linux/fs/ubifs/file.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Artem Bityutskiy (Битюцкий Артём)
  20 *          Adrian Hunter
  21 */
  22
  23/*
  24 * This file implements VFS file and inode operations for regular files, device
  25 * nodes and symlinks as well as address space operations.
  26 *
  27 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
  28 * the page is dirty and is used for optimization purposes - dirty pages are
  29 * not budgeted so the flag shows that 'ubifs_write_end()' should not release
  30 * the budget for this page. The @PG_checked flag is set if full budgeting is
  31 * required for the page e.g., when it corresponds to a file hole or it is
  32 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
  33 * it is OK to fail in this function, and the budget is released in
  34 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
  35 * information about how the page was budgeted, to make it possible to release
  36 * the budget properly.
  37 *
  38 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
  39 * implement. However, this is not true for 'ubifs_writepage()', which may be
  40 * called with @i_mutex unlocked. For example, when pdflush is doing background
  41 * write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex. At "normal"
  42 * work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g. in the
  43 * "sys_write -> alloc_pages -> direct reclaim path". So, in 'ubifs_writepage()'
  44 * we are only guaranteed that the page is locked.
  45 *
  46 * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
  47 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
  48 * ondemand_readahead -> readpage"). In case of readahead, @I_LOCK flag is not
  49 * set as well. However, UBIFS disables readahead.
  50 */
  51
  52#include "ubifs.h"
  53#include <linux/mount.h>
  54#include <linux/namei.h>
  55
  56static int read_block(struct inode *inode, void *addr, unsigned int block,
  57                      struct ubifs_data_node *dn)
  58{
  59        struct ubifs_info *c = inode->i_sb->s_fs_info;
  60        int err, len, out_len;
  61        union ubifs_key key;
  62        unsigned int dlen;
  63
  64        data_key_init(c, &key, inode->i_ino, block);
  65        err = ubifs_tnc_lookup(c, &key, dn);
  66        if (err) {
  67                if (err == -ENOENT)
  68                        /* Not found, so it must be a hole */
  69                        memset(addr, 0, UBIFS_BLOCK_SIZE);
  70                return err;
  71        }
  72
  73        ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
  74                     ubifs_inode(inode)->creat_sqnum);
  75        len = le32_to_cpu(dn->size);
  76        if (len <= 0 || len > UBIFS_BLOCK_SIZE)
  77                goto dump;
  78
  79        dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
  80        out_len = UBIFS_BLOCK_SIZE;
  81        err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
  82                               le16_to_cpu(dn->compr_type));
  83        if (err || len != out_len)
  84                goto dump;
  85
  86        /*
  87         * Data length can be less than a full block, even for blocks that are
  88         * not the last in the file (e.g., as a result of making a hole and
  89         * appending data). Ensure that the remainder is zeroed out.
  90         */
  91        if (len < UBIFS_BLOCK_SIZE)
  92                memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
  93
  94        return 0;
  95
  96dump:
  97        ubifs_err("bad data node (block %u, inode %lu)",
  98                  block, inode->i_ino);
  99        dbg_dump_node(c, dn);
 100        return -EINVAL;
 101}
 102
 103static int do_readpage(struct page *page)
 104{
 105        void *addr;
 106        int err = 0, i;
 107        unsigned int block, beyond;
 108        struct ubifs_data_node *dn;
 109        struct inode *inode = page->mapping->host;
 110        loff_t i_size = i_size_read(inode);
 111
 112        dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
 113                inode->i_ino, page->index, i_size, page->flags);
 114        ubifs_assert(!PageChecked(page));
 115        ubifs_assert(!PagePrivate(page));
 116
 117        addr = kmap(page);
 118
 119        block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
 120        beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
 121        if (block >= beyond) {
 122                /* Reading beyond inode */
 123                SetPageChecked(page);
 124                memset(addr, 0, PAGE_CACHE_SIZE);
 125                goto out;
 126        }
 127
 128        dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
 129        if (!dn) {
 130                err = -ENOMEM;
 131                goto error;
 132        }
 133
 134        i = 0;
 135        while (1) {
 136                int ret;
 137
 138                if (block >= beyond) {
 139                        /* Reading beyond inode */
 140                        err = -ENOENT;
 141                        memset(addr, 0, UBIFS_BLOCK_SIZE);
 142                } else {
 143                        ret = read_block(inode, addr, block, dn);
 144                        if (ret) {
 145                                err = ret;
 146                                if (err != -ENOENT)
 147                                        break;
 148                        } else if (block + 1 == beyond) {
 149                                int dlen = le32_to_cpu(dn->size);
 150                                int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
 151
 152                                if (ilen && ilen < dlen)
 153                                        memset(addr + ilen, 0, dlen - ilen);
 154                        }
 155                }
 156                if (++i >= UBIFS_BLOCKS_PER_PAGE)
 157                        break;
 158                block += 1;
 159                addr += UBIFS_BLOCK_SIZE;
 160        }
 161        if (err) {
 162                if (err == -ENOENT) {
 163                        /* Not found, so it must be a hole */
 164                        SetPageChecked(page);
 165                        dbg_gen("hole");
 166                        goto out_free;
 167                }
 168                ubifs_err("cannot read page %lu of inode %lu, error %d",
 169                          page->index, inode->i_ino, err);
 170                goto error;
 171        }
 172
 173out_free:
 174        kfree(dn);
 175out:
 176        SetPageUptodate(page);
 177        ClearPageError(page);
 178        flush_dcache_page(page);
 179        kunmap(page);
 180        return 0;
 181
 182error:
 183        kfree(dn);
 184        ClearPageUptodate(page);
 185        SetPageError(page);
 186        flush_dcache_page(page);
 187        kunmap(page);
 188        return err;
 189}
 190
 191/**
 192 * release_new_page_budget - release budget of a new page.
 193 * @c: UBIFS file-system description object
 194 *
 195 * This is a helper function which releases budget corresponding to the budget
 196 * of one new page of data.
 197 */
 198static void release_new_page_budget(struct ubifs_info *c)
 199{
 200        struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
 201
 202        ubifs_release_budget(c, &req);
 203}
 204
 205/**
 206 * release_existing_page_budget - release budget of an existing page.
 207 * @c: UBIFS file-system description object
 208 *
 209 * This is a helper function which releases budget corresponding to the budget
 210 * of changing one one page of data which already exists on the flash media.
