linux/fs/ubifs/debug.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Artem Bityutskiy (Битюцкий Артём)
  20 *          Adrian Hunter
  21 */
  22
  23/*
  24 * This file implements most of the debugging stuff which is compiled in only
  25 * when it is enabled. But some debugging check functions are implemented in
  26 * corresponding subsystem, just because they are closely related and utilize
  27 * various local functions of those subsystems.
  28 */
  29
  30#define UBIFS_DBG_PRESERVE_UBI
  31
  32#include "ubifs.h"
  33#include <linux/module.h>
  34#include <linux/moduleparam.h>
  35#include <linux/debugfs.h>
  36#include <linux/math64.h>
  37
  38#ifdef CONFIG_UBIFS_FS_DEBUG
  39
  40DEFINE_SPINLOCK(dbg_lock);
  41
  42static char dbg_key_buf0[128];
  43static char dbg_key_buf1[128];
  44
  45unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT;
  46unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT;
  47unsigned int ubifs_tst_flags;
  48
  49module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
  50module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
  51module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
  52
  53MODULE_PARM_DESC(debug_msgs, "Debug message type flags");
  54MODULE_PARM_DESC(debug_chks, "Debug check flags");
  55MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
  56
  57static const char *get_key_fmt(int fmt)
  58{
  59        switch (fmt) {
  60        case UBIFS_SIMPLE_KEY_FMT:
  61                return "simple";
  62        default:
  63                return "unknown/invalid format";
  64        }
  65}
  66
  67static const char *get_key_hash(int hash)
  68{
  69        switch (hash) {
  70        case UBIFS_KEY_HASH_R5:
  71                return "R5";
  72        case UBIFS_KEY_HASH_TEST:
  73                return "test";
  74        default:
  75                return "unknown/invalid name hash";
  76        }
  77}
  78
  79static const char *get_key_type(int type)
  80{
  81        switch (type) {
  82        case UBIFS_INO_KEY:
  83                return "inode";
  84        case UBIFS_DENT_KEY:
  85                return "direntry";
  86        case UBIFS_XENT_KEY:
  87                return "xentry";
  88        case UBIFS_DATA_KEY:
  89                return "data";
  90        case UBIFS_TRUN_KEY:
  91                return "truncate";
  92        default:
  93                return "unknown/invalid key";
  94        }
  95}
  96
  97static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
  98                        char *buffer)
  99{
 100        char *p = buffer;
 101        int type = key_type(c, key);
 102
 103        if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
 104                switch (type) {
 105                case UBIFS_INO_KEY:
 106                        sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
 107                               get_key_type(type));
 108                        break;
 109                case UBIFS_DENT_KEY:
 110                case UBIFS_XENT_KEY:
 111                        sprintf(p, "(%lu, %s, %#08x)",
 112                                (unsigned long)key_inum(c, key),
 113                                get_key_type(type), key_hash(c, key));
 114                        break;
 115                case UBIFS_DATA_KEY:
 116                        sprintf(p, "(%lu, %s, %u)",
 117                                (unsigned long)key_inum(c, key),
 118                                get_key_type(type), key_block(c, key));
 119                        break;
 120                case UBIFS_TRUN_KEY:
 121                        sprintf(p, "(%lu, %s)",
 122                                (unsigned long)key_inum(c, key),
 123                                get_key_type(type));
 124                        break;
 125                default:
 126                        sprintf(p, "(bad key type: %#08x, %#08x)",
 127                                key->u32[0], key->u32[1]);
 128                }
 129        } else
 130                sprintf(p, "bad key format %d", c->key_fmt);
 131}
 132
 133const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
 134{
 135        /* dbg_lock must be held */
 136        sprintf_key(c, key, dbg_key_buf0);
 137        return dbg_key_buf0;
 138}
 139
 140const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
 141{
 142        /* dbg_lock must be held */
 143        sprintf_key(c, key, dbg_key_buf1);
 144        return dbg_key_buf1;
 145}
 146
 147const char *dbg_ntype(int type)
 148{
 149        switch (type) {
 150        case UBIFS_PAD_NODE:
 151                return "padding node";
 152        case UBIFS_SB_NODE:
 153                return "superblock node";
 154        case UBIFS_MST_NODE:
 155                return "master node";
 156        case UBIFS_REF_NODE:
 157                return "reference node";
 158        case UBIFS_INO_NODE:
 159                return "inode node";
 160        case UBIFS_DENT_NODE:
 161                return "direntry node";
 162        case UBIFS_XENT_NODE:
 163                return "xentry node";
 164        case UBIFS_DATA_NODE:
 165                return "data node";
 166        case UBIFS_TRUN_NODE:
 167                return "truncate node";
 168        case UBIFS_IDX_NODE:
 169                return "indexing node";
 170        case UBIFS_CS_NODE:
 171                return "commit start node";
 172        case UBIFS_ORPH_NODE:
 173                return "orphan node";
 174        default:
 175                return "unknown node";
 176        }
 177}
 178
 179static const char *dbg_gtype(int type)
 180{
 181        switch (type) {
 182        case UBIFS_NO_NODE_GROUP:
 183                return "no node group";
 184        case UBIFS_IN_NODE_GROUP:
 185                return "in node group";
 186        case UBIFS_LAST_OF_NODE_GROUP:
 187                return "last of node group";
 188        default:
 189                return "unknown";
 190        }
 191}
 192
 193const char *dbg_cstate(int cmt_state)
 194{
 195        switch (cmt_state) {
 196        case COMMIT_RESTING:
 197                return "commit resting";
 198        case COMMIT_BACKGROUND:
 199                return "background commit requested";
 200        case COMMIT_REQUIRED:
 201                return "commit required";
 202        case COMMIT_RUNNING_BACKGROUND:
 203                return "BACKGROUND commit running";
 204        case COMMIT_RUNNING_REQUIRED:
 205                return "commit running and required";
 206        case COMMIT_BROKEN:
 207                return "broken commit";
 208        default:
 209                return "unknown commit state";
 210        }
 211}
 212
 213const char *dbg_jhead(int jhead)
 214{
 215        switch (jhead) {
 216        case GCHD:
 217                return "0 (GC)";
 218        case BASEHD:
 219                return "1 (base)";
 220        case DATAHD:
 221                return "2 (data)";
 222        default:
 223                return "unknown journal head";
 224        }
 225}
 226
 227static void dump_ch(const struct ubifs_ch *ch)
 228{
 229        printk(KERN_DEBUG "\tmagic          %#x\n", le32_to_cpu(ch->magic));
 230        printk(KERN_DEBUG "\tcrc            %#x\n", le32_to_cpu(ch->crc));
 231        printk(KERN_DEBUG "\tnode_type      %d (%s)\n", ch->node_type,
 232               dbg_ntype(ch->node_type));
 233        printk(KERN_DEBUG "\tgroup_type     %d (%s)\n", ch->group_type,
 234               dbg_gtype(ch->group_type));
 235        printk(KERN_DEBUG "\tsqnum          %llu\n",
 236               (unsigned long long)le64_to_cpu(ch->sqnum));
 237        printk(KERN_DEBUG "\tlen            %u\n", le32_to_cpu(ch->len));
 238}
 239
 240void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode)
 241{
 242        const struct ubifs_inode *ui = ubifs_inode(inode);
 243
 244        printk(KERN_DEBUG "Dump in-memory inode:");
 245        printk(KERN_DEBUG "\tinode          %lu\n", inode->i_ino);
 246        printk(KERN_DEBUG "\tsize           %llu\n",
 247               (unsigned long long)i_size_read(inode));
 248        printk(KERN_DEBUG "\tnlink          %u\n", inode->i_nlink);
 249        printk(KERN_DEBUG "\tuid            %u\n", (unsigned int)inode->i_uid);
 250        printk(KERN_DEBUG "\tgid            %u\n", (unsigned int)inode->i_gid);
 251        printk(KERN_DEBUG "\tatime          %u.%u\n",
 252               (unsigned int)inode->i_atime.tv_sec,
 253               (unsigned int)inode->i_atime.tv_nsec);
 254        printk(KERN_DEBUG "\tmtime          %u.%u\n",
 255               (unsigned int)inode->i_mtime.tv_sec,
 256               (unsigned int)inode->i_mtime.tv_nsec);
 257        printk(KERN_DEBUG "\tctime          %u.%u\n",
 258               (unsigned int)inode->i_ctime.tv_sec,
 259               (unsigned int)inode->i_ctime.tv_nsec);
 260        printk(KERN_DEBUG "\tcreat_sqnum    %llu\n", ui->creat_sqnum);
 261        printk(KERN_DEBUG "\txattr_size     %u\n", ui->xattr_size);
 262        printk(KERN_DEBUG "\txattr_cnt      %u\n", ui->xattr_cnt);
 263        printk(KERN_DEBUG "\txattr_names    %u\n", ui->xattr_names);
 264        printk(KERN_DEBUG "\tdirty          %u\n", ui->dirty);
 265        printk(KERN_DEBUG "\txattr          %u\n", ui->xattr);
 266        printk(KERN_DEBUG "\tbulk_read      %u\n", ui->xattr);
 267        printk(KERN_DEBUG "\tsynced_i_size  %llu\n",
 268               (unsigned long long)ui->synced_i_size);
 269        printk(KERN_DEBUG "\tui_size        %llu\n",
 270               (unsigned long long)ui->ui_size);
 271        printk(KERN_DEBUG "\tflags          %d\n", ui->flags);
 272        printk(KERN_DEBUG "\tcompr_type     %d\n", ui->compr_type);
 273        printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
 274        printk(KERN_DEBUG "\tread_in_a_row  %lu\n", ui->read_in_a_row);
 275        printk(KERN_DEBUG "\tdata_len       %d\n", ui->data_len);
 276}
 277
 278void dbg_dump_node(const struct ubifs_info *c, const void *node)
 279{
 280        int i, n;
 281        union ubifs_key key;
 282        const struct ubifs_ch *ch = node;
 283
 284        if (dbg_failure_mode)
 285                return;
 286
 287        /* If the magic is incorrect, just hexdump the first bytes */
 288        if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
 289                printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
 290                print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
 291                               (void *)node, UBIFS_CH_SZ, 1);
 292                return;
 293        }
 294
 295        spin_lock(&dbg_lock);
 296        dump_ch(node);
 297
 298        switch (ch->node_type) {
 299        case UBIFS_PAD_NODE:
 300        {
 301                const struct ubifs_pad_node *pad = node;
 302
 303                printk(KERN_DEBUG "\tpad_len        %u\n",
 304                       le32_to_cpu(pad->pad_len));
 305                break;
 306        }
 307        case UBIFS_SB_NODE:
 308        {
 309                const struct ubifs_sb_node *sup = node;
 310                unsigned int sup_flags = le32_to_cpu(sup->flags);
 311
 312                printk(KERN_DEBUG "\tkey_hash       %d (%s)\n",
 313                       (int)sup->key_hash, get_key_hash(sup->key_hash));
 314                printk(KERN_DEBUG "\tkey_fmt        %d (%s)\n",
 315                       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
 316                printk(KERN_DEBUG "\tflags          %#x\n", sup_flags);
 317                printk(KERN_DEBUG "\t  big_lpt      %u\n",
 318                       !!(sup_flags & UBIFS_FLG_BIGLPT));
 319                printk(KERN_DEBUG "\tmin_io_size    %u\n",
 320                       le32_to_cpu(sup->min_io_size));
 321                printk(KERN_DEBUG "\tleb_size       %u\n",
 322                       le32_to_cpu(sup->leb_size));
 323                printk(KERN_DEBUG "\tleb_cnt        %u\n",
 324                       le32_to_cpu(sup->leb_cnt));
 325                printk(KERN_DEBUG "\tmax_leb_cnt    %u\n",
 326                       le32_to_cpu(sup->max_leb_cnt));
 327                printk(KERN_DEBUG "\tmax_bud_bytes  %llu\n",
 328                       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
 329                printk(KERN_DEBUG "\tlog_lebs       %u\n",
 330                       le32_to_cpu(sup->log_lebs));
 331                printk(KERN_DEBUG "\tlpt_lebs       %u\n",
 332                       le32_to_cpu(sup->lpt_lebs));
 333                printk(KERN_DEBUG "\torph_lebs      %u\n",
 334                       le32_to_cpu(sup->orph_lebs));
 335                printk(KERN_DEBUG "\tjhead_cnt      %u\n",
 336                       le32_to_cpu(sup->jhead_cnt));
 337                printk(KERN_DEBUG "\tfanout         %u\n",
 338                       le32_to_cpu(sup->fanout));
 339                printk(KERN_DEBUG "\tlsave_cnt      %u\n",
 340                       le32_to_cpu(sup->lsave_cnt));
 341                printk(KERN_DEBUG "\tdefault_compr  %u\n",
 342                       (int)le16_to_cpu(sup->default_compr));
 343                printk(KERN_DEBUG "\trp_size        %llu\n",
 344                       (unsigned long long)le64_to_cpu(sup->rp_size));
 345                printk(KERN_DEBUG "\trp_uid         %u\n",
 346                       le32_to_cpu(sup->rp_uid));
 347                printk(KERN_DEBUG "\trp_gid         %u\n",
 348                       le32_to_cpu(sup->rp_gid));
 349                printk(KERN_DEBUG "\tfmt_version    %u\n",
 350                       le32_to_cpu(sup->fmt_version));
 351                printk(KERN_DEBUG "\ttime_gran      %u\n",
 352                       le32_to_cpu(sup->time_gran));
 353                printk(KERN_DEBUG "\tUUID           %02X%02X%02X%02X-%02X%02X"
 354                       "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X\n",
 355                       sup->uuid[0], sup->uuid[1], sup->uuid[2], sup->uuid[3],
 356                       sup->uuid[4], sup->uuid[5], sup->uuid[6], sup->uuid[7],
