linux/fs/ocfs2/journal.c
<<
>>
Prefs
   1/* -*- mode: c; c-basic-offset: 8; -*-
   2 * vim: noexpandtab sw=8 ts=8 sts=0:
   3 *
   4 * journal.c
   5 *
   6 * Defines functions of journalling api
   7 *
   8 * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public
  12 * License as published by the Free Software Foundation; either
  13 * version 2 of the License, or (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  18 * General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public
  21 * License along with this program; if not, write to the
  22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  23 * Boston, MA 021110-1307, USA.
  24 */
  25
  26#include <linux/fs.h>
  27#include <linux/types.h>
  28#include <linux/slab.h>
  29#include <linux/highmem.h>
  30#include <linux/kthread.h>
  31#include <linux/time.h>
  32#include <linux/random.h>
  33
  34#define MLOG_MASK_PREFIX ML_JOURNAL
  35#include <cluster/masklog.h>
  36
  37#include "ocfs2.h"
  38
  39#include "alloc.h"
  40#include "blockcheck.h"
  41#include "dir.h"
  42#include "dlmglue.h"
  43#include "extent_map.h"
  44#include "heartbeat.h"
  45#include "inode.h"
  46#include "journal.h"
  47#include "localalloc.h"
  48#include "slot_map.h"
  49#include "super.h"
  50#include "sysfile.h"
  51#include "uptodate.h"
  52#include "quota.h"
  53
  54#include "buffer_head_io.h"
  55
  56DEFINE_SPINLOCK(trans_inc_lock);
  57
  58#define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
  59
  60static int ocfs2_force_read_journal(struct inode *inode);
  61static int ocfs2_recover_node(struct ocfs2_super *osb,
  62                              int node_num, int slot_num);
  63static int __ocfs2_recovery_thread(void *arg);
  64static int ocfs2_commit_cache(struct ocfs2_super *osb);
  65static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
  66static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
  67                                      int dirty, int replayed);
  68static int ocfs2_trylock_journal(struct ocfs2_super *osb,
  69                                 int slot_num);
  70static int ocfs2_recover_orphans(struct ocfs2_super *osb,
  71                                 int slot);
  72static int ocfs2_commit_thread(void *arg);
  73static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
  74                                            int slot_num,
  75                                            struct ocfs2_dinode *la_dinode,
  76                                            struct ocfs2_dinode *tl_dinode,
  77                                            struct ocfs2_quota_recovery *qrec);
  78
  79static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
  80{
  81        return __ocfs2_wait_on_mount(osb, 0);
  82}
  83
  84static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
  85{
  86        return __ocfs2_wait_on_mount(osb, 1);
  87}
  88
  89/*
  90 * This replay_map is to track online/offline slots, so we could recover
  91 * offline slots during recovery and mount
  92 */
  93
  94enum ocfs2_replay_state {
  95        REPLAY_UNNEEDED = 0,    /* Replay is not needed, so ignore this map */
  96        REPLAY_NEEDED,          /* Replay slots marked in rm_replay_slots */
  97        REPLAY_DONE             /* Replay was already queued */
  98};
  99
 100struct ocfs2_replay_map {
 101        unsigned int rm_slots;
 102        enum ocfs2_replay_state rm_state;
 103        unsigned char rm_replay_slots[0];
 104};
 105
 106void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
 107{
 108        if (!osb->replay_map)
 109                return;
 110
 111        /* If we've already queued the replay, we don't have any more to do */
 112        if (osb->replay_map->rm_state == REPLAY_DONE)
 113                return;
 114
 115        osb->replay_map->rm_state = state;
 116}
 117
 118int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
 119{
 120        struct ocfs2_replay_map *replay_map;
 121        int i, node_num;
 122
 123        /* If replay map is already set, we don't do it again */
 124        if (osb->replay_map)
 125                return 0;
 126
 127        replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
 128                             (osb->max_slots * sizeof(char)), GFP_KERNEL);
 129
 130        if (!replay_map) {
 131                mlog_errno(-ENOMEM);
 132                return -ENOMEM;
 133        }
 134
 135        spin_lock(&osb->osb_lock);
 136
 137        replay_map->rm_slots = osb->max_slots;
 138        replay_map->rm_state = REPLAY_UNNEEDED;
 139
 140        /* set rm_replay_slots for offline slot(s) */
 141        for (i = 0; i < replay_map->rm_slots; i++) {
 142                if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
 143                        replay_map->rm_replay_slots[i] = 1;
 144        }
 145
 146        osb->replay_map = replay_map;
 147        spin_unlock(&osb->osb_lock);
 148        return 0;
 149}
 150
 151void ocfs2_queue_replay_slots(struct ocfs2_super *osb)
 152{
 153        struct ocfs2_replay_map *replay_map = osb->replay_map;
 154        int i;
 155
 156        if (!replay_map)
 157                return;
 158
 159        if (replay_map->rm_state != REPLAY_NEEDED)
 160                return;
 161
 162        for (i = 0; i < replay_map->rm_slots; i++)
 163                if (replay_map->rm_replay_slots[i])
 164                        ocfs2_queue_recovery_completion(osb->journal, i, NULL,
 165                                                        NULL, NULL);
 166        replay_map->rm_state = REPLAY_DONE;
 167}
 168
 169void ocfs2_free_replay_slots(struct ocfs2_super *osb)
 170{
 171        struct ocfs2_replay_map *replay_map = osb->replay_map;
 172
 173        if (!osb->replay_map)
 174                return;
 175
 176        kfree(replay_map);
 177        osb->replay_map = NULL;
 178}
 179
 180int ocfs2_recovery_init(struct ocfs2_super *osb)
 181{
 182        struct ocfs2_recovery_map *rm;
 183
 184        mutex_init(&osb->recovery_lock);
 185        osb->disable_recovery = 0;
 186        osb->recovery_thread_task = NULL;
 187        init_waitqueue_head(&osb->recovery_event);
 188
 189        rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
 190                     osb->max_slots * sizeof(unsigned int),
 191                     GFP_KERNEL);
 192        if (!rm) {
 193                mlog_errno(-ENOMEM);
 194                return -ENOMEM;
 195        }
 196
 197        rm->rm_entries = (unsigned int *)((char *)rm +
 198                                          sizeof(struct ocfs2_recovery_map));
 199        osb->recovery_map = rm;
 200
 201        return 0;
 202}
 203
 204/* we can't grab the goofy sem lock from inside wait_event, so we use
 205 * memory barriers to make sure that we'll see the null task before
 206 * being woken up */
 207static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
 208{
 209        mb();
 210        return osb->recovery_thread_task != NULL;
 211}
 212
 213void ocfs2_recovery_exit(struct ocfs2_super *osb)
 214{
 215        struct ocfs2_recovery_map *rm;
 216
 217        /* disable any new recovery threads and wait for any currently
 218         * running ones to exit. Do this before setting the vol_state. */
 219        mutex_lock(&osb->recovery_lock);
 220        osb->disable_recovery = 1;
 221        mutex_unlock(&osb->recovery_lock);
 222        wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
 223
 224        /* At this point, we know that no more recovery threads can be
 225         * launched, so wait for any recovery completion work to
 226         * complete. */
 227        flush_workqueue(ocfs2_wq);
 228
 229        /*
 230         * Now that recovery is shut down, and the osb is about to be
 231         * freed,  the osb_lock is not taken here.
