linux/fs/proc/base.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/proc/base.c
   3 *
   4 *  Copyright (C) 1991, 1992 Linus Torvalds
   5 *
   6 *  proc base directory handling functions
   7 *
   8 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
   9 *  Instead of using magical inumbers to determine the kind of object
  10 *  we allocate and fill in-core inodes upon lookup. They don't even
  11 *  go into icache. We cache the reference to task_struct upon lookup too.
  12 *  Eventually it should become a filesystem in its own. We don't use the
  13 *  rest of procfs anymore.
  14 *
  15 *
  16 *  Changelog:
  17 *  17-Jan-2005
  18 *  Allan Bezerra
  19 *  Bruna Moreira <bruna.moreira@indt.org.br>
  20 *  Edjard Mota <edjard.mota@indt.org.br>
  21 *  Ilias Biris <ilias.biris@indt.org.br>
  22 *  Mauricio Lin <mauricio.lin@indt.org.br>
  23 *
  24 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  25 *
  26 *  A new process specific entry (smaps) included in /proc. It shows the
  27 *  size of rss for each memory area. The maps entry lacks information
  28 *  about physical memory size (rss) for each mapped file, i.e.,
  29 *  rss information for executables and library files.
  30 *  This additional information is useful for any tools that need to know
  31 *  about physical memory consumption for a process specific library.
  32 *
  33 *  Changelog:
  34 *  21-Feb-2005
  35 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  36 *  Pud inclusion in the page table walking.
  37 *
  38 *  ChangeLog:
  39 *  10-Mar-2005
  40 *  10LE Instituto Nokia de Tecnologia - INdT:
  41 *  A better way to walks through the page table as suggested by Hugh Dickins.
  42 *
  43 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  44 *  Smaps information related to shared, private, clean and dirty pages.
  45 *
  46 *  Paul Mundt <paul.mundt@nokia.com>:
  47 *  Overall revision about smaps.
  48 */
  49
  50#include <asm/uaccess.h>
  51
  52#include <linux/errno.h>
  53#include <linux/time.h>
  54#include <linux/proc_fs.h>
  55#include <linux/stat.h>
  56#include <linux/task_io_accounting_ops.h>
  57#include <linux/init.h>
  58#include <linux/capability.h>
  59#include <linux/file.h>
  60#include <linux/fdtable.h>
  61#include <linux/string.h>
  62#include <linux/seq_file.h>
  63#include <linux/namei.h>
  64#include <linux/mnt_namespace.h>
  65#include <linux/mm.h>
  66#include <linux/rcupdate.h>
  67#include <linux/kallsyms.h>
  68#include <linux/stacktrace.h>
  69#include <linux/resource.h>
  70#include <linux/module.h>
  71#include <linux/mount.h>
  72#include <linux/security.h>
  73#include <linux/ptrace.h>
  74#include <linux/tracehook.h>
  75#include <linux/cgroup.h>
  76#include <linux/cpuset.h>
  77#include <linux/audit.h>
  78#include <linux/poll.h>
  79#include <linux/nsproxy.h>
  80#include <linux/oom.h>
  81#include <linux/elf.h>
  82#include <linux/pid_namespace.h>
  83#include <linux/fs_struct.h>
  84#include "internal.h"
  85
  86/* NOTE:
  87 *      Implementing inode permission operations in /proc is almost
  88 *      certainly an error.  Permission checks need to happen during
  89 *      each system call not at open time.  The reason is that most of
  90 *      what we wish to check for permissions in /proc varies at runtime.
  91 *
  92 *      The classic example of a problem is opening file descriptors
  93 *      in /proc for a task before it execs a suid executable.
  94 */
  95
  96struct pid_entry {
  97        char *name;
  98        int len;
  99        mode_t mode;
 100        const struct inode_operations *iop;
 101        const struct file_operations *fop;
 102        union proc_op op;
 103};
 104
 105#define NOD(NAME, MODE, IOP, FOP, OP) {                 \
 106        .name = (NAME),                                 \
 107        .len  = sizeof(NAME) - 1,                       \
 108        .mode = MODE,                                   \
 109        .iop  = IOP,                                    \
 110        .fop  = FOP,                                    \
 111        .op   = OP,                                     \
 112}
 113
 114#define DIR(NAME, MODE, iops, fops)     \
 115        NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 116#define LNK(NAME, get_link)                                     \
 117        NOD(NAME, (S_IFLNK|S_IRWXUGO),                          \
 118                &proc_pid_link_inode_operations, NULL,          \
 119                { .proc_get_link = get_link } )
 120#define REG(NAME, MODE, fops)                           \
 121        NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 122#define INF(NAME, MODE, read)                           \
 123        NOD(NAME, (S_IFREG|(MODE)),                     \
 124                NULL, &proc_info_file_operations,       \
 125                { .proc_read = read } )
 126#define ONE(NAME, MODE, show)                           \
 127        NOD(NAME, (S_IFREG|(MODE)),                     \
 128                NULL, &proc_single_file_operations,     \
 129                { .proc_show = show } )
 130
 131/*
 132 * Count the number of hardlinks for the pid_entry table, excluding the .
 133 * and .. links.
 134 */
 135static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
 136        unsigned int n)
 137{
 138        unsigned int i;
 139        unsigned int count;
 140
 141        count = 0;
 142        for (i = 0; i < n; ++i) {
 143                if (S_ISDIR(entries[i].mode))
 144                        ++count;
 145        }
 146
 147        return count;
 148}
 149
 150static int get_fs_path(struct task_struct *task, struct path *path, bool root)
 151{
 152        struct fs_struct *fs;
 153        int result = -ENOENT;
 154
 155        task_lock(task);
 156        fs = task->fs;
 157        if (fs) {
 158                read_lock(&fs->lock);
 159                *path = root ? fs->root : fs->pwd;
 160                path_get(path);
 161                read_unlock(&fs->lock);
 162                result = 0;
 163        }
 164        task_unlock(task);
 165        return result;
 166}
 167
 168static int get_nr_threads(struct task_struct *tsk)
 169{
 170        unsigned long flags;
 171        int count = 0;
 172
 173        if (lock_task_sighand(tsk, &flags)) {
 174                count = atomic_read(&tsk->signal->count);
 175                unlock_task_sighand(tsk, &flags);
 176        }
 177        return count;
 178}
 179
 180static int proc_cwd_link(struct inode *inode, struct path *path)
 181{
 182        struct task_struct *task = get_proc_task(inode);
 183        int result = -ENOENT;
 184
 185        if (task) {
 186                result = get_fs_path(task, path, 0);
 187                put_task_struct(task);
 188        }
 189        return result;
 190}
 191
 192static int proc_root_link(struct inode *inode, struct path *path)
 193{
 194        struct task_struct *task = get_proc_task(inode);
 195        int result = -ENOENT;
 196
 197        if (task) {
 198                result = get_fs_path(task, path, 1);
 199                put_task_struct(task);
 200        }
 201        return result;
 202}
 203
 204/*
 205 * Return zero if current may access user memory in @task, -error if not.
 206 */
 207static int check_mem_permission(struct task_struct *task)
 208{
 209        /*
 210         * A task can always look at itself, in case it chooses
 211         * to use system calls instead of load instructions.
 212         */
 213        if (task == current)
 214                return 0;
 215
 216        /*
 217         * If current is actively ptrace'ing, and would also be
 218         * permitted to freshly attach with ptrace now, permit it.
 219         */
 220        if (task_is_stopped_or_traced(task)) {
 221                int match;
 222                rcu_read_lock();
 223                match = (tracehook_tracer_task(task) == current);
 224                rcu_read_unlock();
 225                if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
 226                        return 0;
 227        }
 228
 229        /*
 230         * Noone else is allowed.
 231         */
 232        return -EPERM;
 233}
 234
 235struct mm_struct *mm_for_maps(struct task_struct *task)
 236{
 237        struct mm_struct *mm;
 238
 239        if (mutex_lock_killable(&task->cred_guard_mutex))
 240                return NULL;
 241
 242        mm = get_task_mm(task);
 243        if (mm && mm != current->mm &&
 244                        !ptrace_may_access(task, PTRACE_MODE_READ)) {
 245                mmput(mm);
 246                mm = NULL;
 247        }
 248        mutex_unlock(&task->cred_guard_mutex);
 249
 250        return mm;
 251}
 252
 253static int proc_pid_cmdline(struct task_struct *task, char * buffer)
 254{
 255        int res = 0;
 256        unsigned int len;
 257        struct mm_struct *mm = get_task_mm(task);
 258        if (!mm)
 259                goto out;
 260        if (!mm->arg_end)
 261                goto out_mm;    /* Shh! No looking before we're done */
 262
 263        len = mm->arg_end - mm->arg_start;
 264 
 265        if (len > PAGE_SIZE)
 266                len = PAGE_SIZE;
 267 
 268        res = access_process_vm(task, mm->arg_start, buffer, len, 0);
 269
 270        // If the nul at the end of args has been overwritten, then
 271        // assume application is using setproctitle(3).
 272        if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
 273                len = strnlen(buffer, res);
 274                if (len < res) {
 275                    res = len;
 276                } else {
 277                        len = mm->env_end - mm->env_start;
 278                        if (len > PAGE_SIZE - res)
 279                                len = PAGE_SIZE - res;
 280                        res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
 281                        res = strnlen(buffer, res);
 282                }
 283        }
 284out_mm:
 285        mmput(mm);
 286out:
 287        return res;
 288}
 289
 290static int proc_pid_auxv(struct task_struct *task, char *buffer)
 291{
 292        int res = 0;
 293        struct mm_struct *mm = get_task_mm(task);
 294        if (mm) {
 295                unsigned int nwords = 0;
 296                do {
 297                        nwords += 2;
 298                } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
 299                res = nwords * sizeof(mm->saved_auxv[0]);
 300                if (res > PAGE_SIZE)
 301                        res = PAGE_SIZE;
 302                memcpy(buffer, mm->saved_auxv, res);
 303                mmput(mm);
 304        }
 305        return res;
 306}
 307
 308
 309#ifdef CONFIG_KALLSYMS
 310/*
 311 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 312 * Returns the resolved symbol.  If that fails, simply return the address.
