linux/fs/namespace.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/namespace.c
   3 *
   4 * (C) Copyright Al Viro 2000, 2001
   5 *      Released under GPL v2.
   6 *
   7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
   8 * Heavily rewritten.
   9 */
  10
  11#include <linux/syscalls.h>
  12#include <linux/slab.h>
  13#include <linux/sched.h>
  14#include <linux/smp_lock.h>
  15#include <linux/init.h>
  16#include <linux/kernel.h>
  17#include <linux/acct.h>
  18#include <linux/capability.h>
  19#include <linux/cpumask.h>
  20#include <linux/module.h>
  21#include <linux/sysfs.h>
  22#include <linux/seq_file.h>
  23#include <linux/mnt_namespace.h>
  24#include <linux/namei.h>
  25#include <linux/nsproxy.h>
  26#include <linux/security.h>
  27#include <linux/mount.h>
  28#include <linux/ramfs.h>
  29#include <linux/log2.h>
  30#include <linux/idr.h>
  31#include <linux/fs_struct.h>
  32#include <asm/uaccess.h>
  33#include <asm/unistd.h>
  34#include "pnode.h"
  35#include "internal.h"
  36
  37#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
  38#define HASH_SIZE (1UL << HASH_SHIFT)
  39
  40/* spinlock for vfsmount related operations, inplace of dcache_lock */
  41__cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
  42
  43static int event;
  44static DEFINE_IDA(mnt_id_ida);
  45static DEFINE_IDA(mnt_group_ida);
  46static int mnt_id_start = 0;
  47static int mnt_group_start = 1;
  48
  49static struct list_head *mount_hashtable __read_mostly;
  50static struct kmem_cache *mnt_cache __read_mostly;
  51static struct rw_semaphore namespace_sem;
  52
  53/* /sys/fs */
  54struct kobject *fs_kobj;
  55EXPORT_SYMBOL_GPL(fs_kobj);
  56
  57static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
  58{
  59        unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  60        tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  61        tmp = tmp + (tmp >> HASH_SHIFT);
  62        return tmp & (HASH_SIZE - 1);
  63}
  64
  65#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
  66
  67/* allocation is serialized by namespace_sem */
  68static int mnt_alloc_id(struct vfsmount *mnt)
  69{
  70        int res;
  71
  72retry:
  73        ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  74        spin_lock(&vfsmount_lock);
  75        res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  76        if (!res)
  77                mnt_id_start = mnt->mnt_id + 1;
  78        spin_unlock(&vfsmount_lock);
  79        if (res == -EAGAIN)
  80                goto retry;
  81
  82        return res;
  83}
  84
  85static void mnt_free_id(struct vfsmount *mnt)
  86{
  87        int id = mnt->mnt_id;
  88        spin_lock(&vfsmount_lock);
  89        ida_remove(&mnt_id_ida, id);
  90        if (mnt_id_start > id)
  91                mnt_id_start = id;
  92        spin_unlock(&vfsmount_lock);
  93}
  94
  95/*
  96 * Allocate a new peer group ID
  97 *
  98 * mnt_group_ida is protected by namespace_sem
  99 */
 100static int mnt_alloc_group_id(struct vfsmount *mnt)
 101{
 102        int res;
 103
 104        if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
 105                return -ENOMEM;
 106
 107        res = ida_get_new_above(&mnt_group_ida,
 108                                mnt_group_start,
 109                                &mnt->mnt_group_id);
 110        if (!res)
 111                mnt_group_start = mnt->mnt_group_id + 1;
 112
 113        return res;
 114}
 115
 116/*
 117 * Release a peer group ID
 118 */
 119void mnt_release_group_id(struct vfsmount *mnt)
 120{
 121        int id = mnt->mnt_group_id;
 122        ida_remove(&mnt_group_ida, id);
 123        if (mnt_group_start > id)
 124                mnt_group_start = id;
 125        mnt->mnt_group_id = 0;
 126}
 127
 128struct vfsmount *alloc_vfsmnt(const char *name)
 129{
 130        struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
 131        if (mnt) {
 132                int err;
 133
 134                err = mnt_alloc_id(mnt);
 135                if (err)
 136                        goto out_free_cache;
 137
 138                if (name) {
 139                        mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
 140                        if (!mnt->mnt_devname)
 141                                goto out_free_id;
 142                }
 143
 144                atomic_set(&mnt->mnt_count, 1);
 145                INIT_LIST_HEAD(&mnt->mnt_hash);
 146                INIT_LIST_HEAD(&mnt->mnt_child);
 147                INIT_LIST_HEAD(&mnt->mnt_mounts);
 148                INIT_LIST_HEAD(&mnt->mnt_list);
 149                INIT_LIST_HEAD(&mnt->mnt_expire);
 150                INIT_LIST_HEAD(&mnt->mnt_share);
 151                INIT_LIST_HEAD(&mnt->mnt_slave_list);
 152                INIT_LIST_HEAD(&mnt->mnt_slave);
 153#ifdef CONFIG_SMP
 154                mnt->mnt_writers = alloc_percpu(int);
 155                if (!mnt->mnt_writers)
 156                        goto out_free_devname;
 157#else
 158                mnt->mnt_writers = 0;
 159#endif
 160        }
 161        return mnt;
 162
 163#ifdef CONFIG_SMP
 164out_free_devname:
 165        kfree(mnt->mnt_devname);
 166#endif
 167out_free_id:
 168        mnt_free_id(mnt);
 169out_free_cache:
 170        kmem_cache_free(mnt_cache, mnt);
 171        return NULL;
 172}
 173
 174/*
 175 * Most r/o checks on a fs are for operations that take
 176 * discrete amounts of time, like a write() or unlink().
 177 * We must keep track of when those operations start
 178 * (for permission checks) and when they end, so that
 179 * we can determine when writes are able to occur to
 180 * a filesystem.
 181 */
 182/*
 183 * __mnt_is_readonly: check whether a mount is read-only
 184 * @mnt: the mount to check for its write status
 185 *
 186 * This shouldn't be used directly ouside of the VFS.
 187 * It does not guarantee that the filesystem will stay
 188 * r/w, just that it is right *now*.  This can not and
 189 * should not be used in place of IS_RDONLY(inode).
 190 * mnt_want/drop_write() will _keep_ the filesystem
 191 * r/w.
 192 */
 193int __mnt_is_readonly(struct vfsmount *mnt)
 194{
 195        if (mnt->mnt_flags & MNT_READONLY)
 196                return 1;
 197        if (mnt->mnt_sb->s_flags & MS_RDONLY)
 198                return 1;
 199        return 0;
 200}
 201EXPORT_SYMBOL_GPL(__mnt_is_readonly);
 202
 203static inline void inc_mnt_writers(struct vfsmount *mnt)
 204{
 205#ifdef CONFIG_SMP
 206        (*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))++;
 207#else
 208        mnt->mnt_writers++;
 209#endif
 210}
 211
 212static inline void dec_mnt_writers(struct vfsmount *mnt)
 213{
 214#ifdef CONFIG_SMP
 215        (*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))--;
 216#else
 217        mnt->mnt_writers--;
 218#endif
 219}
 220
 221static unsigned int count_mnt_writers(struct vfsmount *mnt)
 222{
 223#ifdef CONFIG_SMP
 224        unsigned int count = 0;
 225        int cpu;
 226
 227        for_each_possible_cpu(cpu) {
 228                count += *per_cpu_ptr(mnt->mnt_writers, cpu);
 229        }
 230
 231        return count;
 232#else
 233        return mnt->mnt_writers;
 234#endif
 235}
 236
 237/*
 238 * Most r/o checks on a fs are for operations that take
 239 * discrete amounts of time, like a write() or unlink().
 240 * We must keep track of when those operations start
 241 * (for permission checks) and when they end, so that
 242 * we can determine when writes are able to occur to
 243 * a filesystem.
 244 */
 245/**
 246 * mnt_want_write - get write access to a mount
 247 * @mnt: the mount on which to take a write
 248 *
 249 * This tells the low-level filesystem that a write is
 250 * about to be performed to it, and makes sure that
 251 * writes are allowed before returning success.  When
 252 * the write operation is finished, mnt_drop_write()
 253 * must be called.  This is effectively a refcount.
 254 */
 255int mnt_want_write(struct vfsmount *mnt)
 256{
 257        int ret = 0;
 258
 259        preempt_disable();
 260        inc_mnt_writers(mnt);
 261        /*
 262         * The store to inc_mnt_writers must be visible before we pass
 263         * MNT_WRITE_HOLD loop below, so that the slowpath can see our
 264         * incremented count after it has set MNT_WRITE_HOLD.
 265         */
 266        smp_mb();
 267        while (mnt->mnt_flags & MNT_WRITE_HOLD)
 268                cpu_relax();
 269        /*
 270         * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
 271         * be set to match its requirements. So we must not load that until
 272         * MNT_WRITE_HOLD is cleared.
 273         */
 274        smp_rmb();
 275        if (__mnt_is_readonly(mnt)) {
 276                dec_mnt_writers(mnt);
 277                ret = -EROFS;
 278                goto out;
 279        }
 280out:
 281        preempt_enable();
 282        return ret;
 283}
 284EXPORT_SYMBOL_GPL(mnt_want_write);
 285
 286/**
 287 * mnt_clone_write - get write access to a mount
 288 * @mnt: the mount on which to take a write
 289 *
 290 * This is effectively like mnt_want_write, except
 291 * it must only be used to take an extra write reference
 292 * on a mountpoint that we already know has a write reference
 293 * on it. This allows some optimisation.
