
 185
 186const struct file_operations simple_dir_operations = {
 187        .open           = dcache_dir_open,
 188        .release        = dcache_dir_close,
 189        .llseek         = dcache_dir_lseek,
 190        .read           = generic_read_dir,
 191        .readdir        = dcache_readdir,
 192        .fsync          = simple_sync_file,
 193};
 194
 195const struct inode_operations simple_dir_inode_operations = {
 196        .lookup         = simple_lookup,
 197};
 198
 199static const struct super_operations simple_super_operations = {
 200        .statfs         = simple_statfs,
 201};
 202
 203/*
 204 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
 205 * will never be mountable)
 206 */
 207int get_sb_pseudo(struct file_system_type *fs_type, char *name,
 208        const struct super_operations *ops, unsigned long magic,
 209        struct vfsmount *mnt)
 210{
 211        struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
 212        struct dentry *dentry;
 213        struct inode *root;
 214        struct qstr d_name = {.name = name, .len = strlen(name)};
 215
 216        if (IS_ERR(s))
 217                return PTR_ERR(s);
 218
 219        s->s_flags = MS_NOUSER;
 220        s->s_maxbytes = MAX_LFS_FILESIZE;
 221        s->s_blocksize = PAGE_SIZE;
 222        s->s_blocksize_bits = PAGE_SHIFT;
 223        s->s_magic = magic;
 224        s->s_op = ops ? ops : &simple_super_operations;
 225        s->s_time_gran = 1;
 226        root = new_inode(s);
 227        if (!root)
 228                goto Enomem;
 229        /*
 230         * since this is the first inode, make it number 1. New inodes created
 231         * after this must take care not to collide with it (by passing
 232         * max_reserved of 1 to iunique).
 233         */
 234        root->i_ino = 1;
 235        root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
 236        root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
 237        dentry = d_alloc(NULL, &d_name);
 238        if (!dentry) {
 239                iput(root);
 240                goto Enomem;
 241        }
 242        dentry->d_sb = s;
 243        dentry->d_parent = dentry;
 244        d_instantiate(dentry, root);
 245        s->s_root = dentry;
 246        s->s_flags |= MS_ACTIVE;
 247        simple_set_mnt(mnt, s);
 248        return 0;
 249
 250Enomem:
 251        deactivate_locked_super(s);
 252        return -ENOMEM;
 253}
 254
 255int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
 256{
 257        struct inode *inode = old_dentry->d_inode;
 258
 259        inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
 260        inc_nlink(inode);
 261        atomic_inc(&inode->i_count);
 262        dget(dentry);
 263        d_instantiate(dentry, inode);
 264        return 0;
 265}
 266
 267static inline int simple_positive(struct dentry *dentry)
 268{
 269        return dentry->d_inode && !d_unhashed(dentry);
 270}
 271
 272int simple_empty(struct dentry *dentry)
 273{
 274        struct dentry *child;
 275        int ret = 0;
 276
 277        spin_lock(&dcache_lock);
 278        list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child)
 279                if (simple_positive(child))
 280                        goto out;
 281        ret = 1;
 282out:
 283        spin_unlock(&dcache_lock);
 284        return ret;
 285}
 286
 287int simple_unlink(struct inode *dir, struct dentry *dentry)
 288{
 289        struct inode *inode = dentry->d_inode;
 290
 291        inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
 292        drop_nlink(inode);
 293        dput(dentry);
 294        return 0;
 295}
 296
 297int simple_rmdir(struct inode *dir, struct dentry *dentry)
 298{
 299        if (!simple_empty(dentry))
 300                return -ENOTEMPTY;
 301
 302        drop_nlink(dentry->d_inode);
 303        simple_unlink(dir, dentry);
 304        drop_nlink(dir);
 305        return 0;
 306}
 307
 308int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
 309                struct inode *new_dir, struct dentry *new_dentry)
 310{
 311        struct inode *inode = old_dentry->d_inode;
 312        int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
 313
 314        if (!simple_empty(new_dentry))
 315                return -ENOTEMPTY;
 316
 317        if (new_dentry->d_inode) {
 318                simple_unlink(new_dir, new_dentry);
 319                if (they_are_dirs)
 320                        drop_nlink(old_dir);
 321        } else if (they_are_dirs) {
 322                drop_nlink(old_dir);
 323                inc_nlink(new_dir);
 324        }
 325
 326        old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