 313 */
 314static int proc_pid_wchan(struct task_struct *task, char *buffer)
 315{
 316        unsigned long wchan;
 317        char symname[KSYM_NAME_LEN];
 318
 319        wchan = get_wchan(task);
 320
 321        if (lookup_symbol_name(wchan, symname) < 0)
 322                if (!ptrace_may_access(task, PTRACE_MODE_READ))
 323                        return 0;
 324                else
 325                        return sprintf(buffer, "%lu", wchan);
 326        else
 327                return sprintf(buffer, "%s", symname);
 328}
 329#endif /* CONFIG_KALLSYMS */
 330
 331#ifdef CONFIG_STACKTRACE
 332
 333#define MAX_STACK_TRACE_DEPTH   64
 334
 335static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 336                          struct pid *pid, struct task_struct *task)
 337{
 338        struct stack_trace trace;
 339        unsigned long *entries;
 340        int i;
 341
 342        entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
 343        if (!entries)
 344                return -ENOMEM;
 345
 346        trace.nr_entries        = 0;
 347        trace.max_entries       = MAX_STACK_TRACE_DEPTH;
 348        trace.entries           = entries;
 349        trace.skip              = 0;
 350        save_stack_trace_tsk(task, &trace);
 351
 352        for (i = 0; i < trace.nr_entries; i++) {
 353                seq_printf(m, "[<%p>] %pS\n",
 354                           (void *)entries[i], (void *)entries[i]);
 355        }
 356        kfree(entries);
 357
 358        return 0;
 359}
 360#endif
 361
 362#ifdef CONFIG_SCHEDSTATS
 363/*
 364 * Provides /proc/PID/schedstat
 365 */
 366static int proc_pid_schedstat(struct task_struct *task, char *buffer)
 367{
 368        return sprintf(buffer, "%llu %llu %lu\n",
 369                        (unsigned long long)task->se.sum_exec_runtime,
 370                        (unsigned long long)task->sched_info.run_delay,
 371                        task->sched_info.pcount);
 372}
 373#endif
 374
 375#ifdef CONFIG_LATENCYTOP
 376static int lstats_show_proc(struct seq_file *m, void *v)
 377{
 378        int i;
 379        struct inode *inode = m->private;
 380        struct task_struct *task = get_proc_task(inode);
 381
 382        if (!task)
 383                return -ESRCH;
 384        seq_puts(m, "Latency Top version : v0.1\n");
 385        for (i = 0; i < 32; i++) {
 386                if (task->latency_record[i].backtrace[0]) {
 387                        int q;
 388                        seq_printf(m, "%i %li %li ",
 389                                task->latency_record[i].count,
 390                                task->latency_record[i].time,
 391                                task->latency_record[i].max);
 392                        for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 393                                char sym[KSYM_SYMBOL_LEN];
 394                                char *c;
 395                                if (!task->latency_record[i].backtrace[q])
 396                                        break;
 397                                if (task->latency_record[i].backtrace[q] == ULONG_MAX)
 398                                        break;
 399                                sprint_symbol(sym, task->latency_record[i].backtrace[q]);
 400                                c = strchr(sym, '+');
 401                                if (c)
 402                                        *c = 0;
 403                                seq_printf(m, "%s ", sym);
 404                        }
 405                        seq_printf(m, "\n");
 406                }
 407
 408        }
 409        put_task_struct(task);
 410        return 0;
 411}
 412
 413static int lstats_open(struct inode *inode, struct file *file)
 414{
 415        return single_open(file, lstats_show_proc, inode);
 416}
 417
 418static ssize_t lstats_write(struct file *file, const char __user *buf,
 419                            size_t count, loff_t *offs)
 420{
 421        struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
 422
 423        if (!task)
 424                return -ESRCH;
 425        clear_all_latency_tracing(task);
 426        put_task_struct(task);
 427
 428        return count;
 429}
 430
 431static const struct file_operations proc_lstats_operations = {
 432        .open           = lstats_open,
 433        .read           = seq_read,
 434        .write          = lstats_write,
 435        .llseek         = seq_lseek,
 436        .release        = single_release,
 437};
 438
 439#endif
 440
 441/* The badness from the OOM killer */
 442unsigned long badness(struct task_struct *p, unsigned long uptime);
 443static int proc_oom_score(struct task_struct *task, char *buffer)
 444{
 445        unsigned long points;
 446        struct timespec uptime;
 447
 448        do_posix_clock_monotonic_gettime(&uptime);
 449        read_lock(&tasklist_lock);
 450        points = badness(task->group_leader, uptime.tv_sec);
 451        read_unlock(&tasklist_lock);
 452        return sprintf(buffer, "%lu\n", points);
 453}
 454
 455struct limit_names {
 456        char *name;
 457        char *unit;
 458};
 459
 460static const struct limit_names lnames[RLIM_NLIMITS] = {
 461        [RLIMIT_CPU] = {"Max cpu time", "seconds"},
 462        [RLIMIT_FSIZE] = {"Max file size", "bytes"},
 463        [RLIMIT_DATA] = {"Max data size", "bytes"},
 464        [RLIMIT_STACK] = {"Max stack size", "bytes"},
 465        [RLIMIT_CORE] = {"Max core file size", "bytes"},
 466        [RLIMIT_RSS] = {"Max resident set", "bytes"},
 467        [RLIMIT_NPROC] = {"Max processes", "processes"},
 468        [RLIMIT_NOFILE] = {"Max open files", "files"},
 469        [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 470        [RLIMIT_AS] = {"Max address space", "bytes"},
 471        [RLIMIT_LOCKS] = {"Max file locks", "locks"},
 472        [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 473        [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 474        [RLIMIT_NICE] = {"Max nice priority", NULL},
 475        [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 476        [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 477};
 478
 479/* Display limits for a process */
 480static int proc_pid_limits(struct task_struct *task, char *buffer)
 481{
 482        unsigned int i;
 483        int count = 0;
 484        unsigned long flags;
 485        char *bufptr = buffer;
 486
 487        struct rlimit rlim[RLIM_NLIMITS];
 488
 489        if (!lock_task_sighand(task, &flags))
 490                return 0;
 491        memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 492        unlock_task_sighand(task, &flags);
 493
 494        /*
 495         * print the file header
 496         */
 497        count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
 498                        "Limit", "Soft Limit", "Hard Limit", "Units");
 499
 500        for (i = 0; i < RLIM_NLIMITS; i++) {
 501                if (rlim[i].rlim_cur == RLIM_INFINITY)
 502                        count += sprintf(&bufptr[count], "%-25s %-20s ",
 503                                         lnames[i].name, "unlimited");
 504                else
 505                        count += sprintf(&bufptr[count], "%-25s %-20lu ",
 506                                         lnames[i].name, rlim[i].rlim_cur);
 507
 508                if (rlim[i].rlim_max == RLIM_INFINITY)
 509                        count += sprintf(&bufptr[count], "%-20s ", "unlimited");
 510                else
 511                        count += sprintf(&bufptr[count], "%-20lu ",
 512                                         rlim[i].rlim_max);
 513
 514                if (lnames[i].unit)
 515                        count += sprintf(&bufptr[count], "%-10s\n",
 516                                         lnames[i].unit);
 517                else
 518                        count += sprintf(&bufptr[count], "\n");
 519        }
 520
 521        return count;
 522}
 523
 524#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 525static int proc_pid_syscall(struct task_struct *task, char *buffer)
 526{
 527        long nr;
 528        unsigned long args[6], sp, pc;
 529
 530        if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
 531                return sprintf(buffer, "running\n");
 532
 533        if (nr < 0)
 534                return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
 535
 536        return sprintf(buffer,
 537                       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
 538                       nr,
 539                       args[0], args[1], args[2], args[3], args[4], args[5],
 540                       sp, pc);
 541}
 542#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 543
 544/************************************************************************/
 545/*                       Here the fs part begins                        */
 546/************************************************************************/
 547
 548/* permission checks */
 549static int proc_fd_access_allowed(struct inode *inode)
 550{
 551        struct task_struct *task;
 552        int allowed = 0;
 553        /* Allow access to a task's file descriptors if it is us or we
 554         * may use ptrace attach to the process and find out that
 555         * information.
 556         */
 557        task = get_proc_task(inode);
 558        if (task) {
 559                allowed = ptrace_may_access(task, PTRACE_MODE_READ);
 560                put_task_struct(task);
 561        }
 562        return allowed;
 563}
 564
 565static int proc_setattr(struct dentry *dentry, struct iattr *attr)
 566{
 567        int error;
 568        struct inode *inode = dentry->d_inode;
 569
 570        if (attr->ia_valid & ATTR_MODE)
 571                return -EPERM;
 572
 573        error = inode_change_ok(inode, attr);
 574        if (!error)
 575                error = inode_setattr(inode, attr);
 576        return error;
 577}
 578
 579static const struct inode_operations proc_def_inode_operations = {
 580        .setattr        = proc_setattr,
 581};
 582
 583static int mounts_open_common(struct inode *inode, struct file *file,
 584                              const struct seq_operations *op)
 585{
 586        struct task_struct *task = get_proc_task(inode);
 587        struct nsproxy *nsp;
 588        struct mnt_namespace *ns = NULL;
 589        struct path root;
 590        struct proc_mounts *p;
 591        int ret = -EINVAL;
 592
 593        if (task) {
 594                rcu_read_lock();
 595                nsp = task_nsproxy(task);
 596                if (nsp) {
 597                        ns = nsp->mnt_ns;
 598                        if (ns)
 599                                get_mnt_ns(ns);
 600                }
 601                rcu_read_unlock();
 602                if (ns && get_fs_path(task, &root, 1) == 0)
 603                        ret = 0;
 604                put_task_struct(task);
 605        }
 606
 607        if (!ns)
 608                goto err;
 609        if (ret)
 610                goto err_put_ns;
 611
 612        ret = -ENOMEM;
 613        p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
 614        if (!p)
 615                goto err_put_path;
 616
 617        file->private_data = &p->m;
 618        ret = seq_open(file, op);
 619        if (ret)
 620                goto err_free;
 621
 622        p->m.private = p;
 623        p->ns = ns;
 624        p->root = root;
 625        p->event = ns->event;
 626
 627        return 0;
 628
 629 err_free:
 630        kfree(p);
 631 err_put_path:
 632        path_put(&root);
 633 err_put_ns:
 634        put_mnt_ns(ns);
 635 err:
 636        return ret;
 637}
 638
 639static int mounts_release(struct inode *inode, struct file *file)
 640{
 641        struct proc_mounts *p = file->private_data;
 642        path_put(&p->root);
 643        put_mnt_ns(p->ns);
 644        return seq_release(inode, file);
 645}
 646
 647static unsigned mounts_poll(struct file *file, poll_table *wait)
 648{
 649        struct proc_mounts *p = file->private_data;
 650        struct mnt_namespace *ns = p->ns;
 651        unsigned res = POLLIN | POLLRDNORM;
 652
 653        poll_wait(file, &ns->poll, wait);
 654
 655        spin_lock(&vfsmount_lock);
 656        if (p->event != ns->event) {
 657                p->event = ns->event;
 658                res |= POLLERR | POLLPRI;
 659        }
 660        spin_unlock(&vfsmount_lock);
 661
 662        return res;
 663}
 664
 665static int mounts_open(struct inode *inode, struct file *file)
 666{
 667        return mounts_open_common(inode, file, &mounts_op);
 668}
 669
 670static const struct file_operations proc_mounts_operations = {
 671        .open           = mounts_open,
 672        .read           = seq_read,
 673        .llseek         = seq_lseek,
 674        .release        = mounts_release,
 675        .poll           = mounts_poll,
 676};
 677
 678static int mountinfo_open(struct inode *inode, struct file *file)
 679{
 680        return mounts_open_common(inode, file, &mountinfo_op);
 681}
 682
 683static const struct file_operations proc_mountinfo_operations = {
 684        .open           = mountinfo_open,
 685        .read           = seq_read,
 686        .llseek         = seq_lseek,
 687        .release        = mounts_release,
 688        .poll           = mounts_poll,
 689};
 690
 691static int mountstats_open(struct inode *inode, struct file *file)
 692{
 693        return mounts_open_common(inode, file, &mountstats_op);
 694}
 695
 696static const struct file_operations proc_mountstats_operations = {
 697        .open           = mountstats_open,
 698        .read           = seq_read,
 699        .llseek         = seq_lseek,
 700        .release        = mounts_release,
 701};
 702
 703#define PROC_BLOCK_SIZE (3*1024)                /* 4K page size but our output routines use some slack for overruns */
 704
 705static ssize_t proc_info_read(struct file * file, char __user * buf,
 706                          size_t count, loff_t *ppos)
 707{
 708        struct inode * inode = file->f_path.dentry->d_inode;
 709        unsigned long page;
 710        ssize_t length;
 711        struct task_struct *task = get_proc_task(inode);
 712
 713        length = -ESRCH;
 714        if (!task)
 715                goto out_no_task;
 716
 717        if (count > PROC_BLOCK_SIZE)
 718                count = PROC_BLOCK_SIZE;
 719
 720        length = -ENOMEM;
 721        if (!(page = __get_free_page(GFP_TEMPORARY)))
 722                goto out;
 723
 724        length = PROC_I(inode)->op.proc_read(task, (char*)page);
 725
 726        if (length >= 0)
 727                length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
 728        free_page(page);
 729out:
 730        put_task_struct(task);
 731out_no_task:
 732        return length;
 733}
 734
 735static const struct file_operations proc_info_file_operations = {
 736        .read           = proc_info_read,
 737};
 738
 739static int proc_single_show(struct seq_file *m, void *v)
 740{
 741        struct inode *inode = m->private;
 742        struct pid_namespace *ns;
 743        struct pid *pid;
 744        struct task_struct *task;
 745        int ret;
 746
 747        ns = inode->i_sb->s_fs_info;
 748        pid = proc_pid(inode);
 749        task = get_pid_task(pid, PIDTYPE_PID);
 750        if (!task)
 751                return -ESRCH;
 752
 753        ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 754
 755        put_task_struct(task);
 756        return ret;
 757}
 758
 759static int proc_single_open(struct inode *inode, struct file *filp)
 760{
 761        int ret;
 762        ret = single_open(filp, proc_single_show, NULL);
 763        if (!ret) {
 764                struct seq_file *m = filp->private_data;