 294 *
 295 * After finished, mnt_drop_write must be called as usual to
 296 * drop the reference.
 297 */
 298int mnt_clone_write(struct vfsmount *mnt)
 299{
 300        /* superblock may be r/o */
 301        if (__mnt_is_readonly(mnt))
 302                return -EROFS;
 303        preempt_disable();
 304        inc_mnt_writers(mnt);
 305        preempt_enable();
 306        return 0;
 307}
 308EXPORT_SYMBOL_GPL(mnt_clone_write);
 309
 310/**
 311 * mnt_want_write_file - get write access to a file's mount
 312 * @file: the file who's mount on which to take a write
 313 *
 314 * This is like mnt_want_write, but it takes a file and can
 315 * do some optimisations if the file is open for write already
 316 */
 317int mnt_want_write_file(struct file *file)
 318{
 319        struct inode *inode = file->f_dentry->d_inode;
 320        if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
 321                return mnt_want_write(file->f_path.mnt);
 322        else
 323                return mnt_clone_write(file->f_path.mnt);
 324}
 325EXPORT_SYMBOL_GPL(mnt_want_write_file);
 326
 327/**
 328 * mnt_drop_write - give up write access to a mount
 329 * @mnt: the mount on which to give up write access
 330 *
 331 * Tells the low-level filesystem that we are done
 332 * performing writes to it.  Must be matched with
 333 * mnt_want_write() call above.
 334 */
 335void mnt_drop_write(struct vfsmount *mnt)
 336{
 337        preempt_disable();
 338        dec_mnt_writers(mnt);
 339        preempt_enable();
 340}
 341EXPORT_SYMBOL_GPL(mnt_drop_write);
 342
 343static int mnt_make_readonly(struct vfsmount *mnt)
 344{
 345        int ret = 0;
 346
 347        spin_lock(&vfsmount_lock);
 348        mnt->mnt_flags |= MNT_WRITE_HOLD;
 349        /*
 350         * After storing MNT_WRITE_HOLD, we'll read the counters. This store
 351         * should be visible before we do.
 352         */
 353        smp_mb();
 354
 355        /*
 356         * With writers on hold, if this value is zero, then there are
 357         * definitely no active writers (although held writers may subsequently
 358         * increment the count, they'll have to wait, and decrement it after
 359         * seeing MNT_READONLY).
 360         *
 361         * It is OK to have counter incremented on one CPU and decremented on
 362         * another: the sum will add up correctly. The danger would be when we
 363         * sum up each counter, if we read a counter before it is incremented,
 364         * but then read another CPU's count which it has been subsequently
 365         * decremented from -- we would see more decrements than we should.
 366         * MNT_WRITE_HOLD protects against this scenario, because
 367         * mnt_want_write first increments count, then smp_mb, then spins on
 368         * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
 369         * we're counting up here.
 370         */
 371        if (count_mnt_writers(mnt) > 0)
 372                ret = -EBUSY;
 373        else
 374                mnt->mnt_flags |= MNT_READONLY;
 375        /*
 376         * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
 377         * that become unheld will see MNT_READONLY.
 378         */
 379        smp_wmb();
 380        mnt->mnt_flags &= ~MNT_WRITE_HOLD;
 381        spin_unlock(&vfsmount_lock);
 382        return ret;
 383}
 384
 385static void __mnt_unmake_readonly(struct vfsmount *mnt)
 386{
 387        spin_lock(&vfsmount_lock);
 388        mnt->mnt_flags &= ~MNT_READONLY;
 389        spin_unlock(&vfsmount_lock);
 390}
 391
 392void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
 393{
 394        mnt->mnt_sb = sb;
 395        mnt->mnt_root = dget(sb->s_root);
 396}
 397
 398EXPORT_SYMBOL(simple_set_mnt);
 399
 400void free_vfsmnt(struct vfsmount *mnt)
 401{
 402        kfree(mnt->mnt_devname);
 403        mnt_free_id(mnt);
 404#ifdef CONFIG_SMP
 405        free_percpu(mnt->mnt_writers);
 406#endif
 407        kmem_cache_free(mnt_cache, mnt);
 408}
 409
 410/*
 411 * find the first or last mount at @dentry on vfsmount @mnt depending on
 412 * @dir. If @dir is set return the first mount else return the last mount.
 413 */
 414struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
 415                              int dir)
 416{
 417        struct list_head *head = mount_hashtable + hash(mnt, dentry);
 418        struct list_head *tmp = head;
 419        struct vfsmount *p, *found = NULL;
 420
 421        for (;;) {
 422                tmp = dir ? tmp->next : tmp->prev;
 423                p = NULL;
 424                if (tmp == head)
 425                        break;
 426                p = list_entry(tmp, struct vfsmount, mnt_hash);
 427                if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
 428                        found = p;
 429                        break;
 430                }
 431        }
 432        return found;
 433}
 434
 435/*
 436 * lookup_mnt increments the ref count before returning
 437 * the vfsmount struct.
 438 */
 439struct vfsmount *lookup_mnt(struct path *path)
 440{
 441        struct vfsmount *child_mnt;
 442        spin_lock(&vfsmount_lock);
 443        if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
 444                mntget(child_mnt);
 445        spin_unlock(&vfsmount_lock);
 446        return child_mnt;
 447}
 448
 449static inline int check_mnt(struct vfsmount *mnt)
 450{
 451        return mnt->mnt_ns == current->nsproxy->mnt_ns;
 452}
 453
 454static void touch_mnt_namespace(struct mnt_namespace *ns)
 455{
 456        if (ns) {
 457                ns->event = ++event;
 458                wake_up_interruptible(&ns->poll);
 459        }
 460}
 461
 462static void __touch_mnt_namespace(struct mnt_namespace *ns)
 463{
 464        if (ns && ns->event != event) {
 465                ns->event = event;
 466                wake_up_interruptible(&ns->poll);
 467        }
 468}
 469
 470static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
 471{
 472        old_path->dentry = mnt->mnt_mountpoint;
 473        old_path->mnt = mnt->mnt_parent;
 474        mnt->mnt_parent = mnt;
 475        mnt->mnt_mountpoint = mnt->mnt_root;
 476        list_del_init(&mnt->mnt_child);
 477        list_del_init(&mnt->mnt_hash);
 478        old_path->dentry->d_mounted--;
 479}
 480
 481void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
 482                        struct vfsmount *child_mnt)
 483{
 484        child_mnt->mnt_parent = mntget(mnt);
 485        child_mnt->mnt_mountpoint = dget(dentry);
 486        dentry->d_mounted++;
 487}
 488
 489static void attach_mnt(struct vfsmount *mnt, struct path *path)
 490{
 491        mnt_set_mountpoint(path->mnt, path->dentry, mnt);
 492        list_add_tail(&mnt->mnt_hash, mount_hashtable +
 493                        hash(path->mnt, path->dentry));
 494        list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
 495}
 496
 497/*
 498 * the caller must hold vfsmount_lock
 499 */
 500static void commit_tree(struct vfsmount *mnt)
 501{
 502        struct vfsmount *parent = mnt->mnt_parent;
 503        struct vfsmount *m;
 504        LIST_HEAD(head);
 505        struct mnt_namespace *n = parent->mnt_ns;
 506
 507        BUG_ON(parent == mnt);
 508
 509        list_add_tail(&head, &mnt->mnt_list);
 510        list_for_each_entry(m, &head, mnt_list)
 511                m->mnt_ns = n;
 512        list_splice(&head, n->list.prev);
 513
 514        list_add_tail(&mnt->mnt_hash, mount_hashtable +
 515                                hash(parent, mnt->mnt_mountpoint));
 516        list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
 517        touch_mnt_namespace(n);
 518}
 519
 520static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
 521{
 522        struct list_head *next = p->mnt_mounts.next;
 523        if (next == &p->mnt_mounts) {
 524                while (1) {
 525                        if (p == root)
 526                                return NULL;
 527                        next = p->mnt_child.next;
 528                        if (next != &p->mnt_parent->mnt_mounts)
 529                                break;
 530                        p = p->mnt_parent;
 531                }
 532        }
 533        return list_entry(next, struct vfsmount, mnt_child);
 534}
 535
 536static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
 537{
 538        struct list_head *prev = p->mnt_mounts.prev;
 539        while (prev != &p->mnt_mounts) {
 540                p = list_entry(prev, struct vfsmount, mnt_child);
 541                prev = p->mnt_mounts.prev;
 542        }
 543        return p;
 544}
 545
 546static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
 547                                        int flag)
 548{
 549        struct super_block *sb = old->mnt_sb;
 550        struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
 551
 552        if (mnt) {
 553                if (flag & (CL_SLAVE | CL_PRIVATE))
 554                        mnt->mnt_group_id = 0; /* not a peer of original */
 555                else
 556                        mnt->mnt_group_id = old->mnt_group_id;
 557
 558                if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
 559                        int err = mnt_alloc_group_id(mnt);
 560                        if (err)
 561                                goto out_free;
 562                }
 563
 564                mnt->mnt_flags = old->mnt_flags;
 565                atomic_inc(&sb->s_active);
 566                mnt->mnt_sb = sb;
 567                mnt->mnt_root = dget(root);
 568                mnt->mnt_mountpoint = mnt->mnt_root;
 569                mnt->mnt_parent = mnt;
 570
 571                if (flag & CL_SLAVE) {
 572                        list_add(&mnt->mnt_slave, &old->mnt_slave_list);
 573                        mnt->mnt_master = old;
 574                        CLEAR_MNT_SHARED(mnt);
 575                } else if (!(flag & CL_PRIVATE)) {
 576                        if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
 577                                list_add(&mnt->mnt_share, &old->mnt_share);
 578                        if (IS_MNT_SLAVE(old))
 579                                list_add(&mnt->mnt_slave, &old->mnt_slave);
 580                        mnt->mnt_master = old->mnt_master;
 581                }
 582                if (flag & CL_MAKE_SHARED)
 583                        set_mnt_shared(mnt);
 584
 585                /* stick the duplicate mount on the same expiry list
 586                 * as the original if that was on one */
 587                if (flag & CL_EXPIRE) {
 588                        if (!list_empty(&old->mnt_expire))
 589                                list_add(&mnt->mnt_expire, &old->mnt_expire);
 590                }
 591        }
 592        return mnt;
 593
 594 out_free:
 595        free_vfsmnt(mnt);
 596        return NULL;
 597}
 598
 599static inline void __mntput(struct vfsmount *mnt)
 600{
 601        struct super_block *sb = mnt->mnt_sb;
 602        /*
 603         * This probably indicates that somebody messed
 604         * up a mnt_want/drop_write() pair.  If this
 605         * happens, the filesystem was probably unable
 606         * to make r/w->r/o transitions.