 232         */
 233        rm = osb->recovery_map;
 234        /* XXX: Should we bug if there are dirty entries? */
 235
 236        kfree(rm);
 237}
 238
 239static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
 240                                     unsigned int node_num)
 241{
 242        int i;
 243        struct ocfs2_recovery_map *rm = osb->recovery_map;
 244
 245        assert_spin_locked(&osb->osb_lock);
 246
 247        for (i = 0; i < rm->rm_used; i++) {
 248                if (rm->rm_entries[i] == node_num)
 249                        return 1;
 250        }
 251
 252        return 0;
 253}
 254
 255/* Behaves like test-and-set.  Returns the previous value */
 256static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
 257                                  unsigned int node_num)
 258{
 259        struct ocfs2_recovery_map *rm = osb->recovery_map;
 260
 261        spin_lock(&osb->osb_lock);
 262        if (__ocfs2_recovery_map_test(osb, node_num)) {
 263                spin_unlock(&osb->osb_lock);
 264                return 1;
 265        }
 266
 267        /* XXX: Can this be exploited? Not from o2dlm... */
 268        BUG_ON(rm->rm_used >= osb->max_slots);
 269
 270        rm->rm_entries[rm->rm_used] = node_num;
 271        rm->rm_used++;
 272        spin_unlock(&osb->osb_lock);
 273
 274        return 0;
 275}
 276
 277static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
 278                                     unsigned int node_num)
 279{
 280        int i;
 281        struct ocfs2_recovery_map *rm = osb->recovery_map;
 282
 283        spin_lock(&osb->osb_lock);
 284
 285        for (i = 0; i < rm->rm_used; i++) {
 286                if (rm->rm_entries[i] == node_num)
 287                        break;
 288        }
 289
 290        if (i < rm->rm_used) {
 291                /* XXX: be careful with the pointer math */
 292                memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
 293                        (rm->rm_used - i - 1) * sizeof(unsigned int));
 294                rm->rm_used--;
 295        }
 296
 297        spin_unlock(&osb->osb_lock);
 298}
 299
 300static int ocfs2_commit_cache(struct ocfs2_super *osb)
 301{
 302        int status = 0;
 303        unsigned int flushed;
 304        unsigned long old_id;
 305        struct ocfs2_journal *journal = NULL;
 306
 307        mlog_entry_void();
 308
 309        journal = osb->journal;
 310
 311        /* Flush all pending commits and checkpoint the journal. */
 312        down_write(&journal->j_trans_barrier);
 313
 314        if (atomic_read(&journal->j_num_trans) == 0) {
 315                up_write(&journal->j_trans_barrier);
 316                mlog(0, "No transactions for me to flush!\n");
 317                goto finally;
 318        }
 319
 320        jbd2_journal_lock_updates(journal->j_journal);
 321        status = jbd2_journal_flush(journal->j_journal);
 322        jbd2_journal_unlock_updates(journal->j_journal);
 323        if (status < 0) {
 324                up_write(&journal->j_trans_barrier);
 325                mlog_errno(status);
 326                goto finally;
 327        }
 328
 329        old_id = ocfs2_inc_trans_id(journal);
 330
 331        flushed = atomic_read(&journal->j_num_trans);
 332        atomic_set(&journal->j_num_trans, 0);
 333        up_write(&journal->j_trans_barrier);
 334
 335        mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
 336             journal->j_trans_id, flushed);
 337
 338        ocfs2_wake_downconvert_thread(osb);
 339        wake_up(&journal->j_checkpointed);
 340finally:
 341        mlog_exit(status);
 342        return status;
 343}
 344
 345/* pass it NULL and it will allocate a new handle object for you.  If
 346 * you pass it a handle however, it may still return error, in which
 347 * case it has free'd the passed handle for you. */
 348handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
 349{
 350        journal_t *journal = osb->journal->j_journal;
 351        handle_t *handle;
 352
 353        BUG_ON(!osb || !osb->journal->j_journal);
 354
 355        if (ocfs2_is_hard_readonly(osb))
 356                return ERR_PTR(-EROFS);
 357
 358        BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
 359        BUG_ON(max_buffs <= 0);
 360
 361        /* Nested transaction? Just return the handle... */
 362        if (journal_current_handle())
 363                return jbd2_journal_start(journal, max_buffs);
 364
 365        down_read(&osb->journal->j_trans_barrier);
 366
 367        handle = jbd2_journal_start(journal, max_buffs);
 368        if (IS_ERR(handle)) {
 369                up_read(&osb->journal->j_trans_barrier);
 370
 371                mlog_errno(PTR_ERR(handle));
 372
 373                if (is_journal_aborted(journal)) {
 374                        ocfs2_abort(osb->sb, "Detected aborted journal");
 375                        handle = ERR_PTR(-EROFS);
 376                }
 377        } else {
 378                if (!ocfs2_mount_local(osb))
 379                        atomic_inc(&(osb->journal->j_num_trans));
 380        }
 381
 382        return handle;
 383}
 384
 385int ocfs2_commit_trans(struct ocfs2_super *osb,
 386                       handle_t *handle)
 387{
 388        int ret, nested;
 389        struct ocfs2_journal *journal = osb->journal;
 390
 391        BUG_ON(!handle);
 392
 393        nested = handle->h_ref > 1;
 394        ret = jbd2_journal_stop(handle);
 395        if (ret < 0)
 396                mlog_errno(ret);
 397
 398        if (!nested)
 399                up_read(&journal->j_trans_barrier);
 400
 401        return ret;
 402}
 403
 404/*
 405 * 'nblocks' is what you want to add to the current
 406 * transaction. extend_trans will either extend the current handle by
 407 * nblocks, or commit it and start a new one with nblocks credits.
 408 *
 409 * This might call jbd2_journal_restart() which will commit dirty buffers
 410 * and then restart the transaction. Before calling
 411 * ocfs2_extend_trans(), any changed blocks should have been
 412 * dirtied. After calling it, all blocks which need to be changed must
 413 * go through another set of journal_access/journal_dirty calls.
 414 *
 415 * WARNING: This will not release any semaphores or disk locks taken
 416 * during the transaction, so make sure they were taken *before*
 417 * start_trans or we'll have ordering deadlocks.
 418 *
 419 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
 420 * good because transaction ids haven't yet been recorded on the
 421 * cluster locks associated with this handle.
 422 */
 423int ocfs2_extend_trans(handle_t *handle, int nblocks)
 424{
 425        int status;
 426
 427        BUG_ON(!handle);
 428        BUG_ON(!nblocks);
 429
 430        mlog_entry_void();
 431
 432        mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
 433
 434#ifdef CONFIG_OCFS2_DEBUG_FS
 435        status = 1;
 436#else
 437        status = jbd2_journal_extend(handle, nblocks);
 438        if (status < 0) {
 439                mlog_errno(status);
 440                goto bail;
 441        }
 442#endif
 443
 444        if (status > 0) {
 445                mlog(0,
 446                     "jbd2_journal_extend failed, trying "
 447                     "jbd2_journal_restart\n");
 448                status = jbd2_journal_restart(handle, nblocks);
 449                if (status < 0) {
 450                        mlog_errno(status);
 451                        goto bail;
 452                }
 453        }
 454
 455        status = 0;
 456bail:
 457
 458        mlog_exit(status);
 459        return status;
 460}
 461
 462struct ocfs2_triggers {
 463        struct jbd2_buffer_trigger_type ot_triggers;
 464        int                             ot_offset;
 465};
 466
 467static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
 468{
 469        return container_of(triggers, struct ocfs2_triggers, ot_triggers);
 470}
 471
 472static void ocfs2_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
 473                                 struct buffer_head *bh,
 474                                 void *data, size_t size)
 475{
 476        struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
 477
 478        /*
 479         * We aren't guaranteed to have the superblock here, so we
 480         * must unconditionally compute the ecc data.
 481         * __ocfs2_journal_access() will only set the triggers if
 482         * metaecc is enabled.
 483         */
 484        ocfs2_block_check_compute(data, size, data + ot->ot_offset);
 485}
 486
 487/*
 488 * Quota blocks have their own trigger because the struct ocfs2_block_check
 489 * offset depends on the blocksize.
 490 */
 491static void ocfs2_dq_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
 492                                 struct buffer_head *bh,
 493                                 void *data, size_t size)
 494{
 495        struct ocfs2_disk_dqtrailer *dqt =
 496                ocfs2_block_dqtrailer(size, data);
 497
 498        /*
 499         * We aren't guaranteed to have the superblock here, so we
 500         * must unconditionally compute the ecc data.
 501         * __ocfs2_journal_access() will only set the triggers if
 502         * metaecc is enabled.
 503         */
 504        ocfs2_block_check_compute(data, size, &dqt->dq_check);
 505}
 506
 507/*
 508 * Directory blocks also have their own trigger because the
 509 * struct ocfs2_block_check offset depends on the blocksize.
 510 */
 511static void ocfs2_db_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
 512                                 struct buffer_head *bh,
 513                                 void *data, size_t size)
 514{
 515        struct ocfs2_dir_block_trailer *trailer =
 516                ocfs2_dir_trailer_from_size(size, data);
 517
 518        /*
 519         * We aren't guaranteed to have the superblock here, so we
 520         * must unconditionally compute the ecc data.
 521         * __ocfs2_journal_access() will only set the triggers if
 522         * metaecc is enabled.
