linux/fs/mbcache.c
<<
>>
Prefs
   1/*
   2 * linux/fs/mbcache.c
   3 * (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org>
   4 */
   5
   6/*
   7 * Filesystem Meta Information Block Cache (mbcache)
   8 *
   9 * The mbcache caches blocks of block devices that need to be located
  10 * by their device/block number, as well as by other criteria (such
  11 * as the block's contents).
  12 *
  13 * There can only be one cache entry in a cache per device and block number.
  14 * Additional indexes need not be unique in this sense. The number of
  15 * additional indexes (=other criteria) can be hardwired at compile time
  16 * or specified at cache create time.
  17 *
  18 * Each cache entry is of fixed size. An entry may be `valid' or `invalid'
  19 * in the cache. A valid entry is in the main hash tables of the cache,
  20 * and may also be in the lru list. An invalid entry is not in any hashes
  21 * or lists.
  22 *
  23 * A valid cache entry is only in the lru list if no handles refer to it.
  24 * Invalid cache entries will be freed when the last handle to the cache
  25 * entry is released. Entries that cannot be freed immediately are put
  26 * back on the lru list.
  27 */
  28
  29#include <linux/kernel.h>
  30#include <linux/module.h>
  31
  32#include <linux/hash.h>
  33#include <linux/fs.h>
  34#include <linux/mm.h>
  35#include <linux/slab.h>
  36#include <linux/sched.h>
  37#include <linux/init.h>
  38#include <linux/mbcache.h>
  39
  40
  41#ifdef MB_CACHE_DEBUG
  42# define mb_debug(f...) do { \
  43                printk(KERN_DEBUG f); \
  44                printk("\n"); \
  45        } while (0)
  46#define mb_assert(c) do { if (!(c)) \
  47                printk(KERN_ERR "assertion " #c " failed\n"); \
  48        } while(0)
  49#else
  50# define mb_debug(f...) do { } while(0)
  51# define mb_assert(c) do { } while(0)
  52#endif
  53#define mb_error(f...) do { \
  54                printk(KERN_ERR f); \
  55                printk("\n"); \
  56        } while(0)
  57
  58#define MB_CACHE_WRITER ((unsigned short)~0U >> 1)
  59
  60static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue);
  61                
  62MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>");
  63MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
  64MODULE_LICENSE("GPL");
  65
  66EXPORT_SYMBOL(mb_cache_create);
  67EXPORT_SYMBOL(mb_cache_shrink);
  68EXPORT_SYMBOL(mb_cache_destroy);
  69EXPORT_SYMBOL(mb_cache_entry_alloc);
  70EXPORT_SYMBOL(mb_cache_entry_insert);
  71EXPORT_SYMBOL(mb_cache_entry_release);
  72EXPORT_SYMBOL(mb_cache_entry_free);
  73EXPORT_SYMBOL(mb_cache_entry_get);
  74#if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
  75EXPORT_SYMBOL(mb_cache_entry_find_first);
  76EXPORT_SYMBOL(mb_cache_entry_find_next);
  77#endif
  78
  79struct mb_cache {
  80        struct list_head                c_cache_list;
  81        const char                      *c_name;
  82        struct mb_cache_op              c_op;
  83        atomic_t                        c_entry_count;
  84        int                             c_bucket_bits;
  85#ifndef MB_CACHE_INDEXES_COUNT
  86        int                             c_indexes_count;
  87#endif
  88        struct kmem_cache                       *c_entry_cache;
  89        struct list_head                *c_block_hash;
  90        struct list_head                *c_indexes_hash[0];
  91};
  92
  93
  94/*
  95 * Global data: list of all mbcache's, lru list, and a spinlock for
  96 * accessing cache data structures on SMP machines. The lru list is
  97 * global across all mbcaches.
  98 */
  99
 100static LIST_HEAD(mb_cache_list);
 101static LIST_HEAD(mb_cache_lru_list);
 102static DEFINE_SPINLOCK(mb_cache_spinlock);
 103
 104static inline int
 105mb_cache_indexes(struct mb_cache *cache)
 106{
 107#ifdef MB_CACHE_INDEXES_COUNT
 108        return MB_CACHE_INDEXES_COUNT;
 109#else
 110        return cache->c_indexes_count;
 111#endif
 112}
 113
 114/*
 115 * What the mbcache registers as to get shrunk dynamically.