 607         */
 608        /*
 609         * atomic_dec_and_lock() used to deal with ->mnt_count decrements
 610         * provides barriers, so count_mnt_writers() below is safe.  AV
 611         */
 612        WARN_ON(count_mnt_writers(mnt));
 613        dput(mnt->mnt_root);
 614        free_vfsmnt(mnt);
 615        deactivate_super(sb);
 616}
 617
 618void mntput_no_expire(struct vfsmount *mnt)
 619{
 620repeat:
 621        if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
 622                if (likely(!mnt->mnt_pinned)) {
 623                        spin_unlock(&vfsmount_lock);
 624                        __mntput(mnt);
 625                        return;
 626                }
 627                atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
 628                mnt->mnt_pinned = 0;
 629                spin_unlock(&vfsmount_lock);
 630                acct_auto_close_mnt(mnt);
 631                security_sb_umount_close(mnt);
 632                goto repeat;
 633        }
 634}
 635
 636EXPORT_SYMBOL(mntput_no_expire);
 637
 638void mnt_pin(struct vfsmount *mnt)
 639{
 640        spin_lock(&vfsmount_lock);
 641        mnt->mnt_pinned++;
 642        spin_unlock(&vfsmount_lock);
 643}
 644
 645EXPORT_SYMBOL(mnt_pin);
 646
 647void mnt_unpin(struct vfsmount *mnt)
 648{
 649        spin_lock(&vfsmount_lock);
 650        if (mnt->mnt_pinned) {
 651                atomic_inc(&mnt->mnt_count);
 652                mnt->mnt_pinned--;
 653        }
 654        spin_unlock(&vfsmount_lock);
 655}
 656
 657EXPORT_SYMBOL(mnt_unpin);
 658
 659static inline void mangle(struct seq_file *m, const char *s)
 660{
 661        seq_escape(m, s, " \t\n\\");
 662}
 663
 664/*
 665 * Simple .show_options callback for filesystems which don't want to
 666 * implement more complex mount option showing.
 667 *
 668 * See also save_mount_options().
 669 */
 670int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
 671{
 672        const char *options;
 673
 674        rcu_read_lock();
 675        options = rcu_dereference(mnt->mnt_sb->s_options);
 676
 677        if (options != NULL && options[0]) {
 678                seq_putc(m, ',');
 679                mangle(m, options);
 680        }
 681        rcu_read_unlock();
 682
 683        return 0;
 684}
 685EXPORT_SYMBOL(generic_show_options);
 686
 687/*
 688 * If filesystem uses generic_show_options(), this function should be
 689 * called from the fill_super() callback.
 690 *
 691 * The .remount_fs callback usually needs to be handled in a special
 692 * way, to make sure, that previous options are not overwritten if the
 693 * remount fails.
 694 *
 695 * Also note, that if the filesystem's .remount_fs function doesn't
 696 * reset all options to their default value, but changes only newly
 697 * given options, then the displayed options will not reflect reality
 698 * any more.
 699 */
 700void save_mount_options(struct super_block *sb, char *options)
 701{
 702        BUG_ON(sb->s_options);
 703        rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
 704}
 705EXPORT_SYMBOL(save_mount_options);
 706
 707void replace_mount_options(struct super_block *sb, char *options)
 708{
 709        char *old = sb->s_options;
 710        rcu_assign_pointer(sb->s_options, options);
 711        if (old) {
 712                synchronize_rcu();
 713                kfree(old);
 714        }
 715}
 716EXPORT_SYMBOL(replace_mount_options);
 717
 718#ifdef CONFIG_PROC_FS
 719/* iterator */
 720static void *m_start(struct seq_file *m, loff_t *pos)
 721{
 722        struct proc_mounts *p = m->private;
 723
 724        down_read(&namespace_sem);
 725        return seq_list_start(&p->ns->list, *pos);
 726}
 727
 728static void *m_next(struct seq_file *m, void *v, loff_t *pos)
 729{
 730        struct proc_mounts *p = m->private;
 731
 732        return seq_list_next(v, &p->ns->list, pos);
 733}
 734
 735static void m_stop(struct seq_file *m, void *v)
 736{
 737        up_read(&namespace_sem);
 738}
 739
 740struct proc_fs_info {
 741        int flag;
 742        const char *str;
 743};
 744
 745static int show_sb_opts(struct seq_file *m, struct super_block *sb)
 746{
 747        static const struct proc_fs_info fs_info[] = {
 748                { MS_SYNCHRONOUS, ",sync" },
 749                { MS_DIRSYNC, ",dirsync" },
 750                { MS_MANDLOCK, ",mand" },
 751                { 0, NULL }
 752        };
 753        const struct proc_fs_info *fs_infop;
 754
 755        for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
 756                if (sb->s_flags & fs_infop->flag)
 757                        seq_puts(m, fs_infop->str);
 758        }
 759
 760        return security_sb_show_options(m, sb);
 761}
 762
 763static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
 764{
 765        static const struct proc_fs_info mnt_info[] = {
 766                { MNT_NOSUID, ",nosuid" },
 767                { MNT_NODEV, ",nodev" },
 768                { MNT_NOEXEC, ",noexec" },
 769                { MNT_NOATIME, ",noatime" },
 770                { MNT_NODIRATIME, ",nodiratime" },
 771                { MNT_RELATIME, ",relatime" },
 772                { MNT_STRICTATIME, ",strictatime" },
 773                { 0, NULL }
 774        };
 775        const struct proc_fs_info *fs_infop;
 776
 777        for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
 778                if (mnt->mnt_flags & fs_infop->flag)
 779                        seq_puts(m, fs_infop->str);
 780        }
 781}
 782
 783static void show_type(struct seq_file *m, struct super_block *sb)
 784{
 785        mangle(m, sb->s_type->name);
 786        if (sb->s_subtype && sb->s_subtype[0]) {
 787                seq_putc(m, '.');
 788                mangle(m, sb->s_subtype);
 789        }
 790}
 791
 792static int show_vfsmnt(struct seq_file *m, void *v)
 793{
 794        struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
 795        int err = 0;
 796        struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
 797
 798        mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
 799        seq_putc(m, ' ');
 800        seq_path(m, &mnt_path, " \t\n\\");
 801        seq_putc(m, ' ');
 802        show_type(m, mnt->mnt_sb);
 803        seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
 804        err = show_sb_opts(m, mnt->mnt_sb);
 805        if (err)
 806                goto out;
 807        show_mnt_opts(m, mnt);
 808        if (mnt->mnt_sb->s_op->show_options)
 809                err = mnt->mnt_sb->s_op->show_options(m, mnt);
 810        seq_puts(m, " 0 0\n");
 811out:
 812        return err;
 813}
 814
 815const struct seq_operations mounts_op = {
 816        .start  = m_start,
 817        .next   = m_next,
 818        .stop   = m_stop,
 819        .show   = show_vfsmnt
 820};
 821
 822static int show_mountinfo(struct seq_file *m, void *v)
 823{
 824        struct proc_mounts *p = m->private;
 825        struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
 826        struct super_block *sb = mnt->mnt_sb;
 827        struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
 828        struct path root = p->root;
 829        int err = 0;
 830
 831        seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
 832                   MAJOR(sb->s_dev), MINOR(sb->s_dev));
 833        seq_dentry(m, mnt->mnt_root, " \t\n\\");
 834        seq_putc(m, ' ');
 835        seq_path_root(m, &mnt_path, &root, " \t\n\\");
 836        if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
 837                /*
 838                 * Mountpoint is outside root, discard that one.  Ugly,
 839                 * but less so than trying to do that in iterator in a
 840                 * race-free way (due to renames).
