linux/fs/pnode.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/pnode.c
   3 *
   4 * (C) Copyright IBM Corporation 2005.
   5 *      Released under GPL v2.
   6 *      Author : Ram Pai (linuxram@us.ibm.com)
   7 *
   8 */
   9#include <linux/mnt_namespace.h>
  10#include <linux/mount.h>
  11#include <linux/fs.h>
  12#include "internal.h"
  13#include "pnode.h"
  14
  15/* return the next shared peer mount of @p */
  16static inline struct vfsmount *next_peer(struct vfsmount *p)
  17{
  18        return list_entry(p->mnt_share.next, struct vfsmount, mnt_share);
  19}
  20
  21static inline struct vfsmount *first_slave(struct vfsmount *p)
  22{
  23        return list_entry(p->mnt_slave_list.next, struct vfsmount, mnt_slave);
  24}
  25
  26static inline struct vfsmount *next_slave(struct vfsmount *p)
  27{
  28        return list_entry(p->mnt_slave.next, struct vfsmount, mnt_slave);
  29}
  30
  31/*
  32 * Return true if path is reachable from root
  33 *
  34 * namespace_sem is held, and mnt is attached
  35 */
  36static bool is_path_reachable(struct vfsmount *mnt, struct dentry *dentry,
  37                         const struct path *root)
  38{
  39        while (mnt != root->mnt && mnt->mnt_parent != mnt) {
  40                dentry = mnt->mnt_mountpoint;
  41                mnt = mnt->mnt_parent;
  42        }
  43        return mnt == root->mnt && is_subdir(dentry, root->dentry);
  44}
  45
  46static struct vfsmount *get_peer_under_root(struct vfsmount *mnt,
  47                                            struct mnt_namespace *ns,
  48                                            const struct path *root)
  49{
  50        struct vfsmount *m = mnt;
  51
  52        do {
  53                /* Check the namespace first for optimization */
  54                if (m->mnt_ns == ns && is_path_reachable(m, m->mnt_root, root))
  55                        return m;
  56
  57                m = next_peer(m);
  58        } while (m != mnt);
  59
  60        return NULL;
  61}
  62
  63/*
  64 * Get ID of closest dominating peer group having a representative
  65 * under the given root.
  66 *
  67 * Caller must hold namespace_sem
  68 */
  69int get_dominating_id(struct vfsmount *mnt, const struct path *root)
  70{
  71        struct vfsmount *m;
  72
  73        for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
  74                struct vfsmount *d = get_peer_under_root(m, mnt->mnt_ns, root);
  75                if (d)
  76                        return d->mnt_group_id;
  77        }
  78
  79        return 0;
  80}
  81
  82static int do_make_slave(struct vfsmount *mnt)
  83{
  84        struct vfsmount *peer_mnt = mnt, *master = mnt->mnt_master;
  85        struct vfsmount *slave_mnt;
  86
  87        /*
  88         * slave 'mnt' to a peer mount that has the
  89         * same root dentry. If none is available than
  90         * slave it to anything that is available.
  91         */
  92        while ((peer_mnt = next_peer(peer_mnt)) != mnt &&
  93               peer_mnt->mnt_root != mnt->mnt_root) ;
  94
  95        if (peer_mnt == mnt) {
  96                peer_mnt = next_peer(mnt);
  97                if (peer_mnt == mnt)
  98                        peer_mnt = NULL;
  99        }
 100        if (IS_MNT_SHARED(mnt) && list_empty(&mnt->mnt_share))
 101                mnt_release_group_id(mnt);
 102
 103        list_del_init(&mnt->mnt_share);
 104        mnt->mnt_group_id = 0;
 105
 106        if (peer_mnt)
 107                master = peer_mnt;
 108
 109        if (master) {
 110                list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
 111                        slave_mnt->mnt_master = master;
 112                list_move(&mnt->mnt_slave, &master->mnt_slave_list);
 113                list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
 114                INIT_LIST_HEAD(&mnt->mnt_slave_list);
 115        } else {
 116                struct list_head *p = &mnt->mnt_slave_list;
 117                while (!list_empty(p)) {
 118                        slave_mnt = list_first_entry(p,
 119                                        struct vfsmount, mnt_slave);
 120                        list_del_init(&slave_mnt->mnt_slave);
 121                        slave_mnt->mnt_master = NULL;
 122                }
 123        }
 124        mnt->mnt_master = master;
 125        CLEAR_MNT_SHARED(mnt);
 126        return 0;
 127}
 128
 129void change_mnt_propagation(struct vfsmount *mnt, int type)
 130{
 131        if (type == MS_SHARED) {
 132                set_mnt_shared(mnt);
 133                return;
 134        }
 135        do_make_slave(mnt);
 136        if (type != MS_SLAVE) {
 137                list_del_init(&mnt->mnt_slave);
 138                mnt->mnt_master = NULL;
 139                if (type == MS_UNBINDABLE)
 140                        mnt->mnt_flags |= MNT_UNBINDABLE;
 141                else
 142                        mnt->mnt_flags &= ~MNT_UNBINDABLE;
 143        }
 144}
 145
 146/*
 147 * get the next mount in the propagation tree.