 116 */
 117
 118static int mb_cache_shrink_fn(int nr_to_scan, gfp_t gfp_mask);
 119
 120static struct shrinker mb_cache_shrinker = {
 121        .shrink = mb_cache_shrink_fn,
 122        .seeks = DEFAULT_SEEKS,
 123};
 124
 125static inline int
 126__mb_cache_entry_is_hashed(struct mb_cache_entry *ce)
 127{
 128        return !list_empty(&ce->e_block_list);
 129}
 130
 131
 132static void
 133__mb_cache_entry_unhash(struct mb_cache_entry *ce)
 134{
 135        int n;
 136
 137        if (__mb_cache_entry_is_hashed(ce)) {
 138                list_del_init(&ce->e_block_list);
 139                for (n=0; n<mb_cache_indexes(ce->e_cache); n++)
 140                        list_del(&ce->e_indexes[n].o_list);
 141        }
 142}
 143
 144
 145static void
 146__mb_cache_entry_forget(struct mb_cache_entry *ce, gfp_t gfp_mask)
 147{
 148        struct mb_cache *cache = ce->e_cache;
 149
 150        mb_assert(!(ce->e_used || ce->e_queued));
 151        if (cache->c_op.free && cache->c_op.free(ce, gfp_mask)) {
 152                /* free failed -- put back on the lru list
 153                   for freeing later. */
 154                spin_lock(&mb_cache_spinlock);
 155                list_add(&ce->e_lru_list, &mb_cache_lru_list);
 156                spin_unlock(&mb_cache_spinlock);
 157        } else {
 158                kmem_cache_free(cache->c_entry_cache, ce);
 159                atomic_dec(&cache->c_entry_count);
 160        }
 161}
 162
 163
 164static void
 165__mb_cache_entry_release_unlock(struct mb_cache_entry *ce)
 166        __releases(mb_cache_spinlock)
 167{
 168        /* Wake up all processes queuing for this cache entry. */
 169        if (ce->e_queued)
 170                wake_up_all(&mb_cache_queue);
 171        if (ce->e_used >= MB_CACHE_WRITER)
 172                ce->e_used -= MB_CACHE_WRITER;
 173        ce->e_used--;
 174        if (!(ce->e_used || ce->e_queued)) {
 175                if (!__mb_cache_entry_is_hashed(ce))
 176                        goto forget;
 177                mb_assert(list_empty(&ce->e_lru_list));
 178                list_add_tail(&ce->e_lru_list, &mb_cache_lru_list);
 179        }
 180        spin_unlock(&mb_cache_spinlock);
 181        return;
 182forget:
 183        spin_unlock(&mb_cache_spinlock);
 184        __mb_cache_entry_forget(ce, GFP_KERNEL);
 185}
 186
 187
 188/*
 189 * mb_cache_shrink_fn()  memory pressure callback
 190 *
 191 * This function is called by the kernel memory management when memory
 192 * gets low.
 193 *
 194 * @nr_to_scan: Number of objects to scan
 195 * @gfp_mask: (ignored)
 196 *
 197 * Returns the number of objects which are present in the cache.
 198 */
 199static int
 200mb_cache_shrink_fn(int nr_to_scan, gfp_t gfp_mask)
 201{
 202        LIST_HEAD(free_list);
 203        struct list_head *l, *ltmp;
 204        int count = 0;
 205
 206        spin_lock(&mb_cache_spinlock);
 207        list_for_each(l, &mb_cache_list) {
 208                struct mb_cache *cache =
 209                        list_entry(l, struct mb_cache, c_cache_list);
 210                mb_debug("cache %s (%d)", cache->c_name,
 211                          atomic_read(&cache->c_entry_count));
 212                count += atomic_read(&cache->c_entry_count);
 213        }
 214        mb_debug("trying to free %d entries", nr_to_scan);
 215        if (nr_to_scan == 0) {
 216                spin_unlock(&mb_cache_spinlock);
 217                goto out;
 218        }
 219        while (nr_to_scan-- && !list_empty(&mb_cache_lru_list)) {
 220                struct mb_cache_entry *ce =
 221                        list_entry(mb_cache_lru_list.next,
 222                                   struct mb_cache_entry, e_lru_list);
 223                list_move_tail(&ce->e_lru_list, &free_list);
 224                __mb_cache_entry_unhash(ce);
 225        }
 226        spin_unlock(&mb_cache_spinlock);
 227        list_for_each_safe(l, ltmp, &free_list) {
 228                __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
 229                                                   e_lru_list), gfp_mask);
 230        }
 231out:
 232        return (count / 100) * sysctl_vfs_cache_pressure;
 233}
 234
 235
 236/*
 237 * mb_cache_create()  create a new cache
 238 *
 239 * All entries in one cache are equal size. Cache entries may be from
 240 * multiple devices. If this is the first mbcache created, registers
 241 * the cache with kernel memory management. Returns NULL if no more
 242 * memory was available.