 357                       sup->uuid[8], sup->uuid[9], sup->uuid[10], sup->uuid[11],
 358                       sup->uuid[12], sup->uuid[13], sup->uuid[14],
 359                       sup->uuid[15]);
 360                break;
 361        }
 362        case UBIFS_MST_NODE:
 363        {
 364                const struct ubifs_mst_node *mst = node;
 365
 366                printk(KERN_DEBUG "\thighest_inum   %llu\n",
 367                       (unsigned long long)le64_to_cpu(mst->highest_inum));
 368                printk(KERN_DEBUG "\tcommit number  %llu\n",
 369                       (unsigned long long)le64_to_cpu(mst->cmt_no));
 370                printk(KERN_DEBUG "\tflags          %#x\n",
 371                       le32_to_cpu(mst->flags));
 372                printk(KERN_DEBUG "\tlog_lnum       %u\n",
 373                       le32_to_cpu(mst->log_lnum));
 374                printk(KERN_DEBUG "\troot_lnum      %u\n",
 375                       le32_to_cpu(mst->root_lnum));
 376                printk(KERN_DEBUG "\troot_offs      %u\n",
 377                       le32_to_cpu(mst->root_offs));
 378                printk(KERN_DEBUG "\troot_len       %u\n",
 379                       le32_to_cpu(mst->root_len));
 380                printk(KERN_DEBUG "\tgc_lnum        %u\n",
 381                       le32_to_cpu(mst->gc_lnum));
 382                printk(KERN_DEBUG "\tihead_lnum     %u\n",
 383                       le32_to_cpu(mst->ihead_lnum));
 384                printk(KERN_DEBUG "\tihead_offs     %u\n",
 385                       le32_to_cpu(mst->ihead_offs));
 386                printk(KERN_DEBUG "\tindex_size     %llu\n",
 387                       (unsigned long long)le64_to_cpu(mst->index_size));
 388                printk(KERN_DEBUG "\tlpt_lnum       %u\n",
 389                       le32_to_cpu(mst->lpt_lnum));
 390                printk(KERN_DEBUG "\tlpt_offs       %u\n",
 391                       le32_to_cpu(mst->lpt_offs));
 392                printk(KERN_DEBUG "\tnhead_lnum     %u\n",
 393                       le32_to_cpu(mst->nhead_lnum));
 394                printk(KERN_DEBUG "\tnhead_offs     %u\n",
 395                       le32_to_cpu(mst->nhead_offs));
 396                printk(KERN_DEBUG "\tltab_lnum      %u\n",
 397                       le32_to_cpu(mst->ltab_lnum));
 398                printk(KERN_DEBUG "\tltab_offs      %u\n",
 399                       le32_to_cpu(mst->ltab_offs));
 400                printk(KERN_DEBUG "\tlsave_lnum     %u\n",
 401                       le32_to_cpu(mst->lsave_lnum));
 402                printk(KERN_DEBUG "\tlsave_offs     %u\n",
 403                       le32_to_cpu(mst->lsave_offs));
 404                printk(KERN_DEBUG "\tlscan_lnum     %u\n",
 405                       le32_to_cpu(mst->lscan_lnum));
 406                printk(KERN_DEBUG "\tleb_cnt        %u\n",
 407                       le32_to_cpu(mst->leb_cnt));
 408                printk(KERN_DEBUG "\tempty_lebs     %u\n",
 409                       le32_to_cpu(mst->empty_lebs));
 410                printk(KERN_DEBUG "\tidx_lebs       %u\n",
 411                       le32_to_cpu(mst->idx_lebs));
 412                printk(KERN_DEBUG "\ttotal_free     %llu\n",
 413                       (unsigned long long)le64_to_cpu(mst->total_free));
 414                printk(KERN_DEBUG "\ttotal_dirty    %llu\n",
 415                       (unsigned long long)le64_to_cpu(mst->total_dirty));
 416                printk(KERN_DEBUG "\ttotal_used     %llu\n",
 417                       (unsigned long long)le64_to_cpu(mst->total_used));
 418                printk(KERN_DEBUG "\ttotal_dead     %llu\n",
 419                       (unsigned long long)le64_to_cpu(mst->total_dead));
 420                printk(KERN_DEBUG "\ttotal_dark     %llu\n",
 421                       (unsigned long long)le64_to_cpu(mst->total_dark));
 422                break;
 423        }
 424        case UBIFS_REF_NODE:
 425        {
 426                const struct ubifs_ref_node *ref = node;
 427
 428                printk(KERN_DEBUG "\tlnum           %u\n",
 429                       le32_to_cpu(ref->lnum));
 430                printk(KERN_DEBUG "\toffs           %u\n",
 431                       le32_to_cpu(ref->offs));
 432                printk(KERN_DEBUG "\tjhead          %u\n",
 433                       le32_to_cpu(ref->jhead));
 434                break;
 435        }
 436        case UBIFS_INO_NODE:
 437        {
 438                const struct ubifs_ino_node *ino = node;
 439
 440                key_read(c, &ino->key, &key);
 441                printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
 442                printk(KERN_DEBUG "\tcreat_sqnum    %llu\n",
 443                       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
 444                printk(KERN_DEBUG "\tsize           %llu\n",
 445                       (unsigned long long)le64_to_cpu(ino->size));
 446                printk(KERN_DEBUG "\tnlink          %u\n",
 447                       le32_to_cpu(ino->nlink));
 448                printk(KERN_DEBUG "\tatime          %lld.%u\n",
 449                       (long long)le64_to_cpu(ino->atime_sec),
 450                       le32_to_cpu(ino->atime_nsec));
 451                printk(KERN_DEBUG "\tmtime          %lld.%u\n",
 452                       (long long)le64_to_cpu(ino->mtime_sec),
 453                       le32_to_cpu(ino->mtime_nsec));
 454                printk(KERN_DEBUG "\tctime          %lld.%u\n",
 455                       (long long)le64_to_cpu(ino->ctime_sec),
 456                       le32_to_cpu(ino->ctime_nsec));
 457                printk(KERN_DEBUG "\tuid            %u\n",
 458                       le32_to_cpu(ino->uid));
 459                printk(KERN_DEBUG "\tgid            %u\n",
 460                       le32_to_cpu(ino->gid));
 461                printk(KERN_DEBUG "\tmode           %u\n",
 462                       le32_to_cpu(ino->mode));
 463                printk(KERN_DEBUG "\tflags          %#x\n",
 464                       le32_to_cpu(ino->flags));
 465                printk(KERN_DEBUG "\txattr_cnt      %u\n",
 466                       le32_to_cpu(ino->xattr_cnt));
 467                printk(KERN_DEBUG "\txattr_size     %u\n",
 468                       le32_to_cpu(ino->xattr_size));
 469                printk(KERN_DEBUG "\txattr_names    %u\n",
 470                       le32_to_cpu(ino->xattr_names));
 471                printk(KERN_DEBUG "\tcompr_type     %#x\n",
 472                       (int)le16_to_cpu(ino->compr_type));
 473                printk(KERN_DEBUG "\tdata len       %u\n",
 474                       le32_to_cpu(ino->data_len));
 475                break;
 476        }
 477        case UBIFS_DENT_NODE:
 478        case UBIFS_XENT_NODE:
 479        {
 480                const struct ubifs_dent_node *dent = node;
 481                int nlen = le16_to_cpu(dent->nlen);
 482
 483                key_read(c, &dent->key, &key);
 484                printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
 485                printk(KERN_DEBUG "\tinum           %llu\n",
 486                       (unsigned long long)le64_to_cpu(dent->inum));
 487                printk(KERN_DEBUG "\ttype           %d\n", (int)dent->type);
 488                printk(KERN_DEBUG "\tnlen           %d\n", nlen);
 489                printk(KERN_DEBUG "\tname           ");
 490
 491                if (nlen > UBIFS_MAX_NLEN)
 492                        printk(KERN_DEBUG "(bad name length, not printing, "
 493                                          "bad or corrupted node)");
 494                else {
 495                        for (i = 0; i < nlen && dent->name[i]; i++)
 496                                printk(KERN_CONT "%c", dent->name[i]);
 497                }
 498                printk(KERN_CONT "\n");
 499
 500                break;
 501        }
 502        case UBIFS_DATA_NODE:
 503        {
 504                const struct ubifs_data_node *dn = node;
 505                int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
 506
 507                key_read(c, &dn->key, &key);
 508                printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
 509                printk(KERN_DEBUG "\tsize           %u\n",
 510                       le32_to_cpu(dn->size));
 511                printk(KERN_DEBUG "\tcompr_typ      %d\n",
 512                       (int)le16_to_cpu(dn->compr_type));
 513                printk(KERN_DEBUG "\tdata size      %d\n",
 514                       dlen);
 515                printk(KERN_DEBUG "\tdata:\n");
 516                print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
 517                               (void *)&dn->data, dlen, 0);
 518                break;
 519        }
 520        case UBIFS_TRUN_NODE:
 521        {
 522                const struct ubifs_trun_node *trun = node;
 523
 524                printk(KERN_DEBUG "\tinum           %u\n",
 525                       le32_to_cpu(trun->inum));
 526                printk(KERN_DEBUG "\told_size       %llu\n",
 527                       (unsigned long long)le64_to_cpu(trun->old_size));
 528                printk(KERN_DEBUG "\tnew_size       %llu\n",
 529                       (unsigned long long)le64_to_cpu(trun->new_size));
 530                break;
 531        }
 532        case UBIFS_IDX_NODE:
 533        {
 534                const struct ubifs_idx_node *idx = node;
 535
 536                n = le16_to_cpu(idx->child_cnt);
 537                printk(KERN_DEBUG "\tchild_cnt      %d\n", n);
 538                printk(KERN_DEBUG "\tlevel          %d\n",
 539                       (int)le16_to_cpu(idx->level));
 540                printk(KERN_DEBUG "\tBranches:\n");
 541
 542                for (i = 0; i < n && i < c->fanout - 1; i++) {
 543                        const struct ubifs_branch *br;
 544
 545                        br = ubifs_idx_branch(c, idx, i);
 546                        key_read(c, &br->key, &key);
 547                        printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
 548                               i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
 549                               le32_to_cpu(br->len), DBGKEY(&key));
 550                }
 551                break;
 552        }
 553        case UBIFS_CS_NODE:
 554                break;
 555        case UBIFS_ORPH_NODE:
 556        {
 557                const struct ubifs_orph_node *orph = node;
 558
 559                printk(KERN_DEBUG "\tcommit number  %llu\n",
 560                       (unsigned long long)
 561                                le64_to_cpu(orph->cmt_no) & LLONG_MAX);
 562                printk(KERN_DEBUG "\tlast node flag %llu\n",
 563                       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
 564                n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
 565                printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
 566                for (i = 0; i < n; i++)
 567                        printk(KERN_DEBUG "\t  ino %llu\n",
 568                               (unsigned long long)le64_to_cpu(orph->inos[i]));
 569                break;
 570        }
 571        default:
 572                printk(KERN_DEBUG "node type %d was not recognized\n",
 573                       (int)ch->node_type);
 574        }
 575        spin_unlock(&dbg_lock);
 576}
 577
 578void dbg_dump_budget_req(const struct ubifs_budget_req *req)
 579{
 580        spin_lock(&dbg_lock);
 581        printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
 582               req->new_ino, req->dirtied_ino);
 583        printk(KERN_DEBUG "\tnew_ino_d   %d, dirtied_ino_d %d\n",
 584               req->new_ino_d, req->dirtied_ino_d);
 585        printk(KERN_DEBUG "\tnew_page    %d, dirtied_page %d\n",
 586               req->new_page, req->dirtied_page);
 587        printk(KERN_DEBUG "\tnew_dent    %d, mod_dent     %d\n",
 588               req->new_dent, req->mod_dent);
 589        printk(KERN_DEBUG "\tidx_growth  %d\n", req->idx_growth);
 590        printk(KERN_DEBUG "\tdata_growth %d dd_growth     %d\n",
 591               req->data_growth, req->dd_growth);
 592        spin_unlock(&dbg_lock);
 593}
 594
 595void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
 596{
 597        spin_lock(&dbg_lock);
 598        printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
 599               "idx_lebs  %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
 600        printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
 601               "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
 602               lst->total_dirty);
 603        printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
 604               "total_dead %lld\n", lst->total_used, lst->total_dark,
 605               lst->total_dead);
 606        spin_unlock(&dbg_lock);
 607}
 608
 609void dbg_dump_budg(struct ubifs_info *c)
 610{
 611        int i;
 612        struct rb_node *rb;
 613        struct ubifs_bud *bud;
 614        struct ubifs_gced_idx_leb *idx_gc;
 615        long long available, outstanding, free;
 616
 617        ubifs_assert(spin_is_locked(&c->space_lock));
 618        spin_lock(&dbg_lock);
 619        printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, "
 620               "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid,
 621               c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth);
 622        printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, "
 623               "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth,
 624               c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth,
 625               c->freeable_cnt);
 626        printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, "
 627               "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs,
 628               c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt);
 629        printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
 630               "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