 523         */
 524        ocfs2_block_check_compute(data, size, &trailer->db_check);
 525}
 526
 527static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
 528                                struct buffer_head *bh)
 529{
 530        mlog(ML_ERROR,
 531             "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
 532             "bh->b_blocknr = %llu\n",
 533             (unsigned long)bh,
 534             (unsigned long long)bh->b_blocknr);
 535
 536        /* We aren't guaranteed to have the superblock here - but if we
 537         * don't, it'll just crash. */
 538        ocfs2_error(bh->b_assoc_map->host->i_sb,
 539                    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
 540}
 541
 542static struct ocfs2_triggers di_triggers = {
 543        .ot_triggers = {
 544                .t_commit = ocfs2_commit_trigger,
 545                .t_abort = ocfs2_abort_trigger,
 546        },
 547        .ot_offset      = offsetof(struct ocfs2_dinode, i_check),
 548};
 549
 550static struct ocfs2_triggers eb_triggers = {
 551        .ot_triggers = {
 552                .t_commit = ocfs2_commit_trigger,
 553                .t_abort = ocfs2_abort_trigger,
 554        },
 555        .ot_offset      = offsetof(struct ocfs2_extent_block, h_check),
 556};
 557
 558static struct ocfs2_triggers rb_triggers = {
 559        .ot_triggers = {
 560                .t_commit = ocfs2_commit_trigger,
 561                .t_abort = ocfs2_abort_trigger,
 562        },
 563        .ot_offset      = offsetof(struct ocfs2_refcount_block, rf_check),
 564};
 565
 566static struct ocfs2_triggers gd_triggers = {
 567        .ot_triggers = {
 568                .t_commit = ocfs2_commit_trigger,
 569                .t_abort = ocfs2_abort_trigger,
 570        },
 571        .ot_offset      = offsetof(struct ocfs2_group_desc, bg_check),
 572};
 573
 574static struct ocfs2_triggers db_triggers = {
 575        .ot_triggers = {
 576                .t_commit = ocfs2_db_commit_trigger,
 577                .t_abort = ocfs2_abort_trigger,
 578        },
 579};
 580
 581static struct ocfs2_triggers xb_triggers = {
 582        .ot_triggers = {
 583                .t_commit = ocfs2_commit_trigger,
 584                .t_abort = ocfs2_abort_trigger,
 585        },
 586        .ot_offset      = offsetof(struct ocfs2_xattr_block, xb_check),
 587};
 588
 589static struct ocfs2_triggers dq_triggers = {
 590        .ot_triggers = {
 591                .t_commit = ocfs2_dq_commit_trigger,
 592                .t_abort = ocfs2_abort_trigger,
 593        },
 594};
 595
 596static struct ocfs2_triggers dr_triggers = {
 597        .ot_triggers = {
 598                .t_commit = ocfs2_commit_trigger,
 599                .t_abort = ocfs2_abort_trigger,
 600        },
 601        .ot_offset      = offsetof(struct ocfs2_dx_root_block, dr_check),
 602};
 603
 604static struct ocfs2_triggers dl_triggers = {
 605        .ot_triggers = {
 606                .t_commit = ocfs2_commit_trigger,
 607                .t_abort = ocfs2_abort_trigger,
 608        },
 609        .ot_offset      = offsetof(struct ocfs2_dx_leaf, dl_check),
 610};
 611
 612static int __ocfs2_journal_access(handle_t *handle,
 613                                  struct ocfs2_caching_info *ci,
 614                                  struct buffer_head *bh,
 615                                  struct ocfs2_triggers *triggers,
 616                                  int type)
 617{
 618        int status;
 619        struct ocfs2_super *osb =
 620                OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
 621
 622        BUG_ON(!ci || !ci->ci_ops);
 623        BUG_ON(!handle);
 624        BUG_ON(!bh);
 625
 626        mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
 627                   (unsigned long long)bh->b_blocknr, type,
 628                   (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
 629                   "OCFS2_JOURNAL_ACCESS_CREATE" :
 630                   "OCFS2_JOURNAL_ACCESS_WRITE",
 631                   bh->b_size);
 632
 633        /* we can safely remove this assertion after testing. */
 634        if (!buffer_uptodate(bh)) {
 635                mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
 636                mlog(ML_ERROR, "b_blocknr=%llu\n",
 637                     (unsigned long long)bh->b_blocknr);
 638                BUG();
 639        }
 640
 641        /* Set the current transaction information on the ci so
 642         * that the locking code knows whether it can drop it's locks
 643         * on this ci or not. We're protected from the commit
 644         * thread updating the current transaction id until
 645         * ocfs2_commit_trans() because ocfs2_start_trans() took
 646         * j_trans_barrier for us. */
 647        ocfs2_set_ci_lock_trans(osb->journal, ci);
 648
 649        ocfs2_metadata_cache_io_lock(ci);
 650        switch (type) {
 651        case OCFS2_JOURNAL_ACCESS_CREATE:
 652        case OCFS2_JOURNAL_ACCESS_WRITE:
 653                status = jbd2_journal_get_write_access(handle, bh);
 654                break;
 655
 656        case OCFS2_JOURNAL_ACCESS_UNDO:
 657                status = jbd2_journal_get_undo_access(handle, bh);
 658                break;
 659
 660        default:
 661                status = -EINVAL;
 662                mlog(ML_ERROR, "Uknown access type!\n");
 663        }
 664        if (!status && ocfs2_meta_ecc(osb) && triggers)
 665                jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
 666        ocfs2_metadata_cache_io_unlock(ci);
 667
 668        if (status < 0)
 669                mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
 670                     status, type);
 671
 672        mlog_exit(status);
 673        return status;
 674}
 675
 676int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
 677                            struct buffer_head *bh, int type)
 678{
 679        return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
 680}
 681
 682int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
 683                            struct buffer_head *bh, int type)
 684{
 685        return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
 686}
 687
 688int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
 689                            struct buffer_head *bh, int type)
 690{
 691        return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
 692                                      type);
 693}
 694
 695int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
 696                            struct buffer_head *bh, int type)
 697{
 698        return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
 699}
 700
 701int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
 702                            struct buffer_head *bh, int type)
 703{
 704        return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
 705}
 706
 707int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
 708                            struct buffer_head *bh, int type)
 709{
 710        return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
 711}
 712
 713int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
 714                            struct buffer_head *bh, int type)
 715{
 716        return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
 717}
 718
 719int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
 720                            struct buffer_head *bh, int type)
 721{
 722        return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
 723}
 724
 725int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
 726                            struct buffer_head *bh, int type)
 727{
 728        return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
 729}
 730
 731int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
 732                         struct buffer_head *bh, int type)
 733{
 734        return __ocfs2_journal_access(handle, ci, bh, NULL, type);
 735}
 736
 737int ocfs2_journal_dirty(handle_t *handle,
 738                        struct buffer_head *bh)
 739{
 740        int status;
 741
 742        mlog_entry("(bh->b_blocknr=%llu)\n",
 743                   (unsigned long long)bh->b_blocknr);
 744
 745        status = jbd2_journal_dirty_metadata(handle, bh);
 746        if (status < 0)
 747                mlog(ML_ERROR, "Could not dirty metadata buffer. "
 748                     "(bh->b_blocknr=%llu)\n",
 749                     (unsigned long long)bh->b_blocknr);
 750
 751        mlog_exit(status);
 752        return status;
 753}
 754
 755#define OCFS2_DEFAULT_COMMIT_INTERVAL   (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
 756
 757void ocfs2_set_journal_params(struct ocfs2_super *osb)
 758{
 759        journal_t *journal = osb->journal->j_journal;
 760        unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
 761
 762        if (osb->osb_commit_interval)
 763                commit_interval = osb->osb_commit_interval;
 764
 765        spin_lock(&journal->j_state_lock);
 766        journal->j_commit_interval = commit_interval;
 767        if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
 768                journal->j_flags |= JBD2_BARRIER;
 769        else
 770                journal->j_flags &= ~JBD2_BARRIER;
 771        spin_unlock(&journal->j_state_lock);
 772}
 773
 774int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
 775{
 776        int status = -1;
 777        struct inode *inode = NULL; /* the journal inode */
 778        journal_t *j_journal = NULL;
 779        struct ocfs2_dinode *di = NULL;
 780        struct buffer_head *bh = NULL;
 781        struct ocfs2_super *osb;
 782        int inode_lock = 0;
 783
 784        mlog_entry_void();
 785
 786        BUG_ON(!journal);
 787
 788        osb = journal->j_osb;
 789
 790        /* already have the inode for our journal */
 791        inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
 792                                            osb->slot_num);
 793        if (inode == NULL) {
 794                status = -EACCES;
 795                mlog_errno(status);
 796                goto done;
 797        }
 798        if (is_bad_inode(inode)) {
 799                mlog(ML_ERROR, "access error (bad inode)\n");
 800                iput(inode);
 801                inode = NULL;
 802                status = -EACCES;
 803                goto done;
 804        }
 805
 806        SET_INODE_JOURNAL(inode);
 807        OCFS2_I(inode)->ip_open_count++;
 808
 809        /* Skip recovery waits here - journal inode metadata never
 810         * changes in a live cluster so it can be considered an
 811         * exception to the rule. */
 812        status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
 813        if (status < 0) {
 814                if (status != -ERESTARTSYS)
 815                        mlog(ML_ERROR, "Could not get lock on journal!\n");
 816                goto done;
 817        }
 818
 819        inode_lock = 1;
 820        di = (struct ocfs2_dinode *)bh->b_data;
 821
 822        if (inode->i_size <  OCFS2_MIN_JOURNAL_SIZE) {
 823                mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
 824                     inode->i_size);
 825                status = -EINVAL;
 826                goto done;
 827        }
 828
 829        mlog(0, "inode->i_size = %lld\n", inode->i_size);
 830        mlog(0, "inode->i_blocks = %llu\n",
 831                        (unsigned long long)inode->i_blocks);
 832        mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
 833
 834        /* call the kernels journal init function now */
 835        j_journal = jbd2_journal_init_inode(inode);
 836        if (j_journal == NULL) {
 837                mlog(ML_ERROR, "Linux journal layer error\n");
 838                status = -EINVAL;
 839                goto done;
 840        }
 841
 842        mlog(0, "Returned from jbd2_journal_init_inode\n");
 843        mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
 844
 845        *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
 846                  OCFS2_JOURNAL_DIRTY_FL);
 847
 848        journal->j_journal = j_journal;
 849        journal->j_inode = inode;
 850        journal->j_bh = bh;
 851
 852        ocfs2_set_journal_params(osb);
 853
 854        journal->j_state = OCFS2_JOURNAL_LOADED;
 855
 856        status = 0;
 857done:
 858        if (status < 0) {
 859                if (inode_lock)
 860                        ocfs2_inode_unlock(inode, 1);
 861                brelse(bh);
 862                if (inode) {
 863                        OCFS2_I(inode)->ip_open_count--;
 864                        iput(inode);
 865                }
 866        }
 867
 868        mlog_exit(status);
 869        return status;
 870}
 871
 872static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
 873{
 874        le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
 875}
 876
 877static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
 878{
 879        return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
 880}
 881
 882static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
 883                                      int dirty, int replayed)
 884{
 885        int status;
 886        unsigned int flags;
 887        struct ocfs2_journal *journal = osb->journal;
 888        struct buffer_head *bh = journal->j_bh;
 889        struct ocfs2_dinode *fe;
 890
 891        mlog_entry_void();
 892
 893        fe = (struct ocfs2_dinode *)bh->b_data;
 894
 895        /* The journal bh on the osb always comes from ocfs2_journal_init()
 896         * and was validated there inside ocfs2_inode_lock_full().  It's a
 897         * code bug if we mess it up. */
 898        BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
 899
 900        flags = le32_to_cpu(fe->id1.journal1.ij_flags);
 901        if (dirty)
 902                flags |= OCFS2_JOURNAL_DIRTY_FL;
 903        else
 904                flags &= ~OCFS2_JOURNAL_DIRTY_FL;
 905        fe->id1.journal1.ij_flags = cpu_to_le32(flags);
 906
 907        if (replayed)
 908                ocfs2_bump_recovery_generation(fe);
 909
 910        ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
 911        status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
 912        if (status < 0)
 913                mlog_errno(status);
 914
 915        mlog_exit(status);
 916        return status;
 917}
 918
 919/*
 920 * If the journal has been kmalloc'd it needs to be freed after this
 921 * call.