 243 *
 244 * @name: name of the cache (informal)
 245 * @cache_op: contains the callback called when freeing a cache entry
 246 * @entry_size: The size of a cache entry, including
 247 *              struct mb_cache_entry
 248 * @indexes_count: number of additional indexes in the cache. Must equal
 249 *                 MB_CACHE_INDEXES_COUNT if the number of indexes is
 250 *                 hardwired.
 251 * @bucket_bits: log2(number of hash buckets)
 252 */
 253struct mb_cache *
 254mb_cache_create(const char *name, struct mb_cache_op *cache_op,
 255                size_t entry_size, int indexes_count, int bucket_bits)
 256{
 257        int m=0, n, bucket_count = 1 << bucket_bits;
 258        struct mb_cache *cache = NULL;
 259
 260        if(entry_size < sizeof(struct mb_cache_entry) +
 261           indexes_count * sizeof(((struct mb_cache_entry *) 0)->e_indexes[0]))
 262                return NULL;
 263
 264        cache = kmalloc(sizeof(struct mb_cache) +
 265                        indexes_count * sizeof(struct list_head), GFP_KERNEL);
 266        if (!cache)
 267                goto fail;
 268        cache->c_name = name;
 269        cache->c_op.free = NULL;
 270        if (cache_op)
 271                cache->c_op.free = cache_op->free;
 272        atomic_set(&cache->c_entry_count, 0);
 273        cache->c_bucket_bits = bucket_bits;
 274#ifdef MB_CACHE_INDEXES_COUNT
 275        mb_assert(indexes_count == MB_CACHE_INDEXES_COUNT);
 276#else
 277        cache->c_indexes_count = indexes_count;
 278#endif
 279        cache->c_block_hash = kmalloc(bucket_count * sizeof(struct list_head),
 280                                      GFP_KERNEL);
 281        if (!cache->c_block_hash)
 282                goto fail;
 283        for (n=0; n<bucket_count; n++)
 284                INIT_LIST_HEAD(&cache->c_block_hash[n]);
 285        for (m=0; m<indexes_count; m++) {
 286                cache->c_indexes_hash[m] = kmalloc(bucket_count *
 287                                                 sizeof(struct list_head),
 288                                                 GFP_KERNEL);
 289                if (!cache->c_indexes_hash[m])
 290                        goto fail;
 291                for (n=0; n<bucket_count; n++)
 292                        INIT_LIST_HEAD(&cache->c_indexes_hash[m][n]);
 293        }
 294        cache->c_entry_cache = kmem_cache_create(name, entry_size, 0,
 295                SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
 296        if (!cache->c_entry_cache)
 297                goto fail;
 298
 299        spin_lock(&mb_cache_spinlock);
 300        list_add(&cache->c_cache_list, &mb_cache_list);
 301        spin_unlock(&mb_cache_spinlock);
 302        return cache;
 303
 304fail:
 305        if (cache) {
 306                while (--m >= 0)
 307                        kfree(cache->c_indexes_hash[m]);
 308                kfree(cache->c_block_hash);
 309                kfree(cache);
 310        }
 311        return NULL;
 312}
 313
 314
 315/*
 316 * mb_cache_shrink()
 317 *
 318 * Removes all cache entries of a device from the cache. All cache entries
 319 * currently in use cannot be freed, and thus remain in the cache. All others
 320 * are freed.
 321 *
 322 * @bdev: which device's cache entries to shrink
 323 */
 324void
 325mb_cache_shrink(struct block_device *bdev)
 326{
 327        LIST_HEAD(free_list);
 328        struct list_head *l, *ltmp;
 329
 330        spin_lock(&mb_cache_spinlock);
 331        list_for_each_safe(l, ltmp, &mb_cache_lru_list) {
 332                struct mb_cache_entry *ce =
 333                        list_entry(l, struct mb_cache_entry, e_lru_list);
 334                if (ce->e_bdev == bdev) {
 335                        list_move_tail(&ce->e_lru_list, &free_list);
 336                        __mb_cache_entry_unhash(ce);
 337                }
 338        }
 339        spin_unlock(&mb_cache_spinlock);
 340        list_for_each_safe(l, ltmp, &free_list) {
 341                __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
 342                                                   e_lru_list), GFP_KERNEL);
 343        }
 344}
 345
 346
 347/*
 348 * mb_cache_destroy()
 349 *
 350 * Shrinks the cache to its minimum possible size (hopefully 0 entries),
 351 * and then destroys it. If this was the last mbcache, un-registers the
 352 * mbcache from kernel memory management.