 211 */
 212static void release_existing_page_budget(struct ubifs_info *c)
 213{
 214        struct ubifs_budget_req req = { .dd_growth = c->page_budget};
 215
 216        ubifs_release_budget(c, &req);
 217}
 218
 219static int write_begin_slow(struct address_space *mapping,
 220                            loff_t pos, unsigned len, struct page **pagep,
 221                            unsigned flags)
 222{
 223        struct inode *inode = mapping->host;
 224        struct ubifs_info *c = inode->i_sb->s_fs_info;
 225        pgoff_t index = pos >> PAGE_CACHE_SHIFT;
 226        struct ubifs_budget_req req = { .new_page = 1 };
 227        int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
 228        struct page *page;
 229
 230        dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
 231                inode->i_ino, pos, len, inode->i_size);
 232
 233        /*
 234         * At the slow path we have to budget before locking the page, because
 235         * budgeting may force write-back, which would wait on locked pages and
 236         * deadlock if we had the page locked. At this point we do not know
 237         * anything about the page, so assume that this is a new page which is
 238         * written to a hole. This corresponds to largest budget. Later the
 239         * budget will be amended if this is not true.
 240         */
 241        if (appending)
 242                /* We are appending data, budget for inode change */
 243                req.dirtied_ino = 1;
 244
 245        err = ubifs_budget_space(c, &req);
 246        if (unlikely(err))
 247                return err;
 248
 249        page = grab_cache_page_write_begin(mapping, index, flags);
 250        if (unlikely(!page)) {
 251                ubifs_release_budget(c, &req);
 252                return -ENOMEM;
 253        }
 254
 255        if (!PageUptodate(page)) {
 256                if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE)
 257                        SetPageChecked(page);
 258                else {
 259                        err = do_readpage(page);
 260                        if (err) {
 261                                unlock_page(page);
 262                                page_cache_release(page);
 263                                return err;
 264                        }
 265                }
 266
 267                SetPageUptodate(page);
 268                ClearPageError(page);
 269        }
 270
 271        if (PagePrivate(page))
 272                /*
 273                 * The page is dirty, which means it was budgeted twice:
 274                 *   o first time the budget was allocated by the task which
 275                 *     made the page dirty and set the PG_private flag;
 276                 *   o and then we budgeted for it for the second time at the
 277                 *     very beginning of this function.
 278                 *
 279                 * So what we have to do is to release the page budget we
 280                 * allocated.
 281                 */
 282                release_new_page_budget(c);
 283        else if (!PageChecked(page))
 284                /*
 285                 * We are changing a page which already exists on the media.
 286                 * This means that changing the page does not make the amount
 287                 * of indexing information larger, and this part of the budget
 288                 * which we have already acquired may be released.
 289                 */
 290                ubifs_convert_page_budget(c);
 291
 292        if (appending) {
 293                struct ubifs_inode *ui = ubifs_inode(inode);
 294
 295                /*
 296                 * 'ubifs_write_end()' is optimized from the fast-path part of
 297                 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
 298                 * if data is appended.
 299                 */
 300                mutex_lock(&ui->ui_mutex);
 301                if (ui->dirty)
 302                        /*
 303                         * The inode is dirty already, so we may free the
 304                         * budget we allocated.
 305                         */
 306                        ubifs_release_dirty_inode_budget(c, ui);
 307        }
 308
 309        *pagep = page;
 310        return 0;
 311}
 312
 313/**
 314 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
 315 * @c: UBIFS file-system description object
 316 * @page: page to allocate budget for
 317 * @ui: UBIFS inode object the page belongs to
 318 * @appending: non-zero if the page is appended
 319 *
 320 * This is a helper function for 'ubifs_write_begin()' which allocates budget
 321 * for the operation. The budget is allocated differently depending on whether
 322 * this is appending, whether the page is dirty or not, and so on. This
 323 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
 324 * in case of success and %-ENOSPC in case of failure.
 325 */
 326static int allocate_budget(struct ubifs_info *c, struct page *page,
 327                           struct ubifs_inode *ui, int appending)
 328{
 329        struct ubifs_budget_req req = { .fast = 1 };
 330
 331        if (PagePrivate(page)) {
 332                if (!appending)
 333                        /*
 334                         * The page is dirty and we are not appending, which
 335                         * means no budget is needed at all.
 336                         */
 337                        return 0;
 338
 339                mutex_lock(&ui->ui_mutex);
 340                if (ui->dirty)
 341                        /*
 342                         * The page is dirty and we are appending, so the inode
 343                         * has to be marked as dirty. However, it is already
 344                         * dirty, so we do not need any budget. We may return,
 345                         * but @ui->ui_mutex hast to be left locked because we
 346                         * should prevent write-back from flushing the inode
 347                         * and freeing the budget. The lock will be released in
 348                         * 'ubifs_write_end()'.
 349                         */
 350                        return 0;
 351
 352                /*
 353                 * The page is dirty, we are appending, the inode is clean, so
 354                 * we need to budget the inode change.
 355                 */
 356                req.dirtied_ino = 1;
 357        } else {
 358                if (PageChecked(page))
 359                        /*
 360                         * The page corresponds to a hole and does not
 361                         * exist on the media. So changing it makes
 362                         * make the amount of indexing information
 363                         * larger, and we have to budget for a new
 364                         * page.
 365                         */
 366                        req.new_page = 1;
 367                else
 368                        /*
 369                         * Not a hole, the change will not add any new
 370                         * indexing information, budget for page
 371                         * change.
 372                         */
 373                        req.dirtied_page = 1;
 374
 375                if (appending) {
 376                        mutex_lock(&ui->ui_mutex);
 377                        if (!ui->dirty)
 378                                /*
 379                                 * The inode is clean but we will have to mark
 380                                 * it as dirty because we are appending. This
 381                                 * needs a budget.
 382                                 */
 383                                req.dirtied_ino = 1;
 384                }
 385        }
 386
 387        return ubifs_budget_space(c, &req);
 388}
 389
 390/*
 391 * This function is called when a page of data is going to be written. Since
 392 * the page of data will not necessarily go to the flash straight away, UBIFS
 393 * has to reserve space on the media for it, which is done by means of
 394 * budgeting.
 395 *
 396 * This is the hot-path of the file-system and we are trying to optimize it as
 397 * much as possible. For this reasons it is split on 2 parts - slow and fast.
 398 *
 399 * There many budgeting cases:
 400 *     o a new page is appended - we have to budget for a new page and for
 401 *       changing the inode; however, if the inode is already dirty, there is
 402 *       no need to budget for it;
 403 *     o an existing clean page is changed - we have budget for it; if the page
 404 *       does not exist on the media (a hole), we have to budget for a new
 405 *       page; otherwise, we may budget for changing an existing page; the
 406 *       difference between these cases is that changing an existing page does
 407 *       not introduce anything new to the FS indexing information, so it does
 408 *       not grow, and smaller budget is acquired in this case;
 409 *     o an existing dirty page is changed - no need to budget at all, because
 410 *       the page budget has been acquired by earlier, when the page has been
 411 *       marked dirty.
 412 *
 413 * UBIFS budgeting sub-system may force write-back if it thinks there is no
 414 * space to reserve. This imposes some locking restrictions and makes it
 415 * impossible to take into account the above cases, and makes it impossible to
 416 * optimize budgeting.
