linux/fs/ubifs/lpt_commit.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Adrian Hunter
  20 *          Artem Bityutskiy (Битюцкий Артём)
  21 */
  22
  23/*
  24 * This file implements commit-related functionality of the LEB properties
  25 * subsystem.
  26 */
  27
  28#include <linux/crc16.h>
  29#include "ubifs.h"
  30
  31/**
  32 * first_dirty_cnode - find first dirty cnode.
  33 * @c: UBIFS file-system description object
  34 * @nnode: nnode at which to start
  35 *
  36 * This function returns the first dirty cnode or %NULL if there is not one.
  37 */
  38static struct ubifs_cnode *first_dirty_cnode(struct ubifs_nnode *nnode)
  39{
  40        ubifs_assert(nnode);
  41        while (1) {
  42                int i, cont = 0;
  43
  44                for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
  45                        struct ubifs_cnode *cnode;
  46
  47                        cnode = nnode->nbranch[i].cnode;
  48                        if (cnode &&
  49                            test_bit(DIRTY_CNODE, &cnode->flags)) {
  50                                if (cnode->level == 0)
  51                                        return cnode;
  52                                nnode = (struct ubifs_nnode *)cnode;
  53                                cont = 1;
  54                                break;
  55                        }
  56                }
  57                if (!cont)
  58                        return (struct ubifs_cnode *)nnode;
  59        }
  60}
  61
  62/**
  63 * next_dirty_cnode - find next dirty cnode.
  64 * @cnode: cnode from which to begin searching
  65 *
  66 * This function returns the next dirty cnode or %NULL if there is not one.
  67 */
  68static struct ubifs_cnode *next_dirty_cnode(struct ubifs_cnode *cnode)
  69{
  70        struct ubifs_nnode *nnode;
  71        int i;
  72
  73        ubifs_assert(cnode);
  74        nnode = cnode->parent;
  75        if (!nnode)
  76                return NULL;
  77        for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) {
  78                cnode = nnode->nbranch[i].cnode;
  79                if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) {
  80                        if (cnode->level == 0)
  81                                return cnode; /* cnode is a pnode */
  82                        /* cnode is a nnode */
  83                        return first_dirty_cnode((struct ubifs_nnode *)cnode);
  84                }
  85        }
  86        return (struct ubifs_cnode *)nnode;
  87}
  88
  89/**
  90 * get_cnodes_to_commit - create list of dirty cnodes to commit.
  91 * @c: UBIFS file-system description object
  92 *
  93 * This function returns the number of cnodes to commit.
  94 */
  95static int get_cnodes_to_commit(struct ubifs_info *c)
  96{
  97        struct ubifs_cnode *cnode, *cnext;
  98        int cnt = 0;
  99
 100        if (!c->nroot)
 101                return 0;
 102
 103        if (!test_bit(DIRTY_CNODE, &c->nroot->flags))
 104                return 0;
 105
 106        c->lpt_cnext = first_dirty_cnode(c->nroot);
 107        cnode = c->lpt_cnext;
 108        if (!cnode)
 109                return 0;
 110        cnt += 1;
 111        while (1) {
 112                ubifs_assert(!test_bit(COW_ZNODE, &cnode->flags));
 113                __set_bit(COW_ZNODE, &cnode->flags);
 114                cnext = next_dirty_cnode(cnode);
 115                if (!cnext) {
 116                        cnode->cnext = c->lpt_cnext;
 117                        break;
 118                }
 119                cnode->cnext = cnext;
 120                cnode = cnext;
 121                cnt += 1;
 122        }
 123        dbg_cmt("committing %d cnodes", cnt);
 124        dbg_lp("committing %d cnodes", cnt);
 125        ubifs_assert(cnt == c->dirty_nn_cnt + c->dirty_pn_cnt);
 126        return cnt;
 127}
 128
 129/**
 130 * upd_ltab - update LPT LEB properties.
 131 * @c: UBIFS file-system description object
 132 * @lnum: LEB number
 133 * @free: amount of free space
 134 * @dirty: amount of dirty space to add
 135 */
 136static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
 137{
 138        dbg_lp("LEB %d free %d dirty %d to %d +%d",
 139               lnum, c->ltab[lnum - c->lpt_first].free,
 140               c->ltab[lnum - c->lpt_first].dirty, free, dirty);
 141        ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
 142        c->ltab[lnum - c->lpt_first].free = free;
 143        c->ltab[lnum - c->lpt_first].dirty += dirty;
 144}
 145
 146/**
 147 * alloc_lpt_leb - allocate an LPT LEB that is empty.
 148 * @c: UBIFS file-system description object
 149 * @lnum: LEB number is passed and returned here
 150 *
 151 * This function finds the next empty LEB in the ltab starting from @lnum. If a
 152 * an empty LEB is found it is returned in @lnum and the function returns %0.
 153 * Otherwise the function returns -ENOSPC.  Note however, that LPT is designed
 154 * never to run out of space.
 155 */
 156static int alloc_lpt_leb(struct ubifs_info *c, int *lnum)
 157{
 158        int i, n;
 159
 160        n = *lnum - c->lpt_first + 1;
 161        for (i = n; i < c->lpt_lebs; i++) {
 162                if (c->ltab[i].tgc || c->ltab[i].cmt)
 163                        continue;
 164                if (c->ltab[i].free == c->leb_size) {
 165                        c->ltab[i].cmt = 1;
 166                        *lnum = i + c->lpt_first;
 167                        return 0;
 168                }
 169        }
 170
 171        for (i = 0; i < n; i++) {
 172                if (c->ltab[i].tgc || c->ltab[i].cmt)
 173                        continue;
 174                if (c->ltab[i].free == c->leb_size) {
 175                        c->ltab[i].cmt = 1;
 176                        *lnum = i + c->lpt_first;
 177                        return 0;
 178                }
 179        }
 180        return -ENOSPC;
 181}
 182
 183/**
 184 * layout_cnodes - layout cnodes for commit.