 327                new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
 328
 329        return 0;
 330}
 331
 332int simple_readpage(struct file *file, struct page *page)
 333{
 334        clear_highpage(page);
 335        flush_dcache_page(page);
 336        SetPageUptodate(page);
 337        unlock_page(page);
 338        return 0;
 339}
 340
 341int simple_prepare_write(struct file *file, struct page *page,
 342                        unsigned from, unsigned to)
 343{
 344        if (!PageUptodate(page)) {
 345                if (to - from != PAGE_CACHE_SIZE)
 346                        zero_user_segments(page,
 347                                0, from,
 348                                to, PAGE_CACHE_SIZE);
 349        }
 350        return 0;
 351}
 352
 353int simple_write_begin(struct file *file, struct address_space *mapping,
 354                        loff_t pos, unsigned len, unsigned flags,
 355                        struct page **pagep, void **fsdata)
 356{
 357        struct page *page;
 358        pgoff_t index;
 359        unsigned from;
 360
 361        index = pos >> PAGE_CACHE_SHIFT;
 362        from = pos & (PAGE_CACHE_SIZE - 1);
 363
 364        page = grab_cache_page_write_begin(mapping, index, flags);
 365        if (!page)
 366                return -ENOMEM;
 367
 368        *pagep = page;
 369
 370        return simple_prepare_write(file, page, from, from+len);
 371}
 372
 373static int simple_commit_write(struct file *file, struct page *page,
 374                               unsigned from, unsigned to)
 375{
 376        struct inode *inode = page->mapping->host;
 377        loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
 378
 379        if (!PageUptodate(page))
 380                SetPageUptodate(page);
 381        /*
 382         * No need to use i_size_read() here, the i_size
 383         * cannot change under us because we hold the i_mutex.
 384         */
 385        if (pos > inode->i_size)
 386                i_size_write(inode, pos);
 387        set_page_dirty(page);
 388        return 0;
 389}
 390
 391int simple_write_end(struct file *file, struct address_space *mapping,
 392                        loff_t pos, unsigned len, unsigned copied,
 393                        struct page *page, void *fsdata)
 394{
 395        unsigned from = pos & (PAGE_CACHE_SIZE - 1);
 396
 397        /* zero the stale part of the page if we did a short copy */
 398        if (copied < len) {
 399                void *kaddr = kmap_atomic(page, KM_USER0);
 400                memset(kaddr + from + copied, 0, len - copied);
 401                flush_dcache_page(page);
 402                kunmap_atomic(kaddr, KM_USER0);
 403        }
 404
 405        simple_commit_write(file, page, from, from+copied);
 406
 407        unlock_page(page);
 408        page_cache_release(page);
 409
 410        return copied;
 411}
 412
 413/*
 414 * the inodes created here are not hashed. If you use iunique to generate
 415 * unique inode values later for this filesystem, then you must take care
 416 * to pass it an appropriate max_reserved value to avoid collisions.
 417 */
 418int simple_fill_super(struct super_block *s, int magic, struct tree_descr *files)
 419{
 420        struct inode *inode;
 421        struct dentry *root;
 422        struct dentry *dentry;
 423        int i;
 424
 425        s->s_blocksize = PAGE_CACHE_SIZE;
 426        s->s_blocksize_bits = PAGE_CACHE_SHIFT;
 427        s->s_magic = magic;
 428        s->s_op = &simple_super_operations;
 429        s->s_time_gran = 1;
 430
 431        inode = new_inode(s);
 432        if (!inode)
 433                return -ENOMEM;
 434        /*
 435         * because the root inode is 1, the files array must not contain an
 436         * entry at index 1
 437         */
 438        inode->i_ino = 1;
 439        inode->i_mode = S_IFDIR | 0755;
 440        inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
 441        inode->i_op = &simple_dir_inode_operations;
 442        inode->i_fop = &simple_dir_operations;
 443        inode->i_nlink = 2;
 444        root = d_alloc_root(inode);
 445        if (!root) {
 446                iput(inode);
 447                return -ENOMEM;
 448        }
 449        for (i = 0; !files->name || files->name[0]; i++, files++) {
 450                if (!files->name)
 451                        continue;
 452
 453                /* warn if it tries to conflict with the root inode */
 454                if (unlikely(i == 1))
 455                        printk(KERN_WARNING "%s: %s passed in a files array"
 456                                "with an index of 1!\n", __func__,
 457                                s->s_type->name);