 417 *
 418 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
 419 * there is a plenty of flash space and the budget will be acquired quickly,
 420 * without forcing write-back. The slow path does not make this assumption.
 421 */
 422static int ubifs_write_begin(struct file *file, struct address_space *mapping,
 423                             loff_t pos, unsigned len, unsigned flags,
 424                             struct page **pagep, void **fsdata)
 425{
 426        struct inode *inode = mapping->host;
 427        struct ubifs_info *c = inode->i_sb->s_fs_info;
 428        struct ubifs_inode *ui = ubifs_inode(inode);
 429        pgoff_t index = pos >> PAGE_CACHE_SHIFT;
 430        int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
 431        int skipped_read = 0;
 432        struct page *page;
 433
 434        ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size);
 435
 436        if (unlikely(c->ro_media))
 437                return -EROFS;
 438
 439        /* Try out the fast-path part first */
 440        page = grab_cache_page_write_begin(mapping, index, flags);
 441        if (unlikely(!page))
 442                return -ENOMEM;
 443
 444        if (!PageUptodate(page)) {
 445                /* The page is not loaded from the flash */
 446                if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE) {
 447                        /*
 448                         * We change whole page so no need to load it. But we
 449                         * have to set the @PG_checked flag to make the further
 450                         * code know that the page is new. This might be not
 451                         * true, but it is better to budget more than to read
 452                         * the page from the media.
 453                         */
 454                        SetPageChecked(page);
 455                        skipped_read = 1;
 456                } else {
 457                        err = do_readpage(page);
 458                        if (err) {
 459                                unlock_page(page);
 460                                page_cache_release(page);
 461                                return err;
 462                        }
 463                }
 464
 465                SetPageUptodate(page);
 466                ClearPageError(page);
 467        }
 468
 469        err = allocate_budget(c, page, ui, appending);
 470        if (unlikely(err)) {
 471                ubifs_assert(err == -ENOSPC);
 472                /*
 473                 * If we skipped reading the page because we were going to
 474                 * write all of it, then it is not up to date.
 475                 */
 476                if (skipped_read) {
 477                        ClearPageChecked(page);
 478                        ClearPageUptodate(page);
 479                }
 480                /*
 481                 * Budgeting failed which means it would have to force
 482                 * write-back but didn't, because we set the @fast flag in the
 483                 * request. Write-back cannot be done now, while we have the
 484                 * page locked, because it would deadlock. Unlock and free
 485                 * everything and fall-back to slow-path.
 486                 */
 487                if (appending) {
 488                        ubifs_assert(mutex_is_locked(&ui->ui_mutex));
 489                        mutex_unlock(&ui->ui_mutex);
 490                }
 491                unlock_page(page);
 492                page_cache_release(page);
 493
 494                return write_begin_slow(mapping, pos, len, pagep, flags);
 495        }
 496
 497        /*
 498         * Whee, we acquired budgeting quickly - without involving
 499         * garbage-collection, committing or forcing write-back. We return
 500         * with @ui->ui_mutex locked if we are appending pages, and unlocked
 501         * otherwise. This is an optimization (slightly hacky though).
 502         */
 503        *pagep = page;
 504        return 0;
 505
 506}
 507
 508/**
 509 * cancel_budget - cancel budget.
 510 * @c: UBIFS file-system description object
 511 * @page: page to cancel budget for
 512 * @ui: UBIFS inode object the page belongs to
 513 * @appending: non-zero if the page is appended
 514 *
 515 * This is a helper function for a page write operation. It unlocks the
 516 * @ui->ui_mutex in case of appending.
 517 */
 518static void cancel_budget(struct ubifs_info *c, struct page *page,
 519                          struct ubifs_inode *ui, int appending)
 520{
 521        if (appending) {
 522                if (!ui->dirty)
 523                        ubifs_release_dirty_inode_budget(c, ui);
 524                mutex_unlock(&ui->ui_mutex);
 525        }
 526        if (!PagePrivate(page)) {
 527                if (PageChecked(page))
 528                        release_new_page_budget(c);
 529                else
 530                        release_existing_page_budget(c);
 531        }
 532}
 533
 534static int ubifs_write_end(struct file *file, struct address_space *mapping,
 535                           loff_t pos, unsigned len, unsigned copied,
 536                           struct page *page, void *fsdata)
 537{
 538        struct inode *inode = mapping->host;
 539        struct ubifs_inode *ui = ubifs_inode(inode);
 540        struct ubifs_info *c = inode->i_sb->s_fs_info;
 541        loff_t end_pos = pos + len;
 542        int appending = !!(end_pos > inode->i_size);
 543
 544        dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
 545                inode->i_ino, pos, page->index, len, copied, inode->i_size);
 546
 547        if (unlikely(copied < len && len == PAGE_CACHE_SIZE)) {
 548                /*
 549                 * VFS copied less data to the page that it intended and
 550                 * declared in its '->write_begin()' call via the @len
 551                 * argument. If the page was not up-to-date, and @len was
 552                 * @PAGE_CACHE_SIZE, the 'ubifs_write_begin()' function did
 553                 * not load it from the media (for optimization reasons). This
 554                 * means that part of the page contains garbage. So read the
 555                 * page now.
 556                 */
 557                dbg_gen("copied %d instead of %d, read page and repeat",
 558                        copied, len);
 559                cancel_budget(c, page, ui, appending);
 560
 561                /*
 562                 * Return 0 to force VFS to repeat the whole operation, or the
 563                 * error code if 'do_readpage()' fails.
 564                 */
 565                copied = do_readpage(page);
 566                goto out;
 567        }
 568
 569        if (!PagePrivate(page)) {
 570                SetPagePrivate(page);
 571                atomic_long_inc(&c->dirty_pg_cnt);
 572                __set_page_dirty_nobuffers(page);
 573        }
 574
 575        if (appending) {
 576                i_size_write(inode, end_pos);
 577                ui->ui_size = end_pos;
 578                /*
 579                 * Note, we do not set @I_DIRTY_PAGES (which means that the
 580                 * inode has dirty pages), this has been done in
 581                 * '__set_page_dirty_nobuffers()'.
 582                 */
 583                __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
 584                ubifs_assert(mutex_is_locked(&ui->ui_mutex));
 585                mutex_unlock(&ui->ui_mutex);
 586        }
 587
 588out:
 589        unlock_page(page);
 590        page_cache_release(page);
 591        return copied;
 592}
 593
 594/**
 595 * populate_page - copy data nodes into a page for bulk-read.
 596 * @c: UBIFS file-system description object
 597 * @page: page
 598 * @bu: bulk-read information
 599 * @n: next zbranch slot
 600 *
 601 * This function returns %0 on success and a negative error code on failure.