 841                 */
 842                return SEQ_SKIP;
 843        }
 844        seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
 845        show_mnt_opts(m, mnt);
 846
 847        /* Tagged fields ("foo:X" or "bar") */
 848        if (IS_MNT_SHARED(mnt))
 849                seq_printf(m, " shared:%i", mnt->mnt_group_id);
 850        if (IS_MNT_SLAVE(mnt)) {
 851                int master = mnt->mnt_master->mnt_group_id;
 852                int dom = get_dominating_id(mnt, &p->root);
 853                seq_printf(m, " master:%i", master);
 854                if (dom && dom != master)
 855                        seq_printf(m, " propagate_from:%i", dom);
 856        }
 857        if (IS_MNT_UNBINDABLE(mnt))
 858                seq_puts(m, " unbindable");
 859
 860        /* Filesystem specific data */
 861        seq_puts(m, " - ");
 862        show_type(m, sb);
 863        seq_putc(m, ' ');
 864        mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
 865        seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
 866        err = show_sb_opts(m, sb);
 867        if (err)
 868                goto out;
 869        if (sb->s_op->show_options)
 870                err = sb->s_op->show_options(m, mnt);
 871        seq_putc(m, '\n');
 872out:
 873        return err;
 874}
 875
 876const struct seq_operations mountinfo_op = {
 877        .start  = m_start,
 878        .next   = m_next,
 879        .stop   = m_stop,
 880        .show   = show_mountinfo,
 881};
 882
 883static int show_vfsstat(struct seq_file *m, void *v)
 884{
 885        struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
 886        struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
 887        int err = 0;
 888
 889        /* device */
 890        if (mnt->mnt_devname) {
 891                seq_puts(m, "device ");
 892                mangle(m, mnt->mnt_devname);
 893        } else
 894                seq_puts(m, "no device");
 895
 896        /* mount point */
 897        seq_puts(m, " mounted on ");
 898        seq_path(m, &mnt_path, " \t\n\\");
 899        seq_putc(m, ' ');
 900
 901        /* file system type */
 902        seq_puts(m, "with fstype ");
 903        show_type(m, mnt->mnt_sb);
 904
 905        /* optional statistics */
 906        if (mnt->mnt_sb->s_op->show_stats) {
 907                seq_putc(m, ' ');
 908                err = mnt->mnt_sb->s_op->show_stats(m, mnt);
 909        }
 910
 911        seq_putc(m, '\n');
 912        return err;
 913}
 914
 915const struct seq_operations mountstats_op = {
 916        .start  = m_start,
 917        .next   = m_next,
 918        .stop   = m_stop,
 919        .show   = show_vfsstat,
 920};
 921#endif  /* CONFIG_PROC_FS */
 922
 923/**
 924 * may_umount_tree - check if a mount tree is busy
 925 * @mnt: root of mount tree
 926 *
 927 * This is called to check if a tree of mounts has any
 928 * open files, pwds, chroots or sub mounts that are
 929 * busy.
 930 */
 931int may_umount_tree(struct vfsmount *mnt)
 932{
 933        int actual_refs = 0;
 934        int minimum_refs = 0;
 935        struct vfsmount *p;
 936
 937        spin_lock(&vfsmount_lock);
 938        for (p = mnt; p; p = next_mnt(p, mnt)) {
 939                actual_refs += atomic_read(&p->mnt_count);
 940                minimum_refs += 2;
 941        }
 942        spin_unlock(&vfsmount_lock);
 943
 944        if (actual_refs > minimum_refs)
 945                return 0;
 946
 947        return 1;
 948}
 949
 950EXPORT_SYMBOL(may_umount_tree);
 951
 952/**
 953 * may_umount - check if a mount point is busy
 954 * @mnt: root of mount
 955 *
 956 * This is called to check if a mount point has any
 957 * open files, pwds, chroots or sub mounts. If the
 958 * mount has sub mounts this will return busy
 959 * regardless of whether the sub mounts are busy.
 960 *
 961 * Doesn't take quota and stuff into account. IOW, in some cases it will
 962 * give false negatives. The main reason why it's here is that we need
 963 * a non-destructive way to look for easily umountable filesystems.
 964 */
 965int may_umount(struct vfsmount *mnt)
 966{
 967        int ret = 1;
 968        spin_lock(&vfsmount_lock);
 969        if (propagate_mount_busy(mnt, 2))
 970                ret = 0;
 971        spin_unlock(&vfsmount_lock);
 972        return ret;
 973}
 974
 975EXPORT_SYMBOL(may_umount);
 976
 977void release_mounts(struct list_head *head)
 978{
 979        struct vfsmount *mnt;
 980        while (!list_empty(head)) {
 981                mnt = list_first_entry(head, struct vfsmount, mnt_hash);
 982                list_del_init(&mnt->mnt_hash);
 983                if (mnt->mnt_parent != mnt) {
 984                        struct dentry *dentry;
 985                        struct vfsmount *m;
 986                        spin_lock(&vfsmount_lock);
 987                        dentry = mnt->mnt_mountpoint;
 988                        m = mnt->mnt_parent;
 989                        mnt->mnt_mountpoint = mnt->mnt_root;
 990                        mnt->mnt_parent = mnt;
 991                        m->mnt_ghosts--;
 992                        spin_unlock(&vfsmount_lock);
 993                        dput(dentry);
 994                        mntput(m);
 995                }
 996                mntput(mnt);
 997        }
 998}
 999
1000void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1001{
1002        struct vfsmount *p;
1003
1004        for (p = mnt; p; p = next_mnt(p, mnt))
1005                list_move(&p->mnt_hash, kill);
1006
1007        if (propagate)
1008                propagate_umount(kill);
1009
1010        list_for_each_entry(p, kill, mnt_hash) {
1011                list_del_init(&p->mnt_expire);
1012                list_del_init(&p->mnt_list);
1013                __touch_mnt_namespace(p->mnt_ns);
1014                p->mnt_ns = NULL;
1015                list_del_init(&p->mnt_child);
1016                if (p->mnt_parent != p) {
1017                        p->mnt_parent->mnt_ghosts++;
1018                        p->mnt_mountpoint->d_mounted--;
1019                }
1020                change_mnt_propagation(p, MS_PRIVATE);
1021        }
1022}
1023
1024static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1025
1026static int do_umount(struct vfsmount *mnt, int flags)
1027{
1028        struct super_block *sb = mnt->mnt_sb;
1029        int retval;
1030        LIST_HEAD(umount_list);
1031
1032        retval = security_sb_umount(mnt, flags);
1033        if (retval)
1034                return retval;
1035
1036        /*
1037         * Allow userspace to request a mountpoint be expired rather than
1038         * unmounting unconditionally. Unmount only happens if:
1039         *  (1) the mark is already set (the mark is cleared by mntput())
1040         *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1041         */
1042        if (flags & MNT_EXPIRE) {
1043                if (mnt == current->fs->root.mnt ||
1044                    flags & (MNT_FORCE | MNT_DETACH))
1045                        return -EINVAL;
1046
1047                if (atomic_read(&mnt->mnt_count) != 2)
1048                        return -EBUSY;
1049
1050                if (!xchg(&mnt->mnt_expiry_mark, 1))
1051                        return -EAGAIN;
1052        }
1053
1054        /*
1055         * If we may have to abort operations to get out of this
1056         * mount, and they will themselves hold resources we must
1057         * allow the fs to do things. In the Unix tradition of
1058         * 'Gee thats tricky lets do it in userspace' the umount_begin
1059         * might fail to complete on the first run through as other tasks
1060         * must return, and the like. Thats for the mount program to worry
1061         * about for the moment.
1062         */
1063
1064        if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1065                sb->s_op->umount_begin(sb);
1066        }
1067
1068        /*
1069         * No sense to grab the lock for this test, but test itself looks
1070         * somewhat bogus. Suggestions for better replacement?
1071         * Ho-hum... In principle, we might treat that as umount + switch
1072         * to rootfs. GC would eventually take care of the old vfsmount.
1073         * Actually it makes sense, especially if rootfs would contain a
1074         * /reboot - static binary that would close all descriptors and
1075         * call reboot(9). Then init(8) could umount root and exec /reboot.
1076         */
1077        if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1078                /*
1079                 * Special case for "unmounting" root ...
1080                 * we just try to remount it readonly.
1081                 */
1082                down_write(&sb->s_umount);
1083                if (!(sb->s_flags & MS_RDONLY))
1084                        retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1085                up_write(&sb->s_umount);
1086                return retval;
1087        }
1088
1089        down_write(&namespace_sem);
1090        spin_lock(&vfsmount_lock);
1091        event++;
1092
1093        if (!(flags & MNT_DETACH))
1094                shrink_submounts(mnt, &umount_list);
1095
1096        retval = -EBUSY;
1097        if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1098                if (!list_empty(&mnt->mnt_list))
1099                        umount_tree(mnt, 1, &umount_list);
1100                retval = 0;
1101        }
1102        spin_unlock(&vfsmount_lock);
1103        if (retval)
1104                security_sb_umount_busy(mnt);
1105        up_write(&namespace_sem);
1106        release_mounts(&umount_list);
1107        return retval;
1108}
1109
1110/*
1111 * Now umount can handle mount points as well as block devices.
1112 * This is important for filesystems which use unnamed block devices.