 185 * @c: UBIFS file-system description object
 186 *
 187 * This function returns %0 on success and a negative error code on failure.
 188 */
 189static int layout_cnodes(struct ubifs_info *c)
 190{
 191        int lnum, offs, len, alen, done_lsave, done_ltab, err;
 192        struct ubifs_cnode *cnode;
 193
 194        err = dbg_chk_lpt_sz(c, 0, 0);
 195        if (err)
 196                return err;
 197        cnode = c->lpt_cnext;
 198        if (!cnode)
 199                return 0;
 200        lnum = c->nhead_lnum;
 201        offs = c->nhead_offs;
 202        /* Try to place lsave and ltab nicely */
 203        done_lsave = !c->big_lpt;
 204        done_ltab = 0;
 205        if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
 206                done_lsave = 1;
 207                c->lsave_lnum = lnum;
 208                c->lsave_offs = offs;
 209                offs += c->lsave_sz;
 210                dbg_chk_lpt_sz(c, 1, c->lsave_sz);
 211        }
 212
 213        if (offs + c->ltab_sz <= c->leb_size) {
 214                done_ltab = 1;
 215                c->ltab_lnum = lnum;
 216                c->ltab_offs = offs;
 217                offs += c->ltab_sz;
 218                dbg_chk_lpt_sz(c, 1, c->ltab_sz);
 219        }
 220
 221        do {
 222                if (cnode->level) {
 223                        len = c->nnode_sz;
 224                        c->dirty_nn_cnt -= 1;
 225                } else {
 226                        len = c->pnode_sz;
 227                        c->dirty_pn_cnt -= 1;
 228                }
 229                while (offs + len > c->leb_size) {
 230                        alen = ALIGN(offs, c->min_io_size);
 231                        upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
 232                        dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
 233                        err = alloc_lpt_leb(c, &lnum);
 234                        if (err)
 235                                goto no_space;
 236                        offs = 0;
 237                        ubifs_assert(lnum >= c->lpt_first &&
 238                                     lnum <= c->lpt_last);
 239                        /* Try to place lsave and ltab nicely */
 240                        if (!done_lsave) {
 241                                done_lsave = 1;
 242                                c->lsave_lnum = lnum;
 243                                c->lsave_offs = offs;
 244                                offs += c->lsave_sz;
 245                                dbg_chk_lpt_sz(c, 1, c->lsave_sz);
 246                                continue;
 247                        }
 248                        if (!done_ltab) {
 249                                done_ltab = 1;
 250                                c->ltab_lnum = lnum;
 251                                c->ltab_offs = offs;
 252                                offs += c->ltab_sz;
 253                                dbg_chk_lpt_sz(c, 1, c->ltab_sz);
 254                                continue;
 255                        }
 256                        break;
 257                }
 258                if (cnode->parent) {
 259                        cnode->parent->nbranch[cnode->iip].lnum = lnum;
 260                        cnode->parent->nbranch[cnode->iip].offs = offs;
 261                } else {
 262                        c->lpt_lnum = lnum;
 263                        c->lpt_offs = offs;
 264                }
 265                offs += len;
 266                dbg_chk_lpt_sz(c, 1, len);
 267                cnode = cnode->cnext;
 268        } while (cnode && cnode != c->lpt_cnext);
 269
 270        /* Make sure to place LPT's save table */
 271        if (!done_lsave) {
 272                if (offs + c->lsave_sz > c->leb_size) {
 273                        alen = ALIGN(offs, c->min_io_size);
 274                        upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
 275                        dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
 276                        err = alloc_lpt_leb(c, &lnum);
 277                        if (err)
 278                                goto no_space;
 279                        offs = 0;
 280                        ubifs_assert(lnum >= c->lpt_first &&
 281                                     lnum <= c->lpt_last);
 282                }
 283                done_lsave = 1;
 284                c->lsave_lnum = lnum;
 285                c->lsave_offs = offs;
 286                offs += c->lsave_sz;
 287                dbg_chk_lpt_sz(c, 1, c->lsave_sz);
 288        }
 289
 290        /* Make sure to place LPT's own lprops table */
 291        if (!done_ltab) {
 292                if (offs + c->ltab_sz > c->leb_size) {
 293                        alen = ALIGN(offs, c->min_io_size);
 294                        upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
 295                        dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
 296                        err = alloc_lpt_leb(c, &lnum);
 297                        if (err)
 298                                goto no_space;
 299                        offs = 0;
 300                        ubifs_assert(lnum >= c->lpt_first &&
 301                                     lnum <= c->lpt_last);
 302                }
 303                done_ltab = 1;
 304                c->ltab_lnum = lnum;
 305                c->ltab_offs = offs;
 306                offs += c->ltab_sz;
 307                dbg_chk_lpt_sz(c, 1, c->ltab_sz);
 308        }
 309
 310        alen = ALIGN(offs, c->min_io_size);
 311        upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
 312        dbg_chk_lpt_sz(c, 4, alen - offs);
 313        err = dbg_chk_lpt_sz(c, 3, alen);
 314        if (err)
 315                return err;
 316        return 0;
 317
 318no_space:
 319        ubifs_err("LPT out of space");
 320        dbg_err("LPT out of space at LEB %d:%d needing %d, done_ltab %d, "
 321                "done_lsave %d", lnum, offs, len, done_ltab, done_lsave);
 322        dbg_dump_lpt_info(c);
 323        dbg_dump_lpt_lebs(c);
 324        dump_stack();
 325        return err;
 326}
 327
 328/**
 329 * realloc_lpt_leb - allocate an LPT LEB that is empty.