 602 */
 603static int populate_page(struct ubifs_info *c, struct page *page,
 604                         struct bu_info *bu, int *n)
 605{
 606        int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
 607        struct inode *inode = page->mapping->host;
 608        loff_t i_size = i_size_read(inode);
 609        unsigned int page_block;
 610        void *addr, *zaddr;
 611        pgoff_t end_index;
 612
 613        dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
 614                inode->i_ino, page->index, i_size, page->flags);
 615
 616        addr = zaddr = kmap(page);
 617
 618        end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
 619        if (!i_size || page->index > end_index) {
 620                hole = 1;
 621                memset(addr, 0, PAGE_CACHE_SIZE);
 622                goto out_hole;
 623        }
 624
 625        page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
 626        while (1) {
 627                int err, len, out_len, dlen;
 628
 629                if (nn >= bu->cnt) {
 630                        hole = 1;
 631                        memset(addr, 0, UBIFS_BLOCK_SIZE);
 632                } else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
 633                        struct ubifs_data_node *dn;
 634
 635                        dn = bu->buf + (bu->zbranch[nn].offs - offs);
 636
 637                        ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
 638                                     ubifs_inode(inode)->creat_sqnum);
 639
 640                        len = le32_to_cpu(dn->size);
 641                        if (len <= 0 || len > UBIFS_BLOCK_SIZE)
 642                                goto out_err;
 643
 644                        dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
 645                        out_len = UBIFS_BLOCK_SIZE;
 646                        err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
 647                                               le16_to_cpu(dn->compr_type));
 648                        if (err || len != out_len)
 649                                goto out_err;
 650
 651                        if (len < UBIFS_BLOCK_SIZE)
 652                                memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
 653
 654                        nn += 1;
 655                        read = (i << UBIFS_BLOCK_SHIFT) + len;
 656                } else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
 657                        nn += 1;
 658                        continue;
 659                } else {
 660                        hole = 1;
 661                        memset(addr, 0, UBIFS_BLOCK_SIZE);
 662                }
 663                if (++i >= UBIFS_BLOCKS_PER_PAGE)
 664                        break;
 665                addr += UBIFS_BLOCK_SIZE;
 666                page_block += 1;
 667        }
 668
 669        if (end_index == page->index) {
 670                int len = i_size & (PAGE_CACHE_SIZE - 1);
 671
 672                if (len && len < read)
 673                        memset(zaddr + len, 0, read - len);
 674        }
 675
 676out_hole:
 677        if (hole) {
 678                SetPageChecked(page);
 679                dbg_gen("hole");
 680        }
 681
 682        SetPageUptodate(page);
 683        ClearPageError(page);
 684        flush_dcache_page(page);
 685        kunmap(page);
 686        *n = nn;
 687        return 0;
 688
 689out_err:
 690        ClearPageUptodate(page);
 691        SetPageError(page);
 692        flush_dcache_page(page);
 693        kunmap(page);
 694        ubifs_err("bad data node (block %u, inode %lu)",
 695                  page_block, inode->i_ino);
 696        return -EINVAL;
 697}
 698
 699/**
 700 * ubifs_do_bulk_read - do bulk-read.
 701 * @c: UBIFS file-system description object
 702 * @bu: bulk-read information
 703 * @page1: first page to read
 704 *
 705 * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
 706 */
 707static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
 708                              struct page *page1)
 709{
 710        pgoff_t offset = page1->index, end_index;
 711        struct address_space *mapping = page1->mapping;
 712        struct inode *inode = mapping->host;
 713        struct ubifs_inode *ui = ubifs_inode(inode);
 714        int err, page_idx, page_cnt, ret = 0, n = 0;
 715        int allocate = bu->buf ? 0 : 1;
 716        loff_t isize;
 717
 718        err = ubifs_tnc_get_bu_keys(c, bu);
 719        if (err)
 720                goto out_warn;
 721
 722        if (bu->eof) {
 723                /* Turn off bulk-read at the end of the file */
 724                ui->read_in_a_row = 1;
 725                ui->bulk_read = 0;
 726        }
 727
 728        page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
 729        if (!page_cnt) {
 730                /*
 731                 * This happens when there are multiple blocks per page and the
 732                 * blocks for the first page we are looking for, are not
 733                 * together. If all the pages were like this, bulk-read would
 734                 * reduce performance, so we turn it off for a while.
 735                 */
 736                goto out_bu_off;
 737        }
 738
 739        if (bu->cnt) {
 740                if (allocate) {
 741                        /*
 742                         * Allocate bulk-read buffer depending on how many data
 743                         * nodes we are going to read.
 744                         */
 745                        bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
 746                                      bu->zbranch[bu->cnt - 1].len -
 747                                      bu->zbranch[0].offs;
 748                        ubifs_assert(bu->buf_len > 0);
 749                        ubifs_assert(bu->buf_len <= c->leb_size);
 750                        bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
 751                        if (!bu->buf)
 752                                goto out_bu_off;
 753                }
 754
 755                err = ubifs_tnc_bulk_read(c, bu);
 756                if (err)
 757                        goto out_warn;
 758        }
 759
 760        err = populate_page(c, page1, bu, &n);
 761        if (err)
 762                goto out_warn;
 763
 764        unlock_page(page1);
 765        ret = 1;
 766
 767        isize = i_size_read(inode);
 768        if (isize == 0)
 769                goto out_free;
 770        end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
 771
 772        for (page_idx = 1; page_idx < page_cnt; page_idx++) {
 773                pgoff_t page_offset = offset + page_idx;
 774                struct page *page;
 775
 776                if (page_offset > end_index)
 777                        break;
 778                page = find_or_create_page(mapping, page_offset,
 779                                           GFP_NOFS | __GFP_COLD);
 780                if (!page)
 781                        break;
 782                if (!PageUptodate(page))
 783                        err = populate_page(c, page, bu, &n);
 784                unlock_page(page);
 785                page_cache_release(page);
 786                if (err)
 787                        break;
 788        }
 789
 790        ui->last_page_read = offset + page_idx - 1;
 791
 792out_free:
 793        if (allocate)
 794                kfree(bu->buf);
 795        return ret;
 796
 797out_warn:
 798        ubifs_warn("ignoring error %d and skipping bulk-read", err);
 799        goto out_free;
 800
 801out_bu_off:
 802        ui->read_in_a_row = ui->bulk_read = 0;
 803        goto out_free;
 804}
 805
 806/**
 807 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
 808 * @page: page from which to start bulk-read.
 809 *
 810 * Some flash media are capable of reading sequentially at faster rates. UBIFS
 811 * bulk-read facility is designed to take advantage of that, by reading in one
 812 * go consecutive data nodes that are also located consecutively in the same
 813 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
 814 */
 815static int ubifs_bulk_read(struct page *page)
 816{
 817        struct inode *inode = page->mapping->host;
 818        struct ubifs_info *c = inode->i_sb->s_fs_info;
 819        struct ubifs_inode *ui = ubifs_inode(inode);
 820        pgoff_t index = page->index, last_page_read = ui->last_page_read;
 821        struct bu_info *bu;
 822        int err = 0, allocated = 0;
 823
 824        ui->last_page_read = index;
 825        if (!c->bulk_read)
 826                return 0;
 827
 828        /*
 829         * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
 830         * so don't bother if we cannot lock the mutex.
