linux/fs/namei.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/namei.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7/*
   8 * Some corrections by tytso.
   9 */
  10
  11/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
  12 * lookup logic.
  13 */
  14/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
  15 */
  16
  17#include <linux/init.h>
  18#include <linux/module.h>
  19#include <linux/slab.h>
  20#include <linux/fs.h>
  21#include <linux/namei.h>
  22#include <linux/quotaops.h>
  23#include <linux/pagemap.h>
  24#include <linux/fsnotify.h>
  25#include <linux/personality.h>
  26#include <linux/security.h>
  27#include <linux/ima.h>
  28#include <linux/syscalls.h>
  29#include <linux/mount.h>
  30#include <linux/audit.h>
  31#include <linux/capability.h>
  32#include <linux/file.h>
  33#include <linux/fcntl.h>
  34#include <linux/device_cgroup.h>
  35#include <linux/fs_struct.h>
  36#include <asm/uaccess.h>
  37
  38#define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
  39
  40/* [Feb-1997 T. Schoebel-Theuer]
  41 * Fundamental changes in the pathname lookup mechanisms (namei)
  42 * were necessary because of omirr.  The reason is that omirr needs
  43 * to know the _real_ pathname, not the user-supplied one, in case
  44 * of symlinks (and also when transname replacements occur).
  45 *
  46 * The new code replaces the old recursive symlink resolution with
  47 * an iterative one (in case of non-nested symlink chains).  It does
  48 * this with calls to <fs>_follow_link().
  49 * As a side effect, dir_namei(), _namei() and follow_link() are now 
  50 * replaced with a single function lookup_dentry() that can handle all 
  51 * the special cases of the former code.
  52 *
  53 * With the new dcache, the pathname is stored at each inode, at least as
  54 * long as the refcount of the inode is positive.  As a side effect, the
  55 * size of the dcache depends on the inode cache and thus is dynamic.
  56 *
  57 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
  58 * resolution to correspond with current state of the code.
  59 *
  60 * Note that the symlink resolution is not *completely* iterative.
  61 * There is still a significant amount of tail- and mid- recursion in
  62 * the algorithm.  Also, note that <fs>_readlink() is not used in
  63 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
  64 * may return different results than <fs>_follow_link().  Many virtual
  65 * filesystems (including /proc) exhibit this behavior.
  66 */
  67
  68/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
  69 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
  70 * and the name already exists in form of a symlink, try to create the new
  71 * name indicated by the symlink. The old code always complained that the
  72 * name already exists, due to not following the symlink even if its target
  73 * is nonexistent.  The new semantics affects also mknod() and link() when
  74 * the name is a symlink pointing to a non-existant name.
  75 *
  76 * I don't know which semantics is the right one, since I have no access
  77 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
  78 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
  79 * "old" one. Personally, I think the new semantics is much more logical.
  80 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
  81 * file does succeed in both HP-UX and SunOs, but not in Solaris
  82 * and in the old Linux semantics.
  83 */
  84
  85/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
  86 * semantics.  See the comments in "open_namei" and "do_link" below.
  87 *
  88 * [10-Sep-98 Alan Modra] Another symlink change.
  89 */
  90
  91/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
  92 *      inside the path - always follow.
  93 *      in the last component in creation/removal/renaming - never follow.
  94 *      if LOOKUP_FOLLOW passed - follow.
  95 *      if the pathname has trailing slashes - follow.
  96 *      otherwise - don't follow.
  97 * (applied in that order).
  98 *
  99 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
 100 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
 101 * During the 2.4 we need to fix the userland stuff depending on it -
 102 * hopefully we will be able to get rid of that wart in 2.5. So far only
 103 * XEmacs seems to be relying on it...
 104 */
 105/*
 106 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
 107 * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
 108 * any extra contention...
 109 */
 110
 111static int __link_path_walk(const char *name, struct nameidata *nd);
 112
 113/* In order to reduce some races, while at the same time doing additional
 114 * checking and hopefully speeding things up, we copy filenames to the
 115 * kernel data space before using them..
 116 *
 117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
 118 * PATH_MAX includes the nul terminator --RR.
 119 */
 120static int do_getname(const char __user *filename, char *page)
 121{
 122        int retval;
 123        unsigned long len = PATH_MAX;
 124
 125        if (!segment_eq(get_fs(), KERNEL_DS)) {
 126                if ((unsigned long) filename >= TASK_SIZE)
 127                        return -EFAULT;
 128                if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
 129                        len = TASK_SIZE - (unsigned long) filename;
 130        }
 131
 132        retval = strncpy_from_user(page, filename, len);
 133        if (retval > 0) {
 134                if (retval < len)
 135                        return 0;
 136                return -ENAMETOOLONG;
 137        } else if (!retval)
 138                retval = -ENOENT;
 139        return retval;
 140}
 141
 142char * getname(const char __user * filename)
 143{
 144        char *tmp, *result;
 145
 146        result = ERR_PTR(-ENOMEM);
 147        tmp = __getname();
 148        if (tmp)  {
 149                int retval = do_getname(filename, tmp);
 150
 151                result = tmp;
 152                if (retval < 0) {
 153                        __putname(tmp);
 154                        result = ERR_PTR(retval);
 155                }
 156        }
 157        audit_getname(result);
 158        return result;
 159}
 160
 161#ifdef CONFIG_AUDITSYSCALL
 162void putname(const char *name)
 163{
 164        if (unlikely(!audit_dummy_context()))
 165                audit_putname(name);
 166        else
 167                __putname(name);
 168}
 169EXPORT_SYMBOL(putname);
 170#endif
 171
 172/*
 173 * This does basic POSIX ACL permission checking
 174 */
 175static int acl_permission_check(struct inode *inode, int mask,
 176                int (*check_acl)(struct inode *inode, int mask))
 177{
 178        umode_t                 mode = inode->i_mode;
 179
 180        mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
 181
 182        if (current_fsuid() == inode->i_uid)
 183                mode >>= 6;
 184        else {
 185                if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
 186                        int error = check_acl(inode, mask);
 187                        if (error != -EAGAIN)
 188                                return error;
 189                }
 190
 191                if (in_group_p(inode->i_gid))
 192                        mode >>= 3;
 193        }
 194
 195        /*
 196         * If the DACs are ok we don't need any capability check.
 197         */
 198        if ((mask & ~mode) == 0)
 199                return 0;
 200        return -EACCES;
 201}
 202
 203/**
 204 * generic_permission  -  check for access rights on a Posix-like filesystem
 205 * @inode:      inode to check access rights for
 206 * @mask:       right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 207 * @check_acl:  optional callback to check for Posix ACLs
 208 *
 209 * Used to check for read/write/execute permissions on a file.
 210 * We use "fsuid" for this, letting us set arbitrary permissions
 211 * for filesystem access without changing the "normal" uids which
 212 * are used for other things..
 213 */
 214int generic_permission(struct inode *inode, int mask,
 215                int (*check_acl)(struct inode *inode, int mask))
 216{
 217        int ret;
 218
 219        /*
 220         * Do the basic POSIX ACL permission checks.
 221         */
 222        ret = acl_permission_check(inode, mask, check_acl);
 223        if (ret != -EACCES)
 224                return ret;
 225
 226        /*
 227         * Read/write DACs are always overridable.
 228         * Executable DACs are overridable if at least one exec bit is set.
 229         */
 230        if (!(mask & MAY_EXEC) || execute_ok(inode))
 231                if (capable(CAP_DAC_OVERRIDE))
 232                        return 0;
 233
 234        /*
 235         * Searching includes executable on directories, else just read.
 236         */
 237        if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
 238                if (capable(CAP_DAC_READ_SEARCH))
 239                        return 0;
 240
 241        return -EACCES;
 242}
 243
 244/**
 245 * inode_permission  -  check for access rights to a given inode
 246 * @inode:      inode to check permission on
 247 * @mask:       right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 248 *
 249 * Used to check for read/write/execute permissions on an inode.
 250 * We use "fsuid" for this, letting us set arbitrary permissions
 251 * for filesystem access without changing the "normal" uids which
 252 * are used for other things.
 253 */
 254int inode_permission(struct inode *inode, int mask)
 255{
 256        int retval;
 257
 258        if (mask & MAY_WRITE) {
 259                umode_t mode = inode->i_mode;
 260
 261                /*
 262                 * Nobody gets write access to a read-only fs.
 263                 */
 264                if (IS_RDONLY(inode) &&
 265                    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
 266                        return -EROFS;
 267
 268                /*
 269                 * Nobody gets write access to an immutable file.
 270                 */
 271                if (IS_IMMUTABLE(inode))
 272                        return -EACCES;
 273        }
 274
 275        if (inode->i_op->permission)
 276                retval = inode->i_op->permission(inode, mask);
 277        else
 278                retval = generic_permission(inode, mask, inode->i_op->check_acl);
 279
 280        if (retval)
 281                return retval;
 282
 283        retval = devcgroup_inode_permission(inode, mask);
 284        if (retval)
 285                return retval;
 286
 287        return security_inode_permission(inode,
 288                        mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND));
 289}
 290
 291/**
 292 * file_permission  -  check for additional access rights to a given file
 293 * @file:       file to check access rights for
 294 * @mask:       right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 295 *
 296 * Used to check for read/write/execute permissions on an already opened
 297 * file.
 298 *
 299 * Note:
 300 *      Do not use this function in new code.  All access checks should
 301 *      be done using inode_permission().
 302 */
 303int file_permission(struct file *file, int mask)
 304{
 305        return inode_permission(file->f_path.dentry->d_inode, mask);
 306}
 307
 308/*
 309 * get_write_access() gets write permission for a file.
 310 * put_write_access() releases this write permission.
 311 * This is used for regular files.
 312 * We cannot support write (and maybe mmap read-write shared) accesses and
 313 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
 314 * can have the following values:
 315 * 0: no writers, no VM_DENYWRITE mappings
 316 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
 317 * > 0: (i_writecount) users are writing to the file.
 318 *
 319 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
 320 * except for the cases where we don't hold i_writecount yet. Then we need to
 321 * use {get,deny}_write_access() - these functions check the sign and refuse
 322 * to do the change if sign is wrong. Exclusion between them is provided by
 323 * the inode->i_lock spinlock.
 324 */
 325
 326int get_write_access(struct inode * inode)
 327{
 328        spin_lock(&inode->i_lock);
 329        if (atomic_read(&inode->i_writecount) < 0) {
 330                spin_unlock(&inode->i_lock);
 331                return -ETXTBSY;
 332        }
 333        atomic_inc(&inode->i_writecount);
 334        spin_unlock(&inode->i_lock);
 335
 336        return 0;
 337}
 338
 339int deny_write_access(struct file * file)
 340{
 341        struct inode *inode = file->f_path.dentry->d_inode;
 342
 343        spin_lock(&inode->i_lock);
 344        if (atomic_read(&inode->i_writecount) > 0) {
 345                spin_unlock(&inode->i_lock);
 346                return -ETXTBSY;
 347        }
 348        atomic_dec(&inode->i_writecount);
 349        spin_unlock(&inode->i_lock);
 350
 351        return 0;
 352}
 353
 354/**
 355 * path_get - get a reference to a path
 356 * @path: path to get the reference to
 357 *
 358 * Given a path increment the reference count to the dentry and the vfsmount.