 631               atomic_long_read(&c->dirty_zn_cnt),
 632               atomic_long_read(&c->clean_zn_cnt));
 633        printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
 634               c->dark_wm, c->dead_wm, c->max_idx_node_sz);
 635        printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
 636               c->gc_lnum, c->ihead_lnum);
 637        /* If we are in R/O mode, journal heads do not exist */
 638        if (c->jheads)
 639                for (i = 0; i < c->jhead_cnt; i++)
 640                        printk(KERN_DEBUG "\tjhead %s\t LEB %d\n",
 641                               dbg_jhead(c->jheads[i].wbuf.jhead),
 642                               c->jheads[i].wbuf.lnum);
 643        for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
 644                bud = rb_entry(rb, struct ubifs_bud, rb);
 645                printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
 646        }
 647        list_for_each_entry(bud, &c->old_buds, list)
 648                printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
 649        list_for_each_entry(idx_gc, &c->idx_gc, list)
 650                printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
 651                       idx_gc->lnum, idx_gc->unmap);
 652        printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
 653
 654        /* Print budgeting predictions */
 655        available = ubifs_calc_available(c, c->min_idx_lebs);
 656        outstanding = c->budg_data_growth + c->budg_dd_growth;
 657        free = ubifs_get_free_space_nolock(c);
 658        printk(KERN_DEBUG "Budgeting predictions:\n");
 659        printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
 660               available, outstanding, free);
 661        spin_unlock(&dbg_lock);
 662}
 663
 664void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
 665{
 666        int i, spc, dark = 0, dead = 0;
 667        struct rb_node *rb;
 668        struct ubifs_bud *bud;
 669
 670        spc = lp->free + lp->dirty;
 671        if (spc < c->dead_wm)
 672                dead = spc;
 673        else
 674                dark = ubifs_calc_dark(c, spc);
 675
 676        if (lp->flags & LPROPS_INDEX)
 677                printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
 678                       "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
 679                       lp->dirty, c->leb_size - spc, spc, lp->flags);
 680        else
 681                printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
 682                       "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
 683                       "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
 684                       c->leb_size - spc, spc, dark, dead,
 685                       (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
 686
 687        if (lp->flags & LPROPS_TAKEN) {
 688                if (lp->flags & LPROPS_INDEX)
 689                        printk(KERN_CONT "index, taken");
 690                else
 691                        printk(KERN_CONT "taken");
 692        } else {
 693                const char *s;
 694
 695                if (lp->flags & LPROPS_INDEX) {
 696                        switch (lp->flags & LPROPS_CAT_MASK) {
 697                        case LPROPS_DIRTY_IDX:
 698                                s = "dirty index";
 699                                break;
 700                        case LPROPS_FRDI_IDX:
 701                                s = "freeable index";
 702                                break;
 703                        default:
 704                                s = "index";
 705                        }
 706                } else {
 707                        switch (lp->flags & LPROPS_CAT_MASK) {
 708                        case LPROPS_UNCAT:
 709                                s = "not categorized";
 710                                break;
 711                        case LPROPS_DIRTY:
 712                                s = "dirty";
 713                                break;
 714                        case LPROPS_FREE:
 715                                s = "free";
 716                                break;
 717                        case LPROPS_EMPTY:
 718                                s = "empty";
 719                                break;
 720                        case LPROPS_FREEABLE:
 721                                s = "freeable";
 722                                break;
 723                        default:
 724                                s = NULL;
 725                                break;
 726                        }
 727                }
 728                printk(KERN_CONT "%s", s);
 729        }
 730
 731        for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
 732                bud = rb_entry(rb, struct ubifs_bud, rb);
 733                if (bud->lnum == lp->lnum) {
 734                        int head = 0;
 735                        for (i = 0; i < c->jhead_cnt; i++) {
 736                                if (lp->lnum == c->jheads[i].wbuf.lnum) {
 737                                        printk(KERN_CONT ", jhead %s",
 738                                               dbg_jhead(i));
 739                                        head = 1;
 740                                }
 741                        }
 742                        if (!head)
 743                                printk(KERN_CONT ", bud of jhead %s",
 744                                       dbg_jhead(bud->jhead));
 745                }
 746        }
 747        if (lp->lnum == c->gc_lnum)
 748                printk(KERN_CONT ", GC LEB");
 749        printk(KERN_CONT ")\n");
 750}
 751
 752void dbg_dump_lprops(struct ubifs_info *c)
 753{
 754        int lnum, err;
 755        struct ubifs_lprops lp;
 756        struct ubifs_lp_stats lst;
 757
 758        printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
 759               current->pid);
 760        ubifs_get_lp_stats(c, &lst);
 761        dbg_dump_lstats(&lst);
 762
 763        for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
 764                err = ubifs_read_one_lp(c, lnum, &lp);
 765                if (err)
 766                        ubifs_err("cannot read lprops for LEB %d", lnum);
 767
 768                dbg_dump_lprop(c, &lp);
 769        }
 770        printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
 771               current->pid);
 772}
 773
 774void dbg_dump_lpt_info(struct ubifs_info *c)
 775{
 776        int i;
 777
 778        spin_lock(&dbg_lock);
 779        printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
 780        printk(KERN_DEBUG "\tlpt_sz:        %lld\n", c->lpt_sz);
 781        printk(KERN_DEBUG "\tpnode_sz:      %d\n", c->pnode_sz);
 782        printk(KERN_DEBUG "\tnnode_sz:      %d\n", c->nnode_sz);
 783        printk(KERN_DEBUG "\tltab_sz:       %d\n", c->ltab_sz);
 784        printk(KERN_DEBUG "\tlsave_sz:      %d\n", c->lsave_sz);
 785        printk(KERN_DEBUG "\tbig_lpt:       %d\n", c->big_lpt);
 786        printk(KERN_DEBUG "\tlpt_hght:      %d\n", c->lpt_hght);
 787        printk(KERN_DEBUG "\tpnode_cnt:     %d\n", c->pnode_cnt);
 788        printk(KERN_DEBUG "\tnnode_cnt:     %d\n", c->nnode_cnt);
 789        printk(KERN_DEBUG "\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
 790        printk(KERN_DEBUG "\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
 791        printk(KERN_DEBUG "\tlsave_cnt:     %d\n", c->lsave_cnt);
 792        printk(KERN_DEBUG "\tspace_bits:    %d\n", c->space_bits);
 793        printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
 794        printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
 795        printk(KERN_DEBUG "\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
 796        printk(KERN_DEBUG "\tpcnt_bits:     %d\n", c->pcnt_bits);
 797        printk(KERN_DEBUG "\tlnum_bits:     %d\n", c->lnum_bits);
 798        printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
 799        printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
 800               c->nhead_lnum, c->nhead_offs);
 801        printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
 802               c->ltab_lnum, c->ltab_offs);
 803        if (c->big_lpt)
 804                printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
 805                       c->lsave_lnum, c->lsave_offs);
 806        for (i = 0; i < c->lpt_lebs; i++)
 807                printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
 808                       "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
 809                       c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
 810        spin_unlock(&dbg_lock);
 811}
 812
 813void dbg_dump_leb(const struct ubifs_info *c, int lnum)
 814{
 815        struct ubifs_scan_leb *sleb;
 816        struct ubifs_scan_node *snod;
 817
 818        if (dbg_failure_mode)
 819                return;
 820
 821        printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
 822               current->pid, lnum);
 823        sleb = ubifs_scan(c, lnum, 0, c->dbg->buf, 0);
 824        if (IS_ERR(sleb)) {
 825                ubifs_err("scan error %d", (int)PTR_ERR(sleb));
 826                return;
 827        }
 828
 829        printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
 830               sleb->nodes_cnt, sleb->endpt);
 831
 832        list_for_each_entry(snod, &sleb->nodes, list) {
 833                cond_resched();
 834                printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
 835                       snod->offs, snod->len);
 836                dbg_dump_node(c, snod->node);
 837        }
 838
 839        printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
 840               current->pid, lnum);
 841        ubifs_scan_destroy(sleb);
 842        return;
 843}
 844
 845void dbg_dump_znode(const struct ubifs_info *c,
 846                    const struct ubifs_znode *znode)
 847{
 848        int n;
 849        const struct ubifs_zbranch *zbr;
 850
 851        spin_lock(&dbg_lock);
 852        if (znode->parent)
 853                zbr = &znode->parent->zbranch[znode->iip];
 854        else
 855                zbr = &c->zroot;
 856
 857        printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
 858               " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
 859               zbr->len, znode->parent, znode->iip, znode->level,
 860               znode->child_cnt, znode->flags);
 861
 862        if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
 863                spin_unlock(&dbg_lock);
 864                return;
 865        }
 866
 867        printk(KERN_DEBUG "zbranches:\n");
 868        for (n = 0; n < znode->child_cnt; n++) {
 869                zbr = &znode->zbranch[n];
 870                if (znode->level > 0)
 871                        printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
 872                                          "%s\n", n, zbr->znode, zbr->lnum,
 873                                          zbr->offs, zbr->len,
 874                                          DBGKEY(&zbr->key));
 875                else
 876                        printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
 877                                          "%s\n", n, zbr->znode, zbr->lnum,
 878                                          zbr->offs, zbr->len,
 879                                          DBGKEY(&zbr->key));
 880        }
 881        spin_unlock(&dbg_lock);
 882}
 883
 884void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
 885{
 886        int i;
 887
 888        printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
 889               current->pid, cat, heap->cnt);
 890        for (i = 0; i < heap->cnt; i++) {
 891                struct ubifs_lprops *lprops = heap->arr[i];
 892
 893                printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
 894                       "flags %d\n", i, lprops->lnum, lprops->hpos,
 895                       lprops->free, lprops->dirty, lprops->flags);
 896        }
 897        printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
 898}
 899
 900void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
 901                    struct ubifs_nnode *parent, int iip)
 902{
 903        int i;
 904
 905        printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
 906        printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
 907               (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
 908        printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
 909               pnode->flags, iip, pnode->level, pnode->num);
 910        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 911                struct ubifs_lprops *lp = &pnode->lprops[i];
 912
 913                printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
 914                       i, lp->free, lp->dirty, lp->flags, lp->lnum);
 915        }
 916}
 917
 918void dbg_dump_tnc(struct ubifs_info *c)
 919{
 920        struct ubifs_znode *znode;
 921        int level;
 922
 923        printk(KERN_DEBUG "\n");
 924        printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
 925        znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
 926        level = znode->level;
 927        printk(KERN_DEBUG "== Level %d ==\n", level);
 928        while (znode) {
 929                if (level != znode->level) {
 930                        level = znode->level;
 931                        printk(KERN_DEBUG "== Level %d ==\n", level);
 932                }
 933                dbg_dump_znode(c, znode);
 934                znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
 935        }
 936        printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
 937}
 938
 939static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
 940                      void *priv)
 941{
 942        dbg_dump_znode(c, znode);
 943        return 0;
 944}
 945
 946/**
 947 * dbg_dump_index - dump the on-flash index.