 353 */
 354void
 355mb_cache_destroy(struct mb_cache *cache)
 356{
 357        LIST_HEAD(free_list);
 358        struct list_head *l, *ltmp;
 359        int n;
 360
 361        spin_lock(&mb_cache_spinlock);
 362        list_for_each_safe(l, ltmp, &mb_cache_lru_list) {
 363                struct mb_cache_entry *ce =
 364                        list_entry(l, struct mb_cache_entry, e_lru_list);
 365                if (ce->e_cache == cache) {
 366                        list_move_tail(&ce->e_lru_list, &free_list);
 367                        __mb_cache_entry_unhash(ce);
 368                }
 369        }
 370        list_del(&cache->c_cache_list);
 371        spin_unlock(&mb_cache_spinlock);
 372
 373        list_for_each_safe(l, ltmp, &free_list) {
 374                __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
 375                                                   e_lru_list), GFP_KERNEL);
 376        }
 377
 378        if (atomic_read(&cache->c_entry_count) > 0) {
 379                mb_error("cache %s: %d orphaned entries",
 380                          cache->c_name,
 381                          atomic_read(&cache->c_entry_count));
 382        }
 383
 384        kmem_cache_destroy(cache->c_entry_cache);
 385
 386        for (n=0; n < mb_cache_indexes(cache); n++)
 387                kfree(cache->c_indexes_hash[n]);
 388        kfree(cache->c_block_hash);
 389        kfree(cache);
 390}
 391
 392
 393/*
 394 * mb_cache_entry_alloc()
 395 *
 396 * Allocates a new cache entry. The new entry will not be valid initially,
 397 * and thus cannot be looked up yet. It should be filled with data, and
 398 * then inserted into the cache using mb_cache_entry_insert(). Returns NULL
 399 * if no more memory was available.
 400 */
 401struct mb_cache_entry *
 402mb_cache_entry_alloc(struct mb_cache *cache, gfp_t gfp_flags)
 403{
 404        struct mb_cache_entry *ce;
 405
 406        ce = kmem_cache_alloc(cache->c_entry_cache, gfp_flags);
 407        if (ce) {
 408                atomic_inc(&cache->c_entry_count);
 409                INIT_LIST_HEAD(&ce->e_lru_list);
 410                INIT_LIST_HEAD(&ce->e_block_list);
 411                ce->e_cache = cache;
 412                ce->e_used = 1 + MB_CACHE_WRITER;
 413                ce->e_queued = 0;
 414        }
 415        return ce;
 416}
 417
 418
 419/*
 420 * mb_cache_entry_insert()
 421 *
 422 * Inserts an entry that was allocated using mb_cache_entry_alloc() into
 423 * the cache. After this, the cache entry can be looked up, but is not yet
 424 * in the lru list as the caller still holds a handle to it. Returns 0 on
 425 * success, or -EBUSY if a cache entry for that device + inode exists
 426 * already (this may happen after a failed lookup, but when another process
 427 * has inserted the same cache entry in the meantime).
 428 *
 429 * @bdev: device the cache entry belongs to
 430 * @block: block number
 431 * @keys: array of additional keys. There must be indexes_count entries
 432 *        in the array (as specified when creating the cache).