 359 */
 360void path_get(struct path *path)
 361{
 362        mntget(path->mnt);
 363        dget(path->dentry);
 364}
 365EXPORT_SYMBOL(path_get);
 366
 367/**
 368 * path_put - put a reference to a path
 369 * @path: path to put the reference to
 370 *
 371 * Given a path decrement the reference count to the dentry and the vfsmount.
 372 */
 373void path_put(struct path *path)
 374{
 375        dput(path->dentry);
 376        mntput(path->mnt);
 377}
 378EXPORT_SYMBOL(path_put);
 379
 380/**
 381 * release_open_intent - free up open intent resources
 382 * @nd: pointer to nameidata
 383 */
 384void release_open_intent(struct nameidata *nd)
 385{
 386        if (nd->intent.open.file->f_path.dentry == NULL)
 387                put_filp(nd->intent.open.file);
 388        else
 389                fput(nd->intent.open.file);
 390}
 391
 392static inline struct dentry *
 393do_revalidate(struct dentry *dentry, struct nameidata *nd)
 394{
 395        int status = dentry->d_op->d_revalidate(dentry, nd);
 396        if (unlikely(status <= 0)) {
 397                /*
 398                 * The dentry failed validation.
 399                 * If d_revalidate returned 0 attempt to invalidate
 400                 * the dentry otherwise d_revalidate is asking us
 401                 * to return a fail status.
 402                 */
 403                if (!status) {
 404                        if (!d_invalidate(dentry)) {
 405                                dput(dentry);
 406                                dentry = NULL;
 407                        }
 408                } else {
 409                        dput(dentry);
 410                        dentry = ERR_PTR(status);
 411                }
 412        }
 413        return dentry;
 414}
 415
 416/*
 417 * Internal lookup() using the new generic dcache.
 418 * SMP-safe
 419 */
 420static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
 421{
 422        struct dentry * dentry = __d_lookup(parent, name);
 423
 424        /* lockess __d_lookup may fail due to concurrent d_move() 
 425         * in some unrelated directory, so try with d_lookup
 426         */
 427        if (!dentry)
 428                dentry = d_lookup(parent, name);
 429
 430        if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
 431                dentry = do_revalidate(dentry, nd);
 432
 433        return dentry;
 434}
 435
 436/*
 437 * Short-cut version of permission(), for calling by
 438 * path_walk(), when dcache lock is held.  Combines parts
 439 * of permission() and generic_permission(), and tests ONLY for
 440 * MAY_EXEC permission.
 441 *
 442 * If appropriate, check DAC only.  If not appropriate, or
 443 * short-cut DAC fails, then call permission() to do more
 444 * complete permission check.
 445 */
 446static int exec_permission_lite(struct inode *inode)
 447{
 448        int ret;
 449
 450        if (inode->i_op->permission) {
 451                ret = inode->i_op->permission(inode, MAY_EXEC);
 452                if (!ret)
 453                        goto ok;
 454                return ret;
 455        }
 456        ret = acl_permission_check(inode, MAY_EXEC, inode->i_op->check_acl);
 457        if (!ret)
 458                goto ok;
 459
 460        if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
 461                goto ok;
 462
 463        return ret;
 464ok:
 465        return security_inode_permission(inode, MAY_EXEC);
 466}
 467
 468/*
 469 * This is called when everything else fails, and we actually have
 470 * to go to the low-level filesystem to find out what we should do..
 471 *
 472 * We get the directory semaphore, and after getting that we also
 473 * make sure that nobody added the entry to the dcache in the meantime..
 474 * SMP-safe
 475 */
 476static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
 477{
 478        struct dentry * result;
 479        struct inode *dir = parent->d_inode;
 480
 481        mutex_lock(&dir->i_mutex);
 482        /*
 483         * First re-do the cached lookup just in case it was created
 484         * while we waited for the directory semaphore..
 485         *
 486         * FIXME! This could use version numbering or similar to
 487         * avoid unnecessary cache lookups.
 488         *
 489         * The "dcache_lock" is purely to protect the RCU list walker
 490         * from concurrent renames at this point (we mustn't get false
 491         * negatives from the RCU list walk here, unlike the optimistic
 492         * fast walk).
 493         *
 494         * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
 495         */
 496        result = d_lookup(parent, name);
 497        if (!result) {
 498                struct dentry *dentry;
 499
 500                /* Don't create child dentry for a dead directory. */
 501                result = ERR_PTR(-ENOENT);
 502                if (IS_DEADDIR(dir))
 503                        goto out_unlock;
 504
 505                dentry = d_alloc(parent, name);
 506                result = ERR_PTR(-ENOMEM);
 507                if (dentry) {
 508                        result = dir->i_op->lookup(dir, dentry, nd);
 509                        if (result)
 510                                dput(dentry);
 511                        else
 512                                result = dentry;
 513                }
 514out_unlock:
 515                mutex_unlock(&dir->i_mutex);
 516                return result;
 517        }
 518
 519        /*
 520         * Uhhuh! Nasty case: the cache was re-populated while
 521         * we waited on the semaphore. Need to revalidate.
 522         */
 523        mutex_unlock(&dir->i_mutex);
 524        if (result->d_op && result->d_op->d_revalidate) {
 525                result = do_revalidate(result, nd);
 526                if (!result)
 527                        result = ERR_PTR(-ENOENT);
 528        }
 529        return result;
 530}
 531
 532/*
 533 * Wrapper to retry pathname resolution whenever the underlying
 534 * file system returns an ESTALE.
 535 *
 536 * Retry the whole path once, forcing real lookup requests
 537 * instead of relying on the dcache.
 538 */
 539static __always_inline int link_path_walk(const char *name, struct nameidata *nd)
 540{
 541        struct path save = nd->path;
 542        int result;
 543
 544        /* make sure the stuff we saved doesn't go away */
 545        path_get(&save);
 546
 547        result = __link_path_walk(name, nd);
 548        if (result == -ESTALE) {
 549                /* nd->path had been dropped */
 550                nd->path = save;
 551                path_get(&nd->path);
 552                nd->flags |= LOOKUP_REVAL;
 553                result = __link_path_walk(name, nd);
 554        }
 555
 556        path_put(&save);
 557
 558        return result;
 559}
 560
 561static __always_inline void set_root(struct nameidata *nd)
 562{
 563        if (!nd->root.mnt) {
 564                struct fs_struct *fs = current->fs;
 565                read_lock(&fs->lock);
 566                nd->root = fs->root;
 567                path_get(&nd->root);
 568                read_unlock(&fs->lock);
 569        }
 570}
 571
 572static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
 573{
 574        int res = 0;
 575        char *name;
 576        if (IS_ERR(link))
 577                goto fail;
 578
 579        if (*link == '/') {
 580                set_root(nd);
 581                path_put(&nd->path);
 582                nd->path = nd->root;
 583                path_get(&nd->root);
 584        }
 585
 586        res = link_path_walk(link, nd);
 587        if (nd->depth || res || nd->last_type!=LAST_NORM)
 588                return res;
 589        /*
 590         * If it is an iterative symlinks resolution in open_namei() we
 591         * have to copy the last component. And all that crap because of
 592         * bloody create() on broken symlinks. Furrfu...
 593         */
 594        name = __getname();
 595        if (unlikely(!name)) {
 596                path_put(&nd->path);
 597                return -ENOMEM;
 598        }
 599        strcpy(name, nd->last.name);
 600        nd->last.name = name;
 601        return 0;
 602fail:
 603        path_put(&nd->path);
 604        return PTR_ERR(link);
 605}
 606
 607static void path_put_conditional(struct path *path, struct nameidata *nd)
 608{
 609        dput(path->dentry);
 610        if (path->mnt != nd->path.mnt)
 611                mntput(path->mnt);
 612}
 613
 614static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
 615{
 616        dput(nd->path.dentry);
 617        if (nd->path.mnt != path->mnt)
 618                mntput(nd->path.mnt);
 619        nd->path.mnt = path->mnt;
 620        nd->path.dentry = path->dentry;
 621}
 622
 623static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
 624{
 625        int error;
 626        void *cookie;
 627        struct dentry *dentry = path->dentry;
 628
 629        touch_atime(path->mnt, dentry);
 630        nd_set_link(nd, NULL);
 631
 632        if (path->mnt != nd->path.mnt) {
 633                path_to_nameidata(path, nd);
 634                dget(dentry);
 635        }
 636        mntget(path->mnt);
 637        cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
 638        error = PTR_ERR(cookie);
 639        if (!IS_ERR(cookie)) {
 640                char *s = nd_get_link(nd);
 641                error = 0;
 642                if (s)
 643                        error = __vfs_follow_link(nd, s);
 644                if (dentry->d_inode->i_op->put_link)
 645                        dentry->d_inode->i_op->put_link(dentry, nd, cookie);
 646        }
 647        path_put(path);
 648
 649        return error;
 650}
 651
 652/*
 653 * This limits recursive symlink follows to 8, while
 654 * limiting consecutive symlinks to 40.
 655 *
 656 * Without that kind of total limit, nasty chains of consecutive
 657 * symlinks can cause almost arbitrarily long lookups. 
 658 */
 659static inline int do_follow_link(struct path *path, struct nameidata *nd)
 660{
 661        int err = -ELOOP;
 662        if (current->link_count >= MAX_NESTED_LINKS)
 663                goto loop;
 664        if (current->total_link_count >= 40)
 665                goto loop;
 666        BUG_ON(nd->depth >= MAX_NESTED_LINKS);
 667        cond_resched();
 668        err = security_inode_follow_link(path->dentry, nd);
 669        if (err)
 670                goto loop;
 671        current->link_count++;
 672        current->total_link_count++;
 673        nd->depth++;
 674        err = __do_follow_link(path, nd);
 675        current->link_count--;
 676        nd->depth--;
 677        return err;
 678loop:
 679        path_put_conditional(path, nd);
 680        path_put(&nd->path);
 681        return err;
 682}
 683
 684int follow_up(struct path *path)
 685{
 686        struct vfsmount *parent;
 687        struct dentry *mountpoint;
 688        spin_lock(&vfsmount_lock);
 689        parent = path->mnt->mnt_parent;
 690        if (parent == path->mnt) {
 691                spin_unlock(&vfsmount_lock);
 692                return 0;
 693        }
 694        mntget(parent);
 695        mountpoint = dget(path->mnt->mnt_mountpoint);
 696        spin_unlock(&vfsmount_lock);
 697        dput(path->dentry);
 698        path->dentry = mountpoint;
 699        mntput(path->mnt);
 700        path->mnt = parent;
 701        return 1;
 702}
 703
 704/* no need for dcache_lock, as serialization is taken care in
 705 * namespace.c
 706 */
 707static int __follow_mount(struct path *path)
 708{
 709        int res = 0;
 710        while (d_mountpoint(path->dentry)) {
 711                struct vfsmount *mounted = lookup_mnt(path);
 712                if (!mounted)
 713                        break;
 714                dput(path->dentry);
 715                if (res)
 716                        mntput(path->mnt);
 717                path->mnt = mounted;
 718                path->dentry = dget(mounted->mnt_root);
 719                res = 1;
 720        }
 721        return res;
 722}
 723
 724static void follow_mount(struct path *path)
 725{
 726        while (d_mountpoint(path->dentry)) {
 727                struct vfsmount *mounted = lookup_mnt(path);
 728                if (!mounted)
 729                        break;
 730                dput(path->dentry);
 731                mntput(path->mnt);
 732                path->mnt = mounted;
 733                path->dentry = dget(mounted->mnt_root);
 734        }
 735}
 736
 737/* no need for dcache_lock, as serialization is taken care in
 738 * namespace.c
 739 */
 740int follow_down(struct path *path)
 741{
 742        struct vfsmount *mounted;
 743
 744        mounted = lookup_mnt(path);
 745        if (mounted) {
 746                dput(path->dentry);
 747                mntput(path->mnt);
 748                path->mnt = mounted;
 749                path->dentry = dget(mounted->mnt_root);
 750                return 1;
 751        }
 752        return 0;
 753}
 754
 755static __always_inline void follow_dotdot(struct nameidata *nd)
 756{
 757        set_root(nd);
 758
 759        while(1) {
 760                struct vfsmount *parent;
 761                struct dentry *old = nd->path.dentry;
 762
 763                if (nd->path.dentry == nd->root.dentry &&
 764                    nd->path.mnt == nd->root.mnt) {
 765                        break;
 766                }
 767                spin_lock(&dcache_lock);
 768                if (nd->path.dentry != nd->path.mnt->mnt_root) {
 769                        nd->path.dentry = dget(nd->path.dentry->d_parent);
 770                        spin_unlock(&dcache_lock);
 771                        dput(old);
 772                        break;
 773                }
 774                spin_unlock(&dcache_lock);
 775                spin_lock(&vfsmount_lock);
 776                parent = nd->path.mnt->mnt_parent;
 777                if (parent == nd->path.mnt) {
 778                        spin_unlock(&vfsmount_lock);
 779                        break;
 780                }
 781                mntget(parent);
 782                nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint);
 783                spin_unlock(&vfsmount_lock);
 784                dput(old);
 785                mntput(nd->path.mnt);
 786                nd->path.mnt = parent;
 787        }
 788        follow_mount(&nd->path);
 789}
 790
 791/*
 792 *  It's more convoluted than I'd like it to be, but... it's still fairly
 793 *  small and for now I'd prefer to have fast path as straight as possible.