 831         */
 832        if (!mutex_trylock(&ui->ui_mutex))
 833                return 0;
 834
 835        if (index != last_page_read + 1) {
 836                /* Turn off bulk-read if we stop reading sequentially */
 837                ui->read_in_a_row = 1;
 838                if (ui->bulk_read)
 839                        ui->bulk_read = 0;
 840                goto out_unlock;
 841        }
 842
 843        if (!ui->bulk_read) {
 844                ui->read_in_a_row += 1;
 845                if (ui->read_in_a_row < 3)
 846                        goto out_unlock;
 847                /* Three reads in a row, so switch on bulk-read */
 848                ui->bulk_read = 1;
 849        }
 850
 851        /*
 852         * If possible, try to use pre-allocated bulk-read information, which
 853         * is protected by @c->bu_mutex.
 854         */
 855        if (mutex_trylock(&c->bu_mutex))
 856                bu = &c->bu;
 857        else {
 858                bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
 859                if (!bu)
 860                        goto out_unlock;
 861
 862                bu->buf = NULL;
 863                allocated = 1;
 864        }
 865
 866        bu->buf_len = c->max_bu_buf_len;
 867        data_key_init(c, &bu->key, inode->i_ino,
 868                      page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
 869        err = ubifs_do_bulk_read(c, bu, page);
 870
 871        if (!allocated)
 872                mutex_unlock(&c->bu_mutex);
 873        else
 874                kfree(bu);
 875
 876out_unlock:
 877        mutex_unlock(&ui->ui_mutex);
 878        return err;
 879}
 880
 881static int ubifs_readpage(struct file *file, struct page *page)
 882{
 883        if (ubifs_bulk_read(page))
 884                return 0;
 885        do_readpage(page);
 886        unlock_page(page);
 887        return 0;
 888}
 889
 890static int do_writepage(struct page *page, int len)
 891{
 892        int err = 0, i, blen;
 893        unsigned int block;
 894        void *addr;
 895        union ubifs_key key;
 896        struct inode *inode = page->mapping->host;
 897        struct ubifs_info *c = inode->i_sb->s_fs_info;
 898
 899#ifdef UBIFS_DEBUG
 900        spin_lock(&ui->ui_lock);
 901        ubifs_assert(page->index <= ui->synced_i_size << PAGE_CACHE_SIZE);
 902        spin_unlock(&ui->ui_lock);
 903#endif
 904
 905        /* Update radix tree tags */
 906        set_page_writeback(page);
 907
 908        addr = kmap(page);
 909        block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
 910        i = 0;
 911        while (len) {
 912                blen = min_t(int, len, UBIFS_BLOCK_SIZE);
 913                data_key_init(c, &key, inode->i_ino, block);
 914                err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
 915                if (err)
 916                        break;
 917                if (++i >= UBIFS_BLOCKS_PER_PAGE)
 918                        break;
 919                block += 1;
 920                addr += blen;
 921                len -= blen;
 922        }
 923        if (err) {
 924                SetPageError(page);
 925                ubifs_err("cannot write page %lu of inode %lu, error %d",
 926                          page->index, inode->i_ino, err);
 927                ubifs_ro_mode(c, err);
 928        }
 929
 930        ubifs_assert(PagePrivate(page));
 931        if (PageChecked(page))
 932                release_new_page_budget(c);
 933        else
 934                release_existing_page_budget(c);
 935
 936        atomic_long_dec(&c->dirty_pg_cnt);
 937        ClearPagePrivate(page);
 938        ClearPageChecked(page);
 939
 940        kunmap(page);
 941        unlock_page(page);
 942        end_page_writeback(page);
 943        return err;
 944}
 945
 946/*
 947 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
 948 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
 949 * situation when a we have an inode with size 0, then a megabyte of data is
 950 * appended to the inode, then write-back starts and flushes some amount of the
 951 * dirty pages, the journal becomes full, commit happens and finishes, and then
 952 * an unclean reboot happens. When the file system is mounted next time, the
 953 * inode size would still be 0, but there would be many pages which are beyond
 954 * the inode size, they would be indexed and consume flash space. Because the
 955 * journal has been committed, the replay would not be able to detect this
 956 * situation and correct the inode size. This means UBIFS would have to scan
 957 * whole index and correct all inode sizes, which is long an unacceptable.
 958 *
 959 * To prevent situations like this, UBIFS writes pages back only if they are
 960 * within the last synchronized inode size, i.e. the size which has been
 961 * written to the flash media last time. Otherwise, UBIFS forces inode
 962 * write-back, thus making sure the on-flash inode contains current inode size,
 963 * and then keeps writing pages back.
 964 *
 965 * Some locking issues explanation. 'ubifs_writepage()' first is called with
 966 * the page locked, and it locks @ui_mutex. However, write-back does take inode
 967 * @i_mutex, which means other VFS operations may be run on this inode at the
 968 * same time. And the problematic one is truncation to smaller size, from where
 969 * we have to call 'vmtruncate()', which first changes @inode->i_size, then
 970 * drops the truncated pages. And while dropping the pages, it takes the page
 971 * lock. This means that 'do_truncation()' cannot call 'vmtruncate()' with
 972 * @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'. This
 973 * means that @inode->i_size is changed while @ui_mutex is unlocked.
 974 *
 975 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
 976 * inode size. How do we do this if @inode->i_size may became smaller while we
 977 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
 978 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
 979 * internally and updates it under @ui_mutex.
 980 *
 981 * Q: why we do not worry that if we race with truncation, we may end up with a
 982 * situation when the inode is truncated while we are in the middle of
 983 * 'do_writepage()', so we do write beyond inode size?
 984 * A: If we are in the middle of 'do_writepage()', truncation would be locked
 985 * on the page lock and it would not write the truncated inode node to the
 986 * journal before we have finished.
 987 */
 988static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
 989{
 990        struct inode *inode = page->mapping->host;
 991        struct ubifs_inode *ui = ubifs_inode(inode);
 992        loff_t i_size =  i_size_read(inode), synced_i_size;
 993        pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
 994        int err, len = i_size & (PAGE_CACHE_SIZE - 1);
 995        void *kaddr;
 996
 997        dbg_gen("ino %lu, pg %lu, pg flags %#lx",
 998                inode->i_ino, page->index, page->flags);
 999        ubifs_assert(PagePrivate(page));
1000
1001        /* Is the page fully outside @i_size? (truncate in progress) */
1002        if (page->index > end_index || (page->index == end_index && !len)) {
1003                err = 0;
1004                goto out_unlock;
1005        }
1006
1007        spin_lock(&ui->ui_lock);
1008        synced_i_size = ui->synced_i_size;
1009        spin_unlock(&ui->ui_lock);
1010
1011        /* Is the page fully inside @i_size? */
1012        if (page->index < end_index) {
1013                if (page->index >= synced_i_size >> PAGE_CACHE_SHIFT) {
1014                        err = inode->i_sb->s_op->write_inode(inode, 1);
1015                        if (err)
1016                                goto out_unlock;
1017                        /*
1018                         * The inode has been written, but the write-buffer has
1019                         * not been synchronized, so in case of an unclean
1020                         * reboot we may end up with some pages beyond inode
1021                         * size, but they would be in the journal (because
1022                         * commit flushes write buffers) and recovery would deal
1023                         * with this.