 922 */
 923void ocfs2_journal_shutdown(struct ocfs2_super *osb)
 924{
 925        struct ocfs2_journal *journal = NULL;
 926        int status = 0;
 927        struct inode *inode = NULL;
 928        int num_running_trans = 0;
 929
 930        mlog_entry_void();
 931
 932        BUG_ON(!osb);
 933
 934        journal = osb->journal;
 935        if (!journal)
 936                goto done;
 937
 938        inode = journal->j_inode;
 939
 940        if (journal->j_state != OCFS2_JOURNAL_LOADED)
 941                goto done;
 942
 943        /* need to inc inode use count - jbd2_journal_destroy will iput. */
 944        if (!igrab(inode))
 945                BUG();
 946
 947        num_running_trans = atomic_read(&(osb->journal->j_num_trans));
 948        if (num_running_trans > 0)
 949                mlog(0, "Shutting down journal: must wait on %d "
 950                     "running transactions!\n",
 951                     num_running_trans);
 952
 953        /* Do a commit_cache here. It will flush our journal, *and*
 954         * release any locks that are still held.
 955         * set the SHUTDOWN flag and release the trans lock.
 956         * the commit thread will take the trans lock for us below. */
 957        journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
 958
 959        /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
 960         * drop the trans_lock (which we want to hold until we
 961         * completely destroy the journal. */
 962        if (osb->commit_task) {
 963                /* Wait for the commit thread */
 964                mlog(0, "Waiting for ocfs2commit to exit....\n");
 965                kthread_stop(osb->commit_task);
 966                osb->commit_task = NULL;
 967        }
 968
 969        BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
 970
 971        if (ocfs2_mount_local(osb)) {
 972                jbd2_journal_lock_updates(journal->j_journal);
 973                status = jbd2_journal_flush(journal->j_journal);
 974                jbd2_journal_unlock_updates(journal->j_journal);
 975                if (status < 0)
 976                        mlog_errno(status);
 977        }
 978
 979        if (status == 0) {
 980                /*
 981                 * Do not toggle if flush was unsuccessful otherwise
 982                 * will leave dirty metadata in a "clean" journal
 983                 */
 984                status = ocfs2_journal_toggle_dirty(osb, 0, 0);
 985                if (status < 0)
 986                        mlog_errno(status);
 987        }
 988
 989        /* Shutdown the kernel journal system */
 990        jbd2_journal_destroy(journal->j_journal);
 991        journal->j_journal = NULL;
 992
 993        OCFS2_I(inode)->ip_open_count--;
 994
 995        /* unlock our journal */
 996        ocfs2_inode_unlock(inode, 1);
 997
 998        brelse(journal->j_bh);
 999        journal->j_bh = NULL;
1000
1001        journal->j_state = OCFS2_JOURNAL_FREE;
1002
1003//      up_write(&journal->j_trans_barrier);
1004done:
1005        if (inode)
1006                iput(inode);
1007        mlog_exit_void();
1008}
1009
1010static void ocfs2_clear_journal_error(struct super_block *sb,
1011                                      journal_t *journal,
1012                                      int slot)
1013{
1014        int olderr;
1015
1016        olderr = jbd2_journal_errno(journal);
1017        if (olderr) {
1018                mlog(ML_ERROR, "File system error %d recorded in "
1019                     "journal %u.\n", olderr, slot);
1020                mlog(ML_ERROR, "File system on device %s needs checking.\n",
1021                     sb->s_id);
1022
1023                jbd2_journal_ack_err(journal);
1024                jbd2_journal_clear_err(journal);
1025        }
1026}
1027
1028int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1029{
1030        int status = 0;
1031        struct ocfs2_super *osb;
1032
1033        mlog_entry_void();
1034
1035        BUG_ON(!journal);
1036
1037        osb = journal->j_osb;
1038
1039        status = jbd2_journal_load(journal->j_journal);
1040        if (status < 0) {
1041                mlog(ML_ERROR, "Failed to load journal!\n");
1042                goto done;
1043        }
1044
1045        ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1046
1047        status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1048        if (status < 0) {
1049                mlog_errno(status);
1050                goto done;
1051        }
1052
1053        /* Launch the commit thread */
1054        if (!local) {
1055                osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1056                                               "ocfs2cmt");
1057                if (IS_ERR(osb->commit_task)) {
1058                        status = PTR_ERR(osb->commit_task);
1059                        osb->commit_task = NULL;
1060                        mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1061                             "error=%d", status);
1062                        goto done;
1063                }
1064        } else
1065                osb->commit_task = NULL;
1066
1067done:
1068        mlog_exit(status);
1069        return status;
1070}
1071
1072
1073/* 'full' flag tells us whether we clear out all blocks or if we just
1074 * mark the journal clean */
1075int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1076{
1077        int status;
1078
1079        mlog_entry_void();
1080
1081        BUG_ON(!journal);
1082
1083        status = jbd2_journal_wipe(journal->j_journal, full);
1084        if (status < 0) {
1085                mlog_errno(status);
1086                goto bail;
1087        }
1088
1089        status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1090        if (status < 0)
1091                mlog_errno(status);
1092
1093bail:
1094        mlog_exit(status);
1095        return status;
1096}
1097
1098static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1099{
1100        int empty;
1101        struct ocfs2_recovery_map *rm = osb->recovery_map;
1102
1103        spin_lock(&osb->osb_lock);
1104        empty = (rm->rm_used == 0);
1105        spin_unlock(&osb->osb_lock);
1106
1107        return empty;
1108}
1109
1110void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1111{
1112        wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1113}
1114
1115/*
1116 * JBD Might read a cached version of another nodes journal file. We
1117 * don't want this as this file changes often and we get no
1118 * notification on those changes. The only way to be sure that we've
1119 * got the most up to date version of those blocks then is to force
1120 * read them off disk. Just searching through the buffer cache won't
1121 * work as there may be pages backing this file which are still marked
1122 * up to date. We know things can't change on this file underneath us
1123 * as we have the lock by now :)
1124 */
1125static int ocfs2_force_read_journal(struct inode *inode)
1126{
1127        int status = 0;
1128        int i;
1129        u64 v_blkno, p_blkno, p_blocks, num_blocks;
1130#define CONCURRENT_JOURNAL_FILL 32ULL
1131        struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1132
1133        mlog_entry_void();
1134
1135        memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1136
1137        num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
1138        v_blkno = 0;
1139        while (v_blkno < num_blocks) {
1140                status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1141                                                     &p_blkno, &p_blocks, NULL);
1142                if (status < 0) {
1143                        mlog_errno(status);
1144                        goto bail;
1145                }
1146
1147                if (p_blocks > CONCURRENT_JOURNAL_FILL)
1148                        p_blocks = CONCURRENT_JOURNAL_FILL;
1149
1150                /* We are reading journal data which should not
1151                 * be put in the uptodate cache */
1152                status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1153                                                p_blkno, p_blocks, bhs);
1154                if (status < 0) {
1155                        mlog_errno(status);
1156                        goto bail;
1157                }
1158
1159                for(i = 0; i < p_blocks; i++) {
1160                        brelse(bhs[i]);
1161                        bhs[i] = NULL;
1162                }
1163
1164                v_blkno += p_blocks;
1165        }
1166
1167bail:
1168        for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1169                brelse(bhs[i]);
1170        mlog_exit(status);
1171        return status;
1172}
1173
1174struct ocfs2_la_recovery_item {
1175        struct list_head        lri_list;
1176        int                     lri_slot;
1177        struct ocfs2_dinode     *lri_la_dinode;
1178        struct ocfs2_dinode     *lri_tl_dinode;
1179        struct ocfs2_quota_recovery *lri_qrec;
1180};
1181
1182/* Does the second half of the recovery process. By this point, the
1183 * node is marked clean and can actually be considered recovered,
1184 * hence it's no longer in the recovery map, but there's still some
1185 * cleanup we can do which shouldn't happen within the recovery thread
1186 * as locking in that context becomes very difficult if we are to take
1187 * recovering nodes into account.