 794 *  It _is_ time-critical.
 795 */
 796static int do_lookup(struct nameidata *nd, struct qstr *name,
 797                     struct path *path)
 798{
 799        struct vfsmount *mnt = nd->path.mnt;
 800        struct dentry *dentry = __d_lookup(nd->path.dentry, name);
 801
 802        if (!dentry)
 803                goto need_lookup;
 804        if (dentry->d_op && dentry->d_op->d_revalidate)
 805                goto need_revalidate;
 806done:
 807        path->mnt = mnt;
 808        path->dentry = dentry;
 809        __follow_mount(path);
 810        return 0;
 811
 812need_lookup:
 813        dentry = real_lookup(nd->path.dentry, name, nd);
 814        if (IS_ERR(dentry))
 815                goto fail;
 816        goto done;
 817
 818need_revalidate:
 819        dentry = do_revalidate(dentry, nd);
 820        if (!dentry)
 821                goto need_lookup;
 822        if (IS_ERR(dentry))
 823                goto fail;
 824        goto done;
 825
 826fail:
 827        return PTR_ERR(dentry);
 828}
 829
 830/*
 831 * Name resolution.
 832 * This is the basic name resolution function, turning a pathname into
 833 * the final dentry. We expect 'base' to be positive and a directory.
 834 *
 835 * Returns 0 and nd will have valid dentry and mnt on success.
 836 * Returns error and drops reference to input namei data on failure.
 837 */
 838static int __link_path_walk(const char *name, struct nameidata *nd)
 839{
 840        struct path next;
 841        struct inode *inode;
 842        int err;
 843        unsigned int lookup_flags = nd->flags;
 844        
 845        while (*name=='/')
 846                name++;
 847        if (!*name)
 848                goto return_reval;
 849
 850        inode = nd->path.dentry->d_inode;
 851        if (nd->depth)
 852                lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
 853
 854        /* At this point we know we have a real path component. */
 855        for(;;) {
 856                unsigned long hash;
 857                struct qstr this;
 858                unsigned int c;
 859
 860                nd->flags |= LOOKUP_CONTINUE;
 861                err = exec_permission_lite(inode);
 862                if (err)
 863                        break;
 864
 865                this.name = name;
 866                c = *(const unsigned char *)name;
 867
 868                hash = init_name_hash();
 869                do {
 870                        name++;
 871                        hash = partial_name_hash(c, hash);
 872                        c = *(const unsigned char *)name;
 873                } while (c && (c != '/'));
 874                this.len = name - (const char *) this.name;
 875                this.hash = end_name_hash(hash);
 876
 877                /* remove trailing slashes? */
 878                if (!c)
 879                        goto last_component;
 880                while (*++name == '/');
 881                if (!*name)
 882                        goto last_with_slashes;
 883
 884                /*
 885                 * "." and ".." are special - ".." especially so because it has
 886                 * to be able to know about the current root directory and
 887                 * parent relationships.
 888                 */
 889                if (this.name[0] == '.') switch (this.len) {
 890                        default:
 891                                break;
 892                        case 2: 
 893                                if (this.name[1] != '.')
 894                                        break;
 895                                follow_dotdot(nd);
 896                                inode = nd->path.dentry->d_inode;
 897                                /* fallthrough */
 898                        case 1:
 899                                continue;
 900                }
 901                /*
 902                 * See if the low-level filesystem might want
 903                 * to use its own hash..
 904                 */
 905                if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
 906                        err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
 907                                                            &this);
 908                        if (err < 0)
 909                                break;
 910                }
 911                /* This does the actual lookups.. */
 912                err = do_lookup(nd, &this, &next);
 913                if (err)
 914                        break;
 915
 916                err = -ENOENT;
 917                inode = next.dentry->d_inode;
 918                if (!inode)
 919                        goto out_dput;
 920
 921                if (inode->i_op->follow_link) {
 922                        err = do_follow_link(&next, nd);
 923                        if (err)
 924                                goto return_err;
 925                        err = -ENOENT;
 926                        inode = nd->path.dentry->d_inode;
 927                        if (!inode)
 928                                break;
 929                } else
 930                        path_to_nameidata(&next, nd);
 931                err = -ENOTDIR; 
 932                if (!inode->i_op->lookup)
 933                        break;
 934                continue;
 935                /* here ends the main loop */
 936
 937last_with_slashes:
 938                lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
 939last_component:
 940                /* Clear LOOKUP_CONTINUE iff it was previously unset */
 941                nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
 942                if (lookup_flags & LOOKUP_PARENT)
 943                        goto lookup_parent;
 944                if (this.name[0] == '.') switch (this.len) {
 945                        default:
 946                                break;
 947                        case 2: 
 948                                if (this.name[1] != '.')
 949                                        break;
 950                                follow_dotdot(nd);
 951                                inode = nd->path.dentry->d_inode;
 952                                /* fallthrough */
 953                        case 1:
 954                                goto return_reval;
 955                }
 956                if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
 957                        err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
 958                                                            &this);
 959                        if (err < 0)
 960                                break;
 961                }
 962                err = do_lookup(nd, &this, &next);
 963                if (err)
 964                        break;
 965                inode = next.dentry->d_inode;
 966                if ((lookup_flags & LOOKUP_FOLLOW)
 967                    && inode && inode->i_op->follow_link) {
 968                        err = do_follow_link(&next, nd);
 969                        if (err)
 970                                goto return_err;
 971                        inode = nd->path.dentry->d_inode;
 972                } else
 973                        path_to_nameidata(&next, nd);
 974                err = -ENOENT;
 975                if (!inode)
 976                        break;
 977                if (lookup_flags & LOOKUP_DIRECTORY) {
 978                        err = -ENOTDIR; 
 979                        if (!inode->i_op->lookup)
 980                                break;
 981                }
 982                goto return_base;
 983lookup_parent:
 984                nd->last = this;
 985                nd->last_type = LAST_NORM;
 986                if (this.name[0] != '.')
 987                        goto return_base;
 988                if (this.len == 1)
 989                        nd->last_type = LAST_DOT;
 990                else if (this.len == 2 && this.name[1] == '.')
 991                        nd->last_type = LAST_DOTDOT;
 992                else
 993                        goto return_base;
 994return_reval:
 995                /*
 996                 * We bypassed the ordinary revalidation routines.
 997                 * We may need to check the cached dentry for staleness.
 998                 */
 999                if (nd->path.dentry && nd->path.dentry->d_sb &&
1000                    (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
1001                        err = -ESTALE;
1002                        /* Note: we do not d_invalidate() */
1003                        if (!nd->path.dentry->d_op->d_revalidate(
1004                                        nd->path.dentry, nd))
1005                                break;
1006                }
1007return_base:
1008                return 0;
1009out_dput:
1010                path_put_conditional(&next, nd);
1011                break;
1012        }
1013        path_put(&nd->path);
1014return_err:
1015        return err;
1016}
1017
1018static int path_walk(const char *name, struct nameidata *nd)
1019{
1020        current->total_link_count = 0;
1021        return link_path_walk(name, nd);
1022}
1023
1024static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1025{
1026        int retval = 0;
1027        int fput_needed;
1028        struct file *file;
1029
1030        nd->last_type = LAST_ROOT; /* if there are only slashes... */
1031        nd->flags = flags;
1032        nd->depth = 0;
1033        nd->root.mnt = NULL;
1034
1035        if (*name=='/') {
1036                set_root(nd);
1037                nd->path = nd->root;
1038                path_get(&nd->root);
1039        } else if (dfd == AT_FDCWD) {
1040                struct fs_struct *fs = current->fs;
1041                read_lock(&fs->lock);
1042                nd->path = fs->pwd;
1043                path_get(&fs->pwd);
1044                read_unlock(&fs->lock);
1045        } else {
1046                struct dentry *dentry;
1047
1048                file = fget_light(dfd, &fput_needed);
1049                retval = -EBADF;
1050                if (!file)
1051                        goto out_fail;
1052
1053                dentry = file->f_path.dentry;
1054
1055                retval = -ENOTDIR;
1056                if (!S_ISDIR(dentry->d_inode->i_mode))
1057                        goto fput_fail;
1058
1059                retval = file_permission(file, MAY_EXEC);
1060                if (retval)
1061                        goto fput_fail;
1062
1063                nd->path = file->f_path;
1064                path_get(&file->f_path);
1065
1066                fput_light(file, fput_needed);
1067        }
1068        return 0;
1069
1070fput_fail:
1071        fput_light(file, fput_needed);
1072out_fail:
1073        return retval;
1074}
1075
1076/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1077static int do_path_lookup(int dfd, const char *name,
1078                                unsigned int flags, struct nameidata *nd)
1079{
1080        int retval = path_init(dfd, name, flags, nd);
1081        if (!retval)
1082                retval = path_walk(name, nd);
1083        if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1084                                nd->path.dentry->d_inode))
1085                audit_inode(name, nd->path.dentry);
1086        if (nd->root.mnt) {
1087                path_put(&nd->root);
1088                nd->root.mnt = NULL;
1089        }
1090        return retval;
1091}
1092
1093int path_lookup(const char *name, unsigned int flags,
1094                        struct nameidata *nd)
1095{
1096        return do_path_lookup(AT_FDCWD, name, flags, nd);
1097}
1098
1099int kern_path(const char *name, unsigned int flags, struct path *path)
1100{
1101        struct nameidata nd;
1102        int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1103        if (!res)
1104                *path = nd.path;
1105        return res;
1106}
1107
1108/**
1109 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1110 * @dentry:  pointer to dentry of the base directory
1111 * @mnt: pointer to vfs mount of the base directory
1112 * @name: pointer to file name
1113 * @flags: lookup flags
1114 * @nd: pointer to nameidata
1115 */
1116int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1117                    const char *name, unsigned int flags,
1118                    struct nameidata *nd)
1119{
1120        int retval;
1121
1122        /* same as do_path_lookup */
1123        nd->last_type = LAST_ROOT;
1124        nd->flags = flags;
1125        nd->depth = 0;
1126
1127        nd->path.dentry = dentry;
1128        nd->path.mnt = mnt;
1129        path_get(&nd->path);
1130        nd->root = nd->path;
1131        path_get(&nd->root);
1132
1133        retval = path_walk(name, nd);
1134        if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1135                                nd->path.dentry->d_inode))
1136                audit_inode(name, nd->path.dentry);
1137
1138        path_put(&nd->root);
1139        nd->root.mnt = NULL;
1140
1141        return retval;
1142}
1143
1144/**
1145 * path_lookup_open - lookup a file path with open intent
1146 * @dfd: the directory to use as base, or AT_FDCWD
1147 * @name: pointer to file name
1148 * @lookup_flags: lookup intent flags
1149 * @nd: pointer to nameidata
1150 * @open_flags: open intent flags
1151 */
1152static int path_lookup_open(int dfd, const char *name,
1153                unsigned int lookup_flags, struct nameidata *nd, int open_flags)
1154{
1155        struct file *filp = get_empty_filp();
1156        int err;
1157
1158        if (filp == NULL)
1159                return -ENFILE;
1160        nd->intent.open.file = filp;
1161        nd->intent.open.flags = open_flags;
1162        nd->intent.open.create_mode = 0;
1163        err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1164        if (IS_ERR(nd->intent.open.file)) {
1165                if (err == 0) {
1166                        err = PTR_ERR(nd->intent.open.file);
1167                        path_put(&nd->path);
1168                }
1169        } else if (err != 0)
1170                release_open_intent(nd);
1171        return err;
1172}
1173
1174static struct dentry *__lookup_hash(struct qstr *name,
1175                struct dentry *base, struct nameidata *nd)
1176{
1177        struct dentry *dentry;
1178        struct inode *inode;
1179        int err;
1180
1181        inode = base->d_inode;
1182
1183        /*
1184         * See if the low-level filesystem might want
1185         * to use its own hash..