 148 * @m: the mount seen last
 149 * @origin: the original mount from where the tree walk initiated
 150 */
 151static struct vfsmount *propagation_next(struct vfsmount *m,
 152                                         struct vfsmount *origin)
 153{
 154        /* are there any slaves of this mount? */
 155        if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
 156                return first_slave(m);
 157
 158        while (1) {
 159                struct vfsmount *next;
 160                struct vfsmount *master = m->mnt_master;
 161
 162                if (master == origin->mnt_master) {
 163                        next = next_peer(m);
 164                        return ((next == origin) ? NULL : next);
 165                } else if (m->mnt_slave.next != &master->mnt_slave_list)
 166                        return next_slave(m);
 167
 168                /* back at master */
 169                m = master;
 170        }
 171}
 172
 173/*
 174 * return the source mount to be used for cloning
 175 *
 176 * @dest        the current destination mount
 177 * @last_dest   the last seen destination mount
 178 * @last_src    the last seen source mount
 179 * @type        return CL_SLAVE if the new mount has to be
 180 *              cloned as a slave.
 181 */
 182static struct vfsmount *get_source(struct vfsmount *dest,
 183                                        struct vfsmount *last_dest,
 184                                        struct vfsmount *last_src,
 185                                        int *type)
 186{
 187        struct vfsmount *p_last_src = NULL;
 188        struct vfsmount *p_last_dest = NULL;
 189        *type = CL_PROPAGATION;
 190
 191        if (IS_MNT_SHARED(dest))
 192                *type |= CL_MAKE_SHARED;
 193
 194        while (last_dest != dest->mnt_master) {
 195                p_last_dest = last_dest;
 196                p_last_src = last_src;
 197                last_dest = last_dest->mnt_master;
 198                last_src = last_src->mnt_master;
 199        }
 200
 201        if (p_last_dest) {
 202                do {
 203                        p_last_dest = next_peer(p_last_dest);
 204                } while (IS_MNT_NEW(p_last_dest));
 205        }
 206
 207        if (dest != p_last_dest) {
 208                *type |= CL_SLAVE;
 209                return last_src;
 210        } else
 211                return p_last_src;
 212}
 213
 214/*
 215 * mount 'source_mnt' under the destination 'dest_mnt' at
 216 * dentry 'dest_dentry'. And propagate that mount to
 217 * all the peer and slave mounts of 'dest_mnt'.
 218 * Link all the new mounts into a propagation tree headed at
 219 * source_mnt. Also link all the new mounts using ->mnt_list
 220 * headed at source_mnt's ->mnt_list
 221 *
 222 * @dest_mnt: destination mount.
 223 * @dest_dentry: destination dentry.
 224 * @source_mnt: source mount.
 225 * @tree_list : list of heads of trees to be attached.