1113 *
1114 * We now support a flag for forced unmount like the other 'big iron'
1115 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1116 */
1117
1118SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1119{
1120        struct path path;
1121        int retval;
1122
1123        retval = user_path(name, &path);
1124        if (retval)
1125                goto out;
1126        retval = -EINVAL;
1127        if (path.dentry != path.mnt->mnt_root)
1128                goto dput_and_out;
1129        if (!check_mnt(path.mnt))
1130                goto dput_and_out;
1131
1132        retval = -EPERM;
1133        if (!capable(CAP_SYS_ADMIN))
1134                goto dput_and_out;
1135
1136        retval = do_umount(path.mnt, flags);
1137dput_and_out:
1138        /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1139        dput(path.dentry);
1140        mntput_no_expire(path.mnt);
1141out:
1142        return retval;
1143}
1144
1145#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1146
1147/*
1148 *      The 2.0 compatible umount. No flags.
1149 */
1150SYSCALL_DEFINE1(oldumount, char __user *, name)
1151{
1152        return sys_umount(name, 0);
1153}
1154
1155#endif
1156
1157static int mount_is_safe(struct path *path)
1158{
1159        if (capable(CAP_SYS_ADMIN))
1160                return 0;
1161        return -EPERM;
1162#ifdef notyet
1163        if (S_ISLNK(path->dentry->d_inode->i_mode))
1164                return -EPERM;
1165        if (path->dentry->d_inode->i_mode & S_ISVTX) {
1166                if (current_uid() != path->dentry->d_inode->i_uid)
1167                        return -EPERM;
1168        }
1169        if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1170                return -EPERM;
1171        return 0;
1172#endif
1173}
1174
1175struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1176                                        int flag)
1177{
1178        struct vfsmount *res, *p, *q, *r, *s;
1179        struct path path;
1180
1181        if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1182                return NULL;
1183
1184        res = q = clone_mnt(mnt, dentry, flag);
1185        if (!q)
1186                goto Enomem;
1187        q->mnt_mountpoint = mnt->mnt_mountpoint;
1188
1189        p = mnt;
1190        list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1191                if (!is_subdir(r->mnt_mountpoint, dentry))
1192                        continue;
1193
1194                for (s = r; s; s = next_mnt(s, r)) {
1195                        if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1196                                s = skip_mnt_tree(s);
1197                                continue;
1198                        }
1199                        while (p != s->mnt_parent) {
1200                                p = p->mnt_parent;
1201                                q = q->mnt_parent;
1202                        }
1203                        p = s;
1204                        path.mnt = q;
1205                        path.dentry = p->mnt_mountpoint;
1206                        q = clone_mnt(p, p->mnt_root, flag);
1207                        if (!q)
1208                                goto Enomem;
1209                        spin_lock(&vfsmount_lock);
1210                        list_add_tail(&q->mnt_list, &res->mnt_list);
1211                        attach_mnt(q, &path);
1212                        spin_unlock(&vfsmount_lock);
1213                }
1214        }
1215        return res;
1216Enomem:
1217        if (res) {
1218                LIST_HEAD(umount_list);
1219                spin_lock(&vfsmount_lock);
1220                umount_tree(res, 0, &umount_list);
1221                spin_unlock(&vfsmount_lock);
1222                release_mounts(&umount_list);
1223        }
1224        return NULL;
1225}
1226
1227struct vfsmount *collect_mounts(struct path *path)
1228{
1229        struct vfsmount *tree;
1230        down_write(&namespace_sem);
1231        tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1232        up_write(&namespace_sem);
1233        return tree;
1234}
1235
1236void drop_collected_mounts(struct vfsmount *mnt)
1237{
1238        LIST_HEAD(umount_list);
1239        down_write(&namespace_sem);
1240        spin_lock(&vfsmount_lock);
1241        umount_tree(mnt, 0, &umount_list);
1242        spin_unlock(&vfsmount_lock);
1243        up_write(&namespace_sem);
1244        release_mounts(&umount_list);
1245}
1246
1247static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1248{
1249        struct vfsmount *p;
1250
1251        for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1252                if (p->mnt_group_id && !IS_MNT_SHARED(p))
1253                        mnt_release_group_id(p);
1254        }
1255}
1256
1257static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1258{
1259        struct vfsmount *p;
1260
1261        for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1262                if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1263                        int err = mnt_alloc_group_id(p);
1264                        if (err) {
1265                                cleanup_group_ids(mnt, p);
1266                                return err;
1267                        }
1268                }
1269        }
1270
1271        return 0;
1272}
1273
1274/*
1275 *  @source_mnt : mount tree to be attached
1276 *  @nd         : place the mount tree @source_mnt is attached
1277 *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1278 *                 store the parent mount and mountpoint dentry.
1279 *                 (done when source_mnt is moved)
1280 *
1281 *  NOTE: in the table below explains the semantics when a source mount
1282 *  of a given type is attached to a destination mount of a given type.
1283 * ---------------------------------------------------------------------------
1284 * |         BIND MOUNT OPERATION                                            |
1285 * |**************************************************************************
1286 * | source-->| shared        |       private  |       slave    | unbindable |
1287 * | dest     |               |                |                |            |
1288 * |   |      |               |                |                |            |
1289 * |   v      |               |                |                |            |
1290 * |**************************************************************************
1291 * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1292 * |          |               |                |                |            |
1293 * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1294 * ***************************************************************************
1295 * A bind operation clones the source mount and mounts the clone on the
1296 * destination mount.
1297 *
1298 * (++)  the cloned mount is propagated to all the mounts in the propagation
1299 *       tree of the destination mount and the cloned mount is added to
1300 *       the peer group of the source mount.
1301 * (+)   the cloned mount is created under the destination mount and is marked
1302 *       as shared. The cloned mount is added to the peer group of the source
1303 *       mount.
1304 * (+++) the mount is propagated to all the mounts in the propagation tree
1305 *       of the destination mount and the cloned mount is made slave
1306 *       of the same master as that of the source mount. The cloned mount
1307 *       is marked as 'shared and slave'.
1308 * (*)   the cloned mount is made a slave of the same master as that of the
1309 *       source mount.
1310 *
1311 * ---------------------------------------------------------------------------
1312 * |                    MOVE MOUNT OPERATION                                 |
1313 * |**************************************************************************
1314 * | source-->| shared        |       private  |       slave    | unbindable |
1315 * | dest     |               |                |                |            |
1316 * |   |      |               |                |                |            |
1317 * |   v      |               |                |                |            |
1318 * |**************************************************************************
1319 * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1320 * |          |               |                |                |            |
1321 * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1322 * ***************************************************************************
1323 *
1324 * (+)  the mount is moved to the destination. And is then propagated to
1325 *      all the mounts in the propagation tree of the destination mount.
1326 * (+*)  the mount is moved to the destination.
1327 * (+++)  the mount is moved to the destination and is then propagated to
1328 *      all the mounts belonging to the destination mount's propagation tree.
1329 *      the mount is marked as 'shared and slave'.
1330 * (*)  the mount continues to be a slave at the new location.
1331 *
1332 * if the source mount is a tree, the operations explained above is
1333 * applied to each mount in the tree.
1334 * Must be called without spinlocks held, since this function can sleep
1335 * in allocations.
1336 */
1337static int attach_recursive_mnt(struct vfsmount *source_mnt,
1338                        struct path *path, struct path *parent_path)
1339{
1340        LIST_HEAD(tree_list);
1341        struct vfsmount *dest_mnt = path->mnt;
1342        struct dentry *dest_dentry = path->dentry;
1343        struct vfsmount *child, *p;
1344        int err;
1345
1346        if (IS_MNT_SHARED(dest_mnt)) {
1347                err = invent_group_ids(source_mnt, true);
1348                if (err)
1349                        goto out;
1350        }
1351        err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1352        if (err)
1353                goto out_cleanup_ids;
1354
1355        if (IS_MNT_SHARED(dest_mnt)) {
1356                for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1357                        set_mnt_shared(p);
1358        }
1359
1360        spin_lock(&vfsmount_lock);
1361        if (parent_path) {
1362                detach_mnt(source_mnt, parent_path);
1363                attach_mnt(source_mnt, path);
1364                touch_mnt_namespace(parent_path->mnt->mnt_ns);
1365        } else {
1366                mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1367                commit_tree(source_mnt);
1368        }
1369
1370        list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1371                list_del_init(&child->mnt_hash);
1372                commit_tree(child);
1373        }
1374        spin_unlock(&vfsmount_lock);
1375        return 0;
1376
1377 out_cleanup_ids:
1378        if (IS_MNT_SHARED(dest_mnt))
1379                cleanup_group_ids(source_mnt, NULL);
1380 out:
1381        return err;
1382}
1383
1384static int graft_tree(struct vfsmount *mnt, struct path *path)
1385{
1386        int err;
1387        if (mnt->mnt_sb->s_flags & MS_NOUSER)
1388                return -EINVAL;
1389
1390        if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1391              S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1392                return -ENOTDIR;
1393
1394        err = -ENOENT;
1395        mutex_lock(&path->dentry->d_inode->i_mutex);
1396        if (IS_DEADDIR(path->dentry->d_inode))
1397                goto out_unlock;
1398
1399        err = security_sb_check_sb(mnt, path);
1400        if (err)
1401                goto out_unlock;
1402
1403        err = -ENOENT;
1404        if (!d_unlinked(path->dentry))
1405                err = attach_recursive_mnt(mnt, path, NULL);
1406out_unlock:
1407        mutex_unlock(&path->dentry->d_inode->i_mutex);
1408        if (!err)
1409                security_sb_post_addmount(mnt, path);
1410        return err;
1411}
1412
1413/*
1414 * recursively change the type of the mountpoint.