1186         */
1187        if (base->d_op && base->d_op->d_hash) {
1188                err = base->d_op->d_hash(base, name);
1189                dentry = ERR_PTR(err);
1190                if (err < 0)
1191                        goto out;
1192        }
1193
1194        dentry = cached_lookup(base, name, nd);
1195        if (!dentry) {
1196                struct dentry *new;
1197
1198                /* Don't create child dentry for a dead directory. */
1199                dentry = ERR_PTR(-ENOENT);
1200                if (IS_DEADDIR(inode))
1201                        goto out;
1202
1203                new = d_alloc(base, name);
1204                dentry = ERR_PTR(-ENOMEM);
1205                if (!new)
1206                        goto out;
1207                dentry = inode->i_op->lookup(inode, new, nd);
1208                if (!dentry)
1209                        dentry = new;
1210                else
1211                        dput(new);
1212        }
1213out:
1214        return dentry;
1215}
1216
1217/*
1218 * Restricted form of lookup. Doesn't follow links, single-component only,
1219 * needs parent already locked. Doesn't follow mounts.
1220 * SMP-safe.
1221 */
1222static struct dentry *lookup_hash(struct nameidata *nd)
1223{
1224        int err;
1225
1226        err = inode_permission(nd->path.dentry->d_inode, MAY_EXEC);
1227        if (err)
1228                return ERR_PTR(err);
1229        return __lookup_hash(&nd->last, nd->path.dentry, nd);
1230}
1231
1232static int __lookup_one_len(const char *name, struct qstr *this,
1233                struct dentry *base, int len)
1234{
1235        unsigned long hash;
1236        unsigned int c;
1237
1238        this->name = name;
1239        this->len = len;
1240        if (!len)
1241                return -EACCES;
1242
1243        hash = init_name_hash();
1244        while (len--) {
1245                c = *(const unsigned char *)name++;
1246                if (c == '/' || c == '\0')
1247                        return -EACCES;
1248                hash = partial_name_hash(c, hash);
1249        }
1250        this->hash = end_name_hash(hash);
1251        return 0;
1252}
1253
1254/**
1255 * lookup_one_len - filesystem helper to lookup single pathname component
1256 * @name:       pathname component to lookup
1257 * @base:       base directory to lookup from
1258 * @len:        maximum length @len should be interpreted to
1259 *
1260 * Note that this routine is purely a helper for filesystem usage and should
1261 * not be called by generic code.  Also note that by using this function the
1262 * nameidata argument is passed to the filesystem methods and a filesystem
1263 * using this helper needs to be prepared for that.
1264 */
1265struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1266{
1267        int err;
1268        struct qstr this;
1269
1270        WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1271
1272        err = __lookup_one_len(name, &this, base, len);
1273        if (err)
1274                return ERR_PTR(err);
1275
1276        err = inode_permission(base->d_inode, MAY_EXEC);
1277        if (err)
1278                return ERR_PTR(err);
1279        return __lookup_hash(&this, base, NULL);
1280}
1281
1282/**
1283 * lookup_one_noperm - bad hack for sysfs
1284 * @name:       pathname component to lookup
1285 * @base:       base directory to lookup from
1286 *
1287 * This is a variant of lookup_one_len that doesn't perform any permission
1288 * checks.   It's a horrible hack to work around the braindead sysfs
1289 * architecture and should not be used anywhere else.
1290 *
1291 * DON'T USE THIS FUNCTION EVER, thanks.
1292 */
1293struct dentry *lookup_one_noperm(const char *name, struct dentry *base)
1294{
1295        int err;
1296        struct qstr this;
1297
1298        err = __lookup_one_len(name, &this, base, strlen(name));
1299        if (err)
1300                return ERR_PTR(err);
1301        return __lookup_hash(&this, base, NULL);
1302}
1303
1304int user_path_at(int dfd, const char __user *name, unsigned flags,
1305                 struct path *path)
1306{
1307        struct nameidata nd;
1308        char *tmp = getname(name);
1309        int err = PTR_ERR(tmp);
1310        if (!IS_ERR(tmp)) {
1311
1312                BUG_ON(flags & LOOKUP_PARENT);
1313
1314                err = do_path_lookup(dfd, tmp, flags, &nd);
1315                putname(tmp);
1316                if (!err)
1317                        *path = nd.path;
1318        }
1319        return err;
1320}
1321
1322static int user_path_parent(int dfd, const char __user *path,
1323                        struct nameidata *nd, char **name)
1324{
1325        char *s = getname(path);
1326        int error;
1327
1328        if (IS_ERR(s))
1329                return PTR_ERR(s);
1330
1331        error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1332        if (error)
1333                putname(s);
1334        else
1335                *name = s;
1336
1337        return error;
1338}
1339
1340/*
1341 * It's inline, so penalty for filesystems that don't use sticky bit is
1342 * minimal.
1343 */
1344static inline int check_sticky(struct inode *dir, struct inode *inode)
1345{
1346        uid_t fsuid = current_fsuid();
1347
1348        if (!(dir->i_mode & S_ISVTX))
1349                return 0;
1350        if (inode->i_uid == fsuid)
1351                return 0;
1352        if (dir->i_uid == fsuid)
1353                return 0;
1354        return !capable(CAP_FOWNER);
1355}
1356
1357/*
1358 *      Check whether we can remove a link victim from directory dir, check
1359 *  whether the type of victim is right.
1360 *  1. We can't do it if dir is read-only (done in permission())
1361 *  2. We should have write and exec permissions on dir
1362 *  3. We can't remove anything from append-only dir
1363 *  4. We can't do anything with immutable dir (done in permission())
1364 *  5. If the sticky bit on dir is set we should either
1365 *      a. be owner of dir, or
1366 *      b. be owner of victim, or
1367 *      c. have CAP_FOWNER capability
1368 *  6. If the victim is append-only or immutable we can't do antyhing with
1369 *     links pointing to it.
1370 *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1371 *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1372 *  9. We can't remove a root or mountpoint.
1373 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1374 *     nfs_async_unlink().
1375 */
1376static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1377{
1378        int error;
1379
1380        if (!victim->d_inode)
1381                return -ENOENT;
1382
1383        BUG_ON(victim->d_parent->d_inode != dir);
1384        audit_inode_child(victim->d_name.name, victim, dir);
1385
1386        error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1387        if (error)
1388                return error;
1389        if (IS_APPEND(dir))
1390                return -EPERM;
1391        if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1392            IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1393                return -EPERM;
1394        if (isdir) {
1395                if (!S_ISDIR(victim->d_inode->i_mode))
1396                        return -ENOTDIR;
1397                if (IS_ROOT(victim))
1398                        return -EBUSY;
1399        } else if (S_ISDIR(victim->d_inode->i_mode))
1400                return -EISDIR;
1401        if (IS_DEADDIR(dir))
1402                return -ENOENT;
1403        if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1404                return -EBUSY;
1405        return 0;
1406}
1407
1408/*      Check whether we can create an object with dentry child in directory
1409 *  dir.
1410 *  1. We can't do it if child already exists (open has special treatment for
1411 *     this case, but since we are inlined it's OK)
1412 *  2. We can't do it if dir is read-only (done in permission())
1413 *  3. We should have write and exec permissions on dir
1414 *  4. We can't do it if dir is immutable (done in permission())
1415 */
1416static inline int may_create(struct inode *dir, struct dentry *child)
1417{
1418        if (child->d_inode)
1419                return -EEXIST;
1420        if (IS_DEADDIR(dir))
1421                return -ENOENT;
1422        return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1423}
1424
1425/* 
1426 * O_DIRECTORY translates into forcing a directory lookup.
1427 */
1428static inline int lookup_flags(unsigned int f)
1429{
1430        unsigned long retval = LOOKUP_FOLLOW;
1431
1432        if (f & O_NOFOLLOW)
1433                retval &= ~LOOKUP_FOLLOW;
1434        
1435        if (f & O_DIRECTORY)
1436                retval |= LOOKUP_DIRECTORY;
1437
1438        return retval;
1439}
1440
1441/*
1442 * p1 and p2 should be directories on the same fs.
