linux/fs/ocfs2/aops.c
<<
>>
Prefs
   1/* -*- mode: c; c-basic-offset: 8; -*-
   2 * vim: noexpandtab sw=8 ts=8 sts=0:
   3 *
   4 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public
  17 * License along with this program; if not, write to the
  18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  19 * Boston, MA 021110-1307, USA.
  20 */
  21
  22#include <linux/fs.h>
  23#include <linux/slab.h>
  24#include <linux/highmem.h>
  25#include <linux/pagemap.h>
  26#include <asm/byteorder.h>
  27#include <linux/swap.h>
  28#include <linux/pipe_fs_i.h>
  29#include <linux/mpage.h>
  30#include <linux/quotaops.h>
  31
  32#define MLOG_MASK_PREFIX ML_FILE_IO
  33#include <cluster/masklog.h>
  34
  35#include "ocfs2.h"
  36
  37#include "alloc.h"
  38#include "aops.h"
  39#include "dlmglue.h"
  40#include "extent_map.h"
  41#include "file.h"
  42#include "inode.h"
  43#include "journal.h"
  44#include "suballoc.h"
  45#include "super.h"
  46#include "symlink.h"
  47#include "refcounttree.h"
  48
  49#include "buffer_head_io.h"
  50
  51static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
  52                                   struct buffer_head *bh_result, int create)
  53{
  54        int err = -EIO;
  55        int status;
  56        struct ocfs2_dinode *fe = NULL;
  57        struct buffer_head *bh = NULL;
  58        struct buffer_head *buffer_cache_bh = NULL;
  59        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  60        void *kaddr;
  61
  62        mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
  63                   (unsigned long long)iblock, bh_result, create);
  64
  65        BUG_ON(ocfs2_inode_is_fast_symlink(inode));
  66
  67        if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
  68                mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
  69                     (unsigned long long)iblock);
  70                goto bail;
  71        }
  72
  73        status = ocfs2_read_inode_block(inode, &bh);
  74        if (status < 0) {
  75                mlog_errno(status);
  76                goto bail;
  77        }
  78        fe = (struct ocfs2_dinode *) bh->b_data;
  79
  80        if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
  81                                                    le32_to_cpu(fe->i_clusters))) {
  82                mlog(ML_ERROR, "block offset is outside the allocated size: "
  83                     "%llu\n", (unsigned long long)iblock);
  84                goto bail;
  85        }
  86
  87        /* We don't use the page cache to create symlink data, so if
  88         * need be, copy it over from the buffer cache. */
  89        if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
  90                u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
  91                            iblock;
  92                buffer_cache_bh = sb_getblk(osb->sb, blkno);
  93                if (!buffer_cache_bh) {
  94                        mlog(ML_ERROR, "couldn't getblock for symlink!\n");
  95                        goto bail;
  96                }
  97
  98                /* we haven't locked out transactions, so a commit
  99                 * could've happened. Since we've got a reference on
 100                 * the bh, even if it commits while we're doing the
 101                 * copy, the data is still good. */
 102                if (buffer_jbd(buffer_cache_bh)
 103                    && ocfs2_inode_is_new(inode)) {
 104                        kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
 105                        if (!kaddr) {
 106                                mlog(ML_ERROR, "couldn't kmap!\n");
 107                                goto bail;
 108                        }
 109                        memcpy(kaddr + (bh_result->b_size * iblock),
 110                               buffer_cache_bh->b_data,
 111                               bh_result->b_size);
 112                        kunmap_atomic(kaddr, KM_USER0);
 113                        set_buffer_uptodate(bh_result);
 114                }
 115                brelse(buffer_cache_bh);
 116        }
 117
 118        map_bh(bh_result, inode->i_sb,
 119               le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
 120
 121        err = 0;
 122
 123bail:
 124        brelse(bh);
 125
 126        mlog_exit(err);
 127        return err;
 128}
 129
 130int ocfs2_get_block(struct inode *inode, sector_t iblock,
 131                    struct buffer_head *bh_result, int create)
 132{
 133        int err = 0;
 134        unsigned int ext_flags;
 135        u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
 136        u64 p_blkno, count, past_eof;
 137        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 138
 139        mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
 140                   (unsigned long long)iblock, bh_result, create);
 141
 142        if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
 143                mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
 144                     inode, inode->i_ino);
 145
 146        if (S_ISLNK(inode->i_mode)) {
 147                /* this always does I/O for some reason. */
 148                err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
 149                goto bail;
 150        }
 151
 152        err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
 153                                          &ext_flags);
 154        if (err) {
 155                mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
 156                     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
 157                     (unsigned long long)p_blkno);
 158                goto bail;
 159        }
 160
 161        if (max_blocks < count)
 162                count = max_blocks;
 163
 164        /*
 165         * ocfs2 never allocates in this function - the only time we
 166         * need to use BH_New is when we're extending i_size on a file
 167         * system which doesn't support holes, in which case BH_New
 168         * allows block_prepare_write() to zero.
 169         *
 170         * If we see this on a sparse file system, then a truncate has
 171         * raced us and removed the cluster. In this case, we clear
 172         * the buffers dirty and uptodate bits and let the buffer code
 173         * ignore it as a hole.
 174         */
 175        if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
 176                clear_buffer_dirty(bh_result);
 177                clear_buffer_uptodate(bh_result);
 178                goto bail;
 179        }
 180
 181        /* Treat the unwritten extent as a hole for zeroing purposes. */
 182        if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 183                map_bh(bh_result, inode->i_sb, p_blkno);
 184
 185        bh_result->b_size = count << inode->i_blkbits;
 186
 187        if (!ocfs2_sparse_alloc(osb)) {
 188                if (p_blkno == 0) {
 189                        err = -EIO;
 190                        mlog(ML_ERROR,
 191                             "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
 192                             (unsigned long long)iblock,
 193                             (unsigned long long)p_blkno,
 194                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
 195                        mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
 196                        dump_stack();
 197                        goto bail;
 198                }
 199
 200                past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
 201                mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
 202                     (unsigned long long)past_eof);
 203
 204                if (create && (iblock >= past_eof))
 205                        set_buffer_new(bh_result);
 206        }
 207
 208bail:
 209        if (err < 0)
 210                err = -EIO;
 211
 212        mlog_exit(err);
 213        return err;
 214}
 215
 216int ocfs2_read_inline_data(struct inode *inode, struct page *page,
 217                           struct buffer_head *di_bh)
 218{
 219        void *kaddr;
 220        loff_t size;
 221        struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
 222
 223        if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
 224                ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
 225                            (unsigned long long)OCFS2_I(inode)->ip_blkno);
 226                return -EROFS;
 227        }
 228
 229        size = i_size_read(inode);
 230
 231        if (size > PAGE_CACHE_SIZE ||
 232            size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
 233                ocfs2_error(inode->i_sb,
 234                            "Inode %llu has with inline data has bad size: %Lu",
 235                            (unsigned long long)OCFS2_I(inode)->ip_blkno,
 236                            (unsigned long long)size);
 237                return -EROFS;
 238        }
 239
 240        kaddr = kmap_atomic(page, KM_USER0);
 241        if (size)
 242                memcpy(kaddr, di->id2.i_data.id_data, size);
 243        /* Clear the remaining part of the page */
 244        memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
 245        flush_dcache_page(page);
 246        kunmap_atomic(kaddr, KM_USER0);
 247
 248        SetPageUptodate(page);
 249
 250        return 0;
 251}
 252
 253static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
 254{
 255        int ret;
 256        struct buffer_head *di_bh = NULL;
 257
 258        BUG_ON(!PageLocked(page));
 259        BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
 260
 261        ret = ocfs2_read_inode_block(inode, &di_bh);
 262        if (ret) {
 263                mlog_errno(ret);
 264                goto out;
 265        }
 266
 267        ret = ocfs2_read_inline_data(inode, page, di_bh);
 268out:
 269        unlock_page(page);
 270
 271        brelse(di_bh);
 272        return ret;
 273}
 274
 275static int ocfs2_readpage(struct file *file, struct page *page)
 276{
 277        struct inode *inode = page->mapping->host;
 278        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 279        loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
 280        int ret, unlock = 1;
 281
 282        mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
 283
 284        ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
 285        if (ret != 0) {
 286                if (ret == AOP_TRUNCATED_PAGE)
 287                        unlock = 0;
 288                mlog_errno(ret);
 289                goto out;
 290        }
 291
 292        if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 293                ret = AOP_TRUNCATED_PAGE;
 294                goto out_inode_unlock;
 295        }
 296
 297        /*
 298         * i_size might have just been updated as we grabed the meta lock.  We
 299         * might now be discovering a truncate that hit on another node.