 330 * @c: UBIFS file-system description object
 331 * @lnum: LEB number is passed and returned here
 332 *
 333 * This function duplicates exactly the results of the function alloc_lpt_leb.
 334 * It is used during end commit to reallocate the same LEB numbers that were
 335 * allocated by alloc_lpt_leb during start commit.
 336 *
 337 * This function finds the next LEB that was allocated by the alloc_lpt_leb
 338 * function starting from @lnum. If a LEB is found it is returned in @lnum and
 339 * the function returns %0. Otherwise the function returns -ENOSPC.
 340 * Note however, that LPT is designed never to run out of space.
 341 */
 342static int realloc_lpt_leb(struct ubifs_info *c, int *lnum)
 343{
 344        int i, n;
 345
 346        n = *lnum - c->lpt_first + 1;
 347        for (i = n; i < c->lpt_lebs; i++)
 348                if (c->ltab[i].cmt) {
 349                        c->ltab[i].cmt = 0;
 350                        *lnum = i + c->lpt_first;
 351                        return 0;
 352                }
 353
 354        for (i = 0; i < n; i++)
 355                if (c->ltab[i].cmt) {
 356                        c->ltab[i].cmt = 0;
 357                        *lnum = i + c->lpt_first;
 358                        return 0;
 359                }
 360        return -ENOSPC;
 361}
 362
 363/**
 364 * write_cnodes - write cnodes for commit.
 365 * @c: UBIFS file-system description object
 366 *
 367 * This function returns %0 on success and a negative error code on failure.
 368 */
 369static int write_cnodes(struct ubifs_info *c)
 370{
 371        int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave;
 372        struct ubifs_cnode *cnode;
 373        void *buf = c->lpt_buf;
 374
 375        cnode = c->lpt_cnext;
 376        if (!cnode)
 377                return 0;
 378        lnum = c->nhead_lnum;
 379        offs = c->nhead_offs;
 380        from = offs;
 381        /* Ensure empty LEB is unmapped */
 382        if (offs == 0) {
 383                err = ubifs_leb_unmap(c, lnum);
 384                if (err)
 385                        return err;
 386        }
 387        /* Try to place lsave and ltab nicely */
 388        done_lsave = !c->big_lpt;
 389        done_ltab = 0;
 390        if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
 391                done_lsave = 1;
 392                ubifs_pack_lsave(c, buf + offs, c->lsave);
 393                offs += c->lsave_sz;
 394                dbg_chk_lpt_sz(c, 1, c->lsave_sz);
 395        }
 396
 397        if (offs + c->ltab_sz <= c->leb_size) {
 398                done_ltab = 1;
 399                ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
 400                offs += c->ltab_sz;
 401                dbg_chk_lpt_sz(c, 1, c->ltab_sz);
 402        }
 403
 404        /* Loop for each cnode */
 405        do {
 406                if (cnode->level)
 407                        len = c->nnode_sz;
 408                else
 409                        len = c->pnode_sz;
 410                while (offs + len > c->leb_size) {
 411                        wlen = offs - from;
 412                        if (wlen) {
 413                                alen = ALIGN(wlen, c->min_io_size);
 414                                memset(buf + offs, 0xff, alen - wlen);
 415                                err = ubifs_leb_write(c, lnum, buf + from, from,
 416                                                       alen, UBI_SHORTTERM);
 417                                if (err)
 418                                        return err;
 419                        }
 420                        dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
 421                        err = realloc_lpt_leb(c, &lnum);
 422                        if (err)
 423                                goto no_space;
 424                        offs = from = 0;
 425                        ubifs_assert(lnum >= c->lpt_first &&
 426                                     lnum <= c->lpt_last);
 427                        err = ubifs_leb_unmap(c, lnum);
 428                        if (err)
 429                                return err;
 430                        /* Try to place lsave and ltab nicely */
 431                        if (!done_lsave) {
 432                                done_lsave = 1;
 433                                ubifs_pack_lsave(c, buf + offs, c->lsave);
 434                                offs += c->lsave_sz;
 435                                dbg_chk_lpt_sz(c, 1, c->lsave_sz);
 436                                continue;
 437                        }
 438                        if (!done_ltab) {
 439                                done_ltab = 1;
 440                                ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
 441                                offs += c->ltab_sz;
 442                                dbg_chk_lpt_sz(c, 1, c->ltab_sz);
 443                                continue;
 444                        }
 445                        break;
 446                }
 447                if (cnode->level)
 448                        ubifs_pack_nnode(c, buf + offs,
 449                                         (struct ubifs_nnode *)cnode);
 450                else
 451                        ubifs_pack_pnode(c, buf + offs,
 452                                         (struct ubifs_pnode *)cnode);
 453                /*
 454                 * The reason for the barriers is the same as in case of TNC.
 455                 * See comment in 'write_index()'. 'dirty_cow_nnode()' and
 456                 * 'dirty_cow_pnode()' are the functions for which this is
 457                 * important.