1024                         */
1025                }
1026                return do_writepage(page, PAGE_CACHE_SIZE);
1027        }
1028
1029        /*
1030         * The page straddles @i_size. It must be zeroed out on each and every
1031         * writepage invocation because it may be mmapped. "A file is mapped
1032         * in multiples of the page size. For a file that is not a multiple of
1033         * the page size, the remaining memory is zeroed when mapped, and
1034         * writes to that region are not written out to the file."
1035         */
1036        kaddr = kmap_atomic(page, KM_USER0);
1037        memset(kaddr + len, 0, PAGE_CACHE_SIZE - len);
1038        flush_dcache_page(page);
1039        kunmap_atomic(kaddr, KM_USER0);
1040
1041        if (i_size > synced_i_size) {
1042                err = inode->i_sb->s_op->write_inode(inode, 1);
1043                if (err)
1044                        goto out_unlock;
1045        }
1046
1047        return do_writepage(page, len);
1048
1049out_unlock:
1050        unlock_page(page);
1051        return err;
1052}
1053
1054/**
1055 * do_attr_changes - change inode attributes.
1056 * @inode: inode to change attributes for
1057 * @attr: describes attributes to change
1058 */
1059static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1060{
1061        if (attr->ia_valid & ATTR_UID)
1062                inode->i_uid = attr->ia_uid;
1063        if (attr->ia_valid & ATTR_GID)
1064                inode->i_gid = attr->ia_gid;
1065        if (attr->ia_valid & ATTR_ATIME)
1066                inode->i_atime = timespec_trunc(attr->ia_atime,
1067                                                inode->i_sb->s_time_gran);
1068        if (attr->ia_valid & ATTR_MTIME)
1069                inode->i_mtime = timespec_trunc(attr->ia_mtime,
1070                                                inode->i_sb->s_time_gran);
1071        if (attr->ia_valid & ATTR_CTIME)
1072                inode->i_ctime = timespec_trunc(attr->ia_ctime,
1073                                                inode->i_sb->s_time_gran);
1074        if (attr->ia_valid & ATTR_MODE) {
1075                umode_t mode = attr->ia_mode;
1076
1077                if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1078                        mode &= ~S_ISGID;
1079                inode->i_mode = mode;
1080        }
1081}
1082
1083/**
1084 * do_truncation - truncate an inode.
1085 * @c: UBIFS file-system description object
1086 * @inode: inode to truncate
1087 * @attr: inode attribute changes description
1088 *
1089 * This function implements VFS '->setattr()' call when the inode is truncated
1090 * to a smaller size. Returns zero in case of success and a negative error code
1091 * in case of failure.
1092 */
1093static int do_truncation(struct ubifs_info *c, struct inode *inode,
1094                         const struct iattr *attr)
1095{
1096        int err;
1097        struct ubifs_budget_req req;
1098        loff_t old_size = inode->i_size, new_size = attr->ia_size;
1099        int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1100        struct ubifs_inode *ui = ubifs_inode(inode);
1101
1102        dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1103        memset(&req, 0, sizeof(struct ubifs_budget_req));
1104
1105        /*
1106         * If this is truncation to a smaller size, and we do not truncate on a
1107         * block boundary, budget for changing one data block, because the last
1108         * block will be re-written.
1109         */
1110        if (new_size & (UBIFS_BLOCK_SIZE - 1))
1111                req.dirtied_page = 1;
1112
1113        req.dirtied_ino = 1;
1114        /* A funny way to budget for truncation node */
1115        req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1116        err = ubifs_budget_space(c, &req);
1117        if (err) {
1118                /*
1119                 * Treat truncations to zero as deletion and always allow them,
1120                 * just like we do for '->unlink()'.
1121                 */
1122                if (new_size || err != -ENOSPC)
1123                        return err;
1124                budgeted = 0;
1125        }
1126
1127        err = vmtruncate(inode, new_size);
1128        if (err)
1129                goto out_budg;
1130
1131        if (offset) {
1132                pgoff_t index = new_size >> PAGE_CACHE_SHIFT;
1133                struct page *page;
1134
1135                page = find_lock_page(inode->i_mapping, index);
1136                if (page) {
1137                        if (PageDirty(page)) {
1138                                /*
1139                                 * 'ubifs_jnl_truncate()' will try to truncate
1140                                 * the last data node, but it contains
1141                                 * out-of-date data because the page is dirty.
1142                                 * Write the page now, so that
1143                                 * 'ubifs_jnl_truncate()' will see an already
1144                                 * truncated (and up to date) data node.
1145                                 */
1146                                ubifs_assert(PagePrivate(page));
1147
1148                                clear_page_dirty_for_io(page);
1149                                if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1150                                        offset = new_size &
1151                                                 (PAGE_CACHE_SIZE - 1);
1152                                err = do_writepage(page, offset);
1153                                page_cache_release(page);
1154                                if (err)
1155                                        goto out_budg;
1156                                /*
1157                                 * We could now tell 'ubifs_jnl_truncate()' not
1158                                 * to read the last block.
1159                                 */
1160                        } else {
1161                                /*
1162                                 * We could 'kmap()' the page and pass the data
1163                                 * to 'ubifs_jnl_truncate()' to save it from
1164                                 * having to read it.
1165                                 */
1166                                unlock_page(page);
1167                                page_cache_release(page);
1168                        }
1169                }
1170        }
1171
1172        mutex_lock(&ui->ui_mutex);
1173        ui->ui_size = inode->i_size;
1174        /* Truncation changes inode [mc]time */
1175        inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1176        /* Other attributes may be changed at the same time as well */
1177        do_attr_changes(inode, attr);
1178        err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1179        mutex_unlock(&ui->ui_mutex);
1180
1181out_budg:
1182        if (budgeted)
1183                ubifs_release_budget(c, &req);
1184        else {
1185                c->nospace = c->nospace_rp = 0;
1186                smp_wmb();
1187        }
1188        return err;
1189}
1190
1191/**
1192 * do_setattr - change inode attributes.