 765
 766                m->private = inode;
 767        }
 768        return ret;
 769}
 770
 771static const struct file_operations proc_single_file_operations = {
 772        .open           = proc_single_open,
 773        .read           = seq_read,
 774        .llseek         = seq_lseek,
 775        .release        = single_release,
 776};
 777
 778static int mem_open(struct inode* inode, struct file* file)
 779{
 780        file->private_data = (void*)((long)current->self_exec_id);
 781        return 0;
 782}
 783
 784static ssize_t mem_read(struct file * file, char __user * buf,
 785                        size_t count, loff_t *ppos)
 786{
 787        struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
 788        char *page;
 789        unsigned long src = *ppos;
 790        int ret = -ESRCH;
 791        struct mm_struct *mm;
 792
 793        if (!task)
 794                goto out_no_task;
 795
 796        if (check_mem_permission(task))
 797                goto out;
 798
 799        ret = -ENOMEM;
 800        page = (char *)__get_free_page(GFP_TEMPORARY);
 801        if (!page)
 802                goto out;
 803
 804        ret = 0;
 805 
 806        mm = get_task_mm(task);
 807        if (!mm)
 808                goto out_free;
 809
 810        ret = -EIO;
 811 
 812        if (file->private_data != (void*)((long)current->self_exec_id))
 813                goto out_put;
 814
 815        ret = 0;
 816 
 817        while (count > 0) {
 818                int this_len, retval;
 819
 820                this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
 821                retval = access_process_vm(task, src, page, this_len, 0);
 822                if (!retval || check_mem_permission(task)) {
 823                        if (!ret)
 824                                ret = -EIO;
 825                        break;
 826                }
 827
 828                if (copy_to_user(buf, page, retval)) {
 829                        ret = -EFAULT;
 830                        break;
 831                }
 832 
 833                ret += retval;
 834                src += retval;
 835                buf += retval;
 836                count -= retval;
 837        }
 838        *ppos = src;
 839
 840out_put:
 841        mmput(mm);
 842out_free:
 843        free_page((unsigned long) page);
 844out:
 845        put_task_struct(task);
 846out_no_task:
 847        return ret;
 848}
 849
 850#define mem_write NULL
 851
 852#ifndef mem_write
 853/* This is a security hazard */
 854static ssize_t mem_write(struct file * file, const char __user *buf,
 855                         size_t count, loff_t *ppos)
 856{
 857        int copied;
 858        char *page;
 859        struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
 860        unsigned long dst = *ppos;
 861
 862        copied = -ESRCH;
 863        if (!task)
 864                goto out_no_task;
 865
 866        if (check_mem_permission(task))
 867                goto out;
 868
 869        copied = -ENOMEM;
 870        page = (char *)__get_free_page(GFP_TEMPORARY);
 871        if (!page)
 872                goto out;
 873
 874        copied = 0;
 875        while (count > 0) {
 876                int this_len, retval;
 877
 878                this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
 879                if (copy_from_user(page, buf, this_len)) {
 880                        copied = -EFAULT;
 881                        break;
 882                }
 883                retval = access_process_vm(task, dst, page, this_len, 1);
 884                if (!retval) {
 885                        if (!copied)
 886                                copied = -EIO;
 887                        break;
 888                }
 889                copied += retval;
 890                buf += retval;
 891                dst += retval;
 892                count -= retval;                        
 893        }
 894        *ppos = dst;
 895        free_page((unsigned long) page);
 896out:
 897        put_task_struct(task);
 898out_no_task:
 899        return copied;
 900}
 901#endif
 902
 903loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 904{
 905        switch (orig) {
 906        case 0:
 907                file->f_pos = offset;
 908                break;
 909        case 1:
 910                file->f_pos += offset;
 911                break;
 912        default:
 913                return -EINVAL;
 914        }
 915        force_successful_syscall_return();
 916        return file->f_pos;
 917}
 918
 919static const struct file_operations proc_mem_operations = {
 920        .llseek         = mem_lseek,
 921        .read           = mem_read,
 922        .write          = mem_write,
 923        .open           = mem_open,
 924};
 925
 926static ssize_t environ_read(struct file *file, char __user *buf,
 927                        size_t count, loff_t *ppos)
 928{
 929        struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
 930        char *page;
 931        unsigned long src = *ppos;
 932        int ret = -ESRCH;
 933        struct mm_struct *mm;
 934
 935        if (!task)
 936                goto out_no_task;
 937
 938        if (!ptrace_may_access(task, PTRACE_MODE_READ))
 939                goto out;
 940
 941        ret = -ENOMEM;
 942        page = (char *)__get_free_page(GFP_TEMPORARY);
 943        if (!page)
 944                goto out;
 945
 946        ret = 0;
 947
 948        mm = get_task_mm(task);
 949        if (!mm)
 950                goto out_free;
 951
 952        while (count > 0) {
 953                int this_len, retval, max_len;
 954
 955                this_len = mm->env_end - (mm->env_start + src);
 956
 957                if (this_len <= 0)
 958                        break;
 959
 960                max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
 961                this_len = (this_len > max_len) ? max_len : this_len;
 962
 963                retval = access_process_vm(task, (mm->env_start + src),
 964                        page, this_len, 0);
 965
 966                if (retval <= 0) {
 967                        ret = retval;
 968                        break;
 969                }
 970
 971                if (copy_to_user(buf, page, retval)) {
 972                        ret = -EFAULT;
 973                        break;
 974                }
 975
 976                ret += retval;
 977                src += retval;
 978                buf += retval;
 979                count -= retval;
 980        }
 981        *ppos = src;
 982
 983        mmput(mm);
 984out_free:
 985        free_page((unsigned long) page);
 986out:
 987        put_task_struct(task);
 988out_no_task:
 989        return ret;
 990}
 991
 992static const struct file_operations proc_environ_operations = {
 993        .read           = environ_read,
 994};
 995
 996static ssize_t oom_adjust_read(struct file *file, char __user *buf,
 997                                size_t count, loff_t *ppos)
 998{
 999        struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1000        char buffer[PROC_NUMBUF];
1001        size_t len;
1002        int oom_adjust = OOM_DISABLE;
1003        unsigned long flags;
1004
1005        if (!task)
1006                return -ESRCH;
1007
1008        if (lock_task_sighand(task, &flags)) {
1009                oom_adjust = task->signal->oom_adj;
1010                unlock_task_sighand(task, &flags);
1011        }
1012
1013        put_task_struct(task);
1014
1015        len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1016
1017        return simple_read_from_buffer(buf, count, ppos, buffer, len);
1018}
1019
1020static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1021                                size_t count, loff_t *ppos)
1022{
1023        struct task_struct *task;
1024        char buffer[PROC_NUMBUF];
1025        long oom_adjust;
1026        unsigned long flags;
1027        int err;
1028
1029        memset(buffer, 0, sizeof(buffer));
1030        if (count > sizeof(buffer) - 1)
1031                count = sizeof(buffer) - 1;
1032        if (copy_from_user(buffer, buf, count))
1033                return -EFAULT;
1034
1035        err = strict_strtol(strstrip(buffer), 0, &oom_adjust);
1036        if (err)
1037                return -EINVAL;
1038        if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1039             oom_adjust != OOM_DISABLE)
1040                return -EINVAL;
1041
1042        task = get_proc_task(file->f_path.dentry->d_inode);
1043        if (!task)
1044                return -ESRCH;
1045        if (!lock_task_sighand(task, &flags)) {
1046                put_task_struct(task);
1047                return -ESRCH;
1048        }
1049
1050        if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
1051                unlock_task_sighand(task, &flags);
1052                put_task_struct(task);
1053                return -EACCES;
1054        }
1055
1056        task->signal->oom_adj = oom_adjust;
1057
1058        unlock_task_sighand(task, &flags);
1059        put_task_struct(task);
1060
1061        return count;
1062}
1063
1064static const struct file_operations proc_oom_adjust_operations = {
1065        .read           = oom_adjust_read,
1066        .write          = oom_adjust_write,
1067};
1068
1069#ifdef CONFIG_AUDITSYSCALL
1070#define TMPBUFLEN 21
1071static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1072                                  size_t count, loff_t *ppos)
1073{
1074        struct inode * inode = file->f_path.dentry->d_inode;
1075        struct task_struct *task = get_proc_task(inode);
1076        ssize_t length;
1077        char tmpbuf[TMPBUFLEN];
1078
1079        if (!task)
1080                return -ESRCH;
1081        length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1082                                audit_get_loginuid(task));
1083        put_task_struct(task);
1084        return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1085}
1086
1087static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1088                                   size_t count, loff_t *ppos)
1089{
1090        struct inode * inode = file->f_path.dentry->d_inode;
1091        char *page, *tmp;
1092        ssize_t length;
1093        uid_t loginuid;
1094
1095        if (!capable(CAP_AUDIT_CONTROL))
1096                return -EPERM;
1097
1098        if (current != pid_task(proc_pid(inode), PIDTYPE_PID))
1099                return -EPERM;
1100
1101        if (count >= PAGE_SIZE)
1102                count = PAGE_SIZE - 1;
1103
1104        if (*ppos != 0) {
1105                /* No partial writes. */
1106                return -EINVAL;
1107        }
1108        page = (char*)__get_free_page(GFP_TEMPORARY);
1109        if (!page)
1110                return -ENOMEM;
1111        length = -EFAULT;
1112        if (copy_from_user(page, buf, count))
1113                goto out_free_page;
1114
1115        page[count] = '\0';
1116        loginuid = simple_strtoul(page, &tmp, 10);
1117        if (tmp == page) {
1118                length = -EINVAL;
1119                goto out_free_page;
1120
1121        }
1122        length = audit_set_loginuid(current, loginuid);
1123        if (likely(length == 0))
1124                length = count;
1125
1126out_free_page:
1127        free_page((unsigned long) page);
1128        return length;
1129}
1130
1131static const struct file_operations proc_loginuid_operations = {
1132        .read           = proc_loginuid_read,
1133        .write          = proc_loginuid_write,
1134};
1135
1136static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1137                                  size_t count, loff_t *ppos)
1138{
1139        struct inode * inode = file->f_path.dentry->d_inode;
1140        struct task_struct *task = get_proc_task(inode);
1141        ssize_t length;
1142        char tmpbuf[TMPBUFLEN];
1143
1144        if (!task)
1145                return -ESRCH;
1146        length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1147                                audit_get_sessionid(task));
1148        put_task_struct(task);
1149        return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1150}
1151
1152static const struct file_operations proc_sessionid_operations = {
1153        .read           = proc_sessionid_read,
1154};
1155#endif
1156
1157#ifdef CONFIG_FAULT_INJECTION
1158static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1159                                      size_t count, loff_t *ppos)
1160{
1161        struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1162        char buffer[PROC_NUMBUF];
1163        size_t len;
1164        int make_it_fail;
1165
1166        if (!task)
1167                return -ESRCH;
1168        make_it_fail = task->make_it_fail;
1169        put_task_struct(task);
1170
1171        len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1172
1173        return simple_read_from_buffer(buf, count, ppos, buffer, len);
1174}
1175
1176static ssize_t proc_fault_inject_write(struct file * file,
1177                        const char __user * buf, size_t count, loff_t *ppos)
1178{
1179        struct task_struct *task;
1180        char buffer[PROC_NUMBUF], *end;
1181        int make_it_fail;
1182
1183        if (!capable(CAP_SYS_RESOURCE))
1184                return -EPERM;
1185        memset(buffer, 0, sizeof(buffer));
1186        if (count > sizeof(buffer) - 1)
1187                count = sizeof(buffer) - 1;
1188        if (copy_from_user(buffer, buf, count))
1189                return -EFAULT;
1190        make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1191        if (*end)
1192                return -EINVAL;
1193        task = get_proc_task(file->f_dentry->d_inode);
1194        if (!task)
1195                return -ESRCH;
1196        task->make_it_fail = make_it_fail;
1197        put_task_struct(task);
1198
1199        return count;
1200}
1201
1202static const struct file_operations proc_fault_inject_operations = {
1203        .read           = proc_fault_inject_read,
1204        .write          = proc_fault_inject_write,
1205};
1206#endif
1207
1208
1209#ifdef CONFIG_SCHED_DEBUG
1210/*
1211 * Print out various scheduling related per-task fields:
1212 */
1213static int sched_show(struct seq_file *m, void *v)
1214{
1215        struct inode *inode = m->private;
1216        struct task_struct *p;
1217
1218        p = get_proc_task(inode);
1219        if (!p)
1220                return -ESRCH;
1221        proc_sched_show_task(p, m);
1222
1223        put_task_struct(p);
1224
1225        return 0;
1226}
1227
1228static ssize_t
1229sched_write(struct file *file, const char __user *buf,
1230            size_t count, loff_t *offset)
1231{
1232        struct inode *inode = file->f_path.dentry->d_inode;
1233        struct task_struct *p;
1234
1235        p = get_proc_task(inode);
1236        if (!p)
1237                return -ESRCH;
1238        proc_sched_set_task(p);
1239
1240        put_task_struct(p);
1241
1242        return count;
1243}
1244
1245static int sched_open(struct inode *inode, struct file *filp)
1246{
1247        int ret;
1248
1249        ret = single_open(filp, sched_show, NULL);
1250        if (!ret) {
1251                struct seq_file *m = filp->private_data;
1252
1253                m->private = inode;
1254        }
1255        return ret;
1256}
1257
1258static const struct file_operations proc_pid_sched_operations = {
1259        .open           = sched_open,
1260        .read           = seq_read,
1261        .write          = sched_write,
1262        .llseek         = seq_lseek,
1263        .release        = single_release,
1264};
1265
1266#endif
1267
1268/*
1269 * We added or removed a vma mapping the executable. The vmas are only mapped
1270 * during exec and are not mapped with the mmap system call.