 458                 */
 459                clear_bit(DIRTY_CNODE, &cnode->flags);
 460                smp_mb__before_clear_bit();
 461                clear_bit(COW_ZNODE, &cnode->flags);
 462                smp_mb__after_clear_bit();
 463                offs += len;
 464                dbg_chk_lpt_sz(c, 1, len);
 465                cnode = cnode->cnext;
 466        } while (cnode && cnode != c->lpt_cnext);
 467
 468        /* Make sure to place LPT's save table */
 469        if (!done_lsave) {
 470                if (offs + c->lsave_sz > c->leb_size) {
 471                        wlen = offs - from;
 472                        alen = ALIGN(wlen, c->min_io_size);
 473                        memset(buf + offs, 0xff, alen - wlen);
 474                        err = ubifs_leb_write(c, lnum, buf + from, from, alen,
 475                                              UBI_SHORTTERM);
 476                        if (err)
 477                                return err;
 478                        dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
 479                        err = realloc_lpt_leb(c, &lnum);
 480                        if (err)
 481                                goto no_space;
 482                        offs = from = 0;
 483                        ubifs_assert(lnum >= c->lpt_first &&
 484                                     lnum <= c->lpt_last);
 485                        err = ubifs_leb_unmap(c, lnum);
 486                        if (err)
 487                                return err;
 488                }
 489                done_lsave = 1;
 490                ubifs_pack_lsave(c, buf + offs, c->lsave);
 491                offs += c->lsave_sz;
 492                dbg_chk_lpt_sz(c, 1, c->lsave_sz);
 493        }
 494
 495        /* Make sure to place LPT's own lprops table */
 496        if (!done_ltab) {
 497                if (offs + c->ltab_sz > c->leb_size) {
 498                        wlen = offs - from;
 499                        alen = ALIGN(wlen, c->min_io_size);
 500                        memset(buf + offs, 0xff, alen - wlen);
 501                        err = ubifs_leb_write(c, lnum, buf + from, from, alen,
 502                                              UBI_SHORTTERM);
 503                        if (err)
 504                                return err;
 505                        dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
 506                        err = realloc_lpt_leb(c, &lnum);
 507                        if (err)
 508                                goto no_space;
 509                        offs = from = 0;
 510                        ubifs_assert(lnum >= c->lpt_first &&
 511                                     lnum <= c->lpt_last);
 512                        err = ubifs_leb_unmap(c, lnum);
 513                        if (err)
 514                                return err;
 515                }
 516                done_ltab = 1;
 517                ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
 518                offs += c->ltab_sz;
 519                dbg_chk_lpt_sz(c, 1, c->ltab_sz);
 520        }
 521
 522        /* Write remaining data in buffer */
 523        wlen = offs - from;
 524        alen = ALIGN(wlen, c->min_io_size);
 525        memset(buf + offs, 0xff, alen - wlen);
 526        err = ubifs_leb_write(c, lnum, buf + from, from, alen, UBI_SHORTTERM);
 527        if (err)
 528                return err;
 529
 530        dbg_chk_lpt_sz(c, 4, alen - wlen);
 531        err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size));
 532        if (err)
 533                return err;
 534
 535        c->nhead_lnum = lnum;
 536        c->nhead_offs = ALIGN(offs, c->min_io_size);
 537
 538        dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
 539        dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
 540        dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
 541        if (c->big_lpt)
 542                dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
 543
 544        return 0;
 545
 546no_space:
 547        ubifs_err("LPT out of space mismatch");
 548        dbg_err("LPT out of space mismatch at LEB %d:%d needing %d, done_ltab "
 549                "%d, done_lsave %d", lnum, offs, len, done_ltab, done_lsave);
 550        dbg_dump_lpt_info(c);
 551        dbg_dump_lpt_lebs(c);
 552        dump_stack();
 553        return err;
 554}
 555
 556/**
 557 * next_pnode_to_dirty - find next pnode to dirty.
 558 * @c: UBIFS file-system description object
 559 * @pnode: pnode
 560 *
 561 * This function returns the next pnode to dirty or %NULL if there are no more
 562 * pnodes.  Note that pnodes that have never been written (lnum == 0) are
 563 * skipped.
 564 */
 565static struct ubifs_pnode *next_pnode_to_dirty(struct ubifs_info *c,
 566                                               struct ubifs_pnode *pnode)
 567{
 568        struct ubifs_nnode *nnode;
 569        int iip;
 570
 571        /* Try to go right */
 572        nnode = pnode->parent;
 573        for (iip = pnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
 574                if (nnode->nbranch[iip].lnum)
 575                        return ubifs_get_pnode(c, nnode, iip);
 576        }
 577
 578        /* Go up while can't go right */
 579        do {
 580                iip = nnode->iip + 1;
 581                nnode = nnode->parent;
 582                if (!nnode)
 583                        return NULL;
 584                for (; iip < UBIFS_LPT_FANOUT; iip++) {
 585                        if (nnode->nbranch[iip].lnum)
 586                                break;
 587                }
 588       } while (iip >= UBIFS_LPT_FANOUT);
 589
 590        /* Go right */
 591        nnode = ubifs_get_nnode(c, nnode, iip);
 592        if (IS_ERR(nnode))
 593                return (void *)nnode;
 594
 595        /* Go down to level 1 */
 596        while (nnode->level > 1) {
 597                for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) {
 598                        if (nnode->nbranch[iip].lnum)
 599                                break;
 600                }
 601                if (iip >= UBIFS_LPT_FANOUT) {
 602                        /*
 603                         * Should not happen, but we need to keep going
 604                         * if it does.