 300         * block_read_full_page->get_block freaks out if it is asked to read
 301         * beyond the end of a file, so we check here.  Callers
 302         * (generic_file_read, vm_ops->fault) are clever enough to check i_size
 303         * and notice that the page they just read isn't needed.
 304         *
 305         * XXX sys_readahead() seems to get that wrong?
 306         */
 307        if (start >= i_size_read(inode)) {
 308                zero_user(page, 0, PAGE_SIZE);
 309                SetPageUptodate(page);
 310                ret = 0;
 311                goto out_alloc;
 312        }
 313
 314        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 315                ret = ocfs2_readpage_inline(inode, page);
 316        else
 317                ret = block_read_full_page(page, ocfs2_get_block);
 318        unlock = 0;
 319
 320out_alloc:
 321        up_read(&OCFS2_I(inode)->ip_alloc_sem);
 322out_inode_unlock:
 323        ocfs2_inode_unlock(inode, 0);
 324out:
 325        if (unlock)
 326                unlock_page(page);
 327        mlog_exit(ret);
 328        return ret;
 329}
 330
 331/*
 332 * This is used only for read-ahead. Failures or difficult to handle
 333 * situations are safe to ignore.
 334 *
 335 * Right now, we don't bother with BH_Boundary - in-inode extent lists
 336 * are quite large (243 extents on 4k blocks), so most inodes don't
 337 * grow out to a tree. If need be, detecting boundary extents could
 338 * trivially be added in a future version of ocfs2_get_block().
 339 */
 340static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
 341                           struct list_head *pages, unsigned nr_pages)
 342{
 343        int ret, err = -EIO;
 344        struct inode *inode = mapping->host;
 345        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 346        loff_t start;
 347        struct page *last;
 348
 349        /*
 350         * Use the nonblocking flag for the dlm code to avoid page
 351         * lock inversion, but don't bother with retrying.
 352         */
 353        ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
 354        if (ret)
 355                return err;
 356
 357        if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 358                ocfs2_inode_unlock(inode, 0);
 359                return err;
 360        }
 361
 362        /*
 363         * Don't bother with inline-data. There isn't anything
 364         * to read-ahead in that case anyway...
 365         */
 366        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 367                goto out_unlock;
 368
 369        /*
 370         * Check whether a remote node truncated this file - we just
 371         * drop out in that case as it's not worth handling here.
 372         */
 373        last = list_entry(pages->prev, struct page, lru);
 374        start = (loff_t)last->index << PAGE_CACHE_SHIFT;
 375        if (start >= i_size_read(inode))
 376                goto out_unlock;
 377
 378        err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
 379
 380out_unlock:
 381        up_read(&oi->ip_alloc_sem);
 382        ocfs2_inode_unlock(inode, 0);
 383
 384        return err;
 385}
 386
 387/* Note: Because we don't support holes, our allocation has
 388 * already happened (allocation writes zeros to the file data)
 389 * so we don't have to worry about ordered writes in
 390 * ocfs2_writepage.
 391 *
 392 * ->writepage is called during the process of invalidating the page cache
 393 * during blocked lock processing.  It can't block on any cluster locks
 394 * to during block mapping.  It's relying on the fact that the block
 395 * mapping can't have disappeared under the dirty pages that it is
 396 * being asked to write back.
 397 */
 398static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
 399{
 400        int ret;
 401
 402        mlog_entry("(0x%p)\n", page);
 403
 404        ret = block_write_full_page(page, ocfs2_get_block, wbc);
 405
 406        mlog_exit(ret);
 407
 408        return ret;
 409}
 410
 411/*
 412 * This is called from ocfs2_write_zero_page() which has handled it's
 413 * own cluster locking and has ensured allocation exists for those
 414 * blocks to be written.
 415 */
 416int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
 417                               unsigned from, unsigned to)
 418{
 419        int ret;
 420
 421        ret = block_prepare_write(page, from, to, ocfs2_get_block);
 422
 423        return ret;
 424}
 425
 426/* Taken from ext3. We don't necessarily need the full blown
 427 * functionality yet, but IMHO it's better to cut and paste the whole
 428 * thing so we can avoid introducing our own bugs (and easily pick up
 429 * their fixes when they happen) --Mark */
 430int walk_page_buffers(  handle_t *handle,
 431                        struct buffer_head *head,
 432                        unsigned from,
 433                        unsigned to,
 434                        int *partial,
 435                        int (*fn)(      handle_t *handle,
 436                                        struct buffer_head *bh))
 437{
 438        struct buffer_head *bh;
 439        unsigned block_start, block_end;
 440        unsigned blocksize = head->b_size;
 441        int err, ret = 0;
 442        struct buffer_head *next;
 443
 444        for (   bh = head, block_start = 0;
 445                ret == 0 && (bh != head || !block_start);
 446                block_start = block_end, bh = next)
 447        {
 448                next = bh->b_this_page;
 449                block_end = block_start + blocksize;
 450                if (block_end <= from || block_start >= to) {
 451                        if (partial && !buffer_uptodate(bh))
 452                                *partial = 1;
 453                        continue;
 454                }
 455                err = (*fn)(handle, bh);
 456                if (!ret)
 457                        ret = err;
 458        }
 459        return ret;
 460}
 461
 462handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
 463                                                         struct page *page,
 464                                                         unsigned from,
 465                                                         unsigned to)
 466{
 467        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 468        handle_t *handle;
 469        int ret = 0;
 470
 471        handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
 472        if (IS_ERR(handle)) {
 473                ret = -ENOMEM;
 474                mlog_errno(ret);
 475                goto out;
 476        }
 477
 478        if (ocfs2_should_order_data(inode)) {
 479                ret = ocfs2_jbd2_file_inode(handle, inode);
 480                if (ret < 0)
 481                        mlog_errno(ret);
 482        }
 483out:
 484        if (ret) {
 485                if (!IS_ERR(handle))
 486                        ocfs2_commit_trans(osb, handle);
 487                handle = ERR_PTR(ret);
 488        }
 489        return handle;
 490}
 491
 492static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
 493{
 494        sector_t status;
 495        u64 p_blkno = 0;
 496        int err = 0;
 497        struct inode *inode = mapping->host;
 498
 499        mlog_entry("(block = %llu)\n", (unsigned long long)block);
 500
 501        /* We don't need to lock journal system files, since they aren't
 502         * accessed concurrently from multiple nodes.