1271 * Callers must hold down_write() on the mm's mmap_sem for these
1272 */
1273void added_exe_file_vma(struct mm_struct *mm)
1274{
1275        mm->num_exe_file_vmas++;
1276}
1277
1278void removed_exe_file_vma(struct mm_struct *mm)
1279{
1280        mm->num_exe_file_vmas--;
1281        if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1282                fput(mm->exe_file);
1283                mm->exe_file = NULL;
1284        }
1285
1286}
1287
1288void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1289{
1290        if (new_exe_file)
1291                get_file(new_exe_file);
1292        if (mm->exe_file)
1293                fput(mm->exe_file);
1294        mm->exe_file = new_exe_file;
1295        mm->num_exe_file_vmas = 0;
1296}
1297
1298struct file *get_mm_exe_file(struct mm_struct *mm)
1299{
1300        struct file *exe_file;
1301
1302        /* We need mmap_sem to protect against races with removal of
1303         * VM_EXECUTABLE vmas */
1304        down_read(&mm->mmap_sem);
1305        exe_file = mm->exe_file;
1306        if (exe_file)
1307                get_file(exe_file);
1308        up_read(&mm->mmap_sem);
1309        return exe_file;
1310}
1311
1312void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1313{
1314        /* It's safe to write the exe_file pointer without exe_file_lock because
1315         * this is called during fork when the task is not yet in /proc */
1316        newmm->exe_file = get_mm_exe_file(oldmm);
1317}
1318
1319static int proc_exe_link(struct inode *inode, struct path *exe_path)
1320{
1321        struct task_struct *task;
1322        struct mm_struct *mm;
1323        struct file *exe_file;
1324
1325        task = get_proc_task(inode);
1326        if (!task)
1327                return -ENOENT;
1328        mm = get_task_mm(task);
1329        put_task_struct(task);
1330        if (!mm)
1331                return -ENOENT;
1332        exe_file = get_mm_exe_file(mm);
1333        mmput(mm);
1334        if (exe_file) {
1335                *exe_path = exe_file->f_path;
1336                path_get(&exe_file->f_path);
1337                fput(exe_file);
1338                return 0;
1339        } else
1340                return -ENOENT;
1341}
1342
1343static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1344{
1345        struct inode *inode = dentry->d_inode;
1346        int error = -EACCES;
1347
1348        /* We don't need a base pointer in the /proc filesystem */
1349        path_put(&nd->path);
1350
1351        /* Are we allowed to snoop on the tasks file descriptors? */
1352        if (!proc_fd_access_allowed(inode))
1353                goto out;
1354
1355        error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1356        nd->last_type = LAST_BIND;
1357out:
1358        return ERR_PTR(error);
1359}
1360
1361static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1362{
1363        char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1364        char *pathname;
1365        int len;
1366
1367        if (!tmp)
1368                return -ENOMEM;
1369
1370        pathname = d_path(path, tmp, PAGE_SIZE);
1371        len = PTR_ERR(pathname);
1372        if (IS_ERR(pathname))
1373                goto out;
1374        len = tmp + PAGE_SIZE - 1 - pathname;
1375
1376        if (len > buflen)
1377                len = buflen;
1378        if (copy_to_user(buffer, pathname, len))
1379                len = -EFAULT;
1380 out:
1381        free_page((unsigned long)tmp);
1382        return len;
1383}
1384
1385static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1386{
1387        int error = -EACCES;
1388        struct inode *inode = dentry->d_inode;
1389        struct path path;
1390
1391        /* Are we allowed to snoop on the tasks file descriptors? */
1392        if (!proc_fd_access_allowed(inode))
1393                goto out;
1394
1395        error = PROC_I(inode)->op.proc_get_link(inode, &path);
1396        if (error)
1397                goto out;
1398
1399        error = do_proc_readlink(&path, buffer, buflen);
1400        path_put(&path);
1401out:
1402        return error;
1403}
1404
1405static const struct inode_operations proc_pid_link_inode_operations = {
1406        .readlink       = proc_pid_readlink,
1407        .follow_link    = proc_pid_follow_link,
1408        .setattr        = proc_setattr,
1409};
1410
1411
1412/* building an inode */
1413
1414static int task_dumpable(struct task_struct *task)
1415{
1416        int dumpable = 0;
1417        struct mm_struct *mm;
1418
1419        task_lock(task);
1420        mm = task->mm;
1421        if (mm)
1422                dumpable = get_dumpable(mm);
1423        task_unlock(task);
1424        if(dumpable == 1)
1425                return 1;
1426        return 0;
1427}
1428
1429
1430static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1431{
1432        struct inode * inode;
1433        struct proc_inode *ei;
1434        const struct cred *cred;
1435
1436        /* We need a new inode */
1437
1438        inode = new_inode(sb);
1439        if (!inode)
1440                goto out;
1441
1442        /* Common stuff */
1443        ei = PROC_I(inode);
1444        inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1445        inode->i_op = &proc_def_inode_operations;
1446
1447        /*
1448         * grab the reference to task.
1449         */
1450        ei->pid = get_task_pid(task, PIDTYPE_PID);
1451        if (!ei->pid)
1452                goto out_unlock;
1453
1454        if (task_dumpable(task)) {
1455                rcu_read_lock();
1456                cred = __task_cred(task);
1457                inode->i_uid = cred->euid;
1458                inode->i_gid = cred->egid;
1459                rcu_read_unlock();
1460        }
1461        security_task_to_inode(task, inode);
1462
1463out:
1464        return inode;
1465
1466out_unlock:
1467        iput(inode);
1468        return NULL;
1469}
1470
1471static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1472{
1473        struct inode *inode = dentry->d_inode;
1474        struct task_struct *task;
1475        const struct cred *cred;
1476
1477        generic_fillattr(inode, stat);
1478
1479        rcu_read_lock();
1480        stat->uid = 0;
1481        stat->gid = 0;
1482        task = pid_task(proc_pid(inode), PIDTYPE_PID);
1483        if (task) {
1484                if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1485                    task_dumpable(task)) {
1486                        cred = __task_cred(task);
1487                        stat->uid = cred->euid;
1488                        stat->gid = cred->egid;
1489                }
1490        }
1491        rcu_read_unlock();
1492        return 0;
1493}
1494
1495/* dentry stuff */
1496
1497/*
1498 *      Exceptional case: normally we are not allowed to unhash a busy
1499 * directory. In this case, however, we can do it - no aliasing problems
1500 * due to the way we treat inodes.
1501 *
1502 * Rewrite the inode's ownerships here because the owning task may have
1503 * performed a setuid(), etc.
1504 *
1505 * Before the /proc/pid/status file was created the only way to read
1506 * the effective uid of a /process was to stat /proc/pid.  Reading
1507 * /proc/pid/status is slow enough that procps and other packages
1508 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1509 * made this apply to all per process world readable and executable
1510 * directories.
1511 */
1512static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1513{
1514        struct inode *inode = dentry->d_inode;
1515        struct task_struct *task = get_proc_task(inode);
1516        const struct cred *cred;
1517
1518        if (task) {
1519                if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1520                    task_dumpable(task)) {
1521                        rcu_read_lock();
1522                        cred = __task_cred(task);
1523                        inode->i_uid = cred->euid;
1524                        inode->i_gid = cred->egid;
1525                        rcu_read_unlock();
1526                } else {
1527                        inode->i_uid = 0;
1528                        inode->i_gid = 0;
1529                }
1530                inode->i_mode &= ~(S_ISUID | S_ISGID);
1531                security_task_to_inode(task, inode);
1532                put_task_struct(task);
1533                return 1;
1534        }
1535        d_drop(dentry);
1536        return 0;
1537}
1538
1539static int pid_delete_dentry(struct dentry * dentry)
1540{
1541        /* Is the task we represent dead?
1542         * If so, then don't put the dentry on the lru list,
1543         * kill it immediately.
1544         */
1545        return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1546}
1547
1548static const struct dentry_operations pid_dentry_operations =
1549{
1550        .d_revalidate   = pid_revalidate,
1551        .d_delete       = pid_delete_dentry,
1552};
1553
1554/* Lookups */
1555
1556typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1557                                struct task_struct *, const void *);
1558
1559/*
1560 * Fill a directory entry.
1561 *
1562 * If possible create the dcache entry and derive our inode number and
1563 * file type from dcache entry.
1564 *
1565 * Since all of the proc inode numbers are dynamically generated, the inode
1566 * numbers do not exist until the inode is cache.  This means creating the
1567 * the dcache entry in readdir is necessary to keep the inode numbers
1568 * reported by readdir in sync with the inode numbers reported
1569 * by stat.