 605                         */
 606                        iip = 0;
 607                }
 608                nnode = ubifs_get_nnode(c, nnode, iip);
 609                if (IS_ERR(nnode))
 610                        return (void *)nnode;
 611        }
 612
 613        for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++)
 614                if (nnode->nbranch[iip].lnum)
 615                        break;
 616        if (iip >= UBIFS_LPT_FANOUT)
 617                /* Should not happen, but we need to keep going if it does */
 618                iip = 0;
 619        return ubifs_get_pnode(c, nnode, iip);
 620}
 621
 622/**
 623 * pnode_lookup - lookup a pnode in the LPT.
 624 * @c: UBIFS file-system description object
 625 * @i: pnode number (0 to main_lebs - 1)
 626 *
 627 * This function returns a pointer to the pnode on success or a negative
 628 * error code on failure.
 629 */
 630static struct ubifs_pnode *pnode_lookup(struct ubifs_info *c, int i)
 631{
 632        int err, h, iip, shft;
 633        struct ubifs_nnode *nnode;
 634
 635        if (!c->nroot) {
 636                err = ubifs_read_nnode(c, NULL, 0);
 637                if (err)
 638                        return ERR_PTR(err);
 639        }
 640        i <<= UBIFS_LPT_FANOUT_SHIFT;
 641        nnode = c->nroot;
 642        shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
 643        for (h = 1; h < c->lpt_hght; h++) {
 644                iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
 645                shft -= UBIFS_LPT_FANOUT_SHIFT;
 646                nnode = ubifs_get_nnode(c, nnode, iip);
 647                if (IS_ERR(nnode))
 648                        return ERR_PTR(PTR_ERR(nnode));
 649        }
 650        iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
 651        return ubifs_get_pnode(c, nnode, iip);
 652}
 653
 654/**
 655 * add_pnode_dirt - add dirty space to LPT LEB properties.
 656 * @c: UBIFS file-system description object
 657 * @pnode: pnode for which to add dirt
 658 */
 659static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
 660{
 661        ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
 662                           c->pnode_sz);
 663}
 664
 665/**
 666 * do_make_pnode_dirty - mark a pnode dirty.
 667 * @c: UBIFS file-system description object
 668 * @pnode: pnode to mark dirty
 669 */
 670static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode)
 671{
 672        /* Assumes cnext list is empty i.e. not called during commit */
 673        if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
 674                struct ubifs_nnode *nnode;
 675
 676                c->dirty_pn_cnt += 1;
 677                add_pnode_dirt(c, pnode);
 678                /* Mark parent and ancestors dirty too */
 679                nnode = pnode->parent;
 680                while (nnode) {
 681                        if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
 682                                c->dirty_nn_cnt += 1;
 683                                ubifs_add_nnode_dirt(c, nnode);
 684                                nnode = nnode->parent;
 685                        } else
 686                                break;
 687                }
 688        }
 689}
 690
 691/**
 692 * make_tree_dirty - mark the entire LEB properties tree dirty.
 693 * @c: UBIFS file-system description object
 694 *
 695 * This function is used by the "small" LPT model to cause the entire LEB
 696 * properties tree to be written.  The "small" LPT model does not use LPT
 697 * garbage collection because it is more efficient to write the entire tree
 698 * (because it is small).
 699 *
 700 * This function returns %0 on success and a negative error code on failure.
 701 */
 702static int make_tree_dirty(struct ubifs_info *c)
 703{
 704        struct ubifs_pnode *pnode;
 705
 706        pnode = pnode_lookup(c, 0);
 707        while (pnode) {
 708                do_make_pnode_dirty(c, pnode);
 709                pnode = next_pnode_to_dirty(c, pnode);
 710                if (IS_ERR(pnode))
 711                        return PTR_ERR(pnode);
 712        }
 713        return 0;
 714}
 715
 716/**
 717 * need_write_all - determine if the LPT area is running out of free space.
 718 * @c: UBIFS file-system description object
 719 *
 720 * This function returns %1 if the LPT area is running out of free space and %0
 721 * if it is not.
 722 */
 723static int need_write_all(struct ubifs_info *c)
 724{
 725        long long free = 0;
 726        int i;
 727
 728        for (i = 0; i < c->lpt_lebs; i++) {
 729                if (i + c->lpt_first == c->nhead_lnum)
 730                        free += c->leb_size - c->nhead_offs;
 731                else if (c->ltab[i].free == c->leb_size)
 732                        free += c->leb_size;
 733                else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
 734                        free += c->leb_size;
 735        }
 736        /* Less than twice the size left */
 737        if (free <= c->lpt_sz * 2)
 738                return 1;
 739        return 0;
 740}
 741
 742/**
 743 * lpt_tgc_start - start trivial garbage collection of LPT LEBs.
 744 * @c: UBIFS file-system description object
 745 *
 746 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
 747 * free space and so may be reused as soon as the next commit is completed.
 748 * This function is called during start commit to mark LPT LEBs for trivial GC.
 749 */
 750static void lpt_tgc_start(struct ubifs_info *c)
 751{
 752        int i;
 753
 754        for (i = 0; i < c->lpt_lebs; i++) {
 755                if (i + c->lpt_first == c->nhead_lnum)
 756                        continue;
 757                if (c->ltab[i].dirty > 0 &&
 758                    c->ltab[i].free + c->ltab[i].dirty == c->leb_size) {
 759                        c->ltab[i].tgc = 1;
 760                        c->ltab[i].free = c->leb_size;
 761                        c->ltab[i].dirty = 0;
 762                        dbg_lp("LEB %d", i + c->lpt_first);
 763                }
 764        }
 765}
 766
 767/**
 768 * lpt_tgc_end - end trivial garbage collection of LPT LEBs.