1188 *
1189 * NOTE: This function can and will sleep on recovery of other nodes
1190 * during cluster locking, just like any other ocfs2 process.
1191 */
1192void ocfs2_complete_recovery(struct work_struct *work)
1193{
1194        int ret;
1195        struct ocfs2_journal *journal =
1196                container_of(work, struct ocfs2_journal, j_recovery_work);
1197        struct ocfs2_super *osb = journal->j_osb;
1198        struct ocfs2_dinode *la_dinode, *tl_dinode;
1199        struct ocfs2_la_recovery_item *item, *n;
1200        struct ocfs2_quota_recovery *qrec;
1201        LIST_HEAD(tmp_la_list);
1202
1203        mlog_entry_void();
1204
1205        mlog(0, "completing recovery from keventd\n");
1206
1207        spin_lock(&journal->j_lock);
1208        list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1209        spin_unlock(&journal->j_lock);
1210
1211        list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1212                list_del_init(&item->lri_list);
1213
1214                mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
1215
1216                ocfs2_wait_on_quotas(osb);
1217
1218                la_dinode = item->lri_la_dinode;
1219                if (la_dinode) {
1220                        mlog(0, "Clean up local alloc %llu\n",
1221                             (unsigned long long)le64_to_cpu(la_dinode->i_blkno));
1222
1223                        ret = ocfs2_complete_local_alloc_recovery(osb,
1224                                                                  la_dinode);
1225                        if (ret < 0)
1226                                mlog_errno(ret);
1227
1228                        kfree(la_dinode);
1229                }
1230
1231                tl_dinode = item->lri_tl_dinode;
1232                if (tl_dinode) {
1233                        mlog(0, "Clean up truncate log %llu\n",
1234                             (unsigned long long)le64_to_cpu(tl_dinode->i_blkno));
1235
1236                        ret = ocfs2_complete_truncate_log_recovery(osb,
1237                                                                   tl_dinode);
1238                        if (ret < 0)
1239                                mlog_errno(ret);
1240
1241                        kfree(tl_dinode);
1242                }
1243
1244                ret = ocfs2_recover_orphans(osb, item->lri_slot);
1245                if (ret < 0)
1246                        mlog_errno(ret);
1247
1248                qrec = item->lri_qrec;
1249                if (qrec) {
1250                        mlog(0, "Recovering quota files");
1251                        ret = ocfs2_finish_quota_recovery(osb, qrec,
1252                                                          item->lri_slot);
1253                        if (ret < 0)
1254                                mlog_errno(ret);
1255                        /* Recovery info is already freed now */
1256                }
1257
1258                kfree(item);
1259        }
1260
1261        mlog(0, "Recovery completion\n");
1262        mlog_exit_void();
1263}
1264
1265/* NOTE: This function always eats your references to la_dinode and
1266 * tl_dinode, either manually on error, or by passing them to
1267 * ocfs2_complete_recovery */
1268static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1269                                            int slot_num,
1270                                            struct ocfs2_dinode *la_dinode,
1271                                            struct ocfs2_dinode *tl_dinode,
1272                                            struct ocfs2_quota_recovery *qrec)
1273{
1274        struct ocfs2_la_recovery_item *item;
1275
1276        item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1277        if (!item) {
1278                /* Though we wish to avoid it, we are in fact safe in
1279                 * skipping local alloc cleanup as fsck.ocfs2 is more
1280                 * than capable of reclaiming unused space. */
1281                if (la_dinode)
1282                        kfree(la_dinode);
1283
1284                if (tl_dinode)
1285                        kfree(tl_dinode);
1286
1287                if (qrec)
1288                        ocfs2_free_quota_recovery(qrec);
1289
1290                mlog_errno(-ENOMEM);
1291                return;
1292        }
1293
1294        INIT_LIST_HEAD(&item->lri_list);
1295        item->lri_la_dinode = la_dinode;
1296        item->lri_slot = slot_num;
1297        item->lri_tl_dinode = tl_dinode;
1298        item->lri_qrec = qrec;
1299
1300        spin_lock(&journal->j_lock);
1301        list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1302        queue_work(ocfs2_wq, &journal->j_recovery_work);
1303        spin_unlock(&journal->j_lock);
1304}
1305
1306/* Called by the mount code to queue recovery the last part of
1307 * recovery for it's own and offline slot(s). */
1308void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1309{
1310        struct ocfs2_journal *journal = osb->journal;
1311
1312        /* No need to queue up our truncate_log as regular cleanup will catch
1313         * that */
1314        ocfs2_queue_recovery_completion(journal, osb->slot_num,
1315                                        osb->local_alloc_copy, NULL, NULL);
1316        ocfs2_schedule_truncate_log_flush(osb, 0);
1317
1318        osb->local_alloc_copy = NULL;
1319        osb->dirty = 0;
1320
1321        /* queue to recover orphan slots for all offline slots */
1322        ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1323        ocfs2_queue_replay_slots(osb);
1324        ocfs2_free_replay_slots(osb);
1325}
1326
1327void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1328{
1329        if (osb->quota_rec) {
1330                ocfs2_queue_recovery_completion(osb->journal,
1331                                                osb->slot_num,
1332                                                NULL,
1333                                                NULL,
1334                                                osb->quota_rec);
1335                osb->quota_rec = NULL;
1336        }
1337}
1338
1339static int __ocfs2_recovery_thread(void *arg)
1340{
1341        int status, node_num, slot_num;
1342        struct ocfs2_super *osb = arg;
1343        struct ocfs2_recovery_map *rm = osb->recovery_map;
1344        int *rm_quota = NULL;
1345        int rm_quota_used = 0, i;
1346        struct ocfs2_quota_recovery *qrec;
1347
1348        mlog_entry_void();
1349
1350        status = ocfs2_wait_on_mount(osb);
1351        if (status < 0) {
1352                goto bail;
1353        }
1354
1355        rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1356        if (!rm_quota) {
1357                status = -ENOMEM;
1358                goto bail;
1359        }
1360restart:
1361        status = ocfs2_super_lock(osb, 1);
1362        if (status < 0) {
1363                mlog_errno(status);
1364                goto bail;
1365        }
1366
1367        status = ocfs2_compute_replay_slots(osb);
1368        if (status < 0)
1369                mlog_errno(status);
1370
1371        /* queue recovery for our own slot */
1372        ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1373                                        NULL, NULL);
1374
1375        spin_lock(&osb->osb_lock);
1376        while (rm->rm_used) {
1377                /* It's always safe to remove entry zero, as we won't
1378                 * clear it until ocfs2_recover_node() has succeeded. */
1379                node_num = rm->rm_entries[0];
1380                spin_unlock(&osb->osb_lock);
1381                mlog(0, "checking node %d\n", node_num);
1382                slot_num = ocfs2_node_num_to_slot(osb, node_num);
1383                if (slot_num == -ENOENT) {
1384                        status = 0;
1385                        mlog(0, "no slot for this node, so no recovery"
1386                             "required.\n");
1387                        goto skip_recovery;
1388                }
1389                mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1390
1391                /* It is a bit subtle with quota recovery. We cannot do it
1392                 * immediately because we have to obtain cluster locks from
1393                 * quota files and we also don't want to just skip it because
1394                 * then quota usage would be out of sync until some node takes
1395                 * the slot. So we remember which nodes need quota recovery
1396                 * and when everything else is done, we recover quotas. */
1397                for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1398                if (i == rm_quota_used)
1399                        rm_quota[rm_quota_used++] = slot_num;
1400
1401                status = ocfs2_recover_node(osb, node_num, slot_num);
1402skip_recovery:
1403                if (!status) {
1404                        ocfs2_recovery_map_clear(osb, node_num);
1405                } else {
1406                        mlog(ML_ERROR,
1407                             "Error %d recovering node %d on device (%u,%u)!\n",
1408                             status, node_num,
1409                             MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1410                        mlog(ML_ERROR, "Volume requires unmount.\n");
1411                }
1412
1413                spin_lock(&osb->osb_lock);
1414        }
1415        spin_unlock(&osb->osb_lock);
1416        mlog(0, "All nodes recovered\n");
1417
1418        /* Refresh all journal recovery generations from disk */
1419        status = ocfs2_check_journals_nolocks(osb);
1420        status = (status == -EROFS) ? 0 : status;
1421        if (status < 0)
1422                mlog_errno(status);
1423
1424        /* Now it is right time to recover quotas... We have to do this under