1415 */
1416static int do_change_type(struct path *path, int flag)
1417{
1418        struct vfsmount *m, *mnt = path->mnt;
1419        int recurse = flag & MS_REC;
1420        int type = flag & ~MS_REC;
1421        int err = 0;
1422
1423        if (!capable(CAP_SYS_ADMIN))
1424                return -EPERM;
1425
1426        if (path->dentry != path->mnt->mnt_root)
1427                return -EINVAL;
1428
1429        down_write(&namespace_sem);
1430        if (type == MS_SHARED) {
1431                err = invent_group_ids(mnt, recurse);
1432                if (err)
1433                        goto out_unlock;
1434        }
1435
1436        spin_lock(&vfsmount_lock);
1437        for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1438                change_mnt_propagation(m, type);
1439        spin_unlock(&vfsmount_lock);
1440
1441 out_unlock:
1442        up_write(&namespace_sem);
1443        return err;
1444}
1445
1446/*
1447 * do loopback mount.
1448 */
1449static int do_loopback(struct path *path, char *old_name,
1450                                int recurse)
1451{
1452        struct path old_path;
1453        struct vfsmount *mnt = NULL;
1454        int err = mount_is_safe(path);
1455        if (err)
1456                return err;
1457        if (!old_name || !*old_name)
1458                return -EINVAL;
1459        err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1460        if (err)
1461                return err;
1462
1463        down_write(&namespace_sem);
1464        err = -EINVAL;
1465        if (IS_MNT_UNBINDABLE(old_path.mnt))
1466                goto out;
1467
1468        if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1469                goto out;
1470
1471        err = -ENOMEM;
1472        if (recurse)
1473                mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
1474        else
1475                mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
1476
1477        if (!mnt)
1478                goto out;
1479
1480        err = graft_tree(mnt, path);
1481        if (err) {
1482                LIST_HEAD(umount_list);
1483                spin_lock(&vfsmount_lock);
1484                umount_tree(mnt, 0, &umount_list);
1485                spin_unlock(&vfsmount_lock);
1486                release_mounts(&umount_list);
1487        }
1488
1489out:
1490        up_write(&namespace_sem);
1491        path_put(&old_path);
1492        return err;
1493}
1494
1495static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1496{
1497        int error = 0;
1498        int readonly_request = 0;
1499
1500        if (ms_flags & MS_RDONLY)
1501                readonly_request = 1;
1502        if (readonly_request == __mnt_is_readonly(mnt))
1503                return 0;
1504
1505        if (readonly_request)
1506                error = mnt_make_readonly(mnt);
1507        else
1508                __mnt_unmake_readonly(mnt);
1509        return error;
1510}
1511
1512/*
1513 * change filesystem flags. dir should be a physical root of filesystem.
1514 * If you've mounted a non-root directory somewhere and want to do remount
1515 * on it - tough luck.
1516 */
1517static int do_remount(struct path *path, int flags, int mnt_flags,
1518                      void *data)
1519{
1520        int err;
1521        struct super_block *sb = path->mnt->mnt_sb;
1522
1523        if (!capable(CAP_SYS_ADMIN))
1524                return -EPERM;
1525
1526        if (!check_mnt(path->mnt))
1527                return -EINVAL;
1528
1529        if (path->dentry != path->mnt->mnt_root)
1530                return -EINVAL;
1531
1532        down_write(&sb->s_umount);
1533        if (flags & MS_BIND)
1534                err = change_mount_flags(path->mnt, flags);
1535        else
1536                err = do_remount_sb(sb, flags, data, 0);
1537        if (!err)
1538                path->mnt->mnt_flags = mnt_flags;
1539        up_write(&sb->s_umount);
1540        if (!err) {
1541                security_sb_post_remount(path->mnt, flags, data);
1542
1543                spin_lock(&vfsmount_lock);
1544                touch_mnt_namespace(path->mnt->mnt_ns);
1545                spin_unlock(&vfsmount_lock);
1546        }
1547        return err;
1548}
1549
1550static inline int tree_contains_unbindable(struct vfsmount *mnt)
1551{
1552        struct vfsmount *p;
1553        for (p = mnt; p; p = next_mnt(p, mnt)) {
1554                if (IS_MNT_UNBINDABLE(p))
1555                        return 1;
1556        }
1557        return 0;
1558}
1559
1560static int do_move_mount(struct path *path, char *old_name)
1561{
1562        struct path old_path, parent_path;
1563        struct vfsmount *p;
1564        int err = 0;
1565        if (!capable(CAP_SYS_ADMIN))
1566                return -EPERM;
1567        if (!old_name || !*old_name)
1568                return -EINVAL;
1569        err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1570        if (err)
1571                return err;
1572
1573        down_write(&namespace_sem);
1574        while (d_mountpoint(path->dentry) &&
1575               follow_down(path))
1576                ;
1577        err = -EINVAL;
1578        if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1579                goto out;
1580
1581        err = -ENOENT;
1582        mutex_lock(&path->dentry->d_inode->i_mutex);
1583        if (IS_DEADDIR(path->dentry->d_inode))
1584                goto out1;
1585
1586        if (d_unlinked(path->dentry))
1587                goto out1;
1588
1589        err = -EINVAL;
1590        if (old_path.dentry != old_path.mnt->mnt_root)
1591                goto out1;
1592
1593        if (old_path.mnt == old_path.mnt->mnt_parent)
1594                goto out1;
1595
1596        if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1597              S_ISDIR(old_path.dentry->d_inode->i_mode))
1598                goto out1;
1599        /*
1600         * Don't move a mount residing in a shared parent.
1601         */
1602        if (old_path.mnt->mnt_parent &&
1603            IS_MNT_SHARED(old_path.mnt->mnt_parent))
1604                goto out1;
1605        /*
1606         * Don't move a mount tree containing unbindable mounts to a destination
1607         * mount which is shared.
1608         */
1609        if (IS_MNT_SHARED(path->mnt) &&
1610            tree_contains_unbindable(old_path.mnt))
1611                goto out1;
1612        err = -ELOOP;
1613        for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1614                if (p == old_path.mnt)
1615                        goto out1;
1616
1617        err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
1618        if (err)
1619                goto out1;
1620
1621        /* if the mount is moved, it should no longer be expire
1622         * automatically */
1623        list_del_init(&old_path.mnt->mnt_expire);
1624out1:
1625        mutex_unlock(&path->dentry->d_inode->i_mutex);
1626out:
1627        up_write(&namespace_sem);
1628        if (!err)
1629                path_put(&parent_path);
1630        path_put(&old_path);
1631        return err;
1632}
1633
1634/*
1635 * create a new mount for userspace and request it to be added into the
1636 * namespace's tree
1637 */
1638static int do_new_mount(struct path *path, char *type, int flags,
1639                        int mnt_flags, char *name, void *data)
1640{
1641        struct vfsmount *mnt;
1642
1643        if (!type)
1644                return -EINVAL;
1645
1646        /* we need capabilities... */
1647        if (!capable(CAP_SYS_ADMIN))
1648                return -EPERM;
1649
1650        lock_kernel();
1651        mnt = do_kern_mount(type, flags, name, data);
1652        unlock_kernel();
1653        if (IS_ERR(mnt))
1654                return PTR_ERR(mnt);
1655
1656        return do_add_mount(mnt, path, mnt_flags, NULL);
1657}
1658
1659/*
1660 * add a mount into a namespace's mount tree
1661 * - provide the option of adding the new mount to an expiration list
1662 */
1663int do_add_mount(struct vfsmount *newmnt, struct path *path,
1664                 int mnt_flags, struct list_head *fslist)
1665{
1666        int err;
1667
1668        down_write(&namespace_sem);
1669        /* Something was mounted here while we slept */
1670        while (d_mountpoint(path->dentry) &&
1671               follow_down(path))
1672                ;
1673        err = -EINVAL;
1674        if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1675                goto unlock;
1676
1677        /* Refuse the same filesystem on the same mount point */
1678        err = -EBUSY;
1679        if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1680            path->mnt->mnt_root == path->dentry)
1681                goto unlock;
1682
1683        err = -EINVAL;
1684        if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1685                goto unlock;
1686
1687        newmnt->mnt_flags = mnt_flags;
1688        if ((err = graft_tree(newmnt, path)))
1689                goto unlock;
1690
1691        if (fslist) /* add to the specified expiration list */
1692                list_add_tail(&newmnt->mnt_expire, fslist);
1693
1694        up_write(&namespace_sem);
1695        return 0;
1696
1697unlock:
1698        up_write(&namespace_sem);
1699        mntput(newmnt);
1700        return err;
1701}
1702
1703EXPORT_SYMBOL_GPL(do_add_mount);
1704
1705/*
1706 * process a list of expirable mountpoints with the intent of discarding any
1707 * mountpoints that aren't in use and haven't been touched since last we came
1708 * here
1709 */
1710void mark_mounts_for_expiry(struct list_head *mounts)
1711{
1712        struct vfsmount *mnt, *next;
1713        LIST_HEAD(graveyard);
1714        LIST_HEAD(umounts);
1715
1716        if (list_empty(mounts))
1717                return;
1718
1719        down_write(&namespace_sem);
1720        spin_lock(&vfsmount_lock);
1721
1722        /* extract from the expiration list every vfsmount that matches the
1723         * following criteria:
1724         * - only referenced by its parent vfsmount
1725         * - still marked for expiry (marked on the last call here; marks are
1726         *   cleared by mntput())
1727         */
1728        list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1729                if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1730                        propagate_mount_busy(mnt, 1))
1731                        continue;
1732                list_move(&mnt->mnt_expire, &graveyard);
1733        }
1734        while (!list_empty(&graveyard)) {
1735                mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1736                touch_mnt_namespace(mnt->mnt_ns);
1737                umount_tree(mnt, 1, &umounts);
1738        }
1739        spin_unlock(&vfsmount_lock);
1740        up_write(&namespace_sem);
1741
1742        release_mounts(&umounts);
1743}
1744
1745EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1746
1747/*
1748 * Ripoff of 'select_parent()'
1749 *
1750 * search the list of submounts for a given mountpoint, and move any
1751 * shrinkable submounts to the 'graveyard' list.