 948 * @c: UBIFS file-system description object
 949 *
 950 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
 951 * which dumps only in-memory znodes and does not read znodes which from flash.
 952 */
 953void dbg_dump_index(struct ubifs_info *c)
 954{
 955        dbg_walk_index(c, NULL, dump_znode, NULL);
 956}
 957
 958/**
 959 * dbg_save_space_info - save information about flash space.
 960 * @c: UBIFS file-system description object
 961 *
 962 * This function saves information about UBIFS free space, dirty space, etc, in
 963 * order to check it later.
 964 */
 965void dbg_save_space_info(struct ubifs_info *c)
 966{
 967        struct ubifs_debug_info *d = c->dbg;
 968
 969        ubifs_get_lp_stats(c, &d->saved_lst);
 970
 971        spin_lock(&c->space_lock);
 972        d->saved_free = ubifs_get_free_space_nolock(c);
 973        spin_unlock(&c->space_lock);
 974}
 975
 976/**
 977 * dbg_check_space_info - check flash space information.
 978 * @c: UBIFS file-system description object
 979 *
 980 * This function compares current flash space information with the information
 981 * which was saved when the 'dbg_save_space_info()' function was called.
 982 * Returns zero if the information has not changed, and %-EINVAL it it has
 983 * changed.
 984 */
 985int dbg_check_space_info(struct ubifs_info *c)
 986{
 987        struct ubifs_debug_info *d = c->dbg;
 988        struct ubifs_lp_stats lst;
 989        long long avail, free;
 990
 991        spin_lock(&c->space_lock);
 992        avail = ubifs_calc_available(c, c->min_idx_lebs);
 993        spin_unlock(&c->space_lock);
 994        free = ubifs_get_free_space(c);
 995
 996        if (free != d->saved_free) {
 997                ubifs_err("free space changed from %lld to %lld",
 998                          d->saved_free, free);
 999                goto out;
1000        }
1001
1002        return 0;
1003
1004out:
1005        ubifs_msg("saved lprops statistics dump");
1006        dbg_dump_lstats(&d->saved_lst);
1007        ubifs_get_lp_stats(c, &lst);
1008
1009        ubifs_msg("current lprops statistics dump");
1010        dbg_dump_lstats(&lst);
1011
1012        spin_lock(&c->space_lock);
1013        dbg_dump_budg(c);
1014        spin_unlock(&c->space_lock);
1015        dump_stack();
1016        return -EINVAL;
1017}
1018
1019/**
1020 * dbg_check_synced_i_size - check synchronized inode size.
1021 * @inode: inode to check
1022 *
1023 * If inode is clean, synchronized inode size has to be equivalent to current
1024 * inode size. This function has to be called only for locked inodes (@i_mutex
1025 * has to be locked). Returns %0 if synchronized inode size if correct, and
1026 * %-EINVAL if not.
1027 */
1028int dbg_check_synced_i_size(struct inode *inode)
1029{
1030        int err = 0;
1031        struct ubifs_inode *ui = ubifs_inode(inode);
1032
1033        if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1034                return 0;
1035        if (!S_ISREG(inode->i_mode))
1036                return 0;
1037
1038        mutex_lock(&ui->ui_mutex);
1039        spin_lock(&ui->ui_lock);
1040        if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1041                ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1042                          "is clean", ui->ui_size, ui->synced_i_size);
1043                ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1044                          inode->i_mode, i_size_read(inode));
1045                dbg_dump_stack();
1046                err = -EINVAL;
1047        }
1048        spin_unlock(&ui->ui_lock);
1049        mutex_unlock(&ui->ui_mutex);
1050        return err;
1051}
1052
1053/*
1054 * dbg_check_dir - check directory inode size and link count.
1055 * @c: UBIFS file-system description object
1056 * @dir: the directory to calculate size for
1057 * @size: the result is returned here
1058 *
1059 * This function makes sure that directory size and link count are correct.
1060 * Returns zero in case of success and a negative error code in case of
1061 * failure.
1062 *
1063 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1064 * calling this function.
1065 */
1066int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir)
1067{
1068        unsigned int nlink = 2;
1069        union ubifs_key key;
1070        struct ubifs_dent_node *dent, *pdent = NULL;
1071        struct qstr nm = { .name = NULL };
1072        loff_t size = UBIFS_INO_NODE_SZ;
1073
1074        if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1075                return 0;
1076
1077        if (!S_ISDIR(dir->i_mode))
1078                return 0;
1079
1080        lowest_dent_key(c, &key, dir->i_ino);
1081        while (1) {
1082                int err;
1083
1084                dent = ubifs_tnc_next_ent(c, &key, &nm);
1085                if (IS_ERR(dent)) {
1086                        err = PTR_ERR(dent);
1087                        if (err == -ENOENT)
1088                                break;
1089                        return err;
1090                }
1091
1092                nm.name = dent->name;
1093                nm.len = le16_to_cpu(dent->nlen);
1094                size += CALC_DENT_SIZE(nm.len);
1095                if (dent->type == UBIFS_ITYPE_DIR)
1096                        nlink += 1;
1097                kfree(pdent);
1098                pdent = dent;
1099                key_read(c, &dent->key, &key);
1100        }
1101        kfree(pdent);
1102
1103        if (i_size_read(dir) != size) {
1104                ubifs_err("directory inode %lu has size %llu, "
1105                          "but calculated size is %llu", dir->i_ino,
1106                          (unsigned long long)i_size_read(dir),
1107                          (unsigned long long)size);
1108                dump_stack();
1109                return -EINVAL;
1110        }
1111        if (dir->i_nlink != nlink) {
1112                ubifs_err("directory inode %lu has nlink %u, but calculated "
1113                          "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1114                dump_stack();
1115                return -EINVAL;
1116        }
1117
1118        return 0;
1119}
1120
1121/**
1122 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1123 * @c: UBIFS file-system description object
1124 * @zbr1: first zbranch
1125 * @zbr2: following zbranch
1126 *
1127 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1128 * names of the direntries/xentries which are referred by the keys. This
1129 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1130 * sure the name of direntry/xentry referred by @zbr1 is less than
1131 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1132 * and a negative error code in case of failure.
1133 */
1134static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1135                               struct ubifs_zbranch *zbr2)
1136{
1137        int err, nlen1, nlen2, cmp;
1138        struct ubifs_dent_node *dent1, *dent2;
1139        union ubifs_key key;
1140
1141        ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1142        dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1143        if (!dent1)
1144                return -ENOMEM;
1145        dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1146        if (!dent2) {
1147                err = -ENOMEM;
1148                goto out_free;
1149        }
1150
1151        err = ubifs_tnc_read_node(c, zbr1, dent1);
1152        if (err)
1153                goto out_free;
1154        err = ubifs_validate_entry(c, dent1);
1155        if (err)
1156                goto out_free;
1157
1158        err = ubifs_tnc_read_node(c, zbr2, dent2);
1159        if (err)
1160                goto out_free;
1161        err = ubifs_validate_entry(c, dent2);
1162        if (err)
1163                goto out_free;
1164
1165        /* Make sure node keys are the same as in zbranch */
1166        err = 1;
1167        key_read(c, &dent1->key, &key);
1168        if (keys_cmp(c, &zbr1->key, &key)) {
1169                dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
1170                        zbr1->offs, DBGKEY(&key));
1171                dbg_err("but it should have key %s according to tnc",
1172                        DBGKEY(&zbr1->key));
1173                dbg_dump_node(c, dent1);
1174                goto out_free;
1175        }
1176
1177        key_read(c, &dent2->key, &key);
1178        if (keys_cmp(c, &zbr2->key, &key)) {
1179                dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1180                        zbr1->offs, DBGKEY(&key));
1181                dbg_err("but it should have key %s according to tnc",
1182                        DBGKEY(&zbr2->key));
1183                dbg_dump_node(c, dent2);
1184                goto out_free;
1185        }
1186
1187        nlen1 = le16_to_cpu(dent1->nlen);
1188        nlen2 = le16_to_cpu(dent2->nlen);
1189
1190        cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1191        if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1192                err = 0;
1193                goto out_free;
1194        }
1195        if (cmp == 0 && nlen1 == nlen2)
1196                dbg_err("2 xent/dent nodes with the same name");
1197        else
1198                dbg_err("bad order of colliding key %s",
1199                        DBGKEY(&key));
1200
1201        ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1202        dbg_dump_node(c, dent1);
1203        ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1204        dbg_dump_node(c, dent2);
1205
1206out_free:
1207        kfree(dent2);
1208        kfree(dent1);
1209        return err;
1210}
1211
1212/**
1213 * dbg_check_znode - check if znode is all right.
1214 * @c: UBIFS file-system description object
1215 * @zbr: zbranch which points to this znode
1216 *
1217 * This function makes sure that znode referred to by @zbr is all right.
1218 * Returns zero if it is, and %-EINVAL if it is not.