1425         * superblock lock so that noone can start using the slot (and crash)
1426         * before we recover it */
1427        for (i = 0; i < rm_quota_used; i++) {
1428                qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1429                if (IS_ERR(qrec)) {
1430                        status = PTR_ERR(qrec);
1431                        mlog_errno(status);
1432                        continue;
1433                }
1434                ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1435                                                NULL, NULL, qrec);
1436        }
1437
1438        ocfs2_super_unlock(osb, 1);
1439
1440        /* queue recovery for offline slots */
1441        ocfs2_queue_replay_slots(osb);
1442
1443bail:
1444        mutex_lock(&osb->recovery_lock);
1445        if (!status && !ocfs2_recovery_completed(osb)) {
1446                mutex_unlock(&osb->recovery_lock);
1447                goto restart;
1448        }
1449
1450        ocfs2_free_replay_slots(osb);
1451        osb->recovery_thread_task = NULL;
1452        mb(); /* sync with ocfs2_recovery_thread_running */
1453        wake_up(&osb->recovery_event);
1454
1455        mutex_unlock(&osb->recovery_lock);
1456
1457        if (rm_quota)
1458                kfree(rm_quota);
1459
1460        mlog_exit(status);
1461        /* no one is callint kthread_stop() for us so the kthread() api
1462         * requires that we call do_exit().  And it isn't exported, but
1463         * complete_and_exit() seems to be a minimal wrapper around it. */
1464        complete_and_exit(NULL, status);
1465        return status;
1466}
1467
1468void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1469{
1470        mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1471                   node_num, osb->node_num);
1472
1473        mutex_lock(&osb->recovery_lock);
1474        if (osb->disable_recovery)
1475                goto out;
1476
1477        /* People waiting on recovery will wait on
1478         * the recovery map to empty. */
1479        if (ocfs2_recovery_map_set(osb, node_num))
1480                mlog(0, "node %d already in recovery map.\n", node_num);
1481
1482        mlog(0, "starting recovery thread...\n");
1483
1484        if (osb->recovery_thread_task)
1485                goto out;
1486
1487        osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1488                                                 "ocfs2rec");
1489        if (IS_ERR(osb->recovery_thread_task)) {
1490                mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1491                osb->recovery_thread_task = NULL;
1492        }
1493
1494out:
1495        mutex_unlock(&osb->recovery_lock);
1496        wake_up(&osb->recovery_event);
1497
1498        mlog_exit_void();
1499}
1500
1501static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1502                                    int slot_num,
1503                                    struct buffer_head **bh,
1504                                    struct inode **ret_inode)
1505{
1506        int status = -EACCES;
1507        struct inode *inode = NULL;
1508
1509        BUG_ON(slot_num >= osb->max_slots);
1510
1511        inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1512                                            slot_num);
1513        if (!inode || is_bad_inode(inode)) {
1514                mlog_errno(status);
1515                goto bail;
1516        }
1517        SET_INODE_JOURNAL(inode);
1518
1519        status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1520        if (status < 0) {
1521                mlog_errno(status);
1522                goto bail;
1523        }
1524
1525        status = 0;
1526
1527bail:
1528        if (inode) {
1529                if (status || !ret_inode)
1530                        iput(inode);
1531                else
1532                        *ret_inode = inode;
1533        }
1534        return status;
1535}
1536
1537/* Does the actual journal replay and marks the journal inode as
1538 * clean. Will only replay if the journal inode is marked dirty. */
1539static int ocfs2_replay_journal(struct ocfs2_super *osb,
1540                                int node_num,
1541                                int slot_num)
1542{
1543        int status;
1544        int got_lock = 0;
1545        unsigned int flags;
1546        struct inode *inode = NULL;
1547        struct ocfs2_dinode *fe;
1548        journal_t *journal = NULL;
1549        struct buffer_head *bh = NULL;
1550        u32 slot_reco_gen;
1551
1552        status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1553        if (status) {
1554                mlog_errno(status);
1555                goto done;
1556        }
1557
1558        fe = (struct ocfs2_dinode *)bh->b_data;
1559        slot_reco_gen = ocfs2_get_recovery_generation(fe);
1560        brelse(bh);
1561        bh = NULL;
1562
1563        /*
1564         * As the fs recovery is asynchronous, there is a small chance that
1565         * another node mounted (and recovered) the slot before the recovery
1566         * thread could get the lock. To handle that, we dirty read the journal
1567         * inode for that slot to get the recovery generation. If it is
1568         * different than what we expected, the slot has been recovered.
1569         * If not, it needs recovery.
1570         */
1571        if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1572                mlog(0, "Slot %u already recovered (old/new=%u/%u)\n", slot_num,
1573                     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1574                osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1575                status = -EBUSY;
1576                goto done;
1577        }
1578
1579        /* Continue with recovery as the journal has not yet been recovered */
1580
1581        status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1582        if (status < 0) {
1583                mlog(0, "status returned from ocfs2_inode_lock=%d\n", status);
1584                if (status != -ERESTARTSYS)
1585                        mlog(ML_ERROR, "Could not lock journal!\n");
1586                goto done;
1587        }
1588        got_lock = 1;
1589
1590        fe = (struct ocfs2_dinode *) bh->b_data;
1591
1592        flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1593        slot_reco_gen = ocfs2_get_recovery_generation(fe);
1594
1595        if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1596                mlog(0, "No recovery required for node %d\n", node_num);
1597                /* Refresh recovery generation for the slot */
1598                osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1599                goto done;
1600        }
1601
1602        /* we need to run complete recovery for offline orphan slots */
1603        ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1604
1605        mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1606             node_num, slot_num,
1607             MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1608
1609        OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1610
1611        status = ocfs2_force_read_journal(inode);
1612        if (status < 0) {
1613                mlog_errno(status);
1614                goto done;
1615        }
1616
1617        mlog(0, "calling journal_init_inode\n");
1618        journal = jbd2_journal_init_inode(inode);
1619        if (journal == NULL) {
1620                mlog(ML_ERROR, "Linux journal layer error\n");
1621                status = -EIO;
1622                goto done;
1623        }
1624
1625        status = jbd2_journal_load(journal);
1626        if (status < 0) {
1627                mlog_errno(status);
1628                if (!igrab(inode))
1629                        BUG();
1630                jbd2_journal_destroy(journal);
1631                goto done;
1632        }
1633
1634        ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1635
1636        /* wipe the journal */
1637        mlog(0, "flushing the journal.\n");
1638        jbd2_journal_lock_updates(journal);
1639        status = jbd2_journal_flush(journal);
1640        jbd2_journal_unlock_updates(journal);
1641        if (status < 0)
1642                mlog_errno(status);
1643
1644        /* This will mark the node clean */
1645        flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1646        flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1647        fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1648
1649        /* Increment recovery generation to indicate successful recovery */
1650        ocfs2_bump_recovery_generation(fe);
1651        osb->slot_recovery_generations[slot_num] =
1652                                        ocfs2_get_recovery_generation(fe);
1653
1654        ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1655        status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1656        if (status < 0)
1657                mlog_errno(status);
1658
1659        if (!igrab(inode))
1660                BUG();
1661
1662        jbd2_journal_destroy(journal);
1663
1664done:
1665        /* drop the lock on this nodes journal */
1666        if (got_lock)
1667                ocfs2_inode_unlock(inode, 1);
1668
1669        if (inode)
1670                iput(inode);
1671
1672        brelse(bh);
1673
1674        mlog_exit(status);
1675        return status;
1676}
1677
1678/*
1679 * Do the most important parts of node recovery:
1680 *  - Replay it's journal
1681 *  - Stamp a clean local allocator file
1682 *  - Stamp a clean truncate log
1683 *  - Mark the node clean
1684 *
1685 * If this function completes without error, a node in OCFS2 can be
1686 * said to have been safely recovered. As a result, failure during the
1687 * second part of a nodes recovery process (local alloc recovery) is
1688 * far less concerning.