 503         */
 504        if (!INODE_JOURNAL(inode)) {
 505                err = ocfs2_inode_lock(inode, NULL, 0);
 506                if (err) {
 507                        if (err != -ENOENT)
 508                                mlog_errno(err);
 509                        goto bail;
 510                }
 511                down_read(&OCFS2_I(inode)->ip_alloc_sem);
 512        }
 513
 514        if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
 515                err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
 516                                                  NULL);
 517
 518        if (!INODE_JOURNAL(inode)) {
 519                up_read(&OCFS2_I(inode)->ip_alloc_sem);
 520                ocfs2_inode_unlock(inode, 0);
 521        }
 522
 523        if (err) {
 524                mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
 525                     (unsigned long long)block);
 526                mlog_errno(err);
 527                goto bail;
 528        }
 529
 530bail:
 531        status = err ? 0 : p_blkno;
 532
 533        mlog_exit((int)status);
 534
 535        return status;
 536}
 537
 538/*
 539 * TODO: Make this into a generic get_blocks function.
 540 *
 541 * From do_direct_io in direct-io.c:
 542 *  "So what we do is to permit the ->get_blocks function to populate
 543 *   bh.b_size with the size of IO which is permitted at this offset and
 544 *   this i_blkbits."
 545 *
 546 * This function is called directly from get_more_blocks in direct-io.c.
 547 *
 548 * called like this: dio->get_blocks(dio->inode, fs_startblk,
 549 *                                      fs_count, map_bh, dio->rw == WRITE);
 550 */
 551static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
 552                                     struct buffer_head *bh_result, int create)
 553{
 554        int ret;
 555        u64 p_blkno, inode_blocks, contig_blocks;
 556        unsigned int ext_flags;
 557        unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
 558        unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
 559
 560        /* This function won't even be called if the request isn't all
 561         * nicely aligned and of the right size, so there's no need
 562         * for us to check any of that. */
 563
 564        inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
 565
 566        /*
 567         * Any write past EOF is not allowed because we'd be extending.
 568         */
 569        if (create && (iblock + max_blocks) > inode_blocks) {
 570                ret = -EIO;
 571                goto bail;
 572        }
 573
 574        /* This figures out the size of the next contiguous block, and
 575         * our logical offset */
 576        ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
 577                                          &contig_blocks, &ext_flags);
 578        if (ret) {
 579                mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
 580                     (unsigned long long)iblock);
 581                ret = -EIO;
 582                goto bail;
 583        }
 584
 585        if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno && create) {
 586                ocfs2_error(inode->i_sb,
 587                            "Inode %llu has a hole at block %llu\n",
 588                            (unsigned long long)OCFS2_I(inode)->ip_blkno,
 589                            (unsigned long long)iblock);
 590                ret = -EROFS;
 591                goto bail;
 592        }
 593
 594        /* We should already CoW the refcounted extent. */
 595        BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
 596        /*
 597         * get_more_blocks() expects us to describe a hole by clearing
 598         * the mapped bit on bh_result().
 599         *
 600         * Consider an unwritten extent as a hole.
 601         */
 602        if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 603                map_bh(bh_result, inode->i_sb, p_blkno);
 604        else {
 605                /*
 606                 * ocfs2_prepare_inode_for_write() should have caught
 607                 * the case where we'd be filling a hole and triggered
 608                 * a buffered write instead.
 609                 */
 610                if (create) {
 611                        ret = -EIO;
 612                        mlog_errno(ret);
 613                        goto bail;
 614                }
 615
 616                clear_buffer_mapped(bh_result);
 617        }
 618
 619        /* make sure we don't map more than max_blocks blocks here as
 620           that's all the kernel will handle at this point. */
 621        if (max_blocks < contig_blocks)
 622                contig_blocks = max_blocks;
 623        bh_result->b_size = contig_blocks << blocksize_bits;
 624bail:
 625        return ret;
 626}
 627
 628/* 
 629 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
 630 * particularly interested in the aio/dio case.  Like the core uses
 631 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
 632 * truncation on another.
 633 */
 634static void ocfs2_dio_end_io(struct kiocb *iocb,
 635                             loff_t offset,
 636                             ssize_t bytes,
 637                             void *private)
 638{
 639        struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
 640        int level;
 641
 642        /* this io's submitter should not have unlocked this before we could */
 643        BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
 644
 645        ocfs2_iocb_clear_rw_locked(iocb);
 646
 647        level = ocfs2_iocb_rw_locked_level(iocb);
 648        if (!level)
 649                up_read(&inode->i_alloc_sem);
 650        ocfs2_rw_unlock(inode, level);
 651}
 652
 653/*
 654 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
 655 * from ext3.  PageChecked() bits have been removed as OCFS2 does not
 656 * do journalled data.
 657 */
 658static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
 659{
 660        journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
 661
 662        jbd2_journal_invalidatepage(journal, page, offset);
 663}
 664
 665static int ocfs2_releasepage(struct page *page, gfp_t wait)
 666{
 667        journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
 668
 669        if (!page_has_buffers(page))
 670                return 0;
 671        return jbd2_journal_try_to_free_buffers(journal, page, wait);
 672}
 673
 674static ssize_t ocfs2_direct_IO(int rw,
 675                               struct kiocb *iocb,
 676                               const struct iovec *iov,
 677                               loff_t offset,
 678                               unsigned long nr_segs)
 679{
 680        struct file *file = iocb->ki_filp;
 681        struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
 682        int ret;
 683
 684        mlog_entry_void();
 685
 686        /*
 687         * Fallback to buffered I/O if we see an inode without
 688         * extents.
 689         */
 690        if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 691                return 0;
 692
 693        /* Fallback to buffered I/O if we are appending. */
 694        if (i_size_read(inode) <= offset)
 695                return 0;
 696
 697        ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
 698                                            inode->i_sb->s_bdev, iov, offset,
 699                                            nr_segs, 
 700                                            ocfs2_direct_IO_get_blocks,
 701                                            ocfs2_dio_end_io);
 702
 703        mlog_exit(ret);
 704        return ret;
 705}
 706
 707static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
 708                                            u32 cpos,
 709                                            unsigned int *start,
 710                                            unsigned int *end)
 711{
 712        unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
 713
 714        if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
 715                unsigned int cpp;
 716
 717                cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
 718
 719                cluster_start = cpos % cpp;
 720                cluster_start = cluster_start << osb->s_clustersize_bits;
 721
 722                cluster_end = cluster_start + osb->s_clustersize;
 723        }
 724
 725        BUG_ON(cluster_start > PAGE_SIZE);
 726        BUG_ON(cluster_end > PAGE_SIZE);
 727
 728        if (start)
 729                *start = cluster_start;
 730        if (end)
 731                *end = cluster_end;
 732}
 733
 734/*
 735 * 'from' and 'to' are the region in the page to avoid zeroing.
 736 *
 737 * If pagesize > clustersize, this function will avoid zeroing outside
 738 * of the cluster boundary.
 739 *
 740 * from == to == 0 is code for "zero the entire cluster region"
 741 */
 742static void ocfs2_clear_page_regions(struct page *page,
 743                                     struct ocfs2_super *osb, u32 cpos,
 744                                     unsigned from, unsigned to)
 745{
 746        void *kaddr;
 747        unsigned int cluster_start, cluster_end;
 748
 749        ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
 750
 751        kaddr = kmap_atomic(page, KM_USER0);
 752
 753        if (from || to) {
 754                if (from > cluster_start)
 755                        memset(kaddr + cluster_start, 0, from - cluster_start);
 756                if (to < cluster_end)
 757                        memset(kaddr + to, 0, cluster_end - to);
 758        } else {
 759                memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
 760        }
 761
 762        kunmap_atomic(kaddr, KM_USER0);
 763}
 764
 765/*
 766 * Nonsparse file systems fully allocate before we get to the write
 767 * code. This prevents ocfs2_write() from tagging the write as an
 768 * allocating one, which means ocfs2_map_page_blocks() might try to
 769 * read-in the blocks at the tail of our file. Avoid reading them by
 770 * testing i_size against each block offset.