1570 */
1571static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1572        char *name, int len,
1573        instantiate_t instantiate, struct task_struct *task, const void *ptr)
1574{
1575        struct dentry *child, *dir = filp->f_path.dentry;
1576        struct inode *inode;
1577        struct qstr qname;
1578        ino_t ino = 0;
1579        unsigned type = DT_UNKNOWN;
1580
1581        qname.name = name;
1582        qname.len  = len;
1583        qname.hash = full_name_hash(name, len);
1584
1585        child = d_lookup(dir, &qname);
1586        if (!child) {
1587                struct dentry *new;
1588                new = d_alloc(dir, &qname);
1589                if (new) {
1590                        child = instantiate(dir->d_inode, new, task, ptr);
1591                        if (child)
1592                                dput(new);
1593                        else
1594                                child = new;
1595                }
1596        }
1597        if (!child || IS_ERR(child) || !child->d_inode)
1598                goto end_instantiate;
1599        inode = child->d_inode;
1600        if (inode) {
1601                ino = inode->i_ino;
1602                type = inode->i_mode >> 12;
1603        }
1604        dput(child);
1605end_instantiate:
1606        if (!ino)
1607                ino = find_inode_number(dir, &qname);
1608        if (!ino)
1609                ino = 1;
1610        return filldir(dirent, name, len, filp->f_pos, ino, type);
1611}
1612
1613static unsigned name_to_int(struct dentry *dentry)
1614{
1615        const char *name = dentry->d_name.name;
1616        int len = dentry->d_name.len;
1617        unsigned n = 0;
1618
1619        if (len > 1 && *name == '0')
1620                goto out;
1621        while (len-- > 0) {
1622                unsigned c = *name++ - '0';
1623                if (c > 9)
1624                        goto out;
1625                if (n >= (~0U-9)/10)
1626                        goto out;
1627                n *= 10;
1628                n += c;
1629        }
1630        return n;
1631out:
1632        return ~0U;
1633}
1634
1635#define PROC_FDINFO_MAX 64
1636
1637static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1638{
1639        struct task_struct *task = get_proc_task(inode);
1640        struct files_struct *files = NULL;
1641        struct file *file;
1642        int fd = proc_fd(inode);
1643
1644        if (task) {
1645                files = get_files_struct(task);
1646                put_task_struct(task);
1647        }
1648        if (files) {
1649                /*
1650                 * We are not taking a ref to the file structure, so we must
1651                 * hold ->file_lock.
1652                 */
1653                spin_lock(&files->file_lock);
1654                file = fcheck_files(files, fd);
1655                if (file) {
1656                        if (path) {
1657                                *path = file->f_path;
1658                                path_get(&file->f_path);
1659                        }
1660                        if (info)
1661                                snprintf(info, PROC_FDINFO_MAX,
1662                                         "pos:\t%lli\n"
1663                                         "flags:\t0%o\n",
1664                                         (long long) file->f_pos,
1665                                         file->f_flags);
1666                        spin_unlock(&files->file_lock);
1667                        put_files_struct(files);
1668                        return 0;
1669                }
1670                spin_unlock(&files->file_lock);
1671                put_files_struct(files);
1672        }
1673        return -ENOENT;
1674}
1675
1676static int proc_fd_link(struct inode *inode, struct path *path)
1677{
1678        return proc_fd_info(inode, path, NULL);
1679}
1680
1681static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1682{
1683        struct inode *inode = dentry->d_inode;
1684        struct task_struct *task = get_proc_task(inode);
1685        int fd = proc_fd(inode);
1686        struct files_struct *files;
1687        const struct cred *cred;
1688
1689        if (task) {
1690                files = get_files_struct(task);
1691                if (files) {
1692                        rcu_read_lock();
1693                        if (fcheck_files(files, fd)) {
1694                                rcu_read_unlock();
1695                                put_files_struct(files);
1696                                if (task_dumpable(task)) {
1697                                        rcu_read_lock();
1698                                        cred = __task_cred(task);
1699                                        inode->i_uid = cred->euid;
1700                                        inode->i_gid = cred->egid;
1701                                        rcu_read_unlock();
1702                                } else {
1703                                        inode->i_uid = 0;
1704                                        inode->i_gid = 0;
1705                                }
1706                                inode->i_mode &= ~(S_ISUID | S_ISGID);
1707                                security_task_to_inode(task, inode);
1708                                put_task_struct(task);
1709                                return 1;
1710                        }
1711                        rcu_read_unlock();
1712                        put_files_struct(files);
1713                }
1714                put_task_struct(task);
1715        }
1716        d_drop(dentry);
1717        return 0;
1718}
1719
1720static const struct dentry_operations tid_fd_dentry_operations =
1721{
1722        .d_revalidate   = tid_fd_revalidate,
1723        .d_delete       = pid_delete_dentry,
1724};
1725
1726static struct dentry *proc_fd_instantiate(struct inode *dir,
1727        struct dentry *dentry, struct task_struct *task, const void *ptr)
1728{
1729        unsigned fd = *(const unsigned *)ptr;
1730        struct file *file;
1731        struct files_struct *files;
1732        struct inode *inode;
1733        struct proc_inode *ei;
1734        struct dentry *error = ERR_PTR(-ENOENT);
1735
1736        inode = proc_pid_make_inode(dir->i_sb, task);
1737        if (!inode)
1738                goto out;
1739        ei = PROC_I(inode);
1740        ei->fd = fd;
1741        files = get_files_struct(task);
1742        if (!files)
1743                goto out_iput;
1744        inode->i_mode = S_IFLNK;
1745
1746        /*
1747         * We are not taking a ref to the file structure, so we must
1748         * hold ->file_lock.
1749         */
1750        spin_lock(&files->file_lock);
1751        file = fcheck_files(files, fd);
1752        if (!file)
1753                goto out_unlock;
1754        if (file->f_mode & FMODE_READ)
1755                inode->i_mode |= S_IRUSR | S_IXUSR;
1756        if (file->f_mode & FMODE_WRITE)
1757                inode->i_mode |= S_IWUSR | S_IXUSR;
1758        spin_unlock(&files->file_lock);
1759        put_files_struct(files);
1760
1761        inode->i_op = &proc_pid_link_inode_operations;
1762        inode->i_size = 64;
1763        ei->op.proc_get_link = proc_fd_link;
1764        dentry->d_op = &tid_fd_dentry_operations;
1765        d_add(dentry, inode);
1766        /* Close the race of the process dying before we return the dentry */
1767        if (tid_fd_revalidate(dentry, NULL))
1768                error = NULL;
1769
1770 out:
1771        return error;
1772out_unlock:
1773        spin_unlock(&files->file_lock);
1774        put_files_struct(files);
1775out_iput:
1776        iput(inode);
1777        goto out;
1778}
1779
1780static struct dentry *proc_lookupfd_common(struct inode *dir,
1781                                           struct dentry *dentry,
1782                                           instantiate_t instantiate)
1783{
1784        struct task_struct *task = get_proc_task(dir);
1785        unsigned fd = name_to_int(dentry);
1786        struct dentry *result = ERR_PTR(-ENOENT);
1787
1788        if (!task)
1789                goto out_no_task;
1790        if (fd == ~0U)
1791                goto out;
1792
1793        result = instantiate(dir, dentry, task, &fd);
1794out:
1795        put_task_struct(task);
1796out_no_task:
1797        return result;
1798}
1799
1800static int proc_readfd_common(struct file * filp, void * dirent,
1801                              filldir_t filldir, instantiate_t instantiate)
1802{
1803        struct dentry *dentry = filp->f_path.dentry;
1804        struct inode *inode = dentry->d_inode;
1805        struct task_struct *p = get_proc_task(inode);
1806        unsigned int fd, ino;
1807        int retval;
1808        struct files_struct * files;
1809
1810        retval = -ENOENT;
1811        if (!p)
1812                goto out_no_task;
1813        retval = 0;
1814
1815        fd = filp->f_pos;
1816        switch (fd) {
1817                case 0:
1818                        if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1819                                goto out;
1820                        filp->f_pos++;
1821                case 1:
1822                        ino = parent_ino(dentry);
1823                        if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1824                                goto out;
1825                        filp->f_pos++;
1826                default:
1827                        files = get_files_struct(p);
1828                        if (!files)
1829                                goto out;
1830                        rcu_read_lock();
1831                        for (fd = filp->f_pos-2;
1832                             fd < files_fdtable(files)->max_fds;
1833                             fd++, filp->f_pos++) {
1834                                char name[PROC_NUMBUF];
1835                                int len;
1836
1837                                if (!fcheck_files(files, fd))
1838                                        continue;
1839                                rcu_read_unlock();
1840
1841                                len = snprintf(name, sizeof(name), "%d", fd);
1842                                if (proc_fill_cache(filp, dirent, filldir,
1843                                                    name, len, instantiate,
1844                                                    p, &fd) < 0) {
1845                                        rcu_read_lock();
1846                                        break;
1847                                }
1848                                rcu_read_lock();
1849                        }
1850                        rcu_read_unlock();
1851                        put_files_struct(files);
1852        }
1853out:
1854        put_task_struct(p);
1855out_no_task:
1856        return retval;
1857}
1858
1859static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1860                                    struct nameidata *nd)
1861{
1862        return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1863}
1864
1865static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1866{
1867        return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1868}
1869
1870static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1871                                      size_t len, loff_t *ppos)
1872{
1873        char tmp[PROC_FDINFO_MAX];
1874        int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1875        if (!err)
1876                err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1877        return err;
1878}
1879
1880static const struct file_operations proc_fdinfo_file_operations = {
1881        .open           = nonseekable_open,
1882        .read           = proc_fdinfo_read,
1883};
1884
1885static const struct file_operations proc_fd_operations = {
1886        .read           = generic_read_dir,
1887        .readdir        = proc_readfd,
1888};
1889
1890/*
1891 * /proc/pid/fd needs a special permission handler so that a process can still
1892 * access /proc/self/fd after it has executed a setuid().
1893 */
1894static int proc_fd_permission(struct inode *inode, int mask)
1895{
1896        int rv;
1897
1898        rv = generic_permission(inode, mask, NULL);
1899        if (rv == 0)
1900                return 0;
1901        if (task_pid(current) == proc_pid(inode))
1902                rv = 0;
1903        return rv;
1904}
1905
1906/*
1907 * proc directories can do almost nothing..
1908 */
1909static const struct inode_operations proc_fd_inode_operations = {
1910        .lookup         = proc_lookupfd,
1911        .permission     = proc_fd_permission,
1912        .setattr        = proc_setattr,
1913};
1914
1915static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
1916        struct dentry *dentry, struct task_struct *task, const void *ptr)
1917{
1918        unsigned fd = *(unsigned *)ptr;
1919        struct inode *inode;
1920        struct proc_inode *ei;
1921        struct dentry *error = ERR_PTR(-ENOENT);
1922
1923        inode = proc_pid_make_inode(dir->i_sb, task);
1924        if (!inode)
1925                goto out;
1926        ei = PROC_I(inode);
1927        ei->fd = fd;
1928        inode->i_mode = S_IFREG | S_IRUSR;
1929        inode->i_fop = &proc_fdinfo_file_operations;
1930        dentry->d_op = &tid_fd_dentry_operations;
1931        d_add(dentry, inode);
1932        /* Close the race of the process dying before we return the dentry */
1933        if (tid_fd_revalidate(dentry, NULL))
1934                error = NULL;
1935
1936 out:
1937        return error;
1938}
1939
1940static struct dentry *proc_lookupfdinfo(struct inode *dir,
1941                                        struct dentry *dentry,
1942                                        struct nameidata *nd)
1943{
1944        return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
1945}
1946
1947static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
1948{
1949        return proc_readfd_common(filp, dirent, filldir,
1950                                  proc_fdinfo_instantiate);
1951}
1952
1953static const struct file_operations proc_fdinfo_operations = {
1954        .read           = generic_read_dir,
1955        .readdir        = proc_readfdinfo,
1956};
1957
1958/*
1959 * proc directories can do almost nothing..
1960 */
1961static const struct inode_operations proc_fdinfo_inode_operations = {
1962        .lookup         = proc_lookupfdinfo,
1963        .setattr        = proc_setattr,
1964};
1965
1966
1967static struct dentry *proc_pident_instantiate(struct inode *dir,
1968        struct dentry *dentry, struct task_struct *task, const void *ptr)
1969{
1970        const struct pid_entry *p = ptr;
1971        struct inode *inode;
1972        struct proc_inode *ei;
1973        struct dentry *error = ERR_PTR(-ENOENT);
1974
1975        inode = proc_pid_make_inode(dir->i_sb, task);
1976        if (!inode)
1977                goto out;
1978
1979        ei = PROC_I(inode);
1980        inode->i_mode = p->mode;
1981        if (S_ISDIR(inode->i_mode))
1982                inode->i_nlink = 2;     /* Use getattr to fix if necessary */
1983        if (p->iop)
1984                inode->i_op = p->iop;
1985        if (p->fop)
1986                inode->i_fop = p->fop;
1987        ei->op = p->op;
1988        dentry->d_op = &pid_dentry_operations;
1989        d_add(dentry, inode);
1990        /* Close the race of the process dying before we return the dentry */
1991        if (pid_revalidate(dentry, NULL))
1992                error = NULL;
1993out:
1994        return error;
1995}
1996
1997static struct dentry *proc_pident_lookup(struct inode *dir, 
1998                                         struct dentry *dentry,
1999                                         const struct pid_entry *ents,
2000                                         unsigned int nents)
2001{
2002        struct dentry *error;
2003        struct task_struct *task = get_proc_task(dir);
2004        const struct pid_entry *p, *last;
2005
2006        error = ERR_PTR(-ENOENT);
2007
2008        if (!task)
2009                goto out_no_task;
2010
2011        /*
2012         * Yes, it does not scale. And it should not. Don't add
2013         * new entries into /proc/<tgid>/ without very good reasons.