1443 */
1444struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1445{
1446        struct dentry *p;
1447
1448        if (p1 == p2) {
1449                mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1450                return NULL;
1451        }
1452
1453        mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1454
1455        p = d_ancestor(p2, p1);
1456        if (p) {
1457                mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1458                mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1459                return p;
1460        }
1461
1462        p = d_ancestor(p1, p2);
1463        if (p) {
1464                mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1465                mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1466                return p;
1467        }
1468
1469        mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1470        mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1471        return NULL;
1472}
1473
1474void unlock_rename(struct dentry *p1, struct dentry *p2)
1475{
1476        mutex_unlock(&p1->d_inode->i_mutex);
1477        if (p1 != p2) {
1478                mutex_unlock(&p2->d_inode->i_mutex);
1479                mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1480        }
1481}
1482
1483int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1484                struct nameidata *nd)
1485{
1486        int error = may_create(dir, dentry);
1487
1488        if (error)
1489                return error;
1490
1491        if (!dir->i_op->create)
1492                return -EACCES; /* shouldn't it be ENOSYS? */
1493        mode &= S_IALLUGO;
1494        mode |= S_IFREG;
1495        error = security_inode_create(dir, dentry, mode);
1496        if (error)
1497                return error;
1498        vfs_dq_init(dir);
1499        error = dir->i_op->create(dir, dentry, mode, nd);
1500        if (!error)
1501                fsnotify_create(dir, dentry);
1502        return error;
1503}
1504
1505int may_open(struct path *path, int acc_mode, int flag)
1506{
1507        struct dentry *dentry = path->dentry;
1508        struct inode *inode = dentry->d_inode;
1509        int error;
1510
1511        if (!inode)
1512                return -ENOENT;
1513
1514        switch (inode->i_mode & S_IFMT) {
1515        case S_IFLNK:
1516                return -ELOOP;
1517        case S_IFDIR:
1518                if (acc_mode & MAY_WRITE)
1519                        return -EISDIR;
1520                break;
1521        case S_IFBLK:
1522        case S_IFCHR:
1523                if (path->mnt->mnt_flags & MNT_NODEV)
1524                        return -EACCES;
1525                /*FALLTHRU*/
1526        case S_IFIFO:
1527        case S_IFSOCK:
1528                flag &= ~O_TRUNC;
1529                break;
1530        }
1531
1532        error = inode_permission(inode, acc_mode);
1533        if (error)
1534                return error;
1535
1536        error = ima_path_check(path, acc_mode ?
1537                               acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC) :
1538                               ACC_MODE(flag) & (MAY_READ | MAY_WRITE),
1539                               IMA_COUNT_UPDATE);
1540
1541        if (error)
1542                return error;
1543        /*
1544         * An append-only file must be opened in append mode for writing.
1545         */
1546        if (IS_APPEND(inode)) {
1547                error = -EPERM;
1548                if  ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1549                        goto err_out;
1550                if (flag & O_TRUNC)
1551                        goto err_out;
1552        }
1553
1554        /* O_NOATIME can only be set by the owner or superuser */
1555        if (flag & O_NOATIME)
1556                if (!is_owner_or_cap(inode)) {
1557                        error = -EPERM;
1558                        goto err_out;
1559                }
1560
1561        /*
1562         * Ensure there are no outstanding leases on the file.
1563         */
1564        error = break_lease(inode, flag);
1565        if (error)
1566                goto err_out;
1567
1568        if (flag & O_TRUNC) {
1569                error = get_write_access(inode);
1570                if (error)
1571                        goto err_out;
1572
1573                /*
1574                 * Refuse to truncate files with mandatory locks held on them.
1575                 */
1576                error = locks_verify_locked(inode);
1577                if (!error)
1578                        error = security_path_truncate(path, 0,
1579                                               ATTR_MTIME|ATTR_CTIME|ATTR_OPEN);
1580                if (!error) {
1581                        vfs_dq_init(inode);
1582
1583                        error = do_truncate(dentry, 0,
1584                                            ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1585                                            NULL);
1586                }
1587                put_write_access(inode);
1588                if (error)
1589                        goto err_out;
1590        } else
1591                if (flag & FMODE_WRITE)
1592                        vfs_dq_init(inode);
1593
1594        return 0;
1595err_out:
1596        ima_counts_put(path, acc_mode ?
1597                       acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC) :
1598                       ACC_MODE(flag) & (MAY_READ | MAY_WRITE));
1599        return error;
1600}
1601
1602/*
1603 * Be careful about ever adding any more callers of this
1604 * function.  Its flags must be in the namei format, not
1605 * what get passed to sys_open().
1606 */
1607static int __open_namei_create(struct nameidata *nd, struct path *path,
1608                                int flag, int mode)
1609{
1610        int error;
1611        struct dentry *dir = nd->path.dentry;
1612
1613        if (!IS_POSIXACL(dir->d_inode))
1614                mode &= ~current_umask();
1615        error = security_path_mknod(&nd->path, path->dentry, mode, 0);
1616        if (error)
1617                goto out_unlock;
1618        error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1619out_unlock:
1620        mutex_unlock(&dir->d_inode->i_mutex);
1621        dput(nd->path.dentry);
1622        nd->path.dentry = path->dentry;
1623        if (error)
1624                return error;
1625        /* Don't check for write permission, don't truncate */
1626        return may_open(&nd->path, 0, flag & ~O_TRUNC);
1627}
1628
1629/*
1630 * Note that while the flag value (low two bits) for sys_open means:
1631 *      00 - read-only
1632 *      01 - write-only
1633 *      10 - read-write
1634 *      11 - special
1635 * it is changed into
1636 *      00 - no permissions needed
1637 *      01 - read-permission
1638 *      10 - write-permission
1639 *      11 - read-write
1640 * for the internal routines (ie open_namei()/follow_link() etc)
1641 * This is more logical, and also allows the 00 "no perm needed"
1642 * to be used for symlinks (where the permissions are checked
1643 * later).
1644 *
1645*/
1646static inline int open_to_namei_flags(int flag)
1647{
1648        if ((flag+1) & O_ACCMODE)
1649                flag++;
1650        return flag;
1651}
1652
1653static int open_will_write_to_fs(int flag, struct inode *inode)
1654{
1655        /*
1656         * We'll never write to the fs underlying
1657         * a device file.
1658         */
1659        if (special_file(inode->i_mode))
1660                return 0;
1661        return (flag & O_TRUNC);
1662}
1663
1664/*
1665 * Note that the low bits of the passed in "open_flag"
1666 * are not the same as in the local variable "flag". See
1667 * open_to_namei_flags() for more details.
1668 */
1669struct file *do_filp_open(int dfd, const char *pathname,
1670                int open_flag, int mode, int acc_mode)
1671{
1672        struct file *filp;
1673        struct nameidata nd;
1674        int error;
1675        struct path path;
1676        struct dentry *dir;
1677        int count = 0;
1678        int will_write;
1679        int flag = open_to_namei_flags(open_flag);
1680
1681        if (!acc_mode)
1682                acc_mode = MAY_OPEN | ACC_MODE(flag);
1683
1684        /* O_TRUNC implies we need access checks for write permissions */
1685        if (flag & O_TRUNC)
1686                acc_mode |= MAY_WRITE;
1687
1688        /* Allow the LSM permission hook to distinguish append 
1689           access from general write access. */
1690        if (flag & O_APPEND)
1691                acc_mode |= MAY_APPEND;
1692
1693        /*
1694         * The simplest case - just a plain lookup.
1695         */
1696        if (!(flag & O_CREAT)) {
1697                error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1698                                         &nd, flag);
1699                if (error)
1700                        return ERR_PTR(error);
1701                goto ok;
1702        }
1703
1704        /*
1705         * Create - we need to know the parent.
1706         */
1707        error = path_init(dfd, pathname, LOOKUP_PARENT, &nd);
1708        if (error)
1709                return ERR_PTR(error);
1710        error = path_walk(pathname, &nd);
1711        if (error) {
1712                if (nd.root.mnt)
1713                        path_put(&nd.root);
1714                return ERR_PTR(error);
1715        }
1716        if (unlikely(!audit_dummy_context()))
1717                audit_inode(pathname, nd.path.dentry);
1718
1719        /*
1720         * We have the parent and last component. First of all, check
1721         * that we are not asked to creat(2) an obvious directory - that
1722         * will not do.
1723         */
1724        error = -EISDIR;
1725        if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len])
1726                goto exit_parent;
1727
1728        error = -ENFILE;
1729        filp = get_empty_filp();
1730        if (filp == NULL)
1731                goto exit_parent;
1732        nd.intent.open.file = filp;
1733        nd.intent.open.flags = flag;
1734        nd.intent.open.create_mode = mode;
1735        dir = nd.path.dentry;
1736        nd.flags &= ~LOOKUP_PARENT;
1737        nd.flags |= LOOKUP_CREATE | LOOKUP_OPEN;
1738        if (flag & O_EXCL)
1739                nd.flags |= LOOKUP_EXCL;
1740        mutex_lock(&dir->d_inode->i_mutex);
1741        path.dentry = lookup_hash(&nd);
1742        path.mnt = nd.path.mnt;
1743
1744do_last:
1745        error = PTR_ERR(path.dentry);
1746        if (IS_ERR(path.dentry)) {
1747                mutex_unlock(&dir->d_inode->i_mutex);
1748                goto exit;
1749        }
1750
1751        if (IS_ERR(nd.intent.open.file)) {
1752                error = PTR_ERR(nd.intent.open.file);
1753                goto exit_mutex_unlock;
1754        }
1755
1756        /* Negative dentry, just create the file */
1757        if (!path.dentry->d_inode) {
1758                /*
1759                 * This write is needed to ensure that a
1760                 * ro->rw transition does not occur between
1761                 * the time when the file is created and when
1762                 * a permanent write count is taken through
1763                 * the 'struct file' in nameidata_to_filp().
1764                 */
1765                error = mnt_want_write(nd.path.mnt);
1766                if (error)
1767                        goto exit_mutex_unlock;
1768                error = __open_namei_create(&nd, &path, flag, mode);
1769                if (error) {
1770                        mnt_drop_write(nd.path.mnt);
1771                        goto exit;
1772                }
1773                filp = nameidata_to_filp(&nd, open_flag);
1774                if (IS_ERR(filp))
1775                        ima_counts_put(&nd.path,
1776                                       acc_mode & (MAY_READ | MAY_WRITE |
1777                                                   MAY_EXEC));
1778                mnt_drop_write(nd.path.mnt);
1779                if (nd.root.mnt)
1780                        path_put(&nd.root);
1781                return filp;
1782        }
1783
1784        /*
1785         * It already exists.
1786         */
1787        mutex_unlock(&dir->d_inode->i_mutex);
1788        audit_inode(pathname, path.dentry);
1789
1790        error = -EEXIST;
1791        if (flag & O_EXCL)
1792                goto exit_dput;
1793
1794        if (__follow_mount(&path)) {
1795                error = -ELOOP;
1796                if (flag & O_NOFOLLOW)
1797                        goto exit_dput;
1798        }
1799
1800        error = -ENOENT;
1801        if (!path.dentry->d_inode)
1802                goto exit_dput;
1803        if (path.dentry->d_inode->i_op->follow_link)
1804                goto do_link;
1805
1806        path_to_nameidata(&path, &nd);
1807        error = -EISDIR;
1808        if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1809                goto exit;
1810ok:
1811        /*
1812         * Consider:
1813         * 1. may_open() truncates a file
1814         * 2. a rw->ro mount transition occurs
1815         * 3. nameidata_to_filp() fails due to
1816         *    the ro mount.
1817         * That would be inconsistent, and should
1818         * be avoided. Taking this mnt write here
1819         * ensures that (2) can not occur.