 226 */
 227int propagate_mnt(struct vfsmount *dest_mnt, struct dentry *dest_dentry,
 228                    struct vfsmount *source_mnt, struct list_head *tree_list)
 229{
 230        struct vfsmount *m, *child;
 231        int ret = 0;
 232        struct vfsmount *prev_dest_mnt = dest_mnt;
 233        struct vfsmount *prev_src_mnt  = source_mnt;
 234        LIST_HEAD(tmp_list);
 235        LIST_HEAD(umount_list);
 236
 237        for (m = propagation_next(dest_mnt, dest_mnt); m;
 238                        m = propagation_next(m, dest_mnt)) {
 239                int type;
 240                struct vfsmount *source;
 241
 242                if (IS_MNT_NEW(m))
 243                        continue;
 244
 245                source =  get_source(m, prev_dest_mnt, prev_src_mnt, &type);
 246
 247                if (!(child = copy_tree(source, source->mnt_root, type))) {
 248                        ret = -ENOMEM;
 249                        list_splice(tree_list, tmp_list.prev);
 250                        goto out;
 251                }
 252
 253                if (is_subdir(dest_dentry, m->mnt_root)) {
 254                        mnt_set_mountpoint(m, dest_dentry, child);
 255                        list_add_tail(&child->mnt_hash, tree_list);
 256                } else {
 257                        /*
 258                         * This can happen if the parent mount was bind mounted
 259                         * on some subdirectory of a shared/slave mount.
 260                         */
 261                        list_add_tail(&child->mnt_hash, &tmp_list);
 262                }
 263                prev_dest_mnt = m;
 264                prev_src_mnt  = child;
 265        }
 266out:
 267        spin_lock(&vfsmount_lock);
 268        while (!list_empty(&tmp_list)) {
 269                child = list_first_entry(&tmp_list, struct vfsmount, mnt_hash);
 270                umount_tree(child, 0, &umount_list);
 271        }
 272        spin_unlock(&vfsmount_lock);
 273        release_mounts(&umount_list);
 274        return ret;
 275}
 276
 277/*
 278 * return true if the refcount is greater than count
 279 */
 280static inline int do_refcount_check(struct vfsmount *mnt, int count)
 281{
 282        int mycount = atomic_read(&mnt->mnt_count) - mnt->mnt_ghosts;
 283        return (mycount > count);
 284}
 285
 286/*
 287 * check if the mount 'mnt' can be unmounted successfully.
 288 * @mnt: the mount to be checked for unmount
 289 * NOTE: unmounting 'mnt' would naturally propagate to all
 290 * other mounts its parent propagates to.
 291 * Check if any of these mounts that **do not have submounts**
 292 * have more references than 'refcnt'. If so return busy.
 293 */
 294int propagate_mount_busy(struct vfsmount *mnt, int refcnt)
 295{
 296        struct vfsmount *m, *child;
 297        struct vfsmount *parent = mnt->mnt_parent;
 298        int ret = 0;
 299
 300        if (mnt == parent)
 301                return do_refcount_check(mnt, refcnt);
 302
 303        /*
 304         * quickly check if the current mount can be unmounted.
 305         * If not, we don't have to go checking for all other
 306         * mounts
 307         */
 308        if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
 309                return 1;
 310
 311        for (m = propagation_next(parent, parent); m;
 312                        m = propagation_next(m, parent)) {
 313                child = __lookup_mnt(m, mnt->mnt_mountpoint, 0);
 314                if (child && list_empty(&child->mnt_mounts) &&
 315                    (ret = do_refcount_check(child, 1)))
 316                        break;
 317        }
 318        return ret;
 319}
 320
 321/*
 322 * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
 323 * parent propagates to.
 324 */
 325static void __propagate_umount(struct vfsmount *mnt)
 326{
 327        struct vfsmount *parent = mnt->mnt_parent;
 328        struct vfsmount *m;
 329
 330        BUG_ON(parent == mnt);
 331
 332        for (m = propagation_next(parent, parent); m;
 333                        m = propagation_next(m, parent)) {
 334
 335                struct vfsmount *child = __lookup_mnt(m,
 336                                        mnt->mnt_mountpoint, 0);
 337                /*
 338                 * umount the child only if the child has no
 339                 * other children
 340                 */
 341                if (child && list_empty(&child->mnt_mounts))
 342                        list_move_tail(&child->mnt_hash, &mnt->mnt_hash);
 343        }
 344}
 345
 346/*
 347 * collect all mounts that receive propagation from the mount in @list,
 348 * and return these additional mounts in the same list.
 349 * @list: the list of mounts to be unmounted.
 350 */
 351int propagate_umount(struct list_head *list)
 352{
 353        struct vfsmount *mnt;
 354
 355        list_for_each_entry(mnt, list, mnt_hash)
 356                __propagate_umount(mnt);
 357        return 0;
 358}
 359