 771 */
 772static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
 773                                 unsigned int block_start)
 774{
 775        u64 offset = page_offset(page) + block_start;
 776
 777        if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
 778                return 1;
 779
 780        if (i_size_read(inode) > offset)
 781                return 1;
 782
 783        return 0;
 784}
 785
 786/*
 787 * Some of this taken from block_prepare_write(). We already have our
 788 * mapping by now though, and the entire write will be allocating or
 789 * it won't, so not much need to use BH_New.
 790 *
 791 * This will also skip zeroing, which is handled externally.
 792 */
 793int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
 794                          struct inode *inode, unsigned int from,
 795                          unsigned int to, int new)
 796{
 797        int ret = 0;
 798        struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
 799        unsigned int block_end, block_start;
 800        unsigned int bsize = 1 << inode->i_blkbits;
 801
 802        if (!page_has_buffers(page))
 803                create_empty_buffers(page, bsize, 0);
 804
 805        head = page_buffers(page);
 806        for (bh = head, block_start = 0; bh != head || !block_start;
 807             bh = bh->b_this_page, block_start += bsize) {
 808                block_end = block_start + bsize;
 809
 810                clear_buffer_new(bh);
 811
 812                /*
 813                 * Ignore blocks outside of our i/o range -
 814                 * they may belong to unallocated clusters.
 815                 */
 816                if (block_start >= to || block_end <= from) {
 817                        if (PageUptodate(page))
 818                                set_buffer_uptodate(bh);
 819                        continue;
 820                }
 821
 822                /*
 823                 * For an allocating write with cluster size >= page
 824                 * size, we always write the entire page.
 825                 */
 826                if (new)
 827                        set_buffer_new(bh);
 828
 829                if (!buffer_mapped(bh)) {
 830                        map_bh(bh, inode->i_sb, *p_blkno);
 831                        unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
 832                }
 833
 834                if (PageUptodate(page)) {
 835                        if (!buffer_uptodate(bh))
 836                                set_buffer_uptodate(bh);
 837                } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
 838                           !buffer_new(bh) &&
 839                           ocfs2_should_read_blk(inode, page, block_start) &&
 840                           (block_start < from || block_end > to)) {
 841                        ll_rw_block(READ, 1, &bh);
 842                        *wait_bh++=bh;
 843                }
 844
 845                *p_blkno = *p_blkno + 1;
 846        }
 847
 848        /*
 849         * If we issued read requests - let them complete.
 850         */
 851        while(wait_bh > wait) {
 852                wait_on_buffer(*--wait_bh);
 853                if (!buffer_uptodate(*wait_bh))
 854                        ret = -EIO;
 855        }
 856
 857        if (ret == 0 || !new)
 858                return ret;
 859
 860        /*
 861         * If we get -EIO above, zero out any newly allocated blocks
 862         * to avoid exposing stale data.
 863         */
 864        bh = head;
 865        block_start = 0;
 866        do {
 867                block_end = block_start + bsize;
 868                if (block_end <= from)
 869                        goto next_bh;
 870                if (block_start >= to)
 871                        break;
 872
 873                zero_user(page, block_start, bh->b_size);
 874                set_buffer_uptodate(bh);
 875                mark_buffer_dirty(bh);
 876
 877next_bh:
 878                block_start = block_end;
 879                bh = bh->b_this_page;
 880        } while (bh != head);
 881
 882        return ret;
 883}
 884
 885#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
 886#define OCFS2_MAX_CTXT_PAGES    1
 887#else
 888#define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
 889#endif
 890
 891#define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
 892
 893/*
 894 * Describe the state of a single cluster to be written to.
 895 */
 896struct ocfs2_write_cluster_desc {
 897        u32             c_cpos;
 898        u32             c_phys;
 899        /*
 900         * Give this a unique field because c_phys eventually gets
 901         * filled.
 902         */
 903        unsigned        c_new;
 904        unsigned        c_unwritten;
 905        unsigned        c_needs_zero;
 906};
 907
 908struct ocfs2_write_ctxt {
 909        /* Logical cluster position / len of write */
 910        u32                             w_cpos;
 911        u32                             w_clen;
 912
 913        /* First cluster allocated in a nonsparse extend */
 914        u32                             w_first_new_cpos;
 915
 916        struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
 917
 918        /*
 919         * This is true if page_size > cluster_size.
 920         *
 921         * It triggers a set of special cases during write which might
 922         * have to deal with allocating writes to partial pages.
 923         */
 924        unsigned int                    w_large_pages;
 925
 926        /*
 927         * Pages involved in this write.
 928         *
 929         * w_target_page is the page being written to by the user.
 930         *
 931         * w_pages is an array of pages which always contains
 932         * w_target_page, and in the case of an allocating write with
 933         * page_size < cluster size, it will contain zero'd and mapped
 934         * pages adjacent to w_target_page which need to be written
 935         * out in so that future reads from that region will get
 936         * zero's.
 937         */
 938        struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
 939        unsigned int                    w_num_pages;
 940        struct page                     *w_target_page;
 941
 942        /*
 943         * ocfs2_write_end() uses this to know what the real range to
 944         * write in the target should be.
 945         */
 946        unsigned int                    w_target_from;
 947        unsigned int                    w_target_to;
 948
 949        /*
 950         * We could use journal_current_handle() but this is cleaner,
 951         * IMHO -Mark
 952         */
 953        handle_t                        *w_handle;
 954
 955        struct buffer_head              *w_di_bh;
 956
 957        struct ocfs2_cached_dealloc_ctxt w_dealloc;
 958};
 959
 960void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
 961{
 962        int i;
 963
 964        for(i = 0; i < num_pages; i++) {
 965                if (pages[i]) {
 966                        unlock_page(pages[i]);
 967                        mark_page_accessed(pages[i]);
 968                        page_cache_release(pages[i]);
 969                }
 970        }
 971}
 972
 973static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
 974{
 975        ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
 976
 977        brelse(wc->w_di_bh);
 978        kfree(wc);
 979}
 980
 981static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
 982                                  struct ocfs2_super *osb, loff_t pos,
 983                                  unsigned len, struct buffer_head *di_bh)
 984{
 985        u32 cend;
 986        struct ocfs2_write_ctxt *wc;
 987
 988        wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
 989        if (!wc)
 990                return -ENOMEM;
 991
 992        wc->w_cpos = pos >> osb->s_clustersize_bits;
 993        wc->w_first_new_cpos = UINT_MAX;
 994        cend = (pos + len - 1) >> osb->s_clustersize_bits;
 995        wc->w_clen = cend - wc->w_cpos + 1;
 996        get_bh(di_bh);
 997        wc->w_di_bh = di_bh;
 998
 999        if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1000                wc->w_large_pages = 1;
1001        else
1002                wc->w_large_pages = 0;
1003
1004        ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1005
1006        *wcp = wc;
1007
1008        return 0;
1009}
1010
1011/*
1012 * If a page has any new buffers, zero them out here, and mark them uptodate
1013 * and dirty so they'll be written out (in order to prevent uninitialised
1014 * block data from leaking). And clear the new bit.