1219 */
1220static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1221{
1222        struct ubifs_znode *znode = zbr->znode;
1223        struct ubifs_znode *zp = znode->parent;
1224        int n, err, cmp;
1225
1226        if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1227                err = 1;
1228                goto out;
1229        }
1230        if (znode->level < 0) {
1231                err = 2;
1232                goto out;
1233        }
1234        if (znode->iip < 0 || znode->iip >= c->fanout) {
1235                err = 3;
1236                goto out;
1237        }
1238
1239        if (zbr->len == 0)
1240                /* Only dirty zbranch may have no on-flash nodes */
1241                if (!ubifs_zn_dirty(znode)) {
1242                        err = 4;
1243                        goto out;
1244                }
1245
1246        if (ubifs_zn_dirty(znode)) {
1247                /*
1248                 * If znode is dirty, its parent has to be dirty as well. The
1249                 * order of the operation is important, so we have to have
1250                 * memory barriers.
1251                 */
1252                smp_mb();
1253                if (zp && !ubifs_zn_dirty(zp)) {
1254                        /*
1255                         * The dirty flag is atomic and is cleared outside the
1256                         * TNC mutex, so znode's dirty flag may now have
1257                         * been cleared. The child is always cleared before the
1258                         * parent, so we just need to check again.
1259                         */
1260                        smp_mb();
1261                        if (ubifs_zn_dirty(znode)) {
1262                                err = 5;
1263                                goto out;
1264                        }
1265                }
1266        }
1267
1268        if (zp) {
1269                const union ubifs_key *min, *max;
1270
1271                if (znode->level != zp->level - 1) {
1272                        err = 6;
1273                        goto out;
1274                }
1275
1276                /* Make sure the 'parent' pointer in our znode is correct */
1277                err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1278                if (!err) {
1279                        /* This zbranch does not exist in the parent */
1280                        err = 7;
1281                        goto out;
1282                }
1283
1284                if (znode->iip >= zp->child_cnt) {
1285                        err = 8;
1286                        goto out;
1287                }
1288
1289                if (znode->iip != n) {
1290                        /* This may happen only in case of collisions */
1291                        if (keys_cmp(c, &zp->zbranch[n].key,
1292                                     &zp->zbranch[znode->iip].key)) {
1293                                err = 9;
1294                                goto out;
1295                        }
1296                        n = znode->iip;
1297                }
1298
1299                /*
1300                 * Make sure that the first key in our znode is greater than or
1301                 * equal to the key in the pointing zbranch.
1302                 */
1303                min = &zbr->key;
1304                cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1305                if (cmp == 1) {
1306                        err = 10;
1307                        goto out;
1308                }
1309
1310                if (n + 1 < zp->child_cnt) {
1311                        max = &zp->zbranch[n + 1].key;
1312
1313                        /*
1314                         * Make sure the last key in our znode is less or
1315                         * equivalent than the key in the zbranch which goes
1316                         * after our pointing zbranch.
1317                         */
1318                        cmp = keys_cmp(c, max,
1319                                &znode->zbranch[znode->child_cnt - 1].key);
1320                        if (cmp == -1) {
1321                                err = 11;
1322                                goto out;
1323                        }
1324                }
1325        } else {
1326                /* This may only be root znode */
1327                if (zbr != &c->zroot) {
1328                        err = 12;
1329                        goto out;
1330                }
1331        }
1332
1333        /*
1334         * Make sure that next key is greater or equivalent then the previous
1335         * one.
1336         */
1337        for (n = 1; n < znode->child_cnt; n++) {
1338                cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1339                               &znode->zbranch[n].key);
1340                if (cmp > 0) {
1341                        err = 13;
1342                        goto out;
1343                }
1344                if (cmp == 0) {
1345                        /* This can only be keys with colliding hash */
1346                        if (!is_hash_key(c, &znode->zbranch[n].key)) {
1347                                err = 14;
1348                                goto out;
1349                        }
1350
1351                        if (znode->level != 0 || c->replaying)
1352                                continue;
1353
1354                        /*
1355                         * Colliding keys should follow binary order of
1356                         * corresponding xentry/dentry names.
1357                         */
1358                        err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1359                                                  &znode->zbranch[n]);
1360                        if (err < 0)
1361                                return err;
1362                        if (err) {
1363                                err = 15;
1364                                goto out;
1365                        }
1366                }
1367        }
1368
1369        for (n = 0; n < znode->child_cnt; n++) {
1370                if (!znode->zbranch[n].znode &&
1371                    (znode->zbranch[n].lnum == 0 ||
1372                     znode->zbranch[n].len == 0)) {
1373                        err = 16;
1374                        goto out;
1375                }
1376
1377                if (znode->zbranch[n].lnum != 0 &&
1378                    znode->zbranch[n].len == 0) {
1379                        err = 17;
1380                        goto out;
1381                }
1382
1383                if (znode->zbranch[n].lnum == 0 &&
1384                    znode->zbranch[n].len != 0) {
1385                        err = 18;
1386                        goto out;
1387                }
1388
1389                if (znode->zbranch[n].lnum == 0 &&
1390                    znode->zbranch[n].offs != 0) {
1391                        err = 19;
1392                        goto out;
1393                }
1394
1395                if (znode->level != 0 && znode->zbranch[n].znode)
1396                        if (znode->zbranch[n].znode->parent != znode) {
1397                                err = 20;
1398                                goto out;
1399                        }
1400        }
1401
1402        return 0;
1403
1404out:
1405        ubifs_err("failed, error %d", err);
1406        ubifs_msg("dump of the znode");
1407        dbg_dump_znode(c, znode);
1408        if (zp) {
1409                ubifs_msg("dump of the parent znode");
1410                dbg_dump_znode(c, zp);
1411        }
1412        dump_stack();
1413        return -EINVAL;
1414}
1415
1416/**
1417 * dbg_check_tnc - check TNC tree.
1418 * @c: UBIFS file-system description object
1419 * @extra: do extra checks that are possible at start commit
1420 *
1421 * This function traverses whole TNC tree and checks every znode. Returns zero
1422 * if everything is all right and %-EINVAL if something is wrong with TNC.
1423 */
1424int dbg_check_tnc(struct ubifs_info *c, int extra)
1425{
1426        struct ubifs_znode *znode;
1427        long clean_cnt = 0, dirty_cnt = 0;
1428        int err, last;
1429
1430        if (!(ubifs_chk_flags & UBIFS_CHK_TNC))
1431                return 0;
1432
1433        ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1434        if (!c->zroot.znode)
1435                return 0;
1436
1437        znode = ubifs_tnc_postorder_first(c->zroot.znode);
1438        while (1) {
1439                struct ubifs_znode *prev;
1440                struct ubifs_zbranch *zbr;
1441
1442                if (!znode->parent)
1443                        zbr = &c->zroot;
1444                else
1445                        zbr = &znode->parent->zbranch[znode->iip];
1446
1447                err = dbg_check_znode(c, zbr);
1448                if (err)
1449                        return err;
1450
1451                if (extra) {
1452                        if (ubifs_zn_dirty(znode))
1453                                dirty_cnt += 1;
1454                        else
1455                                clean_cnt += 1;
1456                }
1457
1458                prev = znode;
1459                znode = ubifs_tnc_postorder_next(znode);
1460                if (!znode)
1461                        break;
1462
1463                /*
1464                 * If the last key of this znode is equivalent to the first key
1465                 * of the next znode (collision), then check order of the keys.
1466                 */
1467                last = prev->child_cnt - 1;
1468                if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1469                    !keys_cmp(c, &prev->zbranch[last].key,
1470                              &znode->zbranch[0].key)) {
1471                        err = dbg_check_key_order(c, &prev->zbranch[last],
1472                                                  &znode->zbranch[0]);
1473                        if (err < 0)
1474                                return err;
1475                        if (err) {
1476                                ubifs_msg("first znode");
1477                                dbg_dump_znode(c, prev);
1478                                ubifs_msg("second znode");
1479                                dbg_dump_znode(c, znode);
1480                                return -EINVAL;
1481                        }
1482                }
1483        }
1484
1485        if (extra) {
1486                if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1487                        ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1488                                  atomic_long_read(&c->clean_zn_cnt),
1489                                  clean_cnt);
1490                        return -EINVAL;
1491                }
1492                if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1493                        ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1494                                  atomic_long_read(&c->dirty_zn_cnt),
1495                                  dirty_cnt);
1496                        return -EINVAL;
1497                }
1498        }
1499
1500        return 0;
1501}
1502
1503/**
1504 * dbg_walk_index - walk the on-flash index.
1505 * @c: UBIFS file-system description object
1506 * @leaf_cb: called for each leaf node
1507 * @znode_cb: called for each indexing node
1508 * @priv: private data which is passed to callbacks
1509 *
1510 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1511 * node and @znode_cb for each indexing node. Returns zero in case of success
1512 * and a negative error code in case of failure.
1513 *
1514 * It would be better if this function removed every znode it pulled to into
1515 * the TNC, so that the behavior more closely matched the non-debugging
1516 * behavior.
1517 */
1518int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1519                   dbg_znode_callback znode_cb, void *priv)
1520{
1521        int err;
1522        struct ubifs_zbranch *zbr;
1523        struct ubifs_znode *znode, *child;
1524
1525        mutex_lock(&c->tnc_mutex);
1526        /* If the root indexing node is not in TNC - pull it */
1527        if (!c->zroot.znode) {
1528                c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1529                if (IS_ERR(c->zroot.znode)) {
1530                        err = PTR_ERR(c->zroot.znode);
1531                        c->zroot.znode = NULL;
1532                        goto out_unlock;
1533                }
1534        }
1535
1536        /*
1537         * We are going to traverse the indexing tree in the postorder manner.
1538         * Go down and find the leftmost indexing node where we are going to
1539         * start from.
1540         */
1541        znode = c->zroot.znode;
1542        while (znode->level > 0) {
1543                zbr = &znode->zbranch[0];
1544                child = zbr->znode;
1545                if (!child) {
1546                        child = ubifs_load_znode(c, zbr, znode, 0);
1547                        if (IS_ERR(child)) {
1548                                err = PTR_ERR(child);
1549                                goto out_unlock;
1550                        }
1551                        zbr->znode = child;
1552                }
1553
1554                znode = child;
1555        }
1556
1557        /* Iterate over all indexing nodes */
1558        while (1) {
1559                int idx;
1560
1561                cond_resched();
1562
1563                if (znode_cb) {
1564                        err = znode_cb(c, znode, priv);
1565                        if (err) {
1566                                ubifs_err("znode checking function returned "
1567                                          "error %d", err);
1568                                dbg_dump_znode(c, znode);
1569                                goto out_dump;
1570                        }
1571                }
1572                if (leaf_cb && znode->level == 0) {
1573                        for (idx = 0; idx < znode->child_cnt; idx++) {
1574                                zbr = &znode->zbranch[idx];
1575                                err = leaf_cb(c, zbr, priv);
1576                                if (err) {
1577                                        ubifs_err("leaf checking function "
1578                                                  "returned error %d, for leaf "
1579                                                  "at LEB %d:%d",
1580                                                  err, zbr->lnum, zbr->offs);
1581                                        goto out_dump;
1582                                }
1583                        }
1584                }
1585
1586                if (!znode->parent)
1587                        break;
1588
1589                idx = znode->iip + 1;
1590                znode = znode->parent;
1591                if (idx < znode->child_cnt) {
1592                        /* Switch to the next index in the parent */
1593                        zbr = &znode->zbranch[idx];
1594                        child = zbr->znode;
1595                        if (!child) {
1596                                child = ubifs_load_znode(c, zbr, znode, idx);
1597                                if (IS_ERR(child)) {
1598                                        err = PTR_ERR(child);
1599                                        goto out_unlock;
1600                                }
1601                                zbr->znode = child;
1602                        }
1603                        znode = child;
1604                } else
1605                        /*
1606                         * This is the last child, switch to the parent and
1607                         * continue.