2014         */
2015        last = &ents[nents - 1];
2016        for (p = ents; p <= last; p++) {
2017                if (p->len != dentry->d_name.len)
2018                        continue;
2019                if (!memcmp(dentry->d_name.name, p->name, p->len))
2020                        break;
2021        }
2022        if (p > last)
2023                goto out;
2024
2025        error = proc_pident_instantiate(dir, dentry, task, p);
2026out:
2027        put_task_struct(task);
2028out_no_task:
2029        return error;
2030}
2031
2032static int proc_pident_fill_cache(struct file *filp, void *dirent,
2033        filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2034{
2035        return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2036                                proc_pident_instantiate, task, p);
2037}
2038
2039static int proc_pident_readdir(struct file *filp,
2040                void *dirent, filldir_t filldir,
2041                const struct pid_entry *ents, unsigned int nents)
2042{
2043        int i;
2044        struct dentry *dentry = filp->f_path.dentry;
2045        struct inode *inode = dentry->d_inode;
2046        struct task_struct *task = get_proc_task(inode);
2047        const struct pid_entry *p, *last;
2048        ino_t ino;
2049        int ret;
2050
2051        ret = -ENOENT;
2052        if (!task)
2053                goto out_no_task;
2054
2055        ret = 0;
2056        i = filp->f_pos;
2057        switch (i) {
2058        case 0:
2059                ino = inode->i_ino;
2060                if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2061                        goto out;
2062                i++;
2063                filp->f_pos++;
2064                /* fall through */
2065        case 1:
2066                ino = parent_ino(dentry);
2067                if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2068                        goto out;
2069                i++;
2070                filp->f_pos++;
2071                /* fall through */
2072        default:
2073                i -= 2;
2074                if (i >= nents) {
2075                        ret = 1;
2076                        goto out;
2077                }
2078                p = ents + i;
2079                last = &ents[nents - 1];
2080                while (p <= last) {
2081                        if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2082                                goto out;
2083                        filp->f_pos++;
2084                        p++;
2085                }
2086        }
2087
2088        ret = 1;
2089out:
2090        put_task_struct(task);
2091out_no_task:
2092        return ret;
2093}
2094
2095#ifdef CONFIG_SECURITY
2096static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2097                                  size_t count, loff_t *ppos)
2098{
2099        struct inode * inode = file->f_path.dentry->d_inode;
2100        char *p = NULL;
2101        ssize_t length;
2102        struct task_struct *task = get_proc_task(inode);
2103
2104        if (!task)
2105                return -ESRCH;
2106
2107        length = security_getprocattr(task,
2108                                      (char*)file->f_path.dentry->d_name.name,
2109                                      &p);
2110        put_task_struct(task);
2111        if (length > 0)
2112                length = simple_read_from_buffer(buf, count, ppos, p, length);
2113        kfree(p);
2114        return length;
2115}
2116
2117static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2118                                   size_t count, loff_t *ppos)
2119{
2120        struct inode * inode = file->f_path.dentry->d_inode;
2121        char *page;
2122        ssize_t length;
2123        struct task_struct *task = get_proc_task(inode);
2124
2125        length = -ESRCH;
2126        if (!task)
2127                goto out_no_task;
2128        if (count > PAGE_SIZE)
2129                count = PAGE_SIZE;
2130
2131        /* No partial writes. */
2132        length = -EINVAL;
2133        if (*ppos != 0)
2134                goto out;
2135
2136        length = -ENOMEM;
2137        page = (char*)__get_free_page(GFP_TEMPORARY);
2138        if (!page)
2139                goto out;
2140
2141        length = -EFAULT;
2142        if (copy_from_user(page, buf, count))
2143                goto out_free;
2144
2145        /* Guard against adverse ptrace interaction */
2146        length = mutex_lock_interruptible(&task->cred_guard_mutex);
2147        if (length < 0)
2148                goto out_free;
2149
2150        length = security_setprocattr(task,
2151                                      (char*)file->f_path.dentry->d_name.name,
2152                                      (void*)page, count);
2153        mutex_unlock(&task->cred_guard_mutex);
2154out_free:
2155        free_page((unsigned long) page);
2156out:
2157        put_task_struct(task);
2158out_no_task:
2159        return length;
2160}
2161
2162static const struct file_operations proc_pid_attr_operations = {
2163        .read           = proc_pid_attr_read,
2164        .write          = proc_pid_attr_write,
2165};
2166
2167static const struct pid_entry attr_dir_stuff[] = {
2168        REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2169        REG("prev",       S_IRUGO,         proc_pid_attr_operations),
2170        REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2171        REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2172        REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2173        REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2174};
2175
2176static int proc_attr_dir_readdir(struct file * filp,
2177                             void * dirent, filldir_t filldir)
2178{
2179        return proc_pident_readdir(filp,dirent,filldir,
2180                                   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2181}
2182
2183static const struct file_operations proc_attr_dir_operations = {
2184        .read           = generic_read_dir,
2185        .readdir        = proc_attr_dir_readdir,
2186};
2187
2188static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2189                                struct dentry *dentry, struct nameidata *nd)
2190{
2191        return proc_pident_lookup(dir, dentry,
2192                                  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2193}
2194
2195static const struct inode_operations proc_attr_dir_inode_operations = {
2196        .lookup         = proc_attr_dir_lookup,
2197        .getattr        = pid_getattr,
2198        .setattr        = proc_setattr,
2199};
2200
2201#endif
2202
2203#if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2204static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2205                                         size_t count, loff_t *ppos)
2206{
2207        struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2208        struct mm_struct *mm;
2209        char buffer[PROC_NUMBUF];
2210        size_t len;
2211        int ret;
2212
2213        if (!task)
2214                return -ESRCH;
2215
2216        ret = 0;
2217        mm = get_task_mm(task);
2218        if (mm) {
2219                len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2220                               ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2221                                MMF_DUMP_FILTER_SHIFT));
2222                mmput(mm);
2223                ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2224        }
2225
2226        put_task_struct(task);
2227
2228        return ret;
2229}
2230
2231static ssize_t proc_coredump_filter_write(struct file *file,
2232                                          const char __user *buf,
2233                                          size_t count,
2234                                          loff_t *ppos)
2235{
2236        struct task_struct *task;
2237        struct mm_struct *mm;
2238        char buffer[PROC_NUMBUF], *end;
2239        unsigned int val;
2240        int ret;
2241        int i;
2242        unsigned long mask;
2243
2244        ret = -EFAULT;
2245        memset(buffer, 0, sizeof(buffer));
2246        if (count > sizeof(buffer) - 1)
2247                count = sizeof(buffer) - 1;
2248        if (copy_from_user(buffer, buf, count))
2249                goto out_no_task;
2250
2251        ret = -EINVAL;
2252        val = (unsigned int)simple_strtoul(buffer, &end, 0);
2253        if (*end == '\n')
2254                end++;
2255        if (end - buffer == 0)
2256                goto out_no_task;
2257
2258        ret = -ESRCH;
2259        task = get_proc_task(file->f_dentry->d_inode);
2260        if (!task)
2261                goto out_no_task;
2262
2263        ret = end - buffer;
2264        mm = get_task_mm(task);
2265        if (!mm)
2266                goto out_no_mm;
2267
2268        for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2269                if (val & mask)
2270                        set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2271                else
2272                        clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2273        }
2274
2275        mmput(mm);
2276 out_no_mm:
2277        put_task_struct(task);
2278 out_no_task:
2279        return ret;
2280}
2281
2282static const struct file_operations proc_coredump_filter_operations = {
2283        .read           = proc_coredump_filter_read,
2284        .write          = proc_coredump_filter_write,
2285};
2286#endif
2287
2288/*
2289 * /proc/self:
2290 */
2291static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2292                              int buflen)
2293{
2294        struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2295        pid_t tgid = task_tgid_nr_ns(current, ns);
2296        char tmp[PROC_NUMBUF];
2297        if (!tgid)
2298                return -ENOENT;
2299        sprintf(tmp, "%d", tgid);
2300        return vfs_readlink(dentry,buffer,buflen,tmp);
2301}
2302
2303static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2304{
2305        struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2306        pid_t tgid = task_tgid_nr_ns(current, ns);
2307        char tmp[PROC_NUMBUF];
2308        if (!tgid)
2309                return ERR_PTR(-ENOENT);
2310        sprintf(tmp, "%d", task_tgid_nr_ns(current, ns));
2311        return ERR_PTR(vfs_follow_link(nd,tmp));
2312}
2313
2314static const struct inode_operations proc_self_inode_operations = {
2315        .readlink       = proc_self_readlink,
2316        .follow_link    = proc_self_follow_link,
2317};
2318
2319/*
2320 * proc base
2321 *
2322 * These are the directory entries in the root directory of /proc
2323 * that properly belong to the /proc filesystem, as they describe
2324 * describe something that is process related.
2325 */
2326static const struct pid_entry proc_base_stuff[] = {
2327        NOD("self", S_IFLNK|S_IRWXUGO,
2328                &proc_self_inode_operations, NULL, {}),
2329};
2330
2331/*
2332 *      Exceptional case: normally we are not allowed to unhash a busy
2333 * directory. In this case, however, we can do it - no aliasing problems
2334 * due to the way we treat inodes.
2335 */
2336static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2337{
2338        struct inode *inode = dentry->d_inode;
2339        struct task_struct *task = get_proc_task(inode);
2340        if (task) {
2341                put_task_struct(task);
2342                return 1;
2343        }
2344        d_drop(dentry);
2345        return 0;
2346}
2347
2348static const struct dentry_operations proc_base_dentry_operations =
2349{
2350        .d_revalidate   = proc_base_revalidate,
2351        .d_delete       = pid_delete_dentry,
2352};
2353
2354static struct dentry *proc_base_instantiate(struct inode *dir,
2355        struct dentry *dentry, struct task_struct *task, const void *ptr)
2356{
2357        const struct pid_entry *p = ptr;
2358        struct inode *inode;
2359        struct proc_inode *ei;
2360        struct dentry *error = ERR_PTR(-EINVAL);
2361
2362        /* Allocate the inode */
2363        error = ERR_PTR(-ENOMEM);
2364        inode = new_inode(dir->i_sb);
2365        if (!inode)
2366                goto out;
2367
2368        /* Initialize the inode */
2369        ei = PROC_I(inode);
2370        inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2371
2372        /*
2373         * grab the reference to the task.