1015 */
1016static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1017{
1018        unsigned int block_start, block_end;
1019        struct buffer_head *head, *bh;
1020
1021        BUG_ON(!PageLocked(page));
1022        if (!page_has_buffers(page))
1023                return;
1024
1025        bh = head = page_buffers(page);
1026        block_start = 0;
1027        do {
1028                block_end = block_start + bh->b_size;
1029
1030                if (buffer_new(bh)) {
1031                        if (block_end > from && block_start < to) {
1032                                if (!PageUptodate(page)) {
1033                                        unsigned start, end;
1034
1035                                        start = max(from, block_start);
1036                                        end = min(to, block_end);
1037
1038                                        zero_user_segment(page, start, end);
1039                                        set_buffer_uptodate(bh);
1040                                }
1041
1042                                clear_buffer_new(bh);
1043                                mark_buffer_dirty(bh);
1044                        }
1045                }
1046
1047                block_start = block_end;
1048                bh = bh->b_this_page;
1049        } while (bh != head);
1050}
1051
1052/*
1053 * Only called when we have a failure during allocating write to write
1054 * zero's to the newly allocated region.
1055 */
1056static void ocfs2_write_failure(struct inode *inode,
1057                                struct ocfs2_write_ctxt *wc,
1058                                loff_t user_pos, unsigned user_len)
1059{
1060        int i;
1061        unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1062                to = user_pos + user_len;
1063        struct page *tmppage;
1064
1065        ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1066
1067        for(i = 0; i < wc->w_num_pages; i++) {
1068                tmppage = wc->w_pages[i];
1069
1070                if (page_has_buffers(tmppage)) {
1071                        if (ocfs2_should_order_data(inode))
1072                                ocfs2_jbd2_file_inode(wc->w_handle, inode);
1073
1074                        block_commit_write(tmppage, from, to);
1075                }
1076        }
1077}
1078
1079static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1080                                        struct ocfs2_write_ctxt *wc,
1081                                        struct page *page, u32 cpos,
1082                                        loff_t user_pos, unsigned user_len,
1083                                        int new)
1084{
1085        int ret;
1086        unsigned int map_from = 0, map_to = 0;
1087        unsigned int cluster_start, cluster_end;
1088        unsigned int user_data_from = 0, user_data_to = 0;
1089
1090        ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1091                                        &cluster_start, &cluster_end);
1092
1093        if (page == wc->w_target_page) {
1094                map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1095                map_to = map_from + user_len;
1096
1097                if (new)
1098                        ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1099                                                    cluster_start, cluster_end,
1100                                                    new);
1101                else
1102                        ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1103                                                    map_from, map_to, new);
1104                if (ret) {
1105                        mlog_errno(ret);
1106                        goto out;
1107                }
1108
1109                user_data_from = map_from;
1110                user_data_to = map_to;
1111                if (new) {
1112                        map_from = cluster_start;
1113                        map_to = cluster_end;
1114                }
1115        } else {
1116                /*
1117                 * If we haven't allocated the new page yet, we
1118                 * shouldn't be writing it out without copying user
1119                 * data. This is likely a math error from the caller.
1120                 */
1121                BUG_ON(!new);
1122
1123                map_from = cluster_start;
1124                map_to = cluster_end;
1125
1126                ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1127                                            cluster_start, cluster_end, new);
1128                if (ret) {
1129                        mlog_errno(ret);
1130                        goto out;
1131                }
1132        }
1133
1134        /*
1135         * Parts of newly allocated pages need to be zero'd.
1136         *
1137         * Above, we have also rewritten 'to' and 'from' - as far as
1138         * the rest of the function is concerned, the entire cluster
1139         * range inside of a page needs to be written.
1140         *
1141         * We can skip this if the page is up to date - it's already
1142         * been zero'd from being read in as a hole.
1143         */
1144        if (new && !PageUptodate(page))
1145                ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1146                                         cpos, user_data_from, user_data_to);
1147
1148        flush_dcache_page(page);
1149
1150out:
1151        return ret;
1152}
1153
1154/*
1155 * This function will only grab one clusters worth of pages.
1156 */
1157static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1158                                      struct ocfs2_write_ctxt *wc,
1159                                      u32 cpos, loff_t user_pos, int new,
1160                                      struct page *mmap_page)
1161{
1162        int ret = 0, i;
1163        unsigned long start, target_index, index;
1164        struct inode *inode = mapping->host;
1165
1166        target_index = user_pos >> PAGE_CACHE_SHIFT;
1167
1168        /*
1169         * Figure out how many pages we'll be manipulating here. For
1170         * non allocating write, we just change the one
1171         * page. Otherwise, we'll need a whole clusters worth.
1172         */
1173        if (new) {
1174                wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1175                start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1176        } else {
1177                wc->w_num_pages = 1;
1178                start = target_index;
1179        }
1180
1181        for(i = 0; i < wc->w_num_pages; i++) {
1182                index = start + i;
1183
1184                if (index == target_index && mmap_page) {
1185                        /*
1186                         * ocfs2_pagemkwrite() is a little different
1187                         * and wants us to directly use the page
1188                         * passed in.
1189                         */
1190                        lock_page(mmap_page);
1191
1192                        if (mmap_page->mapping != mapping) {
1193                                unlock_page(mmap_page);
1194                                /*
1195                                 * Sanity check - the locking in
1196                                 * ocfs2_pagemkwrite() should ensure
1197                                 * that this code doesn't trigger.
1198                                 */
1199                                ret = -EINVAL;
1200                                mlog_errno(ret);
1201                                goto out;
1202                        }
1203
1204                        page_cache_get(mmap_page);
1205                        wc->w_pages[i] = mmap_page;
1206                } else {
1207                        wc->w_pages[i] = find_or_create_page(mapping, index,
1208                                                             GFP_NOFS);
1209                        if (!wc->w_pages[i]) {
1210                                ret = -ENOMEM;
1211                                mlog_errno(ret);
1212                                goto out;
1213                        }
1214                }
1215
1216                if (index == target_index)
1217                        wc->w_target_page = wc->w_pages[i];
1218        }
1219out:
1220        return ret;
1221}
1222
1223/*
1224 * Prepare a single cluster for write one cluster into the file.
1225 */
1226static int ocfs2_write_cluster(struct address_space *mapping,
1227                               u32 phys, unsigned int unwritten,
1228                               unsigned int should_zero,
1229                               struct ocfs2_alloc_context *data_ac,
1230                               struct ocfs2_alloc_context *meta_ac,
1231                               struct ocfs2_write_ctxt *wc, u32 cpos,
1232                               loff_t user_pos, unsigned user_len)
1233{
1234        int ret, i, new;
1235        u64 v_blkno, p_blkno;
1236        struct inode *inode = mapping->host;
1237        struct ocfs2_extent_tree et;
1238
1239        new = phys == 0 ? 1 : 0;
1240        if (new) {
1241                u32 tmp_pos;
1242
1243                /*
1244                 * This is safe to call with the page locks - it won't take
1245                 * any additional semaphores or cluster locks.
1246                 */
1247                tmp_pos = cpos;
1248                ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1249                                           &tmp_pos, 1, 0, wc->w_di_bh,
1250                                           wc->w_handle, data_ac,
1251                                           meta_ac, NULL);
1252                /*
1253                 * This shouldn't happen because we must have already
1254                 * calculated the correct meta data allocation required. The
1255                 * internal tree allocation code should know how to increase
1256                 * transaction credits itself.
1257                 *
1258                 * If need be, we could handle -EAGAIN for a
1259                 * RESTART_TRANS here.