1752 */
1753static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1754{
1755        struct vfsmount *this_parent = parent;
1756        struct list_head *next;
1757        int found = 0;
1758
1759repeat:
1760        next = this_parent->mnt_mounts.next;
1761resume:
1762        while (next != &this_parent->mnt_mounts) {
1763                struct list_head *tmp = next;
1764                struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1765
1766                next = tmp->next;
1767                if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1768                        continue;
1769                /*
1770                 * Descend a level if the d_mounts list is non-empty.
1771                 */
1772                if (!list_empty(&mnt->mnt_mounts)) {
1773                        this_parent = mnt;
1774                        goto repeat;
1775                }
1776
1777                if (!propagate_mount_busy(mnt, 1)) {
1778                        list_move_tail(&mnt->mnt_expire, graveyard);
1779                        found++;
1780                }
1781        }
1782        /*
1783         * All done at this level ... ascend and resume the search
1784         */
1785        if (this_parent != parent) {
1786                next = this_parent->mnt_child.next;
1787                this_parent = this_parent->mnt_parent;
1788                goto resume;
1789        }
1790        return found;
1791}
1792
1793/*
1794 * process a list of expirable mountpoints with the intent of discarding any
1795 * submounts of a specific parent mountpoint
1796 */
1797static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
1798{
1799        LIST_HEAD(graveyard);
1800        struct vfsmount *m;
1801
1802        /* extract submounts of 'mountpoint' from the expiration list */
1803        while (select_submounts(mnt, &graveyard)) {
1804                while (!list_empty(&graveyard)) {
1805                        m = list_first_entry(&graveyard, struct vfsmount,
1806                                                mnt_expire);
1807                        touch_mnt_namespace(m->mnt_ns);
1808                        umount_tree(m, 1, umounts);
1809                }
1810        }
1811}
1812
1813/*
1814 * Some copy_from_user() implementations do not return the exact number of
1815 * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
1816 * Note that this function differs from copy_from_user() in that it will oops
1817 * on bad values of `to', rather than returning a short copy.
1818 */
1819static long exact_copy_from_user(void *to, const void __user * from,
1820                                 unsigned long n)
1821{
1822        char *t = to;
1823        const char __user *f = from;
1824        char c;
1825
1826        if (!access_ok(VERIFY_READ, from, n))
1827                return n;
1828
1829        while (n) {
1830                if (__get_user(c, f)) {
1831                        memset(t, 0, n);
1832                        break;
1833                }
1834                *t++ = c;
1835                f++;
1836                n--;
1837        }
1838        return n;
1839}
1840
1841int copy_mount_options(const void __user * data, unsigned long *where)
1842{
1843        int i;
1844        unsigned long page;
1845        unsigned long size;
1846
1847        *where = 0;
1848        if (!data)
1849                return 0;
1850
1851        if (!(page = __get_free_page(GFP_KERNEL)))
1852                return -ENOMEM;
1853
1854        /* We only care that *some* data at the address the user
1855         * gave us is valid.  Just in case, we'll zero
1856         * the remainder of the page.
1857         */
1858        /* copy_from_user cannot cross TASK_SIZE ! */
1859        size = TASK_SIZE - (unsigned long)data;
1860        if (size > PAGE_SIZE)
1861                size = PAGE_SIZE;
1862
1863        i = size - exact_copy_from_user((void *)page, data, size);
1864        if (!i) {
1865                free_page(page);
1866                return -EFAULT;
1867        }
1868        if (i != PAGE_SIZE)
1869                memset((char *)page + i, 0, PAGE_SIZE - i);
1870        *where = page;
1871        return 0;
1872}
1873
1874int copy_mount_string(const void __user *data, char **where)
1875{
1876        char *tmp;
1877
1878        if (!data) {
1879                *where = NULL;
1880                return 0;
1881        }
1882
1883        tmp = strndup_user(data, PAGE_SIZE);
1884        if (IS_ERR(tmp))
1885                return PTR_ERR(tmp);
1886
1887        *where = tmp;
1888        return 0;
1889}
1890
1891/*
1892 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1893 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1894 *
1895 * data is a (void *) that can point to any structure up to
1896 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1897 * information (or be NULL).
1898 *
1899 * Pre-0.97 versions of mount() didn't have a flags word.
1900 * When the flags word was introduced its top half was required
1901 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1902 * Therefore, if this magic number is present, it carries no information
1903 * and must be discarded.
1904 */
1905long do_mount(char *dev_name, char *dir_name, char *type_page,
1906                  unsigned long flags, void *data_page)
1907{
1908        struct path path;
1909        int retval = 0;
1910        int mnt_flags = 0;
1911
1912        /* Discard magic */
1913        if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1914                flags &= ~MS_MGC_MSK;
1915
1916        /* Basic sanity checks */
1917
1918        if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1919                return -EINVAL;
1920
1921        if (data_page)
1922                ((char *)data_page)[PAGE_SIZE - 1] = 0;
1923
1924        /* Default to relatime unless overriden */
1925        if (!(flags & MS_NOATIME))
1926                mnt_flags |= MNT_RELATIME;
1927
1928        /* Separate the per-mountpoint flags */
1929        if (flags & MS_NOSUID)
1930                mnt_flags |= MNT_NOSUID;
1931        if (flags & MS_NODEV)
1932                mnt_flags |= MNT_NODEV;
1933        if (flags & MS_NOEXEC)
1934                mnt_flags |= MNT_NOEXEC;
1935        if (flags & MS_NOATIME)
1936                mnt_flags |= MNT_NOATIME;
1937        if (flags & MS_NODIRATIME)
1938                mnt_flags |= MNT_NODIRATIME;
1939        if (flags & MS_STRICTATIME)
1940                mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
1941        if (flags & MS_RDONLY)
1942                mnt_flags |= MNT_READONLY;
1943
1944        flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1945                   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
1946                   MS_STRICTATIME);
1947
1948        /* ... and get the mountpoint */
1949        retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
1950        if (retval)
1951                return retval;
1952
1953        retval = security_sb_mount(dev_name, &path,
1954                                   type_page, flags, data_page);
1955        if (retval)
1956                goto dput_out;
1957
1958        if (flags & MS_REMOUNT)
1959                retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1960                                    data_page);
1961        else if (flags & MS_BIND)
1962                retval = do_loopback(&path, dev_name, flags & MS_REC);
1963        else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1964                retval = do_change_type(&path, flags);
1965        else if (flags & MS_MOVE)
1966                retval = do_move_mount(&path, dev_name);
1967        else
1968                retval = do_new_mount(&path, type_page, flags, mnt_flags,
1969                                      dev_name, data_page);
1970dput_out:
1971        path_put(&path);
1972        return retval;
1973}
1974
1975static struct mnt_namespace *alloc_mnt_ns(void)
1976{
1977        struct mnt_namespace *new_ns;
1978
1979        new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1980        if (!new_ns)
1981                return ERR_PTR(-ENOMEM);
1982        atomic_set(&new_ns->count, 1);
1983        new_ns->root = NULL;
1984        INIT_LIST_HEAD(&new_ns->list);
1985        init_waitqueue_head(&new_ns->poll);
1986        new_ns->event = 0;
1987        return new_ns;
1988}
1989
1990/*
1991 * Allocate a new namespace structure and populate it with contents
1992 * copied from the namespace of the passed in task structure.
1993 */
1994static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
1995                struct fs_struct *fs)
1996{
1997        struct mnt_namespace *new_ns;
1998        struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
1999        struct vfsmount *p, *q;
2000
2001        new_ns = alloc_mnt_ns();
2002        if (IS_ERR(new_ns))
2003                return new_ns;
2004
2005        down_write(&namespace_sem);
2006        /* First pass: copy the tree topology */
2007        new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
2008                                        CL_COPY_ALL | CL_EXPIRE);
2009        if (!new_ns->root) {
2010                up_write(&namespace_sem);
2011                kfree(new_ns);
2012                return ERR_PTR(-ENOMEM);
2013        }
2014        spin_lock(&vfsmount_lock);
2015        list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
2016        spin_unlock(&vfsmount_lock);
2017
2018        /*
2019         * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2020         * as belonging to new namespace.  We have already acquired a private
2021         * fs_struct, so tsk->fs->lock is not needed.