 458
 459                dentry = d_alloc_name(root, files->name);
 460                if (!dentry)
 461                        goto out;
 462                inode = new_inode(s);
 463                if (!inode)
 464                        goto out;
 465                inode->i_mode = S_IFREG | files->mode;
 466                inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
 467                inode->i_fop = files->ops;
 468                inode->i_ino = i;
 469                d_add(dentry, inode);
 470        }
 471        s->s_root = root;
 472        return 0;
 473out:
 474        d_genocide(root);
 475        dput(root);
 476        return -ENOMEM;
 477}
 478
 479static DEFINE_SPINLOCK(pin_fs_lock);
 480
 481int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
 482{
 483        struct vfsmount *mnt = NULL;
 484        spin_lock(&pin_fs_lock);
 485        if (unlikely(!*mount)) {
 486                spin_unlock(&pin_fs_lock);
 487                mnt = vfs_kern_mount(type, 0, type->name, NULL);
 488                if (IS_ERR(mnt))
 489                        return PTR_ERR(mnt);
 490                spin_lock(&pin_fs_lock);
 491                if (!*mount)
 492                        *mount = mnt;
 493        }
 494        mntget(*mount);
 495        ++*count;
 496        spin_unlock(&pin_fs_lock);
 497        mntput(mnt);
 498        return 0;
 499}
 500
 501void simple_release_fs(struct vfsmount **mount, int *count)
 502{
 503        struct vfsmount *mnt;
 504        spin_lock(&pin_fs_lock);
 505        mnt = *mount;
 506        if (!--*count)
 507                *mount = NULL;
 508        spin_unlock(&pin_fs_lock);
 509        mntput(mnt);
 510}
 511
 512/**
 513 * simple_read_from_buffer - copy data from the buffer to user space
 514 * @to: the user space buffer to read to
 515 * @count: the maximum number of bytes to read
 516 * @ppos: the current position in the buffer
 517 * @from: the buffer to read from
 518 * @available: the size of the buffer
 519 *
 520 * The simple_read_from_buffer() function reads up to @count bytes from the
 521 * buffer @from at offset @ppos into the user space address starting at @to.
 522 *
 523 * On success, the number of bytes read is returned and the offset @ppos is
 524 * advanced by this number, or negative value is returned on error.
 525 **/
 526ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
 527                                const void *from, size_t available)
 528{
 529        loff_t pos = *ppos;
 530        size_t ret;
 531
 532        if (pos < 0)
 533                return -EINVAL;
 534        if (pos >= available || !count)
 535                return 0;
 536        if (count > available - pos)
 537                count = available - pos;
 538        ret = copy_to_user(to, from + pos, count);
 539        if (ret == count)
 540                return -EFAULT;
 541        count -= ret;
 542        *ppos = pos + count;
 543        return count;
 544}
 545
 546/**
 547 * memory_read_from_buffer - copy data from the buffer
 548 * @to: the kernel space buffer to read to
 549 * @count: the maximum number of bytes to read
 550 * @ppos: the current position in the buffer
 551 * @from: the buffer to read from
 552 * @available: the size of the buffer
 553 *
 554 * The memory_read_from_buffer() function reads up to @count bytes from the
 555 * buffer @from at offset @ppos into the kernel space address starting at @to.
 556 *
 557 * On success, the number of bytes read is returned and the offset @ppos is
 558 * advanced by this number, or negative value is returned on error.
 559 **/
 560ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
 561                                const void *from, size_t available)
 562{
 563        loff_t pos = *ppos;
 564
 565        if (pos < 0)
 566                return -EINVAL;
 567        if (pos >= available)
 568                return 0;
 569        if (count > available - pos)
 570                count = available - pos;
 571        memcpy(to, from + pos, count);
 572        *ppos = pos + count;
 573
 574        return count;
 575}
 576
 577/*
 578 * Transaction based IO.
 579 * The file expects a single write which triggers the transaction, and then
 580 * possibly a read which collects the result - which is stored in a
 581 * file-local buffer.
 582 */
 583
 584void simple_transaction_set(struct file *file, size_t n)
 585{
 586        struct simple_transaction_argresp *ar = file->private_data;
 587
 588        BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
 589
 590        /*
 591         * The barrier ensures that ar->size will really remain zero until
 592         * ar->data is ready for reading.