1260                 */
1261                mlog_bug_on_msg(ret == -EAGAIN,
1262                                "Inode %llu: EAGAIN return during allocation.\n",
1263                                (unsigned long long)OCFS2_I(inode)->ip_blkno);
1264                if (ret < 0) {
1265                        mlog_errno(ret);
1266                        goto out;
1267                }
1268        } else if (unwritten) {
1269                ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1270                                              wc->w_di_bh);
1271                ret = ocfs2_mark_extent_written(inode, &et,
1272                                                wc->w_handle, cpos, 1, phys,
1273                                                meta_ac, &wc->w_dealloc);
1274                if (ret < 0) {
1275                        mlog_errno(ret);
1276                        goto out;
1277                }
1278        }
1279
1280        if (should_zero)
1281                v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1282        else
1283                v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1284
1285        /*
1286         * The only reason this should fail is due to an inability to
1287         * find the extent added.
1288         */
1289        ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1290                                          NULL);
1291        if (ret < 0) {
1292                ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1293                            "at logical block %llu",
1294                            (unsigned long long)OCFS2_I(inode)->ip_blkno,
1295                            (unsigned long long)v_blkno);
1296                goto out;
1297        }
1298
1299        BUG_ON(p_blkno == 0);
1300
1301        for(i = 0; i < wc->w_num_pages; i++) {
1302                int tmpret;
1303
1304                tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1305                                                      wc->w_pages[i], cpos,
1306                                                      user_pos, user_len,
1307                                                      should_zero);
1308                if (tmpret) {
1309                        mlog_errno(tmpret);
1310                        if (ret == 0)
1311                                ret = tmpret;
1312                }
1313        }
1314
1315        /*
1316         * We only have cleanup to do in case of allocating write.
1317         */
1318        if (ret && new)
1319                ocfs2_write_failure(inode, wc, user_pos, user_len);
1320
1321out:
1322
1323        return ret;
1324}
1325
1326static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1327                                       struct ocfs2_alloc_context *data_ac,
1328                                       struct ocfs2_alloc_context *meta_ac,
1329                                       struct ocfs2_write_ctxt *wc,
1330                                       loff_t pos, unsigned len)
1331{
1332        int ret, i;
1333        loff_t cluster_off;
1334        unsigned int local_len = len;
1335        struct ocfs2_write_cluster_desc *desc;
1336        struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1337
1338        for (i = 0; i < wc->w_clen; i++) {
1339                desc = &wc->w_desc[i];
1340
1341                /*
1342                 * We have to make sure that the total write passed in
1343                 * doesn't extend past a single cluster.
1344                 */
1345                local_len = len;
1346                cluster_off = pos & (osb->s_clustersize - 1);
1347                if ((cluster_off + local_len) > osb->s_clustersize)
1348                        local_len = osb->s_clustersize - cluster_off;
1349
1350                ret = ocfs2_write_cluster(mapping, desc->c_phys,
1351                                          desc->c_unwritten,
1352                                          desc->c_needs_zero,
1353                                          data_ac, meta_ac,
1354                                          wc, desc->c_cpos, pos, local_len);
1355                if (ret) {
1356                        mlog_errno(ret);
1357                        goto out;
1358                }
1359
1360                len -= local_len;
1361                pos += local_len;
1362        }
1363
1364        ret = 0;
1365out:
1366        return ret;
1367}
1368
1369/*
1370 * ocfs2_write_end() wants to know which parts of the target page it
1371 * should complete the write on. It's easiest to compute them ahead of
1372 * time when a more complete view of the write is available.
1373 */
1374static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1375                                        struct ocfs2_write_ctxt *wc,
1376                                        loff_t pos, unsigned len, int alloc)
1377{
1378        struct ocfs2_write_cluster_desc *desc;
1379
1380        wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1381        wc->w_target_to = wc->w_target_from + len;
1382
1383        if (alloc == 0)
1384                return;
1385
1386        /*
1387         * Allocating write - we may have different boundaries based
1388         * on page size and cluster size.
1389         *
1390         * NOTE: We can no longer compute one value from the other as
1391         * the actual write length and user provided length may be
1392         * different.
1393         */
1394
1395        if (wc->w_large_pages) {
1396                /*
1397                 * We only care about the 1st and last cluster within
1398                 * our range and whether they should be zero'd or not. Either
1399                 * value may be extended out to the start/end of a
1400                 * newly allocated cluster.
1401                 */
1402                desc = &wc->w_desc[0];
1403                if (desc->c_needs_zero)
1404                        ocfs2_figure_cluster_boundaries(osb,
1405                                                        desc->c_cpos,
1406                                                        &wc->w_target_from,
1407                                                        NULL);
1408
1409                desc = &wc->w_desc[wc->w_clen - 1];
1410                if (desc->c_needs_zero)
1411                        ocfs2_figure_cluster_boundaries(osb,
1412                                                        desc->c_cpos,
1413                                                        NULL,
1414                                                        &wc->w_target_to);
1415        } else {
1416                wc->w_target_from = 0;
1417                wc->w_target_to = PAGE_CACHE_SIZE;
1418        }
1419}
1420
1421/*
1422 * Populate each single-cluster write descriptor in the write context
1423 * with information about the i/o to be done.
1424 *
1425 * Returns the number of clusters that will have to be allocated, as
1426 * well as a worst case estimate of the number of extent records that
1427 * would have to be created during a write to an unwritten region.
1428 */
1429static int ocfs2_populate_write_desc(struct inode *inode,
1430                                     struct ocfs2_write_ctxt *wc,
1431                                     unsigned int *clusters_to_alloc,
1432                                     unsigned int *extents_to_split)
1433{
1434        int ret;
1435        struct ocfs2_write_cluster_desc *desc;
1436        unsigned int num_clusters = 0;
1437        unsigned int ext_flags = 0;
1438        u32 phys = 0;
1439        int i;
1440
1441        *clusters_to_alloc = 0;
1442        *extents_to_split = 0;
1443
1444        for (i = 0; i < wc->w_clen; i++) {
1445                desc = &wc->w_desc[i];
1446                desc->c_cpos = wc->w_cpos + i;
1447
1448                if (num_clusters == 0) {
1449                        /*
1450                         * Need to look up the next extent record.
1451                         */
1452                        ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1453                                                 &num_clusters, &ext_flags);
1454                        if (ret) {
1455                                mlog_errno(ret);
1456                                goto out;
1457                        }
1458
1459                        /* We should already CoW the refcountd extent. */
1460                        BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1461
1462                        /*
1463                         * Assume worst case - that we're writing in
1464                         * the middle of the extent.
1465                         *
1466                         * We can assume that the write proceeds from
1467                         * left to right, in which case the extent
1468                         * insert code is smart enough to coalesce the
1469                         * next splits into the previous records created.
1470                         */
1471                        if (ext_flags & OCFS2_EXT_UNWRITTEN)
1472                                *extents_to_split = *extents_to_split + 2;
1473                } else if (phys) {
1474                        /*
1475                         * Only increment phys if it doesn't describe
1476                         * a hole.
1477                         */
1478                        phys++;
1479                }
1480
1481                /*
1482                 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1483                 * file that got extended.  w_first_new_cpos tells us
1484                 * where the newly allocated clusters are so we can
1485                 * zero them.
1486                 */
1487                if (desc->c_cpos >= wc->w_first_new_cpos) {
1488                        BUG_ON(phys == 0);
1489                        desc->c_needs_zero = 1;
1490                }
1491
1492                desc->c_phys = phys;
1493                if (phys == 0) {
1494                        desc->c_new = 1;
1495                        desc->c_needs_zero = 1;
1496                        *clusters_to_alloc = *clusters_to_alloc + 1;
1497                }
1498
1499                if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1500                        desc->c_unwritten = 1;
1501                        desc->c_needs_zero = 1;
1502                }
1503
1504                num_clusters--;
1505        }
1506
1507        ret = 0;
1508out:
1509        return ret;
1510}
1511
1512static int ocfs2_write_begin_inline(struct address_space *mapping,
1513                                    struct inode *inode,
1514                                    struct ocfs2_write_ctxt *wc)
1515{
1516        int ret;
1517        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1518        struct page *page;
1519        handle_t *handle;
1520        struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1521
1522        page = find_or_create_page(mapping, 0, GFP_NOFS);
1523        if (!page) {
1524                ret = -ENOMEM;
1525                mlog_errno(ret);
1526                goto out;
1527        }
1528        /*
1529         * If we don't set w_num_pages then this page won't get unlocked
1530         * and freed on cleanup of the write context.