1820         */
1821        will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode);
1822        if (will_write) {
1823                error = mnt_want_write(nd.path.mnt);
1824                if (error)
1825                        goto exit;
1826        }
1827        error = may_open(&nd.path, acc_mode, flag);
1828        if (error) {
1829                if (will_write)
1830                        mnt_drop_write(nd.path.mnt);
1831                goto exit;
1832        }
1833        filp = nameidata_to_filp(&nd, open_flag);
1834        if (IS_ERR(filp))
1835                ima_counts_put(&nd.path,
1836                               acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC));
1837        /*
1838         * It is now safe to drop the mnt write
1839         * because the filp has had a write taken
1840         * on its behalf.
1841         */
1842        if (will_write)
1843                mnt_drop_write(nd.path.mnt);
1844        if (nd.root.mnt)
1845                path_put(&nd.root);
1846        return filp;
1847
1848exit_mutex_unlock:
1849        mutex_unlock(&dir->d_inode->i_mutex);
1850exit_dput:
1851        path_put_conditional(&path, &nd);
1852exit:
1853        if (!IS_ERR(nd.intent.open.file))
1854                release_open_intent(&nd);
1855exit_parent:
1856        if (nd.root.mnt)
1857                path_put(&nd.root);
1858        path_put(&nd.path);
1859        return ERR_PTR(error);
1860
1861do_link:
1862        error = -ELOOP;
1863        if (flag & O_NOFOLLOW)
1864                goto exit_dput;
1865        /*
1866         * This is subtle. Instead of calling do_follow_link() we do the
1867         * thing by hands. The reason is that this way we have zero link_count
1868         * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1869         * After that we have the parent and last component, i.e.
1870         * we are in the same situation as after the first path_walk().
1871         * Well, almost - if the last component is normal we get its copy
1872         * stored in nd->last.name and we will have to putname() it when we
1873         * are done. Procfs-like symlinks just set LAST_BIND.
1874         */
1875        nd.flags |= LOOKUP_PARENT;
1876        error = security_inode_follow_link(path.dentry, &nd);
1877        if (error)
1878                goto exit_dput;
1879        error = __do_follow_link(&path, &nd);
1880        if (error) {
1881                /* Does someone understand code flow here? Or it is only
1882                 * me so stupid? Anathema to whoever designed this non-sense
1883                 * with "intent.open".
1884                 */
1885                release_open_intent(&nd);
1886                if (nd.root.mnt)
1887                        path_put(&nd.root);
1888                return ERR_PTR(error);
1889        }
1890        nd.flags &= ~LOOKUP_PARENT;
1891        if (nd.last_type == LAST_BIND)
1892                goto ok;
1893        error = -EISDIR;
1894        if (nd.last_type != LAST_NORM)
1895                goto exit;
1896        if (nd.last.name[nd.last.len]) {
1897                __putname(nd.last.name);
1898                goto exit;
1899        }
1900        error = -ELOOP;
1901        if (count++==32) {
1902                __putname(nd.last.name);
1903                goto exit;
1904        }
1905        dir = nd.path.dentry;
1906        mutex_lock(&dir->d_inode->i_mutex);
1907        path.dentry = lookup_hash(&nd);
1908        path.mnt = nd.path.mnt;
1909        __putname(nd.last.name);
1910        goto do_last;
1911}
1912
1913/**
1914 * filp_open - open file and return file pointer
1915 *
1916 * @filename:   path to open
1917 * @flags:      open flags as per the open(2) second argument
1918 * @mode:       mode for the new file if O_CREAT is set, else ignored
1919 *
1920 * This is the helper to open a file from kernelspace if you really
1921 * have to.  But in generally you should not do this, so please move
1922 * along, nothing to see here..
1923 */
1924struct file *filp_open(const char *filename, int flags, int mode)
1925{
1926        return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
1927}
1928EXPORT_SYMBOL(filp_open);
1929
1930/**
1931 * lookup_create - lookup a dentry, creating it if it doesn't exist
1932 * @nd: nameidata info
1933 * @is_dir: directory flag
1934 *
1935 * Simple function to lookup and return a dentry and create it
1936 * if it doesn't exist.  Is SMP-safe.
1937 *
1938 * Returns with nd->path.dentry->d_inode->i_mutex locked.
1939 */
1940struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1941{
1942        struct dentry *dentry = ERR_PTR(-EEXIST);
1943
1944        mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1945        /*
1946         * Yucky last component or no last component at all?
1947         * (foo/., foo/.., /////)
1948         */
1949        if (nd->last_type != LAST_NORM)
1950                goto fail;
1951        nd->flags &= ~LOOKUP_PARENT;
1952        nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1953        nd->intent.open.flags = O_EXCL;
1954
1955        /*
1956         * Do the final lookup.
1957         */
1958        dentry = lookup_hash(nd);
1959        if (IS_ERR(dentry))
1960                goto fail;
1961
1962        if (dentry->d_inode)
1963                goto eexist;
1964        /*
1965         * Special case - lookup gave negative, but... we had foo/bar/
1966         * From the vfs_mknod() POV we just have a negative dentry -
1967         * all is fine. Let's be bastards - you had / on the end, you've
1968         * been asking for (non-existent) directory. -ENOENT for you.
1969         */
1970        if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1971                dput(dentry);
1972                dentry = ERR_PTR(-ENOENT);
1973        }
1974        return dentry;
1975eexist:
1976        dput(dentry);
1977        dentry = ERR_PTR(-EEXIST);
1978fail:
1979        return dentry;
1980}
1981EXPORT_SYMBOL_GPL(lookup_create);
1982
1983int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1984{
1985        int error = may_create(dir, dentry);
1986
1987        if (error)
1988                return error;
1989
1990        if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1991                return -EPERM;
1992
1993        if (!dir->i_op->mknod)
1994                return -EPERM;
1995
1996        error = devcgroup_inode_mknod(mode, dev);
1997        if (error)
1998                return error;
1999
2000        error = security_inode_mknod(dir, dentry, mode, dev);
2001        if (error)
2002                return error;
2003
2004        vfs_dq_init(dir);
2005        error = dir->i_op->mknod(dir, dentry, mode, dev);
2006        if (!error)
2007                fsnotify_create(dir, dentry);
2008        return error;
2009}
2010
2011static int may_mknod(mode_t mode)
2012{
2013        switch (mode & S_IFMT) {
2014        case S_IFREG:
2015        case S_IFCHR:
2016        case S_IFBLK:
2017        case S_IFIFO:
2018        case S_IFSOCK:
2019        case 0: /* zero mode translates to S_IFREG */
2020                return 0;
2021        case S_IFDIR:
2022                return -EPERM;
2023        default:
2024                return -EINVAL;
2025        }
2026}
2027
2028SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2029                unsigned, dev)
2030{
2031        int error;
2032        char *tmp;
2033        struct dentry *dentry;
2034        struct nameidata nd;
2035
2036        if (S_ISDIR(mode))
2037                return -EPERM;
2038
2039        error = user_path_parent(dfd, filename, &nd, &tmp);
2040        if (error)
2041                return error;
2042
2043        dentry = lookup_create(&nd, 0);
2044        if (IS_ERR(dentry)) {
2045                error = PTR_ERR(dentry);
2046                goto out_unlock;
2047        }
2048        if (!IS_POSIXACL(nd.path.dentry->d_inode))
2049                mode &= ~current_umask();
2050        error = may_mknod(mode);
2051        if (error)
2052                goto out_dput;
2053        error = mnt_want_write(nd.path.mnt);
2054        if (error)
2055                goto out_dput;
2056        error = security_path_mknod(&nd.path, dentry, mode, dev);
2057        if (error)
2058                goto out_drop_write;
2059        switch (mode & S_IFMT) {
2060                case 0: case S_IFREG:
2061                        error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2062                        break;
2063                case S_IFCHR: case S_IFBLK:
2064                        error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2065                                        new_decode_dev(dev));
2066                        break;
2067                case S_IFIFO: case S_IFSOCK:
2068                        error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2069                        break;
2070        }
2071out_drop_write:
2072        mnt_drop_write(nd.path.mnt);
2073out_dput:
2074        dput(dentry);
2075out_unlock:
2076        mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2077        path_put(&nd.path);
2078        putname(tmp);
2079
2080        return error;
2081}
2082
2083SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2084{
2085        return sys_mknodat(AT_FDCWD, filename, mode, dev);
2086}
2087
2088int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2089{
2090        int error = may_create(dir, dentry);
2091
2092        if (error)
2093                return error;
2094
2095        if (!dir->i_op->mkdir)
2096                return -EPERM;
2097
2098        mode &= (S_IRWXUGO|S_ISVTX);
2099        error = security_inode_mkdir(dir, dentry, mode);
2100        if (error)
2101                return error;
2102
2103        vfs_dq_init(dir);
2104        error = dir->i_op->mkdir(dir, dentry, mode);
2105        if (!error)
2106                fsnotify_mkdir(dir, dentry);
2107        return error;
2108}
2109
2110SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2111{
2112        int error = 0;
2113        char * tmp;
2114        struct dentry *dentry;
2115        struct nameidata nd;
2116
2117        error = user_path_parent(dfd, pathname, &nd, &tmp);
2118        if (error)
2119                goto out_err;
2120
2121        dentry = lookup_create(&nd, 1);
2122        error = PTR_ERR(dentry);
2123        if (IS_ERR(dentry))
2124                goto out_unlock;
2125
2126        if (!IS_POSIXACL(nd.path.dentry->d_inode))
2127                mode &= ~current_umask();
2128        error = mnt_want_write(nd.path.mnt);
2129        if (error)
2130                goto out_dput;
2131        error = security_path_mkdir(&nd.path, dentry, mode);
2132        if (error)
2133                goto out_drop_write;
2134        error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2135out_drop_write:
2136        mnt_drop_write(nd.path.mnt);
2137out_dput:
2138        dput(dentry);
2139out_unlock:
2140        mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2141        path_put(&nd.path);
2142        putname(tmp);
2143out_err:
2144        return error;
2145}
2146
2147SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2148{
2149        return sys_mkdirat(AT_FDCWD, pathname, mode);
2150}
2151
2152/*
2153 * We try to drop the dentry early: we should have
2154 * a usage count of 2 if we're the only user of this
2155 * dentry, and if that is true (possibly after pruning
2156 * the dcache), then we drop the dentry now.
2157 *
2158 * A low-level filesystem can, if it choses, legally
2159 * do a
2160 *
2161 *      if (!d_unhashed(dentry))
2162 *              return -EBUSY;
2163 *
2164 * if it cannot handle the case of removing a directory
2165 * that is still in use by something else..