1193 * @c: UBIFS file-system description object
1194 * @inode: inode to change attributes for
1195 * @attr: inode attribute changes description
1196 *
1197 * This function implements VFS '->setattr()' call for all cases except
1198 * truncations to smaller size. Returns zero in case of success and a negative
1199 * error code in case of failure.
1200 */
1201static int do_setattr(struct ubifs_info *c, struct inode *inode,
1202                      const struct iattr *attr)
1203{
1204        int err, release;
1205        loff_t new_size = attr->ia_size;
1206        struct ubifs_inode *ui = ubifs_inode(inode);
1207        struct ubifs_budget_req req = { .dirtied_ino = 1,
1208                                .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1209
1210        err = ubifs_budget_space(c, &req);
1211        if (err)
1212                return err;
1213
1214        if (attr->ia_valid & ATTR_SIZE) {
1215                dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1216                err = vmtruncate(inode, new_size);
1217                if (err)
1218                        goto out;
1219        }
1220
1221        mutex_lock(&ui->ui_mutex);
1222        if (attr->ia_valid & ATTR_SIZE) {
1223                /* Truncation changes inode [mc]time */
1224                inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1225                /* 'vmtruncate()' changed @i_size, update @ui_size */
1226                ui->ui_size = inode->i_size;
1227        }
1228
1229        do_attr_changes(inode, attr);
1230
1231        release = ui->dirty;
1232        if (attr->ia_valid & ATTR_SIZE)
1233                /*
1234                 * Inode length changed, so we have to make sure
1235                 * @I_DIRTY_DATASYNC is set.
1236                 */
1237                 __mark_inode_dirty(inode, I_DIRTY_SYNC | I_DIRTY_DATASYNC);
1238        else
1239                mark_inode_dirty_sync(inode);
1240        mutex_unlock(&ui->ui_mutex);
1241
1242        if (release)
1243                ubifs_release_budget(c, &req);
1244        if (IS_SYNC(inode))
1245                err = inode->i_sb->s_op->write_inode(inode, 1);
1246        return err;
1247
1248out:
1249        ubifs_release_budget(c, &req);
1250        return err;
1251}
1252
1253int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1254{
1255        int err;
1256        struct inode *inode = dentry->d_inode;
1257        struct ubifs_info *c = inode->i_sb->s_fs_info;
1258
1259        dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1260                inode->i_ino, inode->i_mode, attr->ia_valid);
1261        err = inode_change_ok(inode, attr);
1262        if (err)
1263                return err;
1264
1265        err = dbg_check_synced_i_size(inode);
1266        if (err)
1267                return err;
1268
1269        if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1270                /* Truncation to a smaller size */
1271                err = do_truncation(c, inode, attr);
1272        else
1273                err = do_setattr(c, inode, attr);
1274
1275        return err;
1276}
1277
1278static void ubifs_invalidatepage(struct page *page, unsigned long offset)
1279{
1280        struct inode *inode = page->mapping->host;
1281        struct ubifs_info *c = inode->i_sb->s_fs_info;
1282
1283        ubifs_assert(PagePrivate(page));
1284        if (offset)
1285                /* Partial page remains dirty */
1286                return;
1287
1288        if (PageChecked(page))
1289                release_new_page_budget(c);
1290        else
1291                release_existing_page_budget(c);
1292
1293        atomic_long_dec(&c->dirty_pg_cnt);
1294        ClearPagePrivate(page);
1295        ClearPageChecked(page);
1296}
1297
1298static void *ubifs_follow_link(struct dentry *dentry, struct nameidata *nd)
1299{
1300        struct ubifs_inode *ui = ubifs_inode(dentry->d_inode);
1301
1302        nd_set_link(nd, ui->data);
1303        return NULL;
1304}
1305
1306int ubifs_fsync(struct file *file, struct dentry *dentry, int datasync)
1307{
1308        struct inode *inode = dentry->d_inode;
1309        struct ubifs_info *c = inode->i_sb->s_fs_info;
1310        int err;
1311
1312        dbg_gen("syncing inode %lu", inode->i_ino);
1313
1314        /*
1315         * VFS has already synchronized dirty pages for this inode. Synchronize
1316         * the inode unless this is a 'datasync()' call.
1317         */
1318        if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1319                err = inode->i_sb->s_op->write_inode(inode, 1);
1320                if (err)
1321                        return err;
1322        }
1323
1324        /*
1325         * Nodes related to this inode may still sit in a write-buffer. Flush
1326         * them.
1327         */
1328        err = ubifs_sync_wbufs_by_inode(c, inode);
1329        if (err)
1330                return err;
1331
1332        return 0;
1333}
1334
1335/**
1336 * mctime_update_needed - check if mtime or ctime update is needed.
1337 * @inode: the inode to do the check for
1338 * @now: current time
1339 *
1340 * This helper function checks if the inode mtime/ctime should be updated or
1341 * not. If current values of the time-stamps are within the UBIFS inode time
1342 * granularity, they are not updated. This is an optimization.
1343 */
1344static inline int mctime_update_needed(const struct inode *inode,
1345                                       const struct timespec *now)
1346{
1347        if (!timespec_equal(&inode->i_mtime, now) ||
1348            !timespec_equal(&inode->i_ctime, now))
1349                return 1;
1350        return 0;
1351}
1352
1353/**
1354 * update_ctime - update mtime and ctime of an inode.
1355 * @c: UBIFS file-system description object
1356 * @inode: inode to update
1357 *
1358 * This function updates mtime and ctime of the inode if it is not equivalent to
1359 * current time. Returns zero in case of success and a negative error code in
1360 * case of failure.
1361 */
1362static int update_mctime(struct ubifs_info *c, struct inode *inode)
1363{
1364        struct timespec now = ubifs_current_time(inode);
1365        struct ubifs_inode *ui = ubifs_inode(inode);
1366
1367        if (mctime_update_needed(inode, &now)) {
1368                int err, release;
1369                struct ubifs_budget_req req = { .dirtied_ino = 1,
1370                                .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1371
1372                err = ubifs_budget_space(c, &req);
1373                if (err)
1374                        return err;
1375
1376                mutex_lock(&ui->ui_mutex);
1377                inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1378                release = ui->dirty;
1379                mark_inode_dirty_sync(inode);
1380                mutex_unlock(&ui->ui_mutex);
1381                if (release)
1382                        ubifs_release_budget(c, &req);
1383        }
1384
1385        return 0;
1386}
1387
1388static ssize_t ubifs_aio_write(struct kiocb *iocb, const struct iovec *iov,
1389                               unsigned long nr_segs, loff_t pos)
1390{
1391        int err;
1392        ssize_t ret;
1393        struct inode *inode = iocb->ki_filp->f_mapping->host;
1394        struct ubifs_info *c = inode->i_sb->s_fs_info;
1395
1396        err = update_mctime(c, inode);
1397        if (err)
1398                return err;
1399
1400        ret = generic_file_aio_write(iocb, iov, nr_segs, pos);
1401        if (ret < 0)
1402                return ret;
1403
1404        if (ret > 0 && (IS_SYNC(inode) || iocb->ki_filp->f_flags & O_SYNC)) {
1405                err = ubifs_sync_wbufs_by_inode(c, inode);
1406                if (err)
1407                        return err;
1408        }
1409
1410        return ret;
1411}
1412
1413static int ubifs_set_page_dirty(struct page *page)
1414{
1415        int ret;
1416
1417        ret = __set_page_dirty_nobuffers(page);
1418        /*
1419         * An attempt to dirty a page without budgeting for it - should not
1420         * happen.