1531         */
1532        wc->w_pages[0] = wc->w_target_page = page;
1533        wc->w_num_pages = 1;
1534
1535        handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1536        if (IS_ERR(handle)) {
1537                ret = PTR_ERR(handle);
1538                mlog_errno(ret);
1539                goto out;
1540        }
1541
1542        ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1543                                      OCFS2_JOURNAL_ACCESS_WRITE);
1544        if (ret) {
1545                ocfs2_commit_trans(osb, handle);
1546
1547                mlog_errno(ret);
1548                goto out;
1549        }
1550
1551        if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1552                ocfs2_set_inode_data_inline(inode, di);
1553
1554        if (!PageUptodate(page)) {
1555                ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1556                if (ret) {
1557                        ocfs2_commit_trans(osb, handle);
1558
1559                        goto out;
1560                }
1561        }
1562
1563        wc->w_handle = handle;
1564out:
1565        return ret;
1566}
1567
1568int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1569{
1570        struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1571
1572        if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1573                return 1;
1574        return 0;
1575}
1576
1577static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1578                                          struct inode *inode, loff_t pos,
1579                                          unsigned len, struct page *mmap_page,
1580                                          struct ocfs2_write_ctxt *wc)
1581{
1582        int ret, written = 0;
1583        loff_t end = pos + len;
1584        struct ocfs2_inode_info *oi = OCFS2_I(inode);
1585        struct ocfs2_dinode *di = NULL;
1586
1587        mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1588             (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1589             oi->ip_dyn_features);
1590
1591        /*
1592         * Handle inodes which already have inline data 1st.
1593         */
1594        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1595                if (mmap_page == NULL &&
1596                    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1597                        goto do_inline_write;
1598
1599                /*
1600                 * The write won't fit - we have to give this inode an
1601                 * inline extent list now.
1602                 */
1603                ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1604                if (ret)
1605                        mlog_errno(ret);
1606                goto out;
1607        }
1608
1609        /*
1610         * Check whether the inode can accept inline data.
1611         */
1612        if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1613                return 0;
1614
1615        /*
1616         * Check whether the write can fit.
1617         */
1618        di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1619        if (mmap_page ||
1620            end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1621                return 0;
1622
1623do_inline_write:
1624        ret = ocfs2_write_begin_inline(mapping, inode, wc);
1625        if (ret) {
1626                mlog_errno(ret);
1627                goto out;
1628        }
1629
1630        /*
1631         * This signals to the caller that the data can be written
1632         * inline.
1633         */
1634        written = 1;
1635out:
1636        return written ? written : ret;
1637}
1638
1639/*
1640 * This function only does anything for file systems which can't
1641 * handle sparse files.
1642 *
1643 * What we want to do here is fill in any hole between the current end
1644 * of allocation and the end of our write. That way the rest of the
1645 * write path can treat it as an non-allocating write, which has no
1646 * special case code for sparse/nonsparse files.
1647 */
1648static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1649                                        unsigned len,
1650                                        struct ocfs2_write_ctxt *wc)
1651{
1652        int ret;
1653        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1654        loff_t newsize = pos + len;
1655
1656        if (ocfs2_sparse_alloc(osb))
1657                return 0;
1658
1659        if (newsize <= i_size_read(inode))
1660                return 0;
1661
1662        ret = ocfs2_extend_no_holes(inode, newsize, pos);
1663        if (ret)
1664                mlog_errno(ret);
1665
1666        wc->w_first_new_cpos =
1667                ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1668
1669        return ret;
1670}
1671
1672int ocfs2_write_begin_nolock(struct address_space *mapping,
1673                             loff_t pos, unsigned len, unsigned flags,
1674                             struct page **pagep, void **fsdata,
1675                             struct buffer_head *di_bh, struct page *mmap_page)
1676{
1677        int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1678        unsigned int clusters_to_alloc, extents_to_split;
1679        struct ocfs2_write_ctxt *wc;
1680        struct inode *inode = mapping->host;
1681        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1682        struct ocfs2_dinode *di;
1683        struct ocfs2_alloc_context *data_ac = NULL;
1684        struct ocfs2_alloc_context *meta_ac = NULL;
1685        handle_t *handle;
1686        struct ocfs2_extent_tree et;
1687
1688        ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1689        if (ret) {
1690                mlog_errno(ret);
1691                return ret;
1692        }
1693
1694        if (ocfs2_supports_inline_data(osb)) {
1695                ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1696                                                     mmap_page, wc);
1697                if (ret == 1) {
1698                        ret = 0;
1699                        goto success;
1700                }
1701                if (ret < 0) {
1702                        mlog_errno(ret);
1703                        goto out;
1704                }
1705        }
1706
1707        ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1708        if (ret) {
1709                mlog_errno(ret);
1710                goto out;
1711        }
1712
1713        ret = ocfs2_check_range_for_refcount(inode, pos, len);
1714        if (ret < 0) {
1715                mlog_errno(ret);
1716                goto out;
1717        } else if (ret == 1) {
1718                ret = ocfs2_refcount_cow(inode, di_bh,
1719                                         wc->w_cpos, wc->w_clen, UINT_MAX);
1720                if (ret) {
1721                        mlog_errno(ret);
1722                        goto out;
1723                }
1724        }
1725
1726        ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1727                                        &extents_to_split);
1728        if (ret) {
1729                mlog_errno(ret);
1730                goto out;
1731        }
1732
1733        di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1734
1735        /*
1736         * We set w_target_from, w_target_to here so that
1737         * ocfs2_write_end() knows which range in the target page to
1738         * write out. An allocation requires that we write the entire
1739         * cluster range.
1740         */
1741        if (clusters_to_alloc || extents_to_split) {
1742                /*
1743                 * XXX: We are stretching the limits of
1744                 * ocfs2_lock_allocators(). It greatly over-estimates
1745                 * the work to be done.
1746                 */
1747                mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1748                     " clusters_to_add = %u, extents_to_split = %u\n",
1749                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1750                     (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1751                     clusters_to_alloc, extents_to_split);
1752
1753                ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1754                                              wc->w_di_bh);
1755                ret = ocfs2_lock_allocators(inode, &et,
1756                                            clusters_to_alloc, extents_to_split,
1757                                            &data_ac, &meta_ac);
1758                if (ret) {
1759                        mlog_errno(ret);
1760                        goto out;
1761                }
1762
1763                credits = ocfs2_calc_extend_credits(inode->i_sb,
1764                                                    &di->id2.i_list,
1765                                                    clusters_to_alloc);
1766
1767        }
1768
1769        /*
1770         * We have to zero sparse allocated clusters, unwritten extent clusters,
1771         * and non-sparse clusters we just extended.  For non-sparse writes,
1772         * we know zeros will only be needed in the first and/or last cluster.