1608                         */
1609                        continue;
1610
1611                /* Go to the lowest leftmost znode in the new sub-tree */
1612                while (znode->level > 0) {
1613                        zbr = &znode->zbranch[0];
1614                        child = zbr->znode;
1615                        if (!child) {
1616                                child = ubifs_load_znode(c, zbr, znode, 0);
1617                                if (IS_ERR(child)) {
1618                                        err = PTR_ERR(child);
1619                                        goto out_unlock;
1620                                }
1621                                zbr->znode = child;
1622                        }
1623                        znode = child;
1624                }
1625        }
1626
1627        mutex_unlock(&c->tnc_mutex);
1628        return 0;
1629
1630out_dump:
1631        if (znode->parent)
1632                zbr = &znode->parent->zbranch[znode->iip];
1633        else
1634                zbr = &c->zroot;
1635        ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1636        dbg_dump_znode(c, znode);
1637out_unlock:
1638        mutex_unlock(&c->tnc_mutex);
1639        return err;
1640}
1641
1642/**
1643 * add_size - add znode size to partially calculated index size.
1644 * @c: UBIFS file-system description object
1645 * @znode: znode to add size for
1646 * @priv: partially calculated index size
1647 *
1648 * This is a helper function for 'dbg_check_idx_size()' which is called for
1649 * every indexing node and adds its size to the 'long long' variable pointed to
1650 * by @priv.
1651 */
1652static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1653{
1654        long long *idx_size = priv;
1655        int add;
1656
1657        add = ubifs_idx_node_sz(c, znode->child_cnt);
1658        add = ALIGN(add, 8);
1659        *idx_size += add;
1660        return 0;
1661}
1662
1663/**
1664 * dbg_check_idx_size - check index size.
1665 * @c: UBIFS file-system description object
1666 * @idx_size: size to check
1667 *
1668 * This function walks the UBIFS index, calculates its size and checks that the
1669 * size is equivalent to @idx_size. Returns zero in case of success and a
1670 * negative error code in case of failure.
1671 */
1672int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1673{
1674        int err;
1675        long long calc = 0;
1676
1677        if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ))
1678                return 0;
1679
1680        err = dbg_walk_index(c, NULL, add_size, &calc);
1681        if (err) {
1682                ubifs_err("error %d while walking the index", err);
1683                return err;
1684        }
1685
1686        if (calc != idx_size) {
1687                ubifs_err("index size check failed: calculated size is %lld, "
1688                          "should be %lld", calc, idx_size);
1689                dump_stack();
1690                return -EINVAL;
1691        }
1692
1693        return 0;
1694}
1695
1696/**
1697 * struct fsck_inode - information about an inode used when checking the file-system.
1698 * @rb: link in the RB-tree of inodes
1699 * @inum: inode number
1700 * @mode: inode type, permissions, etc
1701 * @nlink: inode link count
1702 * @xattr_cnt: count of extended attributes
1703 * @references: how many directory/xattr entries refer this inode (calculated
1704 *              while walking the index)
1705 * @calc_cnt: for directory inode count of child directories
1706 * @size: inode size (read from on-flash inode)
1707 * @xattr_sz: summary size of all extended attributes (read from on-flash
1708 *            inode)
1709 * @calc_sz: for directories calculated directory size
1710 * @calc_xcnt: count of extended attributes
1711 * @calc_xsz: calculated summary size of all extended attributes
1712 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1713 *             inode (read from on-flash inode)
1714 * @calc_xnms: calculated sum of lengths of all extended attribute names
1715 */
1716struct fsck_inode {
1717        struct rb_node rb;
1718        ino_t inum;
1719        umode_t mode;
1720        unsigned int nlink;
1721        unsigned int xattr_cnt;
1722        int references;
1723        int calc_cnt;
1724        long long size;
1725        unsigned int xattr_sz;
1726        long long calc_sz;
1727        long long calc_xcnt;
1728        long long calc_xsz;
1729        unsigned int xattr_nms;
1730        long long calc_xnms;
1731};
1732
1733/**
1734 * struct fsck_data - private FS checking information.
1735 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1736 */
1737struct fsck_data {
1738        struct rb_root inodes;
1739};
1740
1741/**
1742 * add_inode - add inode information to RB-tree of inodes.
1743 * @c: UBIFS file-system description object
1744 * @fsckd: FS checking information
1745 * @ino: raw UBIFS inode to add
1746 *
1747 * This is a helper function for 'check_leaf()' which adds information about
1748 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1749 * case of success and a negative error code in case of failure.
1750 */
1751static struct fsck_inode *add_inode(struct ubifs_info *c,
1752                                    struct fsck_data *fsckd,
1753                                    struct ubifs_ino_node *ino)
1754{
1755        struct rb_node **p, *parent = NULL;
1756        struct fsck_inode *fscki;
1757        ino_t inum = key_inum_flash(c, &ino->key);
1758
1759        p = &fsckd->inodes.rb_node;
1760        while (*p) {
1761                parent = *p;
1762                fscki = rb_entry(parent, struct fsck_inode, rb);
1763                if (inum < fscki->inum)
1764                        p = &(*p)->rb_left;
1765                else if (inum > fscki->inum)
1766                        p = &(*p)->rb_right;
1767                else
1768                        return fscki;
1769        }
1770
1771        if (inum > c->highest_inum) {
1772                ubifs_err("too high inode number, max. is %lu",
1773                          (unsigned long)c->highest_inum);
1774                return ERR_PTR(-EINVAL);
1775        }
1776
1777        fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1778        if (!fscki)
1779                return ERR_PTR(-ENOMEM);
1780
1781        fscki->inum = inum;
1782        fscki->nlink = le32_to_cpu(ino->nlink);
1783        fscki->size = le64_to_cpu(ino->size);
1784        fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1785        fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1786        fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1787        fscki->mode = le32_to_cpu(ino->mode);
1788        if (S_ISDIR(fscki->mode)) {
1789                fscki->calc_sz = UBIFS_INO_NODE_SZ;
1790                fscki->calc_cnt = 2;
1791        }
1792        rb_link_node(&fscki->rb, parent, p);
1793        rb_insert_color(&fscki->rb, &fsckd->inodes);
1794        return fscki;
1795}
1796
1797/**
1798 * search_inode - search inode in the RB-tree of inodes.
1799 * @fsckd: FS checking information
1800 * @inum: inode number to search
1801 *
1802 * This is a helper function for 'check_leaf()' which searches inode @inum in
1803 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1804 * the inode was not found.
1805 */
1806static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1807{
1808        struct rb_node *p;
1809        struct fsck_inode *fscki;
1810
1811        p = fsckd->inodes.rb_node;
1812        while (p) {
1813                fscki = rb_entry(p, struct fsck_inode, rb);
1814                if (inum < fscki->inum)
1815                        p = p->rb_left;
1816                else if (inum > fscki->inum)
1817                        p = p->rb_right;
1818                else
1819                        return fscki;
1820        }
1821        return NULL;
1822}
1823
1824/**
1825 * read_add_inode - read inode node and add it to RB-tree of inodes.
1826 * @c: UBIFS file-system description object
1827 * @fsckd: FS checking information
1828 * @inum: inode number to read
1829 *
1830 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1831 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1832 * information pointer in case of success and a negative error code in case of
1833 * failure.
1834 */
1835static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1836                                         struct fsck_data *fsckd, ino_t inum)
1837{
1838        int n, err;
1839        union ubifs_key key;
1840        struct ubifs_znode *znode;
1841        struct ubifs_zbranch *zbr;
1842        struct ubifs_ino_node *ino;
1843        struct fsck_inode *fscki;
1844
1845        fscki = search_inode(fsckd, inum);
1846        if (fscki)
1847                return fscki;
1848
1849        ino_key_init(c, &key, inum);
1850        err = ubifs_lookup_level0(c, &key, &znode, &n);
1851        if (!err) {
1852                ubifs_err("inode %lu not found in index", (unsigned long)inum);
1853                return ERR_PTR(-ENOENT);
1854        } else if (err < 0) {
1855                ubifs_err("error %d while looking up inode %lu",
1856                          err, (unsigned long)inum);
1857                return ERR_PTR(err);
1858        }
1859
1860        zbr = &znode->zbranch[n];
1861        if (zbr->len < UBIFS_INO_NODE_SZ) {
1862                ubifs_err("bad node %lu node length %d",
1863                          (unsigned long)inum, zbr->len);
1864                return ERR_PTR(-EINVAL);
1865        }
1866
1867        ino = kmalloc(zbr->len, GFP_NOFS);
1868        if (!ino)
1869                return ERR_PTR(-ENOMEM);
1870
1871        err = ubifs_tnc_read_node(c, zbr, ino);
1872        if (err) {
1873                ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1874                          zbr->lnum, zbr->offs, err);
1875                kfree(ino);
1876                return ERR_PTR(err);
1877        }
1878
1879        fscki = add_inode(c, fsckd, ino);
1880        kfree(ino);
1881        if (IS_ERR(fscki)) {
1882                ubifs_err("error %ld while adding inode %lu node",
1883                          PTR_ERR(fscki), (unsigned long)inum);
1884                return fscki;
1885        }
1886
1887        return fscki;
1888}
1889
1890/**
1891 * check_leaf - check leaf node.
1892 * @c: UBIFS file-system description object
1893 * @zbr: zbranch of the leaf node to check
1894 * @priv: FS checking information
1895 *
1896 * This is a helper function for 'dbg_check_filesystem()' which is called for
1897 * every single leaf node while walking the indexing tree. It checks that the
1898 * leaf node referred from the indexing tree exists, has correct CRC, and does
1899 * some other basic validation. This function is also responsible for building
1900 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1901 * calculates reference count, size, etc for each inode in order to later
1902 * compare them to the information stored inside the inodes and detect possible
1903 * inconsistencies. Returns zero in case of success and a negative error code
1904 * in case of failure.
1905 */
1906static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1907                      void *priv)
1908{
1909        ino_t inum;
1910        void *node;
1911        struct ubifs_ch *ch;
1912        int err, type = key_type(c, &zbr->key);
1913        struct fsck_inode *fscki;
1914
1915        if (zbr->len < UBIFS_CH_SZ) {
1916                ubifs_err("bad leaf length %d (LEB %d:%d)",
1917                          zbr->len, zbr->lnum, zbr->offs);
1918                return -EINVAL;
1919        }
1920
1921        node = kmalloc(zbr->len, GFP_NOFS);
1922        if (!node)
1923                return -ENOMEM;
1924
1925        err = ubifs_tnc_read_node(c, zbr, node);
1926        if (err) {
1927                ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1928                          zbr->lnum, zbr->offs, err);
1929                goto out_free;
1930        }
1931
1932        /* If this is an inode node, add it to RB-tree of inodes */
1933        if (type == UBIFS_INO_KEY) {
1934                fscki = add_inode(c, priv, node);
1935                if (IS_ERR(fscki)) {
1936                        err = PTR_ERR(fscki);
1937                        ubifs_err("error %d while adding inode node", err);
1938                        goto out_dump;
1939                }
1940                goto out;
1941        }
1942
1943        if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
1944            type != UBIFS_DATA_KEY) {
1945                ubifs_err("unexpected node type %d at LEB %d:%d",
1946                          type, zbr->lnum, zbr->offs);
1947                err = -EINVAL;
1948                goto out_free;
1949        }
1950
1951        ch = node;
1952        if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
1953                ubifs_err("too high sequence number, max. is %llu",
1954                          c->max_sqnum);
1955                err = -EINVAL;
1956                goto out_dump;
1957        }
1958
1959        if (type == UBIFS_DATA_KEY) {
1960                long long blk_offs;
1961                struct ubifs_data_node *dn = node;
1962
1963                /*
1964                 * Search the inode node this data node belongs to and insert
1965                 * it to the RB-tree of inodes.