 433 */
 434int
 435mb_cache_entry_insert(struct mb_cache_entry *ce, struct block_device *bdev,
 436                      sector_t block, unsigned int keys[])
 437{
 438        struct mb_cache *cache = ce->e_cache;
 439        unsigned int bucket;
 440        struct list_head *l;
 441        int error = -EBUSY, n;
 442
 443        bucket = hash_long((unsigned long)bdev + (block & 0xffffffff), 
 444                           cache->c_bucket_bits);
 445        spin_lock(&mb_cache_spinlock);
 446        list_for_each_prev(l, &cache->c_block_hash[bucket]) {
 447                struct mb_cache_entry *ce =
 448                        list_entry(l, struct mb_cache_entry, e_block_list);
 449                if (ce->e_bdev == bdev && ce->e_block == block)
 450                        goto out;
 451        }
 452        __mb_cache_entry_unhash(ce);
 453        ce->e_bdev = bdev;
 454        ce->e_block = block;
 455        list_add(&ce->e_block_list, &cache->c_block_hash[bucket]);
 456        for (n=0; n<mb_cache_indexes(cache); n++) {
 457                ce->e_indexes[n].o_key = keys[n];
 458                bucket = hash_long(keys[n], cache->c_bucket_bits);
 459                list_add(&ce->e_indexes[n].o_list,
 460                         &cache->c_indexes_hash[n][bucket]);
 461        }
 462        error = 0;
 463out:
 464        spin_unlock(&mb_cache_spinlock);
 465        return error;
 466}
 467
 468
 469/*
 470 * mb_cache_entry_release()
 471 *
 472 * Release a handle to a cache entry. When the last handle to a cache entry
 473 * is released it is either freed (if it is invalid) or otherwise inserted
 474 * in to the lru list.
 475 */
 476void
 477mb_cache_entry_release(struct mb_cache_entry *ce)
 478{
 479        spin_lock(&mb_cache_spinlock);
 480        __mb_cache_entry_release_unlock(ce);
 481}
 482
 483
 484/*
 485 * mb_cache_entry_free()
 486 *
 487 * This is equivalent to the sequence mb_cache_entry_takeout() --
 488 * mb_cache_entry_release().
 489 */
 490void
 491mb_cache_entry_free(struct mb_cache_entry *ce)
 492{
 493        spin_lock(&mb_cache_spinlock);
 494        mb_assert(list_empty(&ce->e_lru_list));
 495        __mb_cache_entry_unhash(ce);
 496        __mb_cache_entry_release_unlock(ce);
 497}
 498
 499
 500/*
 501 * mb_cache_entry_get()
 502 *
 503 * Get a cache entry  by device / block number. (There can only be one entry
 504 * in the cache per device and block.) Returns NULL if no such cache entry
 505 * exists. The returned cache entry is locked for exclusive access ("single
 506 * writer").
 507 */
 508struct mb_cache_entry *
 509mb_cache_entry_get(struct mb_cache *cache, struct block_device *bdev,
 510                   sector_t block)
 511{
 512        unsigned int bucket;
 513        struct list_head *l;
 514        struct mb_cache_entry *ce;
 515
 516        bucket = hash_long((unsigned long)bdev + (block & 0xffffffff),
 517                           cache->c_bucket_bits);
 518        spin_lock(&mb_cache_spinlock);
 519        list_for_each(l, &cache->c_block_hash[bucket]) {
 520                ce = list_entry(l, struct mb_cache_entry, e_block_list);
 521                if (ce->e_bdev == bdev && ce->e_block == block) {
 522                        DEFINE_WAIT(wait);
 523
 524                        if (!list_empty(&ce->e_lru_list))
 525                                list_del_init(&ce->e_lru_list);
 526
 527                        while (ce->e_used > 0) {
 528                                ce->e_queued++;
 529                                prepare_to_wait(&mb_cache_queue, &wait,
 530                                                TASK_UNINTERRUPTIBLE);
 531                                spin_unlock(&mb_cache_spinlock);
 532                                schedule();
 533                                spin_lock(&mb_cache_spinlock);
 534                                ce->e_queued--;
 535                        }
 536                        finish_wait(&mb_cache_queue, &wait);
 537                        ce->e_used += 1 + MB_CACHE_WRITER;
 538
 539                        if (!__mb_cache_entry_is_hashed(ce)) {
 540                                __mb_cache_entry_release_unlock(ce);
 541                                return NULL;
 542                        }
 543                        goto cleanup;
 544                }
 545        }
 546        ce = NULL;
 547
 548cleanup:
 549        spin_unlock(&mb_cache_spinlock);
 550        return ce;
 551}
 552
 553#if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
 554
 555static struct mb_cache_entry *
 556__mb_cache_entry_find(struct list_head *l, struct list_head *head,
 557                      int index, struct block_device *bdev, unsigned int key)
 558{
 559        while (l != head) {