 593         */
 594        smp_mb();
 595        ar->size = n;
 596}
 597
 598char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
 599{
 600        struct simple_transaction_argresp *ar;
 601        static DEFINE_SPINLOCK(simple_transaction_lock);
 602
 603        if (size > SIMPLE_TRANSACTION_LIMIT - 1)
 604                return ERR_PTR(-EFBIG);
 605
 606        ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
 607        if (!ar)
 608                return ERR_PTR(-ENOMEM);
 609
 610        spin_lock(&simple_transaction_lock);
 611
 612        /* only one write allowed per open */
 613        if (file->private_data) {
 614                spin_unlock(&simple_transaction_lock);
 615                free_page((unsigned long)ar);
 616                return ERR_PTR(-EBUSY);
 617        }
 618
 619        file->private_data = ar;
 620
 621        spin_unlock(&simple_transaction_lock);
 622
 623        if (copy_from_user(ar->data, buf, size))
 624                return ERR_PTR(-EFAULT);
 625
 626        return ar->data;
 627}
 628
 629ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
 630{
 631        struct simple_transaction_argresp *ar = file->private_data;
 632
 633        if (!ar)
 634                return 0;
 635        return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
 636}
 637
 638int simple_transaction_release(struct inode *inode, struct file *file)
 639{
 640        free_page((unsigned long)file->private_data);
 641        return 0;
 642}
 643
 644/* Simple attribute files */
 645
 646struct simple_attr {
 647        int (*get)(void *, u64 *);
 648        int (*set)(void *, u64);
 649        char get_buf[24];       /* enough to store a u64 and "\n\0" */
 650        char set_buf[24];
 651        void *data;
 652        const char *fmt;        /* format for read operation */
 653        struct mutex mutex;     /* protects access to these buffers */
 654};
 655
 656/* simple_attr_open is called by an actual attribute open file operation
 657 * to set the attribute specific access operations. */
 658int simple_attr_open(struct inode *inode, struct file *file,
 659                     int (*get)(void *, u64 *), int (*set)(void *, u64),
 660                     const char *fmt)
 661{
 662        struct simple_attr *attr;
 663
 664        attr = kmalloc(sizeof(*attr), GFP_KERNEL);
 665        if (!attr)
 666                return -ENOMEM;
 667
 668        attr->get = get;
 669        attr->set = set;
 670        attr->data = inode->i_private;
 671        attr->fmt = fmt;
 672        mutex_init(&attr->mutex);
 673
 674        file->private_data = attr;
 675
 676        return nonseekable_open(inode, file);
 677}
 678
 679int simple_attr_release(struct inode *inode, struct file *file)
 680{
 681        kfree(file->private_data);
 682        return 0;
 683}
 684
 685/* read from the buffer that is filled with the get function */
 686ssize_t simple_attr_read(struct file *file, char __user *buf,
 687                         size_t len, loff_t *ppos)
 688{
 689        struct simple_attr *attr;
 690        size_t size;
 691        ssize_t ret;
 692
 693        attr = file->private_data;
 694
 695        if (!attr->get)
 696                return -EACCES;
 697
 698        ret = mutex_lock_interruptible(&attr->mutex);
 699        if (ret)
 700                return ret;
 701
 702        if (*ppos) {            /* continued read */
 703                size = strlen(attr->get_buf);
 704        } else {                /* first read */
 705                u64 val;
 706                ret = attr->get(attr->data, &val);
 707                if (ret)
 708                        goto out;
 709
 710                size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
 711                                 attr->fmt, (unsigned long long)val);
 712        }
 713
 714        ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
 715out:
 716        mutex_unlock(&attr->mutex);
 717        return ret;
 718}
 719
 720/* interpret the buffer as a number to call the set function with */
 721ssize_t simple_attr_write(struct file *file, const char __user *buf,
 722                          size_t len, loff_t *ppos)
 723{
 724        struct simple_attr *attr;
 725        u64 val;
 726        size_t size;
 727        ssize_t ret;
 728
 729        attr = file->private_data;
 730        if (!attr->set)
 731                return -EACCES;
 732
 733        ret = mutex_lock_interruptible(&attr->mutex);
 734        if (ret)
 735                return ret;
 736
 737        ret = -EFAULT;
 738        size = min(sizeof(attr->set_buf) - 1, len);
 739        if (copy_from_user(attr->set_buf, buf, size))
 740                goto out;
 741
 742        attr->set_buf[size] = '\0';
 743        val = simple_strtol(attr->set_buf, NULL, 0);
 744        ret = attr->set(attr->data, val);
 745        if (ret == 0)
 746                ret = len; /* on success, claim we got the whole input */
 747out:
 748        mutex_unlock(&attr->mutex);
 749        return ret;
 750}
 751
 752/**
 753 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
 754 * @sb:         filesystem to do the file handle conversion on
 755 * @fid:        file handle to convert
 756 * @fh_len:     length of the file handle in bytes
 757 * @fh_type:    type of file handle
 758 * @get_inode:  filesystem callback to retrieve inode
 759 *
 760 * This function decodes @fid as long as it has one of the well-known
 761 * Linux filehandle types and calls @get_inode on it to retrieve the
 762 * inode for the object specified in the file handle.