1966                 */
1967                inum = key_inum_flash(c, &dn->key);
1968                fscki = read_add_inode(c, priv, inum);
1969                if (IS_ERR(fscki)) {
1970                        err = PTR_ERR(fscki);
1971                        ubifs_err("error %d while processing data node and "
1972                                  "trying to find inode node %lu",
1973                                  err, (unsigned long)inum);
1974                        goto out_dump;
1975                }
1976
1977                /* Make sure the data node is within inode size */
1978                blk_offs = key_block_flash(c, &dn->key);
1979                blk_offs <<= UBIFS_BLOCK_SHIFT;
1980                blk_offs += le32_to_cpu(dn->size);
1981                if (blk_offs > fscki->size) {
1982                        ubifs_err("data node at LEB %d:%d is not within inode "
1983                                  "size %lld", zbr->lnum, zbr->offs,
1984                                  fscki->size);
1985                        err = -EINVAL;
1986                        goto out_dump;
1987                }
1988        } else {
1989                int nlen;
1990                struct ubifs_dent_node *dent = node;
1991                struct fsck_inode *fscki1;
1992
1993                err = ubifs_validate_entry(c, dent);
1994                if (err)
1995                        goto out_dump;
1996
1997                /*
1998                 * Search the inode node this entry refers to and the parent
1999                 * inode node and insert them to the RB-tree of inodes.
2000                 */
2001                inum = le64_to_cpu(dent->inum);
2002                fscki = read_add_inode(c, priv, inum);
2003                if (IS_ERR(fscki)) {
2004                        err = PTR_ERR(fscki);
2005                        ubifs_err("error %d while processing entry node and "
2006                                  "trying to find inode node %lu",
2007                                  err, (unsigned long)inum);
2008                        goto out_dump;
2009                }
2010
2011                /* Count how many direntries or xentries refers this inode */
2012                fscki->references += 1;
2013
2014                inum = key_inum_flash(c, &dent->key);
2015                fscki1 = read_add_inode(c, priv, inum);
2016                if (IS_ERR(fscki1)) {
2017                        err = PTR_ERR(fscki);
2018                        ubifs_err("error %d while processing entry node and "
2019                                  "trying to find parent inode node %lu",
2020                                  err, (unsigned long)inum);
2021                        goto out_dump;
2022                }
2023
2024                nlen = le16_to_cpu(dent->nlen);
2025                if (type == UBIFS_XENT_KEY) {
2026                        fscki1->calc_xcnt += 1;
2027                        fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2028                        fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2029                        fscki1->calc_xnms += nlen;
2030                } else {
2031                        fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2032                        if (dent->type == UBIFS_ITYPE_DIR)
2033                                fscki1->calc_cnt += 1;
2034                }
2035        }
2036
2037out:
2038        kfree(node);
2039        return 0;
2040
2041out_dump:
2042        ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2043        dbg_dump_node(c, node);
2044out_free:
2045        kfree(node);
2046        return err;
2047}
2048
2049/**
2050 * free_inodes - free RB-tree of inodes.
2051 * @fsckd: FS checking information
2052 */
2053static void free_inodes(struct fsck_data *fsckd)
2054{
2055        struct rb_node *this = fsckd->inodes.rb_node;
2056        struct fsck_inode *fscki;
2057
2058        while (this) {
2059                if (this->rb_left)
2060                        this = this->rb_left;
2061                else if (this->rb_right)
2062                        this = this->rb_right;
2063                else {
2064                        fscki = rb_entry(this, struct fsck_inode, rb);
2065                        this = rb_parent(this);
2066                        if (this) {
2067                                if (this->rb_left == &fscki->rb)
2068                                        this->rb_left = NULL;
2069                                else
2070                                        this->rb_right = NULL;
2071                        }
2072                        kfree(fscki);
2073                }
2074        }
2075}
2076
2077/**
2078 * check_inodes - checks all inodes.
2079 * @c: UBIFS file-system description object
2080 * @fsckd: FS checking information
2081 *
2082 * This is a helper function for 'dbg_check_filesystem()' which walks the
2083 * RB-tree of inodes after the index scan has been finished, and checks that
2084 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2085 * %-EINVAL if not, and a negative error code in case of failure.
2086 */
2087static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2088{
2089        int n, err;
2090        union ubifs_key key;
2091        struct ubifs_znode *znode;
2092        struct ubifs_zbranch *zbr;
2093        struct ubifs_ino_node *ino;
2094        struct fsck_inode *fscki;
2095        struct rb_node *this = rb_first(&fsckd->inodes);
2096
2097        while (this) {
2098                fscki = rb_entry(this, struct fsck_inode, rb);
2099                this = rb_next(this);
2100
2101                if (S_ISDIR(fscki->mode)) {
2102                        /*
2103                         * Directories have to have exactly one reference (they
2104                         * cannot have hardlinks), although root inode is an
2105                         * exception.
2106                         */
2107                        if (fscki->inum != UBIFS_ROOT_INO &&
2108                            fscki->references != 1) {
2109                                ubifs_err("directory inode %lu has %d "
2110                                          "direntries which refer it, but "
2111                                          "should be 1",
2112                                          (unsigned long)fscki->inum,
2113                                          fscki->references);
2114                                goto out_dump;
2115                        }
2116                        if (fscki->inum == UBIFS_ROOT_INO &&
2117                            fscki->references != 0) {
2118                                ubifs_err("root inode %lu has non-zero (%d) "
2119                                          "direntries which refer it",
2120                                          (unsigned long)fscki->inum,
2121                                          fscki->references);
2122                                goto out_dump;
2123                        }
2124                        if (fscki->calc_sz != fscki->size) {
2125                                ubifs_err("directory inode %lu size is %lld, "
2126                                          "but calculated size is %lld",
2127                                          (unsigned long)fscki->inum,
2128                                          fscki->size, fscki->calc_sz);
2129                                goto out_dump;
2130                        }
2131                        if (fscki->calc_cnt != fscki->nlink) {
2132                                ubifs_err("directory inode %lu nlink is %d, "
2133                                          "but calculated nlink is %d",
2134                                          (unsigned long)fscki->inum,
2135                                          fscki->nlink, fscki->calc_cnt);
2136                                goto out_dump;
2137                        }
2138                } else {
2139                        if (fscki->references != fscki->nlink) {
2140                                ubifs_err("inode %lu nlink is %d, but "
2141                                          "calculated nlink is %d",
2142                                          (unsigned long)fscki->inum,
2143                                          fscki->nlink, fscki->references);
2144                                goto out_dump;
2145                        }
2146                }
2147                if (fscki->xattr_sz != fscki->calc_xsz) {
2148                        ubifs_err("inode %lu has xattr size %u, but "
2149                                  "calculated size is %lld",
2150                                  (unsigned long)fscki->inum, fscki->xattr_sz,
2151                                  fscki->calc_xsz);
2152                        goto out_dump;
2153                }
2154                if (fscki->xattr_cnt != fscki->calc_xcnt) {
2155                        ubifs_err("inode %lu has %u xattrs, but "
2156                                  "calculated count is %lld",
2157                                  (unsigned long)fscki->inum,
2158                                  fscki->xattr_cnt, fscki->calc_xcnt);
2159                        goto out_dump;
2160                }
2161                if (fscki->xattr_nms != fscki->calc_xnms) {
2162                        ubifs_err("inode %lu has xattr names' size %u, but "
2163                                  "calculated names' size is %lld",
2164                                  (unsigned long)fscki->inum, fscki->xattr_nms,
2165                                  fscki->calc_xnms);
2166                        goto out_dump;
2167                }
2168        }
2169
2170        return 0;
2171
2172out_dump:
2173        /* Read the bad inode and dump it */
2174        ino_key_init(c, &key, fscki->inum);
2175        err = ubifs_lookup_level0(c, &key, &znode, &n);
2176        if (!err) {
2177                ubifs_err("inode %lu not found in index",
2178                          (unsigned long)fscki->inum);
2179                return -ENOENT;
2180        } else if (err < 0) {
2181                ubifs_err("error %d while looking up inode %lu",
2182                          err, (unsigned long)fscki->inum);
2183                return err;
2184        }
2185
2186        zbr = &znode->zbranch[n];
2187        ino = kmalloc(zbr->len, GFP_NOFS);
2188        if (!ino)
2189                return -ENOMEM;
2190
2191        err = ubifs_tnc_read_node(c, zbr, ino);
2192        if (err) {
2193                ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2194                          zbr->lnum, zbr->offs, err);
2195                kfree(ino);
2196                return err;
2197        }
2198
2199        ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2200                  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2201        dbg_dump_node(c, ino);
2202        kfree(ino);
2203        return -EINVAL;
2204}
2205
2206/**
2207 * dbg_check_filesystem - check the file-system.
2208 * @c: UBIFS file-system description object
2209 *
2210 * This function checks the file system, namely:
2211 * o makes sure that all leaf nodes exist and their CRCs are correct;
2212 * o makes sure inode nlink, size, xattr size/count are correct (for all
2213 *   inodes).
2214 *
2215 * The function reads whole indexing tree and all nodes, so it is pretty
2216 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2217 * not, and a negative error code in case of failure.