1689 */
1690static int ocfs2_recover_node(struct ocfs2_super *osb,
1691                              int node_num, int slot_num)
1692{
1693        int status = 0;
1694        struct ocfs2_dinode *la_copy = NULL;
1695        struct ocfs2_dinode *tl_copy = NULL;
1696
1697        mlog_entry("(node_num=%d, slot_num=%d, osb->node_num = %d)\n",
1698                   node_num, slot_num, osb->node_num);
1699
1700        /* Should not ever be called to recover ourselves -- in that
1701         * case we should've called ocfs2_journal_load instead. */
1702        BUG_ON(osb->node_num == node_num);
1703
1704        status = ocfs2_replay_journal(osb, node_num, slot_num);
1705        if (status < 0) {
1706                if (status == -EBUSY) {
1707                        mlog(0, "Skipping recovery for slot %u (node %u) "
1708                             "as another node has recovered it\n", slot_num,
1709                             node_num);
1710                        status = 0;
1711                        goto done;
1712                }
1713                mlog_errno(status);
1714                goto done;
1715        }
1716
1717        /* Stamp a clean local alloc file AFTER recovering the journal... */
1718        status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1719        if (status < 0) {
1720                mlog_errno(status);
1721                goto done;
1722        }
1723
1724        /* An error from begin_truncate_log_recovery is not
1725         * serious enough to warrant halting the rest of
1726         * recovery. */
1727        status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1728        if (status < 0)
1729                mlog_errno(status);
1730
1731        /* Likewise, this would be a strange but ultimately not so
1732         * harmful place to get an error... */
1733        status = ocfs2_clear_slot(osb, slot_num);
1734        if (status < 0)
1735                mlog_errno(status);
1736
1737        /* This will kfree the memory pointed to by la_copy and tl_copy */
1738        ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1739                                        tl_copy, NULL);
1740
1741        status = 0;
1742done:
1743
1744        mlog_exit(status);
1745        return status;
1746}
1747
1748/* Test node liveness by trylocking his journal. If we get the lock,
1749 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1750 * still alive (we couldn't get the lock) and < 0 on error. */
1751static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1752                                 int slot_num)
1753{
1754        int status, flags;
1755        struct inode *inode = NULL;
1756
1757        inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1758                                            slot_num);
1759        if (inode == NULL) {
1760                mlog(ML_ERROR, "access error\n");
1761                status = -EACCES;
1762                goto bail;
1763        }
1764        if (is_bad_inode(inode)) {
1765                mlog(ML_ERROR, "access error (bad inode)\n");
1766                iput(inode);
1767                inode = NULL;
1768                status = -EACCES;
1769                goto bail;
1770        }
1771        SET_INODE_JOURNAL(inode);
1772
1773        flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1774        status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1775        if (status < 0) {
1776                if (status != -EAGAIN)
1777                        mlog_errno(status);
1778                goto bail;
1779        }
1780
1781        ocfs2_inode_unlock(inode, 1);
1782bail:
1783        if (inode)
1784                iput(inode);
1785
1786        return status;
1787}
1788
1789/* Call this underneath ocfs2_super_lock. It also assumes that the
1790 * slot info struct has been updated from disk. */
1791int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1792{
1793        unsigned int node_num;
1794        int status, i;
1795        u32 gen;
1796        struct buffer_head *bh = NULL;
1797        struct ocfs2_dinode *di;
1798
1799        /* This is called with the super block cluster lock, so we
1800         * know that the slot map can't change underneath us. */
1801
1802        for (i = 0; i < osb->max_slots; i++) {
1803                /* Read journal inode to get the recovery generation */
1804                status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1805                if (status) {
1806                        mlog_errno(status);
1807                        goto bail;
1808                }
1809                di = (struct ocfs2_dinode *)bh->b_data;
1810                gen = ocfs2_get_recovery_generation(di);
1811                brelse(bh);
1812                bh = NULL;
1813
1814                spin_lock(&osb->osb_lock);
1815                osb->slot_recovery_generations[i] = gen;
1816
1817                mlog(0, "Slot %u recovery generation is %u\n", i,
1818                     osb->slot_recovery_generations[i]);
1819
1820                if (i == osb->slot_num) {
1821                        spin_unlock(&osb->osb_lock);
1822                        continue;
1823                }
1824
1825                status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1826                if (status == -ENOENT) {
1827                        spin_unlock(&osb->osb_lock);
1828                        continue;
1829                }
1830
1831                if (__ocfs2_recovery_map_test(osb, node_num)) {
1832                        spin_unlock(&osb->osb_lock);
1833                        continue;
1834                }
1835                spin_unlock(&osb->osb_lock);
1836
1837                /* Ok, we have a slot occupied by another node which
1838                 * is not in the recovery map. We trylock his journal
1839                 * file here to test if he's alive. */
1840                status = ocfs2_trylock_journal(osb, i);
1841                if (!status) {
1842                        /* Since we're called from mount, we know that
1843                         * the recovery thread can't race us on
1844                         * setting / checking the recovery bits. */
1845                        ocfs2_recovery_thread(osb, node_num);
1846                } else if ((status < 0) && (status != -EAGAIN)) {
1847                        mlog_errno(status);
1848                        goto bail;
1849                }
1850        }
1851
1852        status = 0;
1853bail:
1854        mlog_exit(status);
1855        return status;
1856}
1857
1858/*
1859 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1860 * randomness to the timeout to minimize multple nodes firing the timer at the
1861 * same time.
1862 */
1863static inline unsigned long ocfs2_orphan_scan_timeout(void)
1864{
1865        unsigned long time;
1866
1867        get_random_bytes(&time, sizeof(time));
1868        time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1869        return msecs_to_jiffies(time);
1870}
1871
1872/*
1873 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1874 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1875 * is done to catch any orphans that are left over in orphan directories.
1876 *
1877 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1878 * seconds.  It gets an EX lock on os_lockres and checks sequence number
1879 * stored in LVB. If the sequence number has changed, it means some other
1880 * node has done the scan.  This node skips the scan and tracks the
1881 * sequence number.  If the sequence number didn't change, it means a scan
1882 * hasn't happened.  The node queues a scan and increments the
1883 * sequence number in the LVB.