 560                struct mb_cache_entry *ce =
 561                        list_entry(l, struct mb_cache_entry,
 562                                   e_indexes[index].o_list);
 563                if (ce->e_bdev == bdev && ce->e_indexes[index].o_key == key) {
 564                        DEFINE_WAIT(wait);
 565
 566                        if (!list_empty(&ce->e_lru_list))
 567                                list_del_init(&ce->e_lru_list);
 568
 569                        /* Incrementing before holding the lock gives readers
 570                           priority over writers. */
 571                        ce->e_used++;
 572                        while (ce->e_used >= MB_CACHE_WRITER) {
 573                                ce->e_queued++;
 574                                prepare_to_wait(&mb_cache_queue, &wait,
 575                                                TASK_UNINTERRUPTIBLE);
 576                                spin_unlock(&mb_cache_spinlock);
 577                                schedule();
 578                                spin_lock(&mb_cache_spinlock);
 579                                ce->e_queued--;
 580                        }
 581                        finish_wait(&mb_cache_queue, &wait);
 582
 583                        if (!__mb_cache_entry_is_hashed(ce)) {
 584                                __mb_cache_entry_release_unlock(ce);
 585                                spin_lock(&mb_cache_spinlock);
 586                                return ERR_PTR(-EAGAIN);
 587                        }
 588                        return ce;
 589                }
 590                l = l->next;
 591        }
 592        return NULL;
 593}
 594
 595
 596/*
 597 * mb_cache_entry_find_first()
 598 *
 599 * Find the first cache entry on a given device with a certain key in
 600 * an additional index. Additonal matches can be found with
 601 * mb_cache_entry_find_next(). Returns NULL if no match was found. The
 602 * returned cache entry is locked for shared access ("multiple readers").
 603 *
 604 * @cache: the cache to search
 605 * @index: the number of the additonal index to search (0<=index<indexes_count)
 606 * @bdev: the device the cache entry should belong to
 607 * @key: the key in the index
 608 */
 609struct mb_cache_entry *
 610mb_cache_entry_find_first(struct mb_cache *cache, int index,
 611                          struct block_device *bdev, unsigned int key)
 612{
 613        unsigned int bucket = hash_long(key, cache->c_bucket_bits);
 614        struct list_head *l;
 615        struct mb_cache_entry *ce;
 616
 617        mb_assert(index < mb_cache_indexes(cache));
 618        spin_lock(&mb_cache_spinlock);
 619        l = cache->c_indexes_hash[index][bucket].next;
 620        ce = __mb_cache_entry_find(l, &cache->c_indexes_hash[index][bucket],
 621                                   index, bdev, key);
 622        spin_unlock(&mb_cache_spinlock);
 623        return ce;
 624}
 625
 626
 627/*
 628 * mb_cache_entry_find_next()
 629 *
 630 * Find the next cache entry on a given device with a certain key in an
 631 * additional index. Returns NULL if no match could be found. The previous
 632 * entry is atomatically released, so that mb_cache_entry_find_next() can
 633 * be called like this:
 634 *
 635 * entry = mb_cache_entry_find_first();
 636 * while (entry) {
 637 *      ...
 638 *      entry = mb_cache_entry_find_next(entry, ...);
 639 * }
 640 *
 641 * @prev: The previous match
 642 * @index: the number of the additonal index to search (0<=index<indexes_count)
 643 * @bdev: the device the cache entry should belong to
 644 * @key: the key in the index
 645 */
 646struct mb_cache_entry *
 647mb_cache_entry_find_next(struct mb_cache_entry *prev, int index,
 648                         struct block_device *bdev, unsigned int key)
 649{
 650        struct mb_cache *cache = prev->e_cache;
 651        unsigned int bucket = hash_long(key, cache->c_bucket_bits);
 652        struct list_head *l;
 653        struct mb_cache_entry *ce;
 654
 655        mb_assert(index < mb_cache_indexes(cache));
 656        spin_lock(&mb_cache_spinlock);
 657        l = prev->e_indexes[index].o_list.next;
 658        ce = __mb_cache_entry_find(l, &cache->c_indexes_hash[index][bucket],
 659                                   index, bdev, key);
 660        __mb_cache_entry_release_unlock(prev);
 661        return ce;
 662}
 663
 664#endif  /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */
 665
 666static int __init init_mbcache(void)
 667{
 668        register_shrinker(&mb_cache_shrinker);
 669        return 0;
 670}
 671
 672static void __exit exit_mbcache(void)
 673{
 674        unregister_shrinker(&mb_cache_shrinker);
 675}
 676
 677module_init(init_mbcache)
 678module_exit(exit_mbcache)
 679
 680