2218 */
2219int dbg_check_filesystem(struct ubifs_info *c)
2220{
2221        int err;
2222        struct fsck_data fsckd;
2223
2224        if (!(ubifs_chk_flags & UBIFS_CHK_FS))
2225                return 0;
2226
2227        fsckd.inodes = RB_ROOT;
2228        err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2229        if (err)
2230                goto out_free;
2231
2232        err = check_inodes(c, &fsckd);
2233        if (err)
2234                goto out_free;
2235
2236        free_inodes(&fsckd);
2237        return 0;
2238
2239out_free:
2240        ubifs_err("file-system check failed with error %d", err);
2241        dump_stack();
2242        free_inodes(&fsckd);
2243        return err;
2244}
2245
2246static int invocation_cnt;
2247
2248int dbg_force_in_the_gaps(void)
2249{
2250        if (!dbg_force_in_the_gaps_enabled)
2251                return 0;
2252        /* Force in-the-gaps every 8th commit */
2253        return !((invocation_cnt++) & 0x7);
2254}
2255
2256/* Failure mode for recovery testing */
2257
2258#define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2259
2260struct failure_mode_info {
2261        struct list_head list;
2262        struct ubifs_info *c;
2263};
2264
2265static LIST_HEAD(fmi_list);
2266static DEFINE_SPINLOCK(fmi_lock);
2267
2268static unsigned int next;
2269
2270static int simple_rand(void)
2271{
2272        if (next == 0)
2273                next = current->pid;
2274        next = next * 1103515245 + 12345;
2275        return (next >> 16) & 32767;
2276}
2277
2278static void failure_mode_init(struct ubifs_info *c)
2279{
2280        struct failure_mode_info *fmi;
2281
2282        fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
2283        if (!fmi) {
2284                ubifs_err("Failed to register failure mode - no memory");
2285                return;
2286        }
2287        fmi->c = c;
2288        spin_lock(&fmi_lock);
2289        list_add_tail(&fmi->list, &fmi_list);
2290        spin_unlock(&fmi_lock);
2291}
2292
2293static void failure_mode_exit(struct ubifs_info *c)
2294{
2295        struct failure_mode_info *fmi, *tmp;
2296
2297        spin_lock(&fmi_lock);
2298        list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
2299                if (fmi->c == c) {
2300                        list_del(&fmi->list);
2301                        kfree(fmi);
2302                }
2303        spin_unlock(&fmi_lock);
2304}
2305
2306static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
2307{
2308        struct failure_mode_info *fmi;
2309
2310        spin_lock(&fmi_lock);
2311        list_for_each_entry(fmi, &fmi_list, list)
2312                if (fmi->c->ubi == desc) {
2313                        struct ubifs_info *c = fmi->c;
2314
2315                        spin_unlock(&fmi_lock);
2316                        return c;
2317                }
2318        spin_unlock(&fmi_lock);
2319        return NULL;
2320}
2321
2322static int in_failure_mode(struct ubi_volume_desc *desc)
2323{
2324        struct ubifs_info *c = dbg_find_info(desc);
2325
2326        if (c && dbg_failure_mode)
2327                return c->dbg->failure_mode;
2328        return 0;
2329}
2330
2331static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
2332{
2333        struct ubifs_info *c = dbg_find_info(desc);
2334        struct ubifs_debug_info *d;
2335
2336        if (!c || !dbg_failure_mode)
2337                return 0;
2338        d = c->dbg;
2339        if (d->failure_mode)
2340                return 1;
2341        if (!d->fail_cnt) {
2342                /* First call - decide delay to failure */
2343                if (chance(1, 2)) {
2344                        unsigned int delay = 1 << (simple_rand() >> 11);
2345
2346                        if (chance(1, 2)) {
2347                                d->fail_delay = 1;
2348                                d->fail_timeout = jiffies +
2349                                                  msecs_to_jiffies(delay);
2350                                dbg_rcvry("failing after %ums", delay);
2351                        } else {
2352                                d->fail_delay = 2;
2353                                d->fail_cnt_max = delay;
2354                                dbg_rcvry("failing after %u calls", delay);
2355                        }
2356                }
2357                d->fail_cnt += 1;
2358        }
2359        /* Determine if failure delay has expired */
2360        if (d->fail_delay == 1) {
2361                if (time_before(jiffies, d->fail_timeout))
2362                        return 0;
2363        } else if (d->fail_delay == 2)
2364                if (d->fail_cnt++ < d->fail_cnt_max)
2365                        return 0;
2366        if (lnum == UBIFS_SB_LNUM) {
2367                if (write) {
2368                        if (chance(1, 2))
2369                                return 0;
2370                } else if (chance(19, 20))
2371                        return 0;
2372                dbg_rcvry("failing in super block LEB %d", lnum);
2373        } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2374                if (chance(19, 20))
2375                        return 0;
2376                dbg_rcvry("failing in master LEB %d", lnum);
2377        } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2378                if (write) {
2379                        if (chance(99, 100))
2380                                return 0;
2381                } else if (chance(399, 400))
2382                        return 0;
2383                dbg_rcvry("failing in log LEB %d", lnum);
2384        } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2385                if (write) {
2386                        if (chance(7, 8))
2387                                return 0;
2388                } else if (chance(19, 20))
2389                        return 0;
2390                dbg_rcvry("failing in LPT LEB %d", lnum);
2391        } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2392                if (write) {
2393                        if (chance(1, 2))
2394                                return 0;
2395                } else if (chance(9, 10))
2396                        return 0;
2397                dbg_rcvry("failing in orphan LEB %d", lnum);
2398        } else if (lnum == c->ihead_lnum) {
2399                if (chance(99, 100))
2400                        return 0;
2401                dbg_rcvry("failing in index head LEB %d", lnum);
2402        } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2403                if (chance(9, 10))
2404                        return 0;
2405                dbg_rcvry("failing in GC head LEB %d", lnum);
2406        } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2407                   !ubifs_search_bud(c, lnum)) {
2408                if (chance(19, 20))
2409                        return 0;
2410                dbg_rcvry("failing in non-bud LEB %d", lnum);
2411        } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2412                   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2413                if (chance(999, 1000))
2414                        return 0;
2415                dbg_rcvry("failing in bud LEB %d commit running", lnum);
2416        } else {
2417                if (chance(9999, 10000))
2418                        return 0;
2419                dbg_rcvry("failing in bud LEB %d commit not running", lnum);
2420        }
2421        ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
2422        d->failure_mode = 1;
2423        dump_stack();
2424        return 1;
2425}
2426
2427static void cut_data(const void *buf, int len)
2428{
2429        int flen, i;
2430        unsigned char *p = (void *)buf;
2431
2432        flen = (len * (long long)simple_rand()) >> 15;
2433        for (i = flen; i < len; i++)
2434                p[i] = 0xff;
2435}
2436
2437int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
2438                 int len, int check)
2439{
2440        if (in_failure_mode(desc))
2441                return -EIO;
2442        return ubi_leb_read(desc, lnum, buf, offset, len, check);
2443}
2444
2445int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
2446                  int offset, int len, int dtype)
2447{
2448        int err, failing;
2449
2450        if (in_failure_mode(desc))
2451                return -EIO;
2452        failing = do_fail(desc, lnum, 1);
2453        if (failing)
2454                cut_data(buf, len);
2455        err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
2456        if (err)
2457                return err;
2458        if (failing)
2459                return -EIO;
2460        return 0;
2461}
2462
2463int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
2464                   int len, int dtype)
2465{
2466        int err;
2467
2468        if (do_fail(desc, lnum, 1))
2469                return -EIO;
2470        err = ubi_leb_change(desc, lnum, buf, len, dtype);
2471        if (err)
2472                return err;
2473        if (do_fail(desc, lnum, 1))
2474                return -EIO;
2475        return 0;
2476}
2477
2478int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
2479{
2480        int err;
2481
2482        if (do_fail(desc, lnum, 0))
2483                return -EIO;
2484        err = ubi_leb_erase(desc, lnum);
2485        if (err)
2486                return err;
2487        if (do_fail(desc, lnum, 0))
2488                return -EIO;
2489        return 0;
2490}
2491
2492int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
2493{
2494        int err;
2495
2496        if (do_fail(desc, lnum, 0))
2497                return -EIO;
2498        err = ubi_leb_unmap(desc, lnum);
2499        if (err)
2500                return err;
2501        if (do_fail(desc, lnum, 0))
2502                return -EIO;
2503        return 0;
2504}
2505
2506int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
2507{
2508        if (in_failure_mode(desc))
2509                return -EIO;
2510        return ubi_is_mapped(desc, lnum);
2511}
2512
2513int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
2514{
2515        int err;
2516
2517        if (do_fail(desc, lnum, 0))
2518                return -EIO;
2519        err = ubi_leb_map(desc, lnum, dtype);
2520        if (err)
2521                return err;
2522        if (do_fail(desc, lnum, 0))
2523                return -EIO;
2524        return 0;
2525}
2526
2527/**
2528 * ubifs_debugging_init - initialize UBIFS debugging.
2529 * @c: UBIFS file-system description object
2530 *
2531 * This function initializes debugging-related data for the file system.
2532 * Returns zero in case of success and a negative error code in case of
2533 * failure.
2534 */
2535int ubifs_debugging_init(struct ubifs_info *c)
2536{
2537        c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
2538        if (!c->dbg)
2539                return -ENOMEM;
2540
2541        c->dbg->buf = vmalloc(c->leb_size);
2542        if (!c->dbg->buf)
2543                goto out;
2544
2545        failure_mode_init(c);
2546        return 0;
2547
2548out:
2549        kfree(c->dbg);
2550        return -ENOMEM;
2551}
2552
2553/**
2554 * ubifs_debugging_exit - free debugging data.
2555 * @c: UBIFS file-system description object
2556 */
2557void ubifs_debugging_exit(struct ubifs_info *c)
2558{
2559        failure_mode_exit(c);
2560        vfree(c->dbg->buf);
2561        kfree(c->dbg);
2562}
2563
2564/*
2565 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2566 * contain the stuff specific to particular file-system mounts.
2567 */
2568static struct dentry *dfs_rootdir;
2569
2570/**
2571 * dbg_debugfs_init - initialize debugfs file-system.
2572 *
2573 * UBIFS uses debugfs file-system to expose various debugging knobs to
2574 * user-space. This function creates "ubifs" directory in the debugfs
2575 * file-system. Returns zero in case of success and a negative error code in
2576 * case of failure.
2577 */
2578int dbg_debugfs_init(void)
2579{
2580        dfs_rootdir = debugfs_create_dir("ubifs", NULL);
2581        if (IS_ERR(dfs_rootdir)) {
2582                int err = PTR_ERR(dfs_rootdir);
2583                ubifs_err("cannot create \"ubifs\" debugfs directory, "
2584                          "error %d\n", err);
2585                return err;
2586        }
2587
2588        return 0;
2589}
2590
2591/**
2592 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2593 */
2594void dbg_debugfs_exit(void)
2595{
2596        debugfs_remove(dfs_rootdir);
2597}
2598
2599static int open_debugfs_file(struct inode *inode, struct file *file)
2600{
2601        file->private_data = inode->i_private;
2602        return 0;
2603}
2604
2605static ssize_t write_debugfs_file(struct file *file, const char __user *buf,
2606                                  size_t count, loff_t *ppos)
2607{
2608        struct ubifs_info *c = file->private_data;
2609        struct ubifs_debug_info *d = c->dbg;
2610
2611        if (file->f_path.dentry == d->dfs_dump_lprops)
2612                dbg_dump_lprops(c);
2613        else if (file->f_path.dentry == d->dfs_dump_budg) {
2614                spin_lock(&c->space_lock);
2615                dbg_dump_budg(c);
2616                spin_unlock(&c->space_lock);
2617        } else if (file->f_path.dentry == d->dfs_dump_tnc) {
2618                mutex_lock(&c->tnc_mutex);
2619                dbg_dump_tnc(c);
2620                mutex_unlock(&c->tnc_mutex);
2621        } else
2622                return -EINVAL;
2623
2624        *ppos += count;
2625        return count;
2626}
2627
2628static const struct file_operations dfs_fops = {
2629        .open = open_debugfs_file,
2630        .write = write_debugfs_file,
2631        .owner = THIS_MODULE,
2632};
2633
2634/**
2635 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2636 * @c: UBIFS file-system description object
2637 *
2638 * This function creates all debugfs files for this instance of UBIFS. Returns
2639 * zero in case of success and a negative error code in case of failure.
2640 *
2641 * Note, the only reason we have not merged this function with the
2642 * 'ubifs_debugging_init()' function is because it is better to initialize
2643 * debugfs interfaces at the very end of the mount process, and remove them at
2644 * the very beginning of the mount process.
2645 */
2646int dbg_debugfs_init_fs(struct ubifs_info *c)
2647{
2648        int err;
2649        const char *fname;
2650        struct dentry *dent;
2651        struct ubifs_debug_info *d = c->dbg;
2652
2653        sprintf(d->dfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2654        d->dfs_dir = debugfs_create_dir(d->dfs_dir_name, dfs_rootdir);
2655        if (IS_ERR(d->dfs_dir)) {
2656                err = PTR_ERR(d->dfs_dir);
2657                ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2658                          d->dfs_dir_name, err);
2659                goto out;
2660        }
2661
2662        fname = "dump_lprops";
2663        dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
2664        if (IS_ERR(dent))
2665                goto out_remove;
2666        d->dfs_dump_lprops = dent;
2667
2668        fname = "dump_budg";
2669        dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
2670        if (IS_ERR(dent))
2671                goto out_remove;
2672        d->dfs_dump_budg = dent;
2673
2674        fname = "dump_tnc";
2675        dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
2676        if (IS_ERR(dent))
2677                goto out_remove;
2678        d->dfs_dump_tnc = dent;
2679
2680        return 0;
2681
2682out_remove:
2683        err = PTR_ERR(dent);
2684        ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2685                  fname, err);
2686        debugfs_remove_recursive(d->dfs_dir);
2687out:
2688        return err;
2689}
2690
2691/**
2692 * dbg_debugfs_exit_fs - remove all debugfs files.
2693 * @c: UBIFS file-system description object
2694 */
2695void dbg_debugfs_exit_fs(struct ubifs_info *c)
2696{
2697        debugfs_remove_recursive(c->dbg->dfs_dir);
2698}
2699
2700#endif /* CONFIG_UBIFS_FS_DEBUG */
2701