 769 * @c: UBIFS file-system description object
 770 *
 771 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
 772 * free space and so may be reused as soon as the next commit is completed.
 773 * This function is called after the commit is completed (master node has been
 774 * written) and un-maps LPT LEBs that were marked for trivial GC.
 775 */
 776static int lpt_tgc_end(struct ubifs_info *c)
 777{
 778        int i, err;
 779
 780        for (i = 0; i < c->lpt_lebs; i++)
 781                if (c->ltab[i].tgc) {
 782                        err = ubifs_leb_unmap(c, i + c->lpt_first);
 783                        if (err)
 784                                return err;
 785                        c->ltab[i].tgc = 0;
 786                        dbg_lp("LEB %d", i + c->lpt_first);
 787                }
 788        return 0;
 789}
 790
 791/**
 792 * populate_lsave - fill the lsave array with important LEB numbers.
 793 * @c: the UBIFS file-system description object
 794 *
 795 * This function is only called for the "big" model. It records a small number
 796 * of LEB numbers of important LEBs.  Important LEBs are ones that are (from
 797 * most important to least important): empty, freeable, freeable index, dirty
 798 * index, dirty or free. Upon mount, we read this list of LEB numbers and bring
 799 * their pnodes into memory.  That will stop us from having to scan the LPT
 800 * straight away. For the "small" model we assume that scanning the LPT is no
 801 * big deal.
 802 */
 803static void populate_lsave(struct ubifs_info *c)
 804{
 805        struct ubifs_lprops *lprops;
 806        struct ubifs_lpt_heap *heap;
 807        int i, cnt = 0;
 808
 809        ubifs_assert(c->big_lpt);
 810        if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
 811                c->lpt_drty_flgs |= LSAVE_DIRTY;
 812                ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
 813        }
 814        list_for_each_entry(lprops, &c->empty_list, list) {
 815                c->lsave[cnt++] = lprops->lnum;
 816                if (cnt >= c->lsave_cnt)
 817                        return;
 818        }
 819        list_for_each_entry(lprops, &c->freeable_list, list) {
 820                c->lsave[cnt++] = lprops->lnum;
 821                if (cnt >= c->lsave_cnt)
 822                        return;
 823        }
 824        list_for_each_entry(lprops, &c->frdi_idx_list, list) {
 825                c->lsave[cnt++] = lprops->lnum;
 826                if (cnt >= c->lsave_cnt)
 827                        return;
 828        }
 829        heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
 830        for (i = 0; i < heap->cnt; i++) {
 831                c->lsave[cnt++] = heap->arr[i]->lnum;
 832                if (cnt >= c->lsave_cnt)
 833                        return;
 834        }
 835        heap = &c->lpt_heap[LPROPS_DIRTY - 1];
 836        for (i = 0; i < heap->cnt; i++) {
 837                c->lsave[cnt++] = heap->arr[i]->lnum;
 838                if (cnt >= c->lsave_cnt)
 839                        return;
 840        }
 841        heap = &c->lpt_heap[LPROPS_FREE - 1];
 842        for (i = 0; i < heap->cnt; i++) {
 843                c->lsave[cnt++] = heap->arr[i]->lnum;
 844                if (cnt >= c->lsave_cnt)
 845                        return;
 846        }
 847        /* Fill it up completely */
 848        while (cnt < c->lsave_cnt)
 849                c->lsave[cnt++] = c->main_first;
 850}
 851
 852/**
 853 * nnode_lookup - lookup a nnode in the LPT.
 854 * @c: UBIFS file-system description object
 855 * @i: nnode number
 856 *
 857 * This function returns a pointer to the nnode on success or a negative
 858 * error code on failure.
 859 */
 860static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i)
 861{
 862        int err, iip;
 863        struct ubifs_nnode *nnode;
 864
 865        if (!c->nroot) {
 866                err = ubifs_read_nnode(c, NULL, 0);
 867                if (err)
 868                        return ERR_PTR(err);
 869        }
 870        nnode = c->nroot;
 871        while (1) {
 872                iip = i & (UBIFS_LPT_FANOUT - 1);
 873                i >>= UBIFS_LPT_FANOUT_SHIFT;
 874                if (!i)
 875                        break;
 876                nnode = ubifs_get_nnode(c, nnode, iip);
 877                if (IS_ERR(nnode))
 878                        return nnode;
 879        }
 880        return nnode;
 881}
 882
 883/**
 884 * make_nnode_dirty - find a nnode and, if found, make it dirty.
 885 * @c: UBIFS file-system description object
 886 * @node_num: nnode number of nnode to make dirty
 887 * @lnum: LEB number where nnode was written
 888 * @offs: offset where nnode was written
 889 *
 890 * This function is used by LPT garbage collection.  LPT garbage collection is
 891 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
 892 * simply involves marking all the nodes in the LEB being garbage-collected as
 893 * dirty.  The dirty nodes are written next commit, after which the LEB is free
 894 * to be reused.
 895 *
 896 * This function returns %0 on success and a negative error code on failure.