1773         */
1774        if (clusters_to_alloc || extents_to_split ||
1775            (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1776                            wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1777                cluster_of_pages = 1;
1778        else
1779                cluster_of_pages = 0;
1780
1781        ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1782
1783        handle = ocfs2_start_trans(osb, credits);
1784        if (IS_ERR(handle)) {
1785                ret = PTR_ERR(handle);
1786                mlog_errno(ret);
1787                goto out;
1788        }
1789
1790        wc->w_handle = handle;
1791
1792        if (clusters_to_alloc && vfs_dq_alloc_space_nodirty(inode,
1793                        ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc))) {
1794                ret = -EDQUOT;
1795                goto out_commit;
1796        }
1797        /*
1798         * We don't want this to fail in ocfs2_write_end(), so do it
1799         * here.
1800         */
1801        ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1802                                      OCFS2_JOURNAL_ACCESS_WRITE);
1803        if (ret) {
1804                mlog_errno(ret);
1805                goto out_quota;
1806        }
1807
1808        /*
1809         * Fill our page array first. That way we've grabbed enough so
1810         * that we can zero and flush if we error after adding the
1811         * extent.
1812         */
1813        ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1814                                         cluster_of_pages, mmap_page);
1815        if (ret) {
1816                mlog_errno(ret);
1817                goto out_quota;
1818        }
1819
1820        ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1821                                          len);
1822        if (ret) {
1823                mlog_errno(ret);
1824                goto out_quota;
1825        }
1826
1827        if (data_ac)
1828                ocfs2_free_alloc_context(data_ac);
1829        if (meta_ac)
1830                ocfs2_free_alloc_context(meta_ac);
1831
1832success:
1833        *pagep = wc->w_target_page;
1834        *fsdata = wc;
1835        return 0;
1836out_quota:
1837        if (clusters_to_alloc)
1838                vfs_dq_free_space(inode,
1839                          ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1840out_commit:
1841        ocfs2_commit_trans(osb, handle);
1842
1843out:
1844        ocfs2_free_write_ctxt(wc);
1845
1846        if (data_ac)
1847                ocfs2_free_alloc_context(data_ac);
1848        if (meta_ac)
1849                ocfs2_free_alloc_context(meta_ac);
1850        return ret;
1851}
1852
1853static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1854                             loff_t pos, unsigned len, unsigned flags,
1855                             struct page **pagep, void **fsdata)
1856{
1857        int ret;
1858        struct buffer_head *di_bh = NULL;
1859        struct inode *inode = mapping->host;
1860
1861        ret = ocfs2_inode_lock(inode, &di_bh, 1);
1862        if (ret) {
1863                mlog_errno(ret);
1864                return ret;
1865        }
1866
1867        /*
1868         * Take alloc sem here to prevent concurrent lookups. That way
1869         * the mapping, zeroing and tree manipulation within
1870         * ocfs2_write() will be safe against ->readpage(). This
1871         * should also serve to lock out allocation from a shared
1872         * writeable region.
1873         */
1874        down_write(&OCFS2_I(inode)->ip_alloc_sem);
1875
1876        ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1877                                       fsdata, di_bh, NULL);
1878        if (ret) {
1879                mlog_errno(ret);
1880                goto out_fail;
1881        }
1882
1883        brelse(di_bh);
1884
1885        return 0;
1886
1887out_fail:
1888        up_write(&OCFS2_I(inode)->ip_alloc_sem);
1889
1890        brelse(di_bh);
1891        ocfs2_inode_unlock(inode, 1);
1892
1893        return ret;
1894}
1895
1896static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1897                                   unsigned len, unsigned *copied,
1898                                   struct ocfs2_dinode *di,
1899                                   struct ocfs2_write_ctxt *wc)
1900{
1901        void *kaddr;
1902
1903        if (unlikely(*copied < len)) {
1904                if (!PageUptodate(wc->w_target_page)) {
1905                        *copied = 0;
1906                        return;
1907                }
1908        }
1909
1910        kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1911        memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1912        kunmap_atomic(kaddr, KM_USER0);
1913
1914        mlog(0, "Data written to inode at offset %llu. "
1915             "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1916             (unsigned long long)pos, *copied,
1917             le16_to_cpu(di->id2.i_data.id_count),
1918             le16_to_cpu(di->i_dyn_features));
1919}
1920
1921int ocfs2_write_end_nolock(struct address_space *mapping,
1922                           loff_t pos, unsigned len, unsigned copied,
1923                           struct page *page, void *fsdata)
1924{
1925        int i;
1926        unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1927        struct inode *inode = mapping->host;
1928        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1929        struct ocfs2_write_ctxt *wc = fsdata;
1930        struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1931        handle_t *handle = wc->w_handle;
1932        struct page *tmppage;
1933
1934        if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1935                ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1936                goto out_write_size;
1937        }
1938
1939        if (unlikely(copied < len)) {
1940                if (!PageUptodate(wc->w_target_page))
1941                        copied = 0;
1942
1943                ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1944                                       start+len);
1945        }
1946        flush_dcache_page(wc->w_target_page);
1947
1948        for(i = 0; i < wc->w_num_pages; i++) {
1949                tmppage = wc->w_pages[i];
1950
1951                if (tmppage == wc->w_target_page) {
1952                        from = wc->w_target_from;
1953                        to = wc->w_target_to;
1954
1955                        BUG_ON(from > PAGE_CACHE_SIZE ||
1956                               to > PAGE_CACHE_SIZE ||
1957                               to < from);
1958                } else {
1959                        /*
1960                         * Pages adjacent to the target (if any) imply
1961                         * a hole-filling write in which case we want
1962                         * to flush their entire range.
1963                         */
1964                        from = 0;
1965                        to = PAGE_CACHE_SIZE;
1966                }
1967
1968                if (page_has_buffers(tmppage)) {
1969                        if (ocfs2_should_order_data(inode))
1970                                ocfs2_jbd2_file_inode(wc->w_handle, inode);
1971                        block_commit_write(tmppage, from, to);
1972                }
1973        }
1974
1975out_write_size:
1976        pos += copied;
1977        if (pos > inode->i_size) {
1978                i_size_write(inode, pos);
1979                mark_inode_dirty(inode);
1980        }
1981        inode->i_blocks = ocfs2_inode_sector_count(inode);
1982        di->i_size = cpu_to_le64((u64)i_size_read(inode));
1983        inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1984        di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1985        di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1986        ocfs2_journal_dirty(handle, wc->w_di_bh);
1987
1988        ocfs2_commit_trans(osb, handle);
1989
1990        ocfs2_run_deallocs(osb, &wc->w_dealloc);
1991
1992        ocfs2_free_write_ctxt(wc);
1993
1994        return copied;
1995}
1996
1997static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1998                           loff_t pos, unsigned len, unsigned copied,
1999                           struct page *page, void *fsdata)
2000{
2001        int ret;
2002        struct inode *inode = mapping->host;
2003
2004        ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2005
2006        up_write(&OCFS2_I(inode)->ip_alloc_sem);
2007        ocfs2_inode_unlock(inode, 1);
2008
2009        return ret;
2010}
2011
2012const struct address_space_operations ocfs2_aops = {
2013        .readpage               = ocfs2_readpage,
2014        .readpages              = ocfs2_readpages,
2015        .writepage              = ocfs2_writepage,
2016        .write_begin            = ocfs2_write_begin,
2017        .write_end              = ocfs2_write_end,
2018        .bmap                   = ocfs2_bmap,
2019        .sync_page              = block_sync_page,
2020        .direct_IO              = ocfs2_direct_IO,
2021        .invalidatepage         = ocfs2_invalidatepage,
2022        .releasepage            = ocfs2_releasepage,
2023        .migratepage            = buffer_migrate_page,
2024        .is_partially_uptodate  = block_is_partially_uptodate,
2025        .error_remove_page      = generic_error_remove_page,
2026};
2027