2166 */
2167void dentry_unhash(struct dentry *dentry)
2168{
2169        dget(dentry);
2170        shrink_dcache_parent(dentry);
2171        spin_lock(&dcache_lock);
2172        spin_lock(&dentry->d_lock);
2173        if (atomic_read(&dentry->d_count) == 2)
2174                __d_drop(dentry);
2175        spin_unlock(&dentry->d_lock);
2176        spin_unlock(&dcache_lock);
2177}
2178
2179int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2180{
2181        int error = may_delete(dir, dentry, 1);
2182
2183        if (error)
2184                return error;
2185
2186        if (!dir->i_op->rmdir)
2187                return -EPERM;
2188
2189        vfs_dq_init(dir);
2190
2191        mutex_lock(&dentry->d_inode->i_mutex);
2192        dentry_unhash(dentry);
2193        if (d_mountpoint(dentry))
2194                error = -EBUSY;
2195        else {
2196                error = security_inode_rmdir(dir, dentry);
2197                if (!error) {
2198                        error = dir->i_op->rmdir(dir, dentry);
2199                        if (!error)
2200                                dentry->d_inode->i_flags |= S_DEAD;
2201                }
2202        }
2203        mutex_unlock(&dentry->d_inode->i_mutex);
2204        if (!error) {
2205                d_delete(dentry);
2206        }
2207        dput(dentry);
2208
2209        return error;
2210}
2211
2212static long do_rmdir(int dfd, const char __user *pathname)
2213{
2214        int error = 0;
2215        char * name;
2216        struct dentry *dentry;
2217        struct nameidata nd;
2218
2219        error = user_path_parent(dfd, pathname, &nd, &name);
2220        if (error)
2221                return error;
2222
2223        switch(nd.last_type) {
2224        case LAST_DOTDOT:
2225                error = -ENOTEMPTY;
2226                goto exit1;
2227        case LAST_DOT:
2228                error = -EINVAL;
2229                goto exit1;
2230        case LAST_ROOT:
2231                error = -EBUSY;
2232                goto exit1;
2233        }
2234
2235        nd.flags &= ~LOOKUP_PARENT;
2236
2237        mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2238        dentry = lookup_hash(&nd);
2239        error = PTR_ERR(dentry);
2240        if (IS_ERR(dentry))
2241                goto exit2;
2242        error = mnt_want_write(nd.path.mnt);
2243        if (error)
2244                goto exit3;
2245        error = security_path_rmdir(&nd.path, dentry);
2246        if (error)
2247                goto exit4;
2248        error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2249exit4:
2250        mnt_drop_write(nd.path.mnt);
2251exit3:
2252        dput(dentry);
2253exit2:
2254        mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2255exit1:
2256        path_put(&nd.path);
2257        putname(name);
2258        return error;
2259}
2260
2261SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2262{
2263        return do_rmdir(AT_FDCWD, pathname);
2264}
2265
2266int vfs_unlink(struct inode *dir, struct dentry *dentry)
2267{
2268        int error = may_delete(dir, dentry, 0);
2269
2270        if (error)
2271                return error;
2272
2273        if (!dir->i_op->unlink)
2274                return -EPERM;
2275
2276        vfs_dq_init(dir);
2277
2278        mutex_lock(&dentry->d_inode->i_mutex);
2279        if (d_mountpoint(dentry))
2280                error = -EBUSY;
2281        else {
2282                error = security_inode_unlink(dir, dentry);
2283                if (!error)
2284                        error = dir->i_op->unlink(dir, dentry);
2285        }
2286        mutex_unlock(&dentry->d_inode->i_mutex);
2287
2288        /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2289        if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2290                fsnotify_link_count(dentry->d_inode);
2291                d_delete(dentry);
2292        }
2293
2294        return error;
2295}
2296
2297/*
2298 * Make sure that the actual truncation of the file will occur outside its
2299 * directory's i_mutex.  Truncate can take a long time if there is a lot of
2300 * writeout happening, and we don't want to prevent access to the directory
2301 * while waiting on the I/O.
2302 */
2303static long do_unlinkat(int dfd, const char __user *pathname)
2304{
2305        int error;
2306        char *name;
2307        struct dentry *dentry;
2308        struct nameidata nd;
2309        struct inode *inode = NULL;
2310
2311        error = user_path_parent(dfd, pathname, &nd, &name);
2312        if (error)
2313                return error;
2314
2315        error = -EISDIR;
2316        if (nd.last_type != LAST_NORM)
2317                goto exit1;
2318
2319        nd.flags &= ~LOOKUP_PARENT;
2320
2321        mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2322        dentry = lookup_hash(&nd);
2323        error = PTR_ERR(dentry);
2324        if (!IS_ERR(dentry)) {
2325                /* Why not before? Because we want correct error value */
2326                if (nd.last.name[nd.last.len])
2327                        goto slashes;
2328                inode = dentry->d_inode;
2329                if (inode)
2330                        atomic_inc(&inode->i_count);
2331                error = mnt_want_write(nd.path.mnt);
2332                if (error)
2333                        goto exit2;
2334                error = security_path_unlink(&nd.path, dentry);
2335                if (error)
2336                        goto exit3;
2337                error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2338exit3:
2339                mnt_drop_write(nd.path.mnt);
2340        exit2:
2341                dput(dentry);
2342        }
2343        mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2344        if (inode)
2345                iput(inode);    /* truncate the inode here */
2346exit1:
2347        path_put(&nd.path);
2348        putname(name);
2349        return error;
2350
2351slashes:
2352        error = !dentry->d_inode ? -ENOENT :
2353                S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2354        goto exit2;
2355}
2356
2357SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2358{
2359        if ((flag & ~AT_REMOVEDIR) != 0)
2360                return -EINVAL;
2361
2362        if (flag & AT_REMOVEDIR)
2363                return do_rmdir(dfd, pathname);
2364
2365        return do_unlinkat(dfd, pathname);
2366}
2367
2368SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2369{
2370        return do_unlinkat(AT_FDCWD, pathname);
2371}
2372
2373int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2374{
2375        int error = may_create(dir, dentry);
2376
2377        if (error)
2378                return error;
2379
2380        if (!dir->i_op->symlink)
2381                return -EPERM;
2382
2383        error = security_inode_symlink(dir, dentry, oldname);
2384        if (error)
2385                return error;
2386
2387        vfs_dq_init(dir);
2388        error = dir->i_op->symlink(dir, dentry, oldname);
2389        if (!error)
2390                fsnotify_create(dir, dentry);
2391        return error;
2392}
2393
2394SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2395                int, newdfd, const char __user *, newname)
2396{
2397        int error;
2398        char *from;
2399        char *to;
2400        struct dentry *dentry;
2401        struct nameidata nd;
2402
2403        from = getname(oldname);
2404        if (IS_ERR(from))
2405                return PTR_ERR(from);
2406
2407        error = user_path_parent(newdfd, newname, &nd, &to);
2408        if (error)
2409                goto out_putname;
2410
2411        dentry = lookup_create(&nd, 0);
2412        error = PTR_ERR(dentry);
2413        if (IS_ERR(dentry))
2414                goto out_unlock;
2415
2416        error = mnt_want_write(nd.path.mnt);
2417        if (error)
2418                goto out_dput;
2419        error = security_path_symlink(&nd.path, dentry, from);
2420        if (error)
2421                goto out_drop_write;
2422        error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2423out_drop_write:
2424        mnt_drop_write(nd.path.mnt);
2425out_dput:
2426        dput(dentry);
2427out_unlock:
2428        mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2429        path_put(&nd.path);
2430        putname(to);
2431out_putname:
2432        putname(from);
2433        return error;
2434}
2435
2436SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2437{
2438        return sys_symlinkat(oldname, AT_FDCWD, newname);
2439}
2440
2441int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2442{
2443        struct inode *inode = old_dentry->d_inode;
2444        int error;
2445
2446        if (!inode)
2447                return -ENOENT;
2448
2449        error = may_create(dir, new_dentry);
2450        if (error)
2451                return error;
2452
2453        if (dir->i_sb != inode->i_sb)
2454                return -EXDEV;
2455
2456        /*
2457         * A link to an append-only or immutable file cannot be created.
2458         */
2459        if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2460                return -EPERM;
2461        if (!dir->i_op->link)
2462                return -EPERM;
2463        if (S_ISDIR(inode->i_mode))
2464                return -EPERM;
2465
2466        error = security_inode_link(old_dentry, dir, new_dentry);
2467        if (error)
2468                return error;
2469
2470        mutex_lock(&inode->i_mutex);
2471        vfs_dq_init(dir);
2472        error = dir->i_op->link(old_dentry, dir, new_dentry);
2473        mutex_unlock(&inode->i_mutex);
2474        if (!error)
2475                fsnotify_link(dir, inode, new_dentry);
2476        return error;
2477}
2478
2479/*
2480 * Hardlinks are often used in delicate situations.  We avoid
2481 * security-related surprises by not following symlinks on the
2482 * newname.  --KAB
2483 *
2484 * We don't follow them on the oldname either to be compatible
2485 * with linux 2.0, and to avoid hard-linking to directories
2486 * and other special files.  --ADM
2487 */
2488SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2489                int, newdfd, const char __user *, newname, int, flags)
2490{
2491        struct dentry *new_dentry;
2492        struct nameidata nd;
2493        struct path old_path;
2494        int error;
2495        char *to;
2496
2497        if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2498                return -EINVAL;
2499
2500        error = user_path_at(olddfd, oldname,
2501                             flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2502                             &old_path);
2503        if (error)
2504                return error;
2505
2506        error = user_path_parent(newdfd, newname, &nd, &to);
2507        if (error)
2508                goto out;
2509        error = -EXDEV;
2510        if (old_path.mnt != nd.path.mnt)
2511                goto out_release;
2512        new_dentry = lookup_create(&nd, 0);
2513        error = PTR_ERR(new_dentry);
2514        if (IS_ERR(new_dentry))
2515                goto out_unlock;
2516        error = mnt_want_write(nd.path.mnt);
2517        if (error)
2518                goto out_dput;
2519        error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2520        if (error)
2521                goto out_drop_write;
2522        error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2523out_drop_write:
2524        mnt_drop_write(nd.path.mnt);
2525out_dput:
2526        dput(new_dentry);
2527out_unlock:
2528        mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2529out_release:
2530        path_put(&nd.path);
2531        putname(to);
2532out:
2533        path_put(&old_path);
2534
2535        return error;
2536}
2537
2538SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2539{
2540        return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2541}
2542
2543/*
2544 * The worst of all namespace operations - renaming directory. "Perverted"
2545 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2546 * Problems:
2547 *      a) we can get into loop creation. Check is done in is_subdir().
2548 *      b) race potential - two innocent renames can create a loop together.
2549 *         That's where 4.4 screws up. Current fix: serialization on
2550 *         sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2551 *         story.
2552 *      c) we have to lock _three_ objects - parents and victim (if it exists).
2553 *         And that - after we got ->i_mutex on parents (until then we don't know
2554 *         whether the target exists).  Solution: try to be smart with locking
2555 *         order for inodes.  We rely on the fact that tree topology may change
2556 *         only under ->s_vfs_rename_mutex _and_ that parent of the object we
2557 *         move will be locked.  Thus we can rank directories by the tree
2558 *         (ancestors first) and rank all non-directories after them.
2559 *         That works since everybody except rename does "lock parent, lookup,
2560 *         lock child" and rename is under ->s_vfs_rename_mutex.
2561 *         HOWEVER, it relies on the assumption that any object with ->lookup()
2562 *         has no more than 1 dentry.  If "hybrid" objects will ever appear,
2563 *         we'd better make sure that there's no link(2) for them.
2564 *      d) some filesystems don't support opened-but-unlinked directories,
2565 *         either because of layout or because they are not ready to deal with
2566 *         all cases correctly. The latter will be fixed (taking this sort of
2567 *         stuff into VFS), but the former is not going away. Solution: the same
2568 *         trick as in rmdir().
2569 *      e) conversion from fhandle to dentry may come in the wrong moment - when
2570 *         we are removing the target. Solution: we will have to grab ->i_mutex
2571 *         in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2572 *         ->i_mutex on parents, which works but leads to some truely excessive
2573 *         locking].