2022         */
2023        p = mnt_ns->root;
2024        q = new_ns->root;
2025        while (p) {
2026                q->mnt_ns = new_ns;
2027                if (fs) {
2028                        if (p == fs->root.mnt) {
2029                                rootmnt = p;
2030                                fs->root.mnt = mntget(q);
2031                        }
2032                        if (p == fs->pwd.mnt) {
2033                                pwdmnt = p;
2034                                fs->pwd.mnt = mntget(q);
2035                        }
2036                }
2037                p = next_mnt(p, mnt_ns->root);
2038                q = next_mnt(q, new_ns->root);
2039        }
2040        up_write(&namespace_sem);
2041
2042        if (rootmnt)
2043                mntput(rootmnt);
2044        if (pwdmnt)
2045                mntput(pwdmnt);
2046
2047        return new_ns;
2048}
2049
2050struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2051                struct fs_struct *new_fs)
2052{
2053        struct mnt_namespace *new_ns;
2054
2055        BUG_ON(!ns);
2056        get_mnt_ns(ns);
2057
2058        if (!(flags & CLONE_NEWNS))
2059                return ns;
2060
2061        new_ns = dup_mnt_ns(ns, new_fs);
2062
2063        put_mnt_ns(ns);
2064        return new_ns;
2065}
2066
2067/**
2068 * create_mnt_ns - creates a private namespace and adds a root filesystem
2069 * @mnt: pointer to the new root filesystem mountpoint
2070 */
2071struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
2072{
2073        struct mnt_namespace *new_ns;
2074
2075        new_ns = alloc_mnt_ns();
2076        if (!IS_ERR(new_ns)) {
2077                mnt->mnt_ns = new_ns;
2078                new_ns->root = mnt;
2079                list_add(&new_ns->list, &new_ns->root->mnt_list);
2080        }
2081        return new_ns;
2082}
2083EXPORT_SYMBOL(create_mnt_ns);
2084
2085SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2086                char __user *, type, unsigned long, flags, void __user *, data)
2087{
2088        int ret;
2089        char *kernel_type;
2090        char *kernel_dir;
2091        char *kernel_dev;
2092        unsigned long data_page;
2093
2094        ret = copy_mount_string(type, &kernel_type);
2095        if (ret < 0)
2096                goto out_type;
2097
2098        kernel_dir = getname(dir_name);
2099        if (IS_ERR(kernel_dir)) {
2100                ret = PTR_ERR(kernel_dir);
2101                goto out_dir;
2102        }
2103
2104        ret = copy_mount_string(dev_name, &kernel_dev);
2105        if (ret < 0)
2106                goto out_dev;
2107
2108        ret = copy_mount_options(data, &data_page);
2109        if (ret < 0)
2110                goto out_data;
2111
2112        ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2113                (void *) data_page);
2114
2115        free_page(data_page);
2116out_data:
2117        kfree(kernel_dev);
2118out_dev:
2119        putname(kernel_dir);
2120out_dir:
2121        kfree(kernel_type);
2122out_type:
2123        return ret;
2124}
2125
2126/*
2127 * pivot_root Semantics:
2128 * Moves the root file system of the current process to the directory put_old,
2129 * makes new_root as the new root file system of the current process, and sets
2130 * root/cwd of all processes which had them on the current root to new_root.
2131 *
2132 * Restrictions:
2133 * The new_root and put_old must be directories, and  must not be on the
2134 * same file  system as the current process root. The put_old  must  be
2135 * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2136 * pointed to by put_old must yield the same directory as new_root. No other
2137 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2138 *
2139 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2140 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2141 * in this situation.
2142 *
2143 * Notes:
2144 *  - we don't move root/cwd if they are not at the root (reason: if something
2145 *    cared enough to change them, it's probably wrong to force them elsewhere)
2146 *  - it's okay to pick a root that isn't the root of a file system, e.g.
2147 *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2148 *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2149 *    first.
2150 */
2151SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2152                const char __user *, put_old)
2153{
2154        struct vfsmount *tmp;
2155        struct path new, old, parent_path, root_parent, root;
2156        int error;
2157
2158        if (!capable(CAP_SYS_ADMIN))
2159                return -EPERM;
2160
2161        error = user_path_dir(new_root, &new);
2162        if (error)
2163                goto out0;
2164        error = -EINVAL;
2165        if (!check_mnt(new.mnt))
2166                goto out1;
2167
2168        error = user_path_dir(put_old, &old);
2169        if (error)
2170                goto out1;
2171
2172        error = security_sb_pivotroot(&old, &new);
2173        if (error) {
2174                path_put(&old);
2175                goto out1;
2176        }
2177
2178        read_lock(&current->fs->lock);
2179        root = current->fs->root;
2180        path_get(&current->fs->root);
2181        read_unlock(&current->fs->lock);
2182        down_write(&namespace_sem);
2183        mutex_lock(&old.dentry->d_inode->i_mutex);
2184        error = -EINVAL;
2185        if (IS_MNT_SHARED(old.mnt) ||
2186                IS_MNT_SHARED(new.mnt->mnt_parent) ||
2187                IS_MNT_SHARED(root.mnt->mnt_parent))
2188                goto out2;
2189        if (!check_mnt(root.mnt))
2190                goto out2;
2191        error = -ENOENT;
2192        if (IS_DEADDIR(new.dentry->d_inode))
2193                goto out2;
2194        if (d_unlinked(new.dentry))
2195                goto out2;
2196        if (d_unlinked(old.dentry))
2197                goto out2;
2198        error = -EBUSY;
2199        if (new.mnt == root.mnt ||
2200            old.mnt == root.mnt)
2201                goto out2; /* loop, on the same file system  */
2202        error = -EINVAL;
2203        if (root.mnt->mnt_root != root.dentry)
2204                goto out2; /* not a mountpoint */
2205        if (root.mnt->mnt_parent == root.mnt)
2206                goto out2; /* not attached */
2207        if (new.mnt->mnt_root != new.dentry)
2208                goto out2; /* not a mountpoint */
2209        if (new.mnt->mnt_parent == new.mnt)
2210                goto out2; /* not attached */
2211        /* make sure we can reach put_old from new_root */
2212        tmp = old.mnt;
2213        spin_lock(&vfsmount_lock);
2214        if (tmp != new.mnt) {
2215                for (;;) {
2216                        if (tmp->mnt_parent == tmp)
2217                                goto out3; /* already mounted on put_old */
2218                        if (tmp->mnt_parent == new.mnt)
2219                                break;
2220                        tmp = tmp->mnt_parent;
2221                }
2222                if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
2223                        goto out3;
2224        } else if (!is_subdir(old.dentry, new.dentry))
2225                goto out3;
2226        detach_mnt(new.mnt, &parent_path);
2227        detach_mnt(root.mnt, &root_parent);
2228        /* mount old root on put_old */
2229        attach_mnt(root.mnt, &old);
2230        /* mount new_root on / */
2231        attach_mnt(new.mnt, &root_parent);
2232        touch_mnt_namespace(current->nsproxy->mnt_ns);
2233        spin_unlock(&vfsmount_lock);
2234        chroot_fs_refs(&root, &new);
2235        security_sb_post_pivotroot(&root, &new);
2236        error = 0;
2237        path_put(&root_parent);
2238        path_put(&parent_path);
2239out2:
2240        mutex_unlock(&old.dentry->d_inode->i_mutex);
2241        up_write(&namespace_sem);
2242        path_put(&root);
2243        path_put(&old);
2244out1:
2245        path_put(&new);
2246out0:
2247        return error;
2248out3:
2249        spin_unlock(&vfsmount_lock);
2250        goto out2;
2251}
2252
2253static void __init init_mount_tree(void)
2254{
2255        struct vfsmount *mnt;
2256        struct mnt_namespace *ns;
2257        struct path root;
2258
2259        mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2260        if (IS_ERR(mnt))
2261                panic("Can't create rootfs");
2262        ns = create_mnt_ns(mnt);
2263        if (IS_ERR(ns))
2264                panic("Can't allocate initial namespace");
2265
2266        init_task.nsproxy->mnt_ns = ns;
2267        get_mnt_ns(ns);
2268
2269        root.mnt = ns->root;
2270        root.dentry = ns->root->mnt_root;
2271
2272        set_fs_pwd(current->fs, &root);
2273        set_fs_root(current->fs, &root);
2274}
2275
2276void __init mnt_init(void)
2277{
2278        unsigned u;
2279        int err;
2280
2281        init_rwsem(&namespace_sem);
2282
2283        mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2284                        0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2285
2286        mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2287
2288        if (!mount_hashtable)
2289                panic("Failed to allocate mount hash table\n");
2290
2291        printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2292
2293        for (u = 0; u < HASH_SIZE; u++)
2294                INIT_LIST_HEAD(&mount_hashtable[u]);
2295
2296        err = sysfs_init();
2297        if (err)
2298                printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2299                        __func__, err);
2300        fs_kobj = kobject_create_and_add("fs", NULL);
2301        if (!fs_kobj)
2302                printk(KERN_WARNING "%s: kobj create error\n", __func__);
2303        init_rootfs();
2304        init_mount_tree();
2305}
2306
2307void put_mnt_ns(struct mnt_namespace *ns)
2308{
2309        struct vfsmount *root;
2310        LIST_HEAD(umount_list);
2311
2312        if (!atomic_dec_and_lock(&ns->count, &vfsmount_lock))
2313                return;
2314        root = ns->root;
2315        ns->root = NULL;
2316        spin_unlock(&vfsmount_lock);
2317        down_write(&namespace_sem);
2318        spin_lock(&vfsmount_lock);
2319        umount_tree(root, 0, &umount_list);
2320        spin_unlock(&vfsmount_lock);
2321        up_write(&namespace_sem);
2322        release_mounts(&umount_list);
2323        kfree(ns);
2324}
2325EXPORT_SYMBOL(put_mnt_ns);
2326