2374         */
2375        ei->pid = get_task_pid(task, PIDTYPE_PID);
2376        if (!ei->pid)
2377                goto out_iput;
2378
2379        inode->i_mode = p->mode;
2380        if (S_ISDIR(inode->i_mode))
2381                inode->i_nlink = 2;
2382        if (S_ISLNK(inode->i_mode))
2383                inode->i_size = 64;
2384        if (p->iop)
2385                inode->i_op = p->iop;
2386        if (p->fop)
2387                inode->i_fop = p->fop;
2388        ei->op = p->op;
2389        dentry->d_op = &proc_base_dentry_operations;
2390        d_add(dentry, inode);
2391        error = NULL;
2392out:
2393        return error;
2394out_iput:
2395        iput(inode);
2396        goto out;
2397}
2398
2399static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2400{
2401        struct dentry *error;
2402        struct task_struct *task = get_proc_task(dir);
2403        const struct pid_entry *p, *last;
2404
2405        error = ERR_PTR(-ENOENT);
2406
2407        if (!task)
2408                goto out_no_task;
2409
2410        /* Lookup the directory entry */
2411        last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2412        for (p = proc_base_stuff; p <= last; p++) {
2413                if (p->len != dentry->d_name.len)
2414                        continue;
2415                if (!memcmp(dentry->d_name.name, p->name, p->len))
2416                        break;
2417        }
2418        if (p > last)
2419                goto out;
2420
2421        error = proc_base_instantiate(dir, dentry, task, p);
2422
2423out:
2424        put_task_struct(task);
2425out_no_task:
2426        return error;
2427}
2428
2429static int proc_base_fill_cache(struct file *filp, void *dirent,
2430        filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2431{
2432        return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2433                                proc_base_instantiate, task, p);
2434}
2435
2436#ifdef CONFIG_TASK_IO_ACCOUNTING
2437static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2438{
2439        struct task_io_accounting acct = task->ioac;
2440        unsigned long flags;
2441
2442        if (whole && lock_task_sighand(task, &flags)) {
2443                struct task_struct *t = task;
2444
2445                task_io_accounting_add(&acct, &task->signal->ioac);
2446                while_each_thread(task, t)
2447                        task_io_accounting_add(&acct, &t->ioac);
2448
2449                unlock_task_sighand(task, &flags);
2450        }
2451        return sprintf(buffer,
2452                        "rchar: %llu\n"
2453                        "wchar: %llu\n"
2454                        "syscr: %llu\n"
2455                        "syscw: %llu\n"
2456                        "read_bytes: %llu\n"
2457                        "write_bytes: %llu\n"
2458                        "cancelled_write_bytes: %llu\n",
2459                        (unsigned long long)acct.rchar,
2460                        (unsigned long long)acct.wchar,
2461                        (unsigned long long)acct.syscr,
2462                        (unsigned long long)acct.syscw,
2463                        (unsigned long long)acct.read_bytes,
2464                        (unsigned long long)acct.write_bytes,
2465                        (unsigned long long)acct.cancelled_write_bytes);
2466}
2467
2468static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2469{
2470        return do_io_accounting(task, buffer, 0);
2471}
2472
2473static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2474{
2475        return do_io_accounting(task, buffer, 1);
2476}
2477#endif /* CONFIG_TASK_IO_ACCOUNTING */
2478
2479static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2480                                struct pid *pid, struct task_struct *task)
2481{
2482        seq_printf(m, "%08x\n", task->personality);
2483        return 0;
2484}
2485
2486/*
2487 * Thread groups
2488 */
2489static const struct file_operations proc_task_operations;
2490static const struct inode_operations proc_task_inode_operations;
2491
2492static const struct pid_entry tgid_base_stuff[] = {
2493        DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2494        DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2495        DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2496#ifdef CONFIG_NET
2497        DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2498#endif
2499        REG("environ",    S_IRUSR, proc_environ_operations),
2500        INF("auxv",       S_IRUSR, proc_pid_auxv),
2501        ONE("status",     S_IRUGO, proc_pid_status),
2502        ONE("personality", S_IRUSR, proc_pid_personality),
2503        INF("limits",     S_IRUSR, proc_pid_limits),
2504#ifdef CONFIG_SCHED_DEBUG
2505        REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2506#endif
2507#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2508        INF("syscall",    S_IRUSR, proc_pid_syscall),
2509#endif
2510        INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2511        ONE("stat",       S_IRUGO, proc_tgid_stat),
2512        ONE("statm",      S_IRUGO, proc_pid_statm),
2513        REG("maps",       S_IRUGO, proc_maps_operations),
2514#ifdef CONFIG_NUMA
2515        REG("numa_maps",  S_IRUGO, proc_numa_maps_operations),
2516#endif
2517        REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2518        LNK("cwd",        proc_cwd_link),
2519        LNK("root",       proc_root_link),
2520        LNK("exe",        proc_exe_link),
2521        REG("mounts",     S_IRUGO, proc_mounts_operations),
2522        REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2523        REG("mountstats", S_IRUSR, proc_mountstats_operations),
2524#ifdef CONFIG_PROC_PAGE_MONITOR
2525        REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2526        REG("smaps",      S_IRUGO, proc_smaps_operations),
2527        REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2528#endif
2529#ifdef CONFIG_SECURITY
2530        DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2531#endif
2532#ifdef CONFIG_KALLSYMS
2533        INF("wchan",      S_IRUGO, proc_pid_wchan),
2534#endif
2535#ifdef CONFIG_STACKTRACE
2536        ONE("stack",      S_IRUSR, proc_pid_stack),
2537#endif
2538#ifdef CONFIG_SCHEDSTATS
2539        INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2540#endif
2541#ifdef CONFIG_LATENCYTOP
2542        REG("latency",  S_IRUGO, proc_lstats_operations),
2543#endif
2544#ifdef CONFIG_PROC_PID_CPUSET
2545        REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2546#endif
2547#ifdef CONFIG_CGROUPS
2548        REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2549#endif
2550        INF("oom_score",  S_IRUGO, proc_oom_score),
2551        REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2552#ifdef CONFIG_AUDITSYSCALL
2553        REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2554        REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2555#endif
2556#ifdef CONFIG_FAULT_INJECTION
2557        REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2558#endif
2559#if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2560        REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2561#endif
2562#ifdef CONFIG_TASK_IO_ACCOUNTING
2563        INF("io",       S_IRUGO, proc_tgid_io_accounting),
2564#endif
2565};
2566
2567static int proc_tgid_base_readdir(struct file * filp,
2568                             void * dirent, filldir_t filldir)
2569{
2570        return proc_pident_readdir(filp,dirent,filldir,
2571                                   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2572}
2573
2574static const struct file_operations proc_tgid_base_operations = {
2575        .read           = generic_read_dir,
2576        .readdir        = proc_tgid_base_readdir,
2577};
2578
2579static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2580        return proc_pident_lookup(dir, dentry,
2581                                  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2582}
2583
2584static const struct inode_operations proc_tgid_base_inode_operations = {
2585        .lookup         = proc_tgid_base_lookup,
2586        .getattr        = pid_getattr,
2587        .setattr        = proc_setattr,
2588};
2589
2590static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2591{
2592        struct dentry *dentry, *leader, *dir;
2593        char buf[PROC_NUMBUF];
2594        struct qstr name;
2595
2596        name.name = buf;
2597        name.len = snprintf(buf, sizeof(buf), "%d", pid);
2598        dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2599        if (dentry) {
2600                shrink_dcache_parent(dentry);
2601                d_drop(dentry);
2602                dput(dentry);
2603        }
2604
2605        name.name = buf;
2606        name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2607        leader = d_hash_and_lookup(mnt->mnt_root, &name);
2608        if (!leader)
2609                goto out;
2610
2611        name.name = "task";
2612        name.len = strlen(name.name);
2613        dir = d_hash_and_lookup(leader, &name);
2614        if (!dir)
2615                goto out_put_leader;
2616
2617        name.name = buf;
2618        name.len = snprintf(buf, sizeof(buf), "%d", pid);
2619        dentry = d_hash_and_lookup(dir, &name);
2620        if (dentry) {
2621                shrink_dcache_parent(dentry);
2622                d_drop(dentry);
2623                dput(dentry);
2624        }
2625
2626        dput(dir);
2627out_put_leader:
2628        dput(leader);
2629out:
2630        return;
2631}
2632
2633/**
2634 * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2635 * @task: task that should be flushed.
2636 *
2637 * When flushing dentries from proc, one needs to flush them from global
2638 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2639 * in. This call is supposed to do all of this job.
2640 *
2641 * Looks in the dcache for
2642 * /proc/@pid
2643 * /proc/@tgid/task/@pid
2644 * if either directory is present flushes it and all of it'ts children
2645 * from the dcache.
2646 *
2647 * It is safe and reasonable to cache /proc entries for a task until
2648 * that task exits.  After that they just clog up the dcache with
2649 * useless entries, possibly causing useful dcache entries to be
2650 * flushed instead.  This routine is proved to flush those useless
2651 * dcache entries at process exit time.
2652 *
2653 * NOTE: This routine is just an optimization so it does not guarantee
2654 *       that no dcache entries will exist at process exit time it
2655 *       just makes it very unlikely that any will persist.
2656 */
2657
2658void proc_flush_task(struct task_struct *task)
2659{
2660        int i;
2661        struct pid *pid, *tgid;
2662        struct upid *upid;
2663
2664        pid = task_pid(task);
2665        tgid = task_tgid(task);
2666
2667        for (i = 0; i <= pid->level; i++) {
2668                upid = &pid->numbers[i];
2669                proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2670                                        tgid->numbers[i].nr);
2671        }
2672
2673        upid = &pid->numbers[pid->level];
2674        if (upid->nr == 1)
2675                pid_ns_release_proc(upid->ns);
2676}
2677
2678static struct dentry *proc_pid_instantiate(struct inode *dir,
2679                                           struct dentry * dentry,
2680                                           struct task_struct *task, const void *ptr)
2681{
2682        struct dentry *error = ERR_PTR(-ENOENT);
2683        struct inode *inode;
2684
2685        inode = proc_pid_make_inode(dir->i_sb, task);
2686        if (!inode)
2687                goto out;
2688
2689        inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2690        inode->i_op = &proc_tgid_base_inode_operations;
2691        inode->i_fop = &proc_tgid_base_operations;
2692        inode->i_flags|=S_IMMUTABLE;
2693
2694        inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2695                ARRAY_SIZE(tgid_base_stuff));
2696
2697        dentry->d_op = &pid_dentry_operations;
2698
2699        d_add(dentry, inode);
2700        /* Close the race of the process dying before we return the dentry */
2701        if (pid_revalidate(dentry, NULL))
2702                error = NULL;
2703out:
2704        return error;
2705}
2706
2707struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2708{
2709        struct dentry *result = ERR_PTR(-ENOENT);
2710        struct task_struct *task;
2711        unsigned tgid;
2712        struct pid_namespace *ns;
2713
2714        result = proc_base_lookup(dir, dentry);
2715        if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2716                goto out;
2717
2718        tgid = name_to_int(dentry);
2719        if (tgid == ~0U)
2720                goto out;
2721
2722        ns = dentry->d_sb->s_fs_info;
2723        rcu_read_lock();
2724        task = find_task_by_pid_ns(tgid, ns);
2725        if (task)
2726                get_task_struct(task);
2727        rcu_read_unlock();
2728        if (!task)
2729                goto out;
2730
2731        result = proc_pid_instantiate(dir, dentry, task, NULL);
2732        put_task_struct(task);
2733out:
2734        return result;
2735}
2736
2737/*
2738 * Find the first task with tgid >= tgid
2739 *
2740 */
2741struct tgid_iter {
2742        unsigned int tgid;
2743        struct task_struct *task;
2744};
2745static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2746{
2747        struct pid *pid;
2748
2749        if (iter.task)
2750                put_task_struct(iter.task);
2751        rcu_read_lock();
2752retry:
2753        iter.task = NULL;
2754        pid = find_ge_pid(iter.tgid, ns);
2755        if (pid) {
2756                iter.tgid = pid_nr_ns(pid, ns);
2757                iter.task = pid_task(pid, PIDTYPE_PID);
2758                /* What we to know is if the pid we have find is the
2759                 * pid of a thread_group_leader.  Testing for task
2760                 * being a thread_group_leader is the obvious thing
2761                 * todo but there is a window when it fails, due to
2762                 * the pid transfer logic in de_thread.
2763                 *
2764                 * So we perform the straight forward test of seeing
2765                 * if the pid we have found is the pid of a thread
2766                 * group leader, and don't worry if the task we have
2767                 * found doesn't happen to be a thread group leader.
2768                 * As we don't care in the case of readdir.