1421         */
1422        ubifs_assert(ret == 0);
1423        return ret;
1424}
1425
1426static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1427{
1428        /*
1429         * An attempt to release a dirty page without budgeting for it - should
1430         * not happen.
1431         */
1432        if (PageWriteback(page))
1433                return 0;
1434        ubifs_assert(PagePrivate(page));
1435        ubifs_assert(0);
1436        ClearPagePrivate(page);
1437        ClearPageChecked(page);
1438        return 1;
1439}
1440
1441/*
1442 * mmap()d file has taken write protection fault and is being made
1443 * writable. UBIFS must ensure page is budgeted for.
1444 */
1445static int ubifs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1446{
1447        struct page *page = vmf->page;
1448        struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1449        struct ubifs_info *c = inode->i_sb->s_fs_info;
1450        struct timespec now = ubifs_current_time(inode);
1451        struct ubifs_budget_req req = { .new_page = 1 };
1452        int err, update_time;
1453
1454        dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index,
1455                i_size_read(inode));
1456        ubifs_assert(!(inode->i_sb->s_flags & MS_RDONLY));
1457
1458        if (unlikely(c->ro_media))
1459                return VM_FAULT_SIGBUS; /* -EROFS */
1460
1461        /*
1462         * We have not locked @page so far so we may budget for changing the
1463         * page. Note, we cannot do this after we locked the page, because
1464         * budgeting may cause write-back which would cause deadlock.
1465         *
1466         * At the moment we do not know whether the page is dirty or not, so we
1467         * assume that it is not and budget for a new page. We could look at
1468         * the @PG_private flag and figure this out, but we may race with write
1469         * back and the page state may change by the time we lock it, so this
1470         * would need additional care. We do not bother with this at the
1471         * moment, although it might be good idea to do. Instead, we allocate
1472         * budget for a new page and amend it later on if the page was in fact
1473         * dirty.
1474         *
1475         * The budgeting-related logic of this function is similar to what we
1476         * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1477         * for more comments.
1478         */
1479        update_time = mctime_update_needed(inode, &now);
1480        if (update_time)
1481                /*
1482                 * We have to change inode time stamp which requires extra
1483                 * budgeting.
1484                 */
1485                req.dirtied_ino = 1;
1486
1487        err = ubifs_budget_space(c, &req);
1488        if (unlikely(err)) {
1489                if (err == -ENOSPC)
1490                        ubifs_warn("out of space for mmapped file "
1491                                   "(inode number %lu)", inode->i_ino);
1492                return VM_FAULT_SIGBUS;
1493        }
1494
1495        lock_page(page);
1496        if (unlikely(page->mapping != inode->i_mapping ||
1497                     page_offset(page) > i_size_read(inode))) {
1498                /* Page got truncated out from underneath us */
1499                err = -EINVAL;
1500                goto out_unlock;
1501        }
1502
1503        if (PagePrivate(page))
1504                release_new_page_budget(c);
1505        else {
1506                if (!PageChecked(page))
1507                        ubifs_convert_page_budget(c);
1508                SetPagePrivate(page);
1509                atomic_long_inc(&c->dirty_pg_cnt);
1510                __set_page_dirty_nobuffers(page);
1511        }
1512
1513        if (update_time) {
1514                int release;
1515                struct ubifs_inode *ui = ubifs_inode(inode);
1516
1517                mutex_lock(&ui->ui_mutex);
1518                inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1519                release = ui->dirty;
1520                mark_inode_dirty_sync(inode);
1521                mutex_unlock(&ui->ui_mutex);
1522                if (release)
1523                        ubifs_release_dirty_inode_budget(c, ui);
1524        }
1525
1526        unlock_page(page);
1527        return 0;
1528
1529out_unlock:
1530        unlock_page(page);
1531        ubifs_release_budget(c, &req);
1532        if (err)
1533                err = VM_FAULT_SIGBUS;
1534        return err;
1535}
1536
1537static const struct vm_operations_struct ubifs_file_vm_ops = {
1538        .fault        = filemap_fault,
1539        .page_mkwrite = ubifs_vm_page_mkwrite,
1540};
1541
1542static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1543{
1544        int err;
1545
1546        /* 'generic_file_mmap()' takes care of NOMMU case */
1547        err = generic_file_mmap(file, vma);
1548        if (err)
1549                return err;
1550        vma->vm_ops = &ubifs_file_vm_ops;
1551        return 0;
1552}
1553
1554const struct address_space_operations ubifs_file_address_operations = {
1555        .readpage       = ubifs_readpage,
1556        .writepage      = ubifs_writepage,
1557        .write_begin    = ubifs_write_begin,
1558        .write_end      = ubifs_write_end,
1559        .invalidatepage = ubifs_invalidatepage,
1560        .set_page_dirty = ubifs_set_page_dirty,
1561        .releasepage    = ubifs_releasepage,
1562};
1563
1564const struct inode_operations ubifs_file_inode_operations = {
1565        .setattr     = ubifs_setattr,
1566        .getattr     = ubifs_getattr,
1567#ifdef CONFIG_UBIFS_FS_XATTR
1568        .setxattr    = ubifs_setxattr,
1569        .getxattr    = ubifs_getxattr,
1570        .listxattr   = ubifs_listxattr,
1571        .removexattr = ubifs_removexattr,
1572#endif
1573};
1574
1575const struct inode_operations ubifs_symlink_inode_operations = {
1576        .readlink    = generic_readlink,
1577        .follow_link = ubifs_follow_link,
1578        .setattr     = ubifs_setattr,
1579        .getattr     = ubifs_getattr,
1580};
1581
1582const struct file_operations ubifs_file_operations = {
1583        .llseek         = generic_file_llseek,
1584        .read           = do_sync_read,
1585        .write          = do_sync_write,
1586        .aio_read       = generic_file_aio_read,
1587        .aio_write      = ubifs_aio_write,
1588        .mmap           = ubifs_file_mmap,
1589        .fsync          = ubifs_fsync,
1590        .unlocked_ioctl = ubifs_ioctl,
1591        .splice_read    = generic_file_splice_read,
1592        .splice_write   = generic_file_splice_write,
1593#ifdef CONFIG_COMPAT
1594        .compat_ioctl   = ubifs_compat_ioctl,
1595#endif
1596};
1597