2574 */
2575static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2576                          struct inode *new_dir, struct dentry *new_dentry)
2577{
2578        int error = 0;
2579        struct inode *target;
2580
2581        /*
2582         * If we are going to change the parent - check write permissions,
2583         * we'll need to flip '..'.
2584         */
2585        if (new_dir != old_dir) {
2586                error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2587                if (error)
2588                        return error;
2589        }
2590
2591        error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2592        if (error)
2593                return error;
2594
2595        target = new_dentry->d_inode;
2596        if (target) {
2597                mutex_lock(&target->i_mutex);
2598                dentry_unhash(new_dentry);
2599        }
2600        if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2601                error = -EBUSY;
2602        else 
2603                error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2604        if (target) {
2605                if (!error)
2606                        target->i_flags |= S_DEAD;
2607                mutex_unlock(&target->i_mutex);
2608                if (d_unhashed(new_dentry))
2609                        d_rehash(new_dentry);
2610                dput(new_dentry);
2611        }
2612        if (!error)
2613                if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2614                        d_move(old_dentry,new_dentry);
2615        return error;
2616}
2617
2618static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2619                            struct inode *new_dir, struct dentry *new_dentry)
2620{
2621        struct inode *target;
2622        int error;
2623
2624        error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2625        if (error)
2626                return error;
2627
2628        dget(new_dentry);
2629        target = new_dentry->d_inode;
2630        if (target)
2631                mutex_lock(&target->i_mutex);
2632        if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2633                error = -EBUSY;
2634        else
2635                error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2636        if (!error) {
2637                if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2638                        d_move(old_dentry, new_dentry);
2639        }
2640        if (target)
2641                mutex_unlock(&target->i_mutex);
2642        dput(new_dentry);
2643        return error;
2644}
2645
2646int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2647               struct inode *new_dir, struct dentry *new_dentry)
2648{
2649        int error;
2650        int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2651        const char *old_name;
2652
2653        if (old_dentry->d_inode == new_dentry->d_inode)
2654                return 0;
2655 
2656        error = may_delete(old_dir, old_dentry, is_dir);
2657        if (error)
2658                return error;
2659
2660        if (!new_dentry->d_inode)
2661                error = may_create(new_dir, new_dentry);
2662        else
2663                error = may_delete(new_dir, new_dentry, is_dir);
2664        if (error)
2665                return error;
2666
2667        if (!old_dir->i_op->rename)
2668                return -EPERM;
2669
2670        vfs_dq_init(old_dir);
2671        vfs_dq_init(new_dir);
2672
2673        old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2674
2675        if (is_dir)
2676                error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2677        else
2678                error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2679        if (!error) {
2680                const char *new_name = old_dentry->d_name.name;
2681                fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2682                              new_dentry->d_inode, old_dentry);
2683        }
2684        fsnotify_oldname_free(old_name);
2685
2686        return error;
2687}
2688
2689SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
2690                int, newdfd, const char __user *, newname)
2691{
2692        struct dentry *old_dir, *new_dir;
2693        struct dentry *old_dentry, *new_dentry;
2694        struct dentry *trap;
2695        struct nameidata oldnd, newnd;
2696        char *from;
2697        char *to;
2698        int error;
2699
2700        error = user_path_parent(olddfd, oldname, &oldnd, &from);
2701        if (error)
2702                goto exit;
2703
2704        error = user_path_parent(newdfd, newname, &newnd, &to);
2705        if (error)
2706                goto exit1;
2707
2708        error = -EXDEV;
2709        if (oldnd.path.mnt != newnd.path.mnt)
2710                goto exit2;
2711
2712        old_dir = oldnd.path.dentry;
2713        error = -EBUSY;
2714        if (oldnd.last_type != LAST_NORM)
2715                goto exit2;
2716
2717        new_dir = newnd.path.dentry;
2718        if (newnd.last_type != LAST_NORM)
2719                goto exit2;
2720
2721        oldnd.flags &= ~LOOKUP_PARENT;
2722        newnd.flags &= ~LOOKUP_PARENT;
2723        newnd.flags |= LOOKUP_RENAME_TARGET;
2724
2725        trap = lock_rename(new_dir, old_dir);
2726
2727        old_dentry = lookup_hash(&oldnd);
2728        error = PTR_ERR(old_dentry);
2729        if (IS_ERR(old_dentry))
2730                goto exit3;
2731        /* source must exist */
2732        error = -ENOENT;
2733        if (!old_dentry->d_inode)
2734                goto exit4;
2735        /* unless the source is a directory trailing slashes give -ENOTDIR */
2736        if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2737                error = -ENOTDIR;
2738                if (oldnd.last.name[oldnd.last.len])
2739                        goto exit4;
2740                if (newnd.last.name[newnd.last.len])
2741                        goto exit4;
2742        }
2743        /* source should not be ancestor of target */
2744        error = -EINVAL;
2745        if (old_dentry == trap)
2746                goto exit4;
2747        new_dentry = lookup_hash(&newnd);
2748        error = PTR_ERR(new_dentry);
2749        if (IS_ERR(new_dentry))
2750                goto exit4;
2751        /* target should not be an ancestor of source */
2752        error = -ENOTEMPTY;
2753        if (new_dentry == trap)
2754                goto exit5;
2755
2756        error = mnt_want_write(oldnd.path.mnt);
2757        if (error)
2758                goto exit5;
2759        error = security_path_rename(&oldnd.path, old_dentry,
2760                                     &newnd.path, new_dentry);
2761        if (error)
2762                goto exit6;
2763        error = vfs_rename(old_dir->d_inode, old_dentry,
2764                                   new_dir->d_inode, new_dentry);
2765exit6:
2766        mnt_drop_write(oldnd.path.mnt);
2767exit5:
2768        dput(new_dentry);
2769exit4:
2770        dput(old_dentry);
2771exit3:
2772        unlock_rename(new_dir, old_dir);
2773exit2:
2774        path_put(&newnd.path);
2775        putname(to);
2776exit1:
2777        path_put(&oldnd.path);
2778        putname(from);
2779exit:
2780        return error;
2781}
2782
2783SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
2784{
2785        return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2786}
2787
2788int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2789{
2790        int len;
2791
2792        len = PTR_ERR(link);
2793        if (IS_ERR(link))
2794                goto out;
2795
2796        len = strlen(link);
2797        if (len > (unsigned) buflen)
2798                len = buflen;
2799        if (copy_to_user(buffer, link, len))
2800                len = -EFAULT;
2801out:
2802        return len;
2803}
2804
2805/*
2806 * A helper for ->readlink().  This should be used *ONLY* for symlinks that
2807 * have ->follow_link() touching nd only in nd_set_link().  Using (or not
2808 * using) it for any given inode is up to filesystem.
2809 */
2810int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2811{
2812        struct nameidata nd;
2813        void *cookie;
2814        int res;
2815
2816        nd.depth = 0;
2817        cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2818        if (IS_ERR(cookie))
2819                return PTR_ERR(cookie);
2820
2821        res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2822        if (dentry->d_inode->i_op->put_link)
2823                dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2824        return res;
2825}
2826
2827int vfs_follow_link(struct nameidata *nd, const char *link)
2828{
2829        return __vfs_follow_link(nd, link);
2830}
2831
2832/* get the link contents into pagecache */
2833static char *page_getlink(struct dentry * dentry, struct page **ppage)
2834{
2835        char *kaddr;
2836        struct page *page;
2837        struct address_space *mapping = dentry->d_inode->i_mapping;
2838        page = read_mapping_page(mapping, 0, NULL);
2839        if (IS_ERR(page))
2840                return (char*)page;
2841        *ppage = page;
2842        kaddr = kmap(page);
2843        nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
2844        return kaddr;
2845}
2846
2847int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2848{
2849        struct page *page = NULL;
2850        char *s = page_getlink(dentry, &page);
2851        int res = vfs_readlink(dentry,buffer,buflen,s);
2852        if (page) {
2853                kunmap(page);
2854                page_cache_release(page);
2855        }
2856        return res;
2857}
2858
2859void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2860{
2861        struct page *page = NULL;
2862        nd_set_link(nd, page_getlink(dentry, &page));
2863        return page;
2864}
2865
2866void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2867{
2868        struct page *page = cookie;
2869
2870        if (page) {
2871                kunmap(page);
2872                page_cache_release(page);
2873        }
2874}
2875
2876/*
2877 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
2878 */
2879int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
2880{
2881        struct address_space *mapping = inode->i_mapping;
2882        struct page *page;
2883        void *fsdata;
2884        int err;
2885        char *kaddr;
2886        unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
2887        if (nofs)
2888                flags |= AOP_FLAG_NOFS;
2889
2890retry:
2891        err = pagecache_write_begin(NULL, mapping, 0, len-1,
2892                                flags, &page, &fsdata);
2893        if (err)
2894                goto fail;
2895
2896        kaddr = kmap_atomic(page, KM_USER0);
2897        memcpy(kaddr, symname, len-1);
2898        kunmap_atomic(kaddr, KM_USER0);
2899
2900        err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2901                                                        page, fsdata);
2902        if (err < 0)
2903                goto fail;
2904        if (err < len-1)
2905                goto retry;
2906
2907        mark_inode_dirty(inode);
2908        return 0;
2909fail:
2910        return err;
2911}
2912
2913int page_symlink(struct inode *inode, const char *symname, int len)
2914{
2915        return __page_symlink(inode, symname, len,
2916                        !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
2917}
2918
2919const struct inode_operations page_symlink_inode_operations = {
2920        .readlink       = generic_readlink,
2921        .follow_link    = page_follow_link_light,
2922        .put_link       = page_put_link,
2923};
2924
2925EXPORT_SYMBOL(user_path_at);
2926EXPORT_SYMBOL(follow_down);
2927EXPORT_SYMBOL(follow_up);
2928EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2929EXPORT_SYMBOL(getname);
2930EXPORT_SYMBOL(lock_rename);
2931EXPORT_SYMBOL(lookup_one_len);
2932EXPORT_SYMBOL(page_follow_link_light);
2933EXPORT_SYMBOL(page_put_link);
2934EXPORT_SYMBOL(page_readlink);
2935EXPORT_SYMBOL(__page_symlink);
2936EXPORT_SYMBOL(page_symlink);
2937EXPORT_SYMBOL(page_symlink_inode_operations);
2938EXPORT_SYMBOL(path_lookup);
2939EXPORT_SYMBOL(kern_path);
2940EXPORT_SYMBOL(vfs_path_lookup);
2941EXPORT_SYMBOL(inode_permission);
2942EXPORT_SYMBOL(file_permission);
2943EXPORT_SYMBOL(unlock_rename);
2944EXPORT_SYMBOL(vfs_create);
2945EXPORT_SYMBOL(vfs_follow_link);
2946EXPORT_SYMBOL(vfs_link);
2947EXPORT_SYMBOL(vfs_mkdir);
2948EXPORT_SYMBOL(vfs_mknod);
2949EXPORT_SYMBOL(generic_permission);
2950EXPORT_SYMBOL(vfs_readlink);
2951EXPORT_SYMBOL(vfs_rename);
2952EXPORT_SYMBOL(vfs_rmdir);
2953EXPORT_SYMBOL(vfs_symlink);
2954EXPORT_SYMBOL(vfs_unlink);
2955EXPORT_SYMBOL(dentry_unhash);
2956EXPORT_SYMBOL(generic_readlink);
2957