 897 */
 898static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum,
 899                            int offs)
 900{
 901        struct ubifs_nnode *nnode;
 902
 903        nnode = nnode_lookup(c, node_num);
 904        if (IS_ERR(nnode))
 905                return PTR_ERR(nnode);
 906        if (nnode->parent) {
 907                struct ubifs_nbranch *branch;
 908
 909                branch = &nnode->parent->nbranch[nnode->iip];
 910                if (branch->lnum != lnum || branch->offs != offs)
 911                        return 0; /* nnode is obsolete */
 912        } else if (c->lpt_lnum != lnum || c->lpt_offs != offs)
 913                        return 0; /* nnode is obsolete */
 914        /* Assumes cnext list is empty i.e. not called during commit */
 915        if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
 916                c->dirty_nn_cnt += 1;
 917                ubifs_add_nnode_dirt(c, nnode);
 918                /* Mark parent and ancestors dirty too */
 919                nnode = nnode->parent;
 920                while (nnode) {
 921                        if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
 922                                c->dirty_nn_cnt += 1;
 923                                ubifs_add_nnode_dirt(c, nnode);
 924                                nnode = nnode->parent;
 925                        } else
 926                                break;
 927                }
 928        }
 929        return 0;
 930}
 931
 932/**
 933 * make_pnode_dirty - find a pnode and, if found, make it dirty.
 934 * @c: UBIFS file-system description object
 935 * @node_num: pnode number of pnode to make dirty
 936 * @lnum: LEB number where pnode was written
 937 * @offs: offset where pnode was written
 938 *
 939 * This function is used by LPT garbage collection.  LPT garbage collection is
 940 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
 941 * simply involves marking all the nodes in the LEB being garbage-collected as
 942 * dirty.  The dirty nodes are written next commit, after which the LEB is free
 943 * to be reused.
 944 *
 945 * This function returns %0 on success and a negative error code on failure.
 946 */
 947static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum,
 948                            int offs)
 949{
 950        struct ubifs_pnode *pnode;
 951        struct ubifs_nbranch *branch;
 952
 953        pnode = pnode_lookup(c, node_num);
 954        if (IS_ERR(pnode))
 955                return PTR_ERR(pnode);
 956        branch = &pnode->parent->nbranch[pnode->iip];
 957        if (branch->lnum != lnum || branch->offs != offs)
 958                return 0;
 959        do_make_pnode_dirty(c, pnode);
 960        return 0;
 961}
 962
 963/**
 964 * make_ltab_dirty - make ltab node dirty.
 965 * @c: UBIFS file-system description object
 966 * @lnum: LEB number where ltab was written
 967 * @offs: offset where ltab was written
 968 *
 969 * This function is used by LPT garbage collection.  LPT garbage collection is
 970 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
 971 * simply involves marking all the nodes in the LEB being garbage-collected as
 972 * dirty.  The dirty nodes are written next commit, after which the LEB is free
 973 * to be reused.
 974 *
 975 * This function returns %0 on success and a negative error code on failure.
 976 */
 977static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
 978{
 979        if (lnum != c->ltab_lnum || offs != c->ltab_offs)
 980                return 0; /* This ltab node is obsolete */
 981        if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
 982                c->lpt_drty_flgs |= LTAB_DIRTY;
 983                ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
 984        }
 985        return 0;
 986}
 987
 988/**
 989 * make_lsave_dirty - make lsave node dirty.
 990 * @c: UBIFS file-system description object
 991 * @lnum: LEB number where lsave was written
 992 * @offs: offset where lsave was written
 993 *
 994 * This function is used by LPT garbage collection.  LPT garbage collection is
 995 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
 996 * simply involves marking all the nodes in the LEB being garbage-collected as
 997 * dirty.  The dirty nodes are written next commit, after which the LEB is free
 998 * to be reused.
 999 *
1000 * This function returns %0 on success and a negative error code on failure.
1001 */
1002static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1003{
1004        if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1005                return 0; /* This lsave node is obsolete */
1006        if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
1007                c->lpt_drty_flgs |= LSAVE_DIRTY;
1008                ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
1009        }
1010        return 0;
1011}
1012
1013/**
1014 * make_node_dirty - make node dirty.
1015 * @c: UBIFS file-system description object
1016 * @node_type: LPT node type
1017 * @node_num: node number
1018 * @lnum: LEB number where node was written
1019 * @offs: offset where node was written
1020 *
1021 * This function is used by LPT garbage collection.  LPT garbage collection is
1022 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
1023 * simply involves marking all the nodes in the LEB being garbage-collected as
1024 * dirty.  The dirty nodes are written next commit, after which the LEB is free
1025 * to be reused.
1026 *
1027 * This function returns %0 on success and a negative error code on failure.
1028 */
1029static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num,
1030                           int lnum, int offs)
1031{
1032        switch (node_type) {
1033        case UBIFS_LPT_NNODE:
1034                return make_nnode_dirty(c, node_num, lnum, offs);
1035        case UBIFS_LPT_PNODE:
1036                return make_pnode_dirty(c, node_num, lnum, offs);
1037        case UBIFS_LPT_LTAB:
1038                return make_ltab_dirty(c, lnum, offs);
1039        case UBIFS_LPT_LSAVE:
1040                return make_lsave_dirty(c, lnum, offs);
1041        }
1042        return -EINVAL;
1043}
1044
1045/**
1046 * get_lpt_node_len - return the length of a node based on its type.
1047 * @c: UBIFS file-system description object
1048 * @node_type: LPT node type
1049 */
1050static int get_lpt_node_len(const struct ubifs_info *c, int node_type)
1051{
1052        switch (node_type) {
1053        case UBIFS_LPT_NNODE:
1054                return c->nnode_sz;
1055        case UBIFS_LPT_PNODE:
1056                return c->pnode_sz;
1057        case UBIFS_LPT_LTAB:
1058                return c->ltab_sz;
1059        case UBIFS_LPT_LSAVE:
1060                return c->lsave_sz;
1061        }
1062        return 0;
1063}
1064
1065/**
1066 * get_pad_len - return the length of padding in a buffer.