2769                 */
2770                if (!iter.task || !has_group_leader_pid(iter.task)) {
2771                        iter.tgid += 1;
2772                        goto retry;
2773                }
2774                get_task_struct(iter.task);
2775        }
2776        rcu_read_unlock();
2777        return iter;
2778}
2779
2780#define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2781
2782static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2783        struct tgid_iter iter)
2784{
2785        char name[PROC_NUMBUF];
2786        int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2787        return proc_fill_cache(filp, dirent, filldir, name, len,
2788                                proc_pid_instantiate, iter.task, NULL);
2789}
2790
2791/* for the /proc/ directory itself, after non-process stuff has been done */
2792int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2793{
2794        unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2795        struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2796        struct tgid_iter iter;
2797        struct pid_namespace *ns;
2798
2799        if (!reaper)
2800                goto out_no_task;
2801
2802        for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2803                const struct pid_entry *p = &proc_base_stuff[nr];
2804                if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2805                        goto out;
2806        }
2807
2808        ns = filp->f_dentry->d_sb->s_fs_info;
2809        iter.task = NULL;
2810        iter.tgid = filp->f_pos - TGID_OFFSET;
2811        for (iter = next_tgid(ns, iter);
2812             iter.task;
2813             iter.tgid += 1, iter = next_tgid(ns, iter)) {
2814                filp->f_pos = iter.tgid + TGID_OFFSET;
2815                if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2816                        put_task_struct(iter.task);
2817                        goto out;
2818                }
2819        }
2820        filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2821out:
2822        put_task_struct(reaper);
2823out_no_task:
2824        return 0;
2825}
2826
2827/*
2828 * Tasks
2829 */
2830static const struct pid_entry tid_base_stuff[] = {
2831        DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2832        DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fd_operations),
2833        REG("environ",   S_IRUSR, proc_environ_operations),
2834        INF("auxv",      S_IRUSR, proc_pid_auxv),
2835        ONE("status",    S_IRUGO, proc_pid_status),
2836        ONE("personality", S_IRUSR, proc_pid_personality),
2837        INF("limits",    S_IRUSR, proc_pid_limits),
2838#ifdef CONFIG_SCHED_DEBUG
2839        REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2840#endif
2841#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2842        INF("syscall",   S_IRUSR, proc_pid_syscall),
2843#endif
2844        INF("cmdline",   S_IRUGO, proc_pid_cmdline),
2845        ONE("stat",      S_IRUGO, proc_tid_stat),
2846        ONE("statm",     S_IRUGO, proc_pid_statm),
2847        REG("maps",      S_IRUGO, proc_maps_operations),
2848#ifdef CONFIG_NUMA
2849        REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
2850#endif
2851        REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
2852        LNK("cwd",       proc_cwd_link),
2853        LNK("root",      proc_root_link),
2854        LNK("exe",       proc_exe_link),
2855        REG("mounts",    S_IRUGO, proc_mounts_operations),
2856        REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2857#ifdef CONFIG_PROC_PAGE_MONITOR
2858        REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2859        REG("smaps",     S_IRUGO, proc_smaps_operations),
2860        REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2861#endif
2862#ifdef CONFIG_SECURITY
2863        DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2864#endif
2865#ifdef CONFIG_KALLSYMS
2866        INF("wchan",     S_IRUGO, proc_pid_wchan),
2867#endif
2868#ifdef CONFIG_STACKTRACE
2869        ONE("stack",      S_IRUSR, proc_pid_stack),
2870#endif
2871#ifdef CONFIG_SCHEDSTATS
2872        INF("schedstat", S_IRUGO, proc_pid_schedstat),
2873#endif
2874#ifdef CONFIG_LATENCYTOP
2875        REG("latency",  S_IRUGO, proc_lstats_operations),
2876#endif
2877#ifdef CONFIG_PROC_PID_CPUSET
2878        REG("cpuset",    S_IRUGO, proc_cpuset_operations),
2879#endif
2880#ifdef CONFIG_CGROUPS
2881        REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2882#endif
2883        INF("oom_score", S_IRUGO, proc_oom_score),
2884        REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2885#ifdef CONFIG_AUDITSYSCALL
2886        REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
2887        REG("sessionid",  S_IRUSR, proc_sessionid_operations),
2888#endif
2889#ifdef CONFIG_FAULT_INJECTION
2890        REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2891#endif
2892#ifdef CONFIG_TASK_IO_ACCOUNTING
2893        INF("io",       S_IRUGO, proc_tid_io_accounting),
2894#endif
2895};
2896
2897static int proc_tid_base_readdir(struct file * filp,
2898                             void * dirent, filldir_t filldir)
2899{
2900        return proc_pident_readdir(filp,dirent,filldir,
2901                                   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2902}
2903
2904static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2905        return proc_pident_lookup(dir, dentry,
2906                                  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2907}
2908
2909static const struct file_operations proc_tid_base_operations = {
2910        .read           = generic_read_dir,
2911        .readdir        = proc_tid_base_readdir,
2912};
2913
2914static const struct inode_operations proc_tid_base_inode_operations = {
2915        .lookup         = proc_tid_base_lookup,
2916        .getattr        = pid_getattr,
2917        .setattr        = proc_setattr,
2918};
2919
2920static struct dentry *proc_task_instantiate(struct inode *dir,
2921        struct dentry *dentry, struct task_struct *task, const void *ptr)
2922{
2923        struct dentry *error = ERR_PTR(-ENOENT);
2924        struct inode *inode;
2925        inode = proc_pid_make_inode(dir->i_sb, task);
2926
2927        if (!inode)
2928                goto out;
2929        inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2930        inode->i_op = &proc_tid_base_inode_operations;
2931        inode->i_fop = &proc_tid_base_operations;
2932        inode->i_flags|=S_IMMUTABLE;
2933
2934        inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
2935                ARRAY_SIZE(tid_base_stuff));
2936
2937        dentry->d_op = &pid_dentry_operations;
2938
2939        d_add(dentry, inode);
2940        /* Close the race of the process dying before we return the dentry */
2941        if (pid_revalidate(dentry, NULL))
2942                error = NULL;
2943out:
2944        return error;
2945}
2946
2947static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2948{
2949        struct dentry *result = ERR_PTR(-ENOENT);
2950        struct task_struct *task;
2951        struct task_struct *leader = get_proc_task(dir);
2952        unsigned tid;
2953        struct pid_namespace *ns;
2954
2955        if (!leader)
2956                goto out_no_task;
2957
2958        tid = name_to_int(dentry);
2959        if (tid == ~0U)
2960                goto out;
2961
2962        ns = dentry->d_sb->s_fs_info;
2963        rcu_read_lock();
2964        task = find_task_by_pid_ns(tid, ns);
2965        if (task)
2966                get_task_struct(task);
2967        rcu_read_unlock();
2968        if (!task)
2969                goto out;
2970        if (!same_thread_group(leader, task))
2971                goto out_drop_task;
2972
2973        result = proc_task_instantiate(dir, dentry, task, NULL);
2974out_drop_task:
2975        put_task_struct(task);
2976out:
2977        put_task_struct(leader);
2978out_no_task:
2979        return result;
2980}
2981
2982/*
2983 * Find the first tid of a thread group to return to user space.
2984 *
2985 * Usually this is just the thread group leader, but if the users
2986 * buffer was too small or there was a seek into the middle of the
2987 * directory we have more work todo.
2988 *
2989 * In the case of a short read we start with find_task_by_pid.
2990 *
2991 * In the case of a seek we start with the leader and walk nr
2992 * threads past it.
2993 */
2994static struct task_struct *first_tid(struct task_struct *leader,
2995                int tid, int nr, struct pid_namespace *ns)
2996{
2997        struct task_struct *pos;
2998
2999        rcu_read_lock();
3000        /* Attempt to start with the pid of a thread */
3001        if (tid && (nr > 0)) {
3002                pos = find_task_by_pid_ns(tid, ns);
3003                if (pos && (pos->group_leader == leader))
3004                        goto found;
3005        }
3006
3007        /* If nr exceeds the number of threads there is nothing todo */
3008        pos = NULL;
3009        if (nr && nr >= get_nr_threads(leader))
3010                goto out;
3011
3012        /* If we haven't found our starting place yet start
3013         * with the leader and walk nr threads forward.
3014         */
3015        for (pos = leader; nr > 0; --nr) {
3016                pos = next_thread(pos);
3017                if (pos == leader) {
3018                        pos = NULL;
3019                        goto out;
3020                }
3021        }
3022found:
3023        get_task_struct(pos);
3024out:
3025        rcu_read_unlock();
3026        return pos;
3027}
3028
3029/*
3030 * Find the next thread in the thread list.
3031 * Return NULL if there is an error or no next thread.
3032 *
3033 * The reference to the input task_struct is released.
3034 */
3035static struct task_struct *next_tid(struct task_struct *start)
3036{
3037        struct task_struct *pos = NULL;
3038        rcu_read_lock();
3039        if (pid_alive(start)) {
3040                pos = next_thread(start);
3041                if (thread_group_leader(pos))
3042                        pos = NULL;
3043                else
3044                        get_task_struct(pos);
3045        }
3046        rcu_read_unlock();
3047        put_task_struct(start);
3048        return pos;
3049}
3050
3051static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3052        struct task_struct *task, int tid)
3053{
3054        char name[PROC_NUMBUF];
3055        int len = snprintf(name, sizeof(name), "%d", tid);
3056        return proc_fill_cache(filp, dirent, filldir, name, len,
3057                                proc_task_instantiate, task, NULL);
3058}
3059
3060/* for the /proc/TGID/task/ directories */
3061static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3062{
3063        struct dentry *dentry = filp->f_path.dentry;
3064        struct inode *inode = dentry->d_inode;
3065        struct task_struct *leader = NULL;
3066        struct task_struct *task;
3067        int retval = -ENOENT;
3068        ino_t ino;
3069        int tid;
3070        struct pid_namespace *ns;
3071
3072        task = get_proc_task(inode);
3073        if (!task)
3074                goto out_no_task;
3075        rcu_read_lock();
3076        if (pid_alive(task)) {
3077                leader = task->group_leader;
3078                get_task_struct(leader);
3079        }
3080        rcu_read_unlock();
3081        put_task_struct(task);
3082        if (!leader)
3083                goto out_no_task;
3084        retval = 0;
3085
3086        switch ((unsigned long)filp->f_pos) {
3087        case 0:
3088                ino = inode->i_ino;
3089                if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3090                        goto out;
3091                filp->f_pos++;
3092                /* fall through */
3093        case 1:
3094                ino = parent_ino(dentry);
3095                if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3096                        goto out;
3097                filp->f_pos++;
3098                /* fall through */
3099        }
3100
3101        /* f_version caches the tgid value that the last readdir call couldn't
3102         * return. lseek aka telldir automagically resets f_version to 0.
3103         */
3104        ns = filp->f_dentry->d_sb->s_fs_info;
3105        tid = (int)filp->f_version;
3106        filp->f_version = 0;
3107        for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3108             task;
3109             task = next_tid(task), filp->f_pos++) {
3110                tid = task_pid_nr_ns(task, ns);
3111                if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3112                        /* returning this tgid failed, save it as the first
3113                         * pid for the next readir call */
3114                        filp->f_version = (u64)tid;
3115                        put_task_struct(task);
3116                        break;
3117                }
3118        }
3119out:
3120        put_task_struct(leader);
3121out_no_task:
3122        return retval;
3123}
3124
3125static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3126{
3127        struct inode *inode = dentry->d_inode;
3128        struct task_struct *p = get_proc_task(inode);
3129        generic_fillattr(inode, stat);
3130
3131        if (p) {
3132                stat->nlink += get_nr_threads(p);
3133                put_task_struct(p);
3134        }
3135
3136        return 0;
3137}
3138
3139static const struct inode_operations proc_task_inode_operations = {
3140        .lookup         = proc_task_lookup,
3141        .getattr        = proc_task_getattr,
3142        .setattr        = proc_setattr,
3143};
3144
3145static const struct file_operations proc_task_operations = {
3146        .read           = generic_read_dir,
3147        .readdir        = proc_task_readdir,
3148};
3149