1884 */
1885void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1886{
1887        struct ocfs2_orphan_scan *os;
1888        int status, i;
1889        u32 seqno = 0;
1890
1891        os = &osb->osb_orphan_scan;
1892
1893        if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1894                goto out;
1895
1896        status = ocfs2_orphan_scan_lock(osb, &seqno);
1897        if (status < 0) {
1898                if (status != -EAGAIN)
1899                        mlog_errno(status);
1900                goto out;
1901        }
1902
1903        /* Do no queue the tasks if the volume is being umounted */
1904        if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1905                goto unlock;
1906
1907        if (os->os_seqno != seqno) {
1908                os->os_seqno = seqno;
1909                goto unlock;
1910        }
1911
1912        for (i = 0; i < osb->max_slots; i++)
1913                ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1914                                                NULL);
1915        /*
1916         * We queued a recovery on orphan slots, increment the sequence
1917         * number and update LVB so other node will skip the scan for a while
1918         */
1919        seqno++;
1920        os->os_count++;
1921        os->os_scantime = CURRENT_TIME;
1922unlock:
1923        ocfs2_orphan_scan_unlock(osb, seqno);
1924out:
1925        return;
1926}
1927
1928/* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1929void ocfs2_orphan_scan_work(struct work_struct *work)
1930{
1931        struct ocfs2_orphan_scan *os;
1932        struct ocfs2_super *osb;
1933
1934        os = container_of(work, struct ocfs2_orphan_scan,
1935                          os_orphan_scan_work.work);
1936        osb = os->os_osb;
1937
1938        mutex_lock(&os->os_lock);
1939        ocfs2_queue_orphan_scan(osb);
1940        if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1941                schedule_delayed_work(&os->os_orphan_scan_work,
1942                                      ocfs2_orphan_scan_timeout());
1943        mutex_unlock(&os->os_lock);
1944}
1945
1946void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1947{
1948        struct ocfs2_orphan_scan *os;
1949
1950        os = &osb->osb_orphan_scan;
1951        if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1952                atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1953                mutex_lock(&os->os_lock);
1954                cancel_delayed_work(&os->os_orphan_scan_work);
1955                mutex_unlock(&os->os_lock);
1956        }
1957}
1958
1959void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1960{
1961        struct ocfs2_orphan_scan *os;
1962
1963        os = &osb->osb_orphan_scan;
1964        os->os_osb = osb;
1965        os->os_count = 0;
1966        os->os_seqno = 0;
1967        mutex_init(&os->os_lock);
1968        INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
1969}
1970
1971void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
1972{
1973        struct ocfs2_orphan_scan *os;
1974
1975        os = &osb->osb_orphan_scan;
1976        os->os_scantime = CURRENT_TIME;
1977        if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
1978                atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1979        else {
1980                atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
1981                schedule_delayed_work(&os->os_orphan_scan_work,
1982                                      ocfs2_orphan_scan_timeout());
1983        }
1984}
1985
1986struct ocfs2_orphan_filldir_priv {
1987        struct inode            *head;
1988        struct ocfs2_super      *osb;
1989};
1990
1991static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1992                                loff_t pos, u64 ino, unsigned type)
1993{
1994        struct ocfs2_orphan_filldir_priv *p = priv;
1995        struct inode *iter;
1996
1997        if (name_len == 1 && !strncmp(".", name, 1))
1998                return 0;
1999        if (name_len == 2 && !strncmp("..", name, 2))
2000                return 0;
2001
2002        /* Skip bad inodes so that recovery can continue */
2003        iter = ocfs2_iget(p->osb, ino,
2004                          OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2005        if (IS_ERR(iter))
2006                return 0;
2007
2008        mlog(0, "queue orphan %llu\n",
2009             (unsigned long long)OCFS2_I(iter)->ip_blkno);
2010        /* No locking is required for the next_orphan queue as there
2011         * is only ever a single process doing orphan recovery. */
2012        OCFS2_I(iter)->ip_next_orphan = p->head;
2013        p->head = iter;
2014
2015        return 0;
2016}
2017
2018static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2019                               int slot,
2020                               struct inode **head)
2021{
2022        int status;
2023        struct inode *orphan_dir_inode = NULL;
2024        struct ocfs2_orphan_filldir_priv priv;
2025        loff_t pos = 0;
2026
2027        priv.osb = osb;
2028        priv.head = *head;
2029
2030        orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2031                                                       ORPHAN_DIR_SYSTEM_INODE,
2032                                                       slot);
2033        if  (!orphan_dir_inode) {
2034                status = -ENOENT;
2035                mlog_errno(status);
2036                return status;
2037        }       
2038
2039        mutex_lock(&orphan_dir_inode->i_mutex);
2040        status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2041        if (status < 0) {
2042                mlog_errno(status);
2043                goto out;
2044        }
2045
2046        status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
2047                                   ocfs2_orphan_filldir);
2048        if (status) {
2049                mlog_errno(status);
2050                goto out_cluster;
2051        }
2052
2053        *head = priv.head;
2054
2055out_cluster:
2056        ocfs2_inode_unlock(orphan_dir_inode, 0);
2057out:
2058        mutex_unlock(&orphan_dir_inode->i_mutex);
2059        iput(orphan_dir_inode);
2060        return status;
2061}
2062
2063static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2064                                              int slot)
2065{
2066        int ret;
2067
2068        spin_lock(&osb->osb_lock);
2069        ret = !osb->osb_orphan_wipes[slot];
2070        spin_unlock(&osb->osb_lock);
2071        return ret;
2072}
2073
2074static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2075                                             int slot)
2076{
2077        spin_lock(&osb->osb_lock);
2078        /* Mark ourselves such that new processes in delete_inode()
2079         * know to quit early. */
2080        ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2081        while (osb->osb_orphan_wipes[slot]) {
2082                /* If any processes are already in the middle of an
2083                 * orphan wipe on this dir, then we need to wait for
2084                 * them. */
2085                spin_unlock(&osb->osb_lock);
2086                wait_event_interruptible(osb->osb_wipe_event,
2087                                         ocfs2_orphan_recovery_can_continue(osb, slot));
2088                spin_lock(&osb->osb_lock);
2089        }
2090        spin_unlock(&osb->osb_lock);
2091}
2092
2093static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2094                                              int slot)
2095{
2096        ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2097}
2098
2099/*
2100 * Orphan recovery. Each mounted node has it's own orphan dir which we
2101 * must run during recovery. Our strategy here is to build a list of
2102 * the inodes in the orphan dir and iget/iput them. The VFS does
2103 * (most) of the rest of the work.
2104 *
2105 * Orphan recovery can happen at any time, not just mount so we have a
2106 * couple of extra considerations.
2107 *
2108 * - We grab as many inodes as we can under the orphan dir lock -
2109 *   doing iget() outside the orphan dir risks getting a reference on
2110 *   an invalid inode.
2111 * - We must be sure not to deadlock with other processes on the
2112 *   system wanting to run delete_inode(). This can happen when they go
2113 *   to lock the orphan dir and the orphan recovery process attempts to
2114 *   iget() inside the orphan dir lock. This can be avoided by
2115 *   advertising our state to ocfs2_delete_inode().
2116 */
2117static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2118                                 int slot)
2119{
2120        int ret = 0;
2121        struct inode *inode = NULL;
2122        struct inode *iter;
2123        struct ocfs2_inode_info *oi;
2124
2125        mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
2126
2127        ocfs2_mark_recovering_orphan_dir(osb, slot);
2128        ret = ocfs2_queue_orphans(osb, slot, &inode);
2129        ocfs2_clear_recovering_orphan_dir(osb, slot);
2130
2131        /* Error here should be noted, but we want to continue with as
2132         * many queued inodes as we've got. */
2133        if (ret)
2134                mlog_errno(ret);
2135
2136        while (inode) {
2137                oi = OCFS2_I(inode);
2138                mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
2139
2140                iter = oi->ip_next_orphan;
2141
2142                spin_lock(&oi->ip_lock);
2143                /* The remote delete code may have set these on the
2144                 * assumption that the other node would wipe them
2145                 * successfully.  If they are still in the node's
2146                 * orphan dir, we need to reset that state. */
2147                oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
2148
2149                /* Set the proper information to get us going into
2150                 * ocfs2_delete_inode. */
2151                oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2152                spin_unlock(&oi->ip_lock);
2153
2154                iput(inode);
2155
2156                inode = iter;
2157        }
2158
2159        return ret;
2160}
2161
2162static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2163{
2164        /* This check is good because ocfs2 will wait on our recovery
2165         * thread before changing it to something other than MOUNTED
2166         * or DISABLED. */
2167        wait_event(osb->osb_mount_event,
2168                  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2169                   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2170                   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2171
2172        /* If there's an error on mount, then we may never get to the
2173         * MOUNTED flag, but this is set right before
2174         * dismount_volume() so we can trust it. */
2175        if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2176                mlog(0, "mount error, exiting!\n");
2177                return -EBUSY;
2178        }
2179
2180        return 0;
2181}
2182
2183static int ocfs2_commit_thread(void *arg)
2184{
2185        int status;
2186        struct ocfs2_super *osb = arg;
2187        struct ocfs2_journal *journal = osb->journal;
2188
2189        /* we can trust j_num_trans here because _should_stop() is only set in
2190         * shutdown and nobody other than ourselves should be able to start
2191         * transactions.  committing on shutdown might take a few iterations
2192         * as final transactions put deleted inodes on the list */
2193        while (!(kthread_should_stop() &&
2194                 atomic_read(&journal->j_num_trans) == 0)) {
2195
2196                wait_event_interruptible(osb->checkpoint_event,
2197                                         atomic_read(&journal->j_num_trans)
2198                                         || kthread_should_stop());
2199
2200                status = ocfs2_commit_cache(osb);
2201                if (status < 0)
2202                        mlog_errno(status);
2203
2204                if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2205                        mlog(ML_KTHREAD,
2206                             "commit_thread: %u transactions pending on "
2207                             "shutdown\n",
2208                             atomic_read(&journal->j_num_trans));
2209                }
2210        }
2211
2212        return 0;
2213}
2214
2215/* Reads all the journal inodes without taking any cluster locks. Used
2216 * for hard readonly access to determine whether any journal requires
2217 * recovery. Also used to refresh the recovery generation numbers after
2218 * a journal has been recovered by another node.
2219 */
2220int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2221{
2222        int ret = 0;
2223        unsigned int slot;
2224        struct buffer_head *di_bh = NULL;
2225        struct ocfs2_dinode *di;
2226        int journal_dirty = 0;
2227
2228        for(slot = 0; slot < osb->max_slots; slot++) {
2229                ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2230                if (ret) {
2231                        mlog_errno(ret);
2232                        goto out;
2233                }
2234
2235                di = (struct ocfs2_dinode *) di_bh->b_data;
2236
2237                osb->slot_recovery_generations[slot] =
2238                                        ocfs2_get_recovery_generation(di);
2239
2240                if (le32_to_cpu(di->id1.journal1.ij_flags) &
2241                    OCFS2_JOURNAL_DIRTY_FL)
2242                        journal_dirty = 1;
2243
2244                brelse(di_bh);
2245                di_bh = NULL;
2246        }
2247
2248out:
2249        if (journal_dirty)
2250                ret = -EROFS;
2251        return ret;
2252}
2253