 763 */
 764struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
 765                int fh_len, int fh_type, struct inode *(*get_inode)
 766                        (struct super_block *sb, u64 ino, u32 gen))
 767{
 768        struct inode *inode = NULL;
 769
 770        if (fh_len < 2)
 771                return NULL;
 772
 773        switch (fh_type) {
 774        case FILEID_INO32_GEN:
 775        case FILEID_INO32_GEN_PARENT:
 776                inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
 777                break;
 778        }
 779
 780        return d_obtain_alias(inode);
 781}
 782EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
 783
 784/**
 785 * generic_fh_to_dentry - generic helper for the fh_to_parent export operation
 786 * @sb:         filesystem to do the file handle conversion on
 787 * @fid:        file handle to convert
 788 * @fh_len:     length of the file handle in bytes
 789 * @fh_type:    type of file handle
 790 * @get_inode:  filesystem callback to retrieve inode
 791 *
 792 * This function decodes @fid as long as it has one of the well-known
 793 * Linux filehandle types and calls @get_inode on it to retrieve the
 794 * inode for the _parent_ object specified in the file handle if it
 795 * is specified in the file handle, or NULL otherwise.
 796 */
 797struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
 798                int fh_len, int fh_type, struct inode *(*get_inode)
 799                        (struct super_block *sb, u64 ino, u32 gen))
 800{
 801        struct inode *inode = NULL;
 802
 803        if (fh_len <= 2)
 804                return NULL;
 805
 806        switch (fh_type) {
 807        case FILEID_INO32_GEN_PARENT:
 808                inode = get_inode(sb, fid->i32.parent_ino,
 809                                  (fh_len > 3 ? fid->i32.parent_gen : 0));
 810                break;
 811        }
 812
 813        return d_obtain_alias(inode);
 814}
 815EXPORT_SYMBOL_GPL(generic_fh_to_parent);
 816
 817int simple_fsync(struct file *file, struct dentry *dentry, int datasync)
 818{
 819        struct writeback_control wbc = {
 820                .sync_mode = WB_SYNC_ALL,
 821                .nr_to_write = 0, /* metadata-only; caller takes care of data */
 822        };
 823        struct inode *inode = dentry->d_inode;
 824        int err;
 825        int ret;
 826
 827        ret = sync_mapping_buffers(inode->i_mapping);
 828        if (!(inode->i_state & I_DIRTY))
 829                return ret;
 830        if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
 831                return ret;
 832
 833        err = sync_inode(inode, &wbc);
 834        if (ret == 0)
 835                ret = err;
 836        return ret;
 837}
 838EXPORT_SYMBOL(simple_fsync);
 839
 840EXPORT_SYMBOL(dcache_dir_close);
 841EXPORT_SYMBOL(dcache_dir_lseek);
 842EXPORT_SYMBOL(dcache_dir_open);
 843EXPORT_SYMBOL(dcache_readdir);
 844EXPORT_SYMBOL(generic_read_dir);
 845EXPORT_SYMBOL(get_sb_pseudo);
 846EXPORT_SYMBOL(simple_write_begin);
 847EXPORT_SYMBOL(simple_write_end);
 848EXPORT_SYMBOL(simple_dir_inode_operations);
 849EXPORT_SYMBOL(simple_dir_operations);
 850EXPORT_SYMBOL(simple_empty);
 851EXPORT_SYMBOL(d_alloc_name);
 852EXPORT_SYMBOL(simple_fill_super);
 853EXPORT_SYMBOL(simple_getattr);
 854EXPORT_SYMBOL(simple_link);
 855EXPORT_SYMBOL(simple_lookup);
 856EXPORT_SYMBOL(simple_pin_fs);
 857EXPORT_UNUSED_SYMBOL(simple_prepare_write);
 858EXPORT_SYMBOL(simple_readpage);
 859EXPORT_SYMBOL(simple_release_fs);
 860EXPORT_SYMBOL(simple_rename);
 861EXPORT_SYMBOL(simple_rmdir);
 862EXPORT_SYMBOL(simple_statfs);
 863EXPORT_SYMBOL(simple_sync_file);
 864EXPORT_SYMBOL(simple_unlink);
 865EXPORT_SYMBOL(simple_read_from_buffer);
 866EXPORT_SYMBOL(memory_read_from_buffer);
 867EXPORT_SYMBOL(simple_transaction_set);
 868EXPORT_SYMBOL(simple_transaction_get);
 869EXPORT_SYMBOL(simple_transaction_read);
 870EXPORT_SYMBOL(simple_transaction_release);
 871EXPORT_SYMBOL_GPL(simple_attr_open);
 872EXPORT_SYMBOL_GPL(simple_attr_release);
 873EXPORT_SYMBOL_GPL(simple_attr_read);
 874EXPORT_SYMBOL_GPL(simple_attr_write);
 875