1067 * @c: UBIFS file-system description object
1068 * @buf: buffer
1069 * @len: length of buffer
1070 */
1071static int get_pad_len(const struct ubifs_info *c, uint8_t *buf, int len)
1072{
1073        int offs, pad_len;
1074
1075        if (c->min_io_size == 1)
1076                return 0;
1077        offs = c->leb_size - len;
1078        pad_len = ALIGN(offs, c->min_io_size) - offs;
1079        return pad_len;
1080}
1081
1082/**
1083 * get_lpt_node_type - return type (and node number) of a node in a buffer.
1084 * @c: UBIFS file-system description object
1085 * @buf: buffer
1086 * @node_num: node number is returned here
1087 */
1088static int get_lpt_node_type(const struct ubifs_info *c, uint8_t *buf,
1089                             int *node_num)
1090{
1091        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1092        int pos = 0, node_type;
1093
1094        node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1095        *node_num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1096        return node_type;
1097}
1098
1099/**
1100 * is_a_node - determine if a buffer contains a node.
1101 * @c: UBIFS file-system description object
1102 * @buf: buffer
1103 * @len: length of buffer
1104 *
1105 * This function returns %1 if the buffer contains a node or %0 if it does not.
1106 */
1107static int is_a_node(const struct ubifs_info *c, uint8_t *buf, int len)
1108{
1109        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1110        int pos = 0, node_type, node_len;
1111        uint16_t crc, calc_crc;
1112
1113        if (len < UBIFS_LPT_CRC_BYTES + (UBIFS_LPT_TYPE_BITS + 7) / 8)
1114                return 0;
1115        node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1116        if (node_type == UBIFS_LPT_NOT_A_NODE)
1117                return 0;
1118        node_len = get_lpt_node_len(c, node_type);
1119        if (!node_len || node_len > len)
1120                return 0;
1121        pos = 0;
1122        addr = buf;
1123        crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
1124        calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
1125                         node_len - UBIFS_LPT_CRC_BYTES);
1126        if (crc != calc_crc)
1127                return 0;
1128        return 1;
1129}
1130
1131/**
1132 * lpt_gc_lnum - garbage collect a LPT LEB.
1133 * @c: UBIFS file-system description object
1134 * @lnum: LEB number to garbage collect
1135 *
1136 * LPT garbage collection is used only for the "big" LPT model
1137 * (c->big_lpt == 1).  Garbage collection simply involves marking all the nodes
1138 * in the LEB being garbage-collected as dirty.  The dirty nodes are written
1139 * next commit, after which the LEB is free to be reused.
1140 *
1141 * This function returns %0 on success and a negative error code on failure.
1142 */
1143static int lpt_gc_lnum(struct ubifs_info *c, int lnum)
1144{
1145        int err, len = c->leb_size, node_type, node_num, node_len, offs;
1146        void *buf = c->lpt_buf;
1147
1148        dbg_lp("LEB %d", lnum);
1149        err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1150        if (err) {
1151                ubifs_err("cannot read LEB %d, error %d", lnum, err);
1152                return err;
1153        }
1154        while (1) {
1155                if (!is_a_node(c, buf, len)) {
1156                        int pad_len;
1157
1158                        pad_len = get_pad_len(c, buf, len);
1159                        if (pad_len) {
1160                                buf += pad_len;
1161                                len -= pad_len;
1162                                continue;
1163                        }
1164                        return 0;
1165                }
1166                node_type = get_lpt_node_type(c, buf, &node_num);
1167                node_len = get_lpt_node_len(c, node_type);
1168                offs = c->leb_size - len;
1169                ubifs_assert(node_len != 0);
1170                mutex_lock(&c->lp_mutex);
1171                err = make_node_dirty(c, node_type, node_num, lnum, offs);
1172                mutex_unlock(&c->lp_mutex);
1173                if (err)
1174                        return err;
1175                buf += node_len;
1176                len -= node_len;
1177        }
1178        return 0;
1179}
1180
1181/**
1182 * lpt_gc - LPT garbage collection.
1183 * @c: UBIFS file-system description object
1184 *
1185 * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'.
1186 * Returns %0 on success and a negative error code on failure.
1187 */
1188static int lpt_gc(struct ubifs_info *c)
1189{
1190        int i, lnum = -1, dirty = 0;
1191
1192        mutex_lock(&c->lp_mutex);
1193        for (i = 0; i < c->lpt_lebs; i++) {
1194                ubifs_assert(!c->ltab[i].tgc);
1195                if (i + c->lpt_first == c->nhead_lnum ||
1196                    c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
1197                        continue;
1198                if (c->ltab[i].dirty > dirty) {
1199                        dirty = c->ltab[i].dirty;
1200                        lnum = i + c->lpt_first;
1201                }
1202        }
1203        mutex_unlock(&c->lp_mutex);
1204        if (lnum == -1)
1205                return -ENOSPC;
1206        return lpt_gc_lnum(c, lnum);
1207}
1208
1209/**
1210 * ubifs_lpt_start_commit - UBIFS commit starts.
1211 * @c: the UBIFS file-system description object
1212 *
1213 * This function has to be called when UBIFS starts the commit operation.
1214 * This function "freezes" all currently dirty LEB properties and does not
1215 * change them anymore. Further changes are saved and tracked separately
1216 * because they are not part of this commit. This function returns zero in case
1217 * of success and a negative error code in case of failure.
1218 */
1219int ubifs_lpt_start_commit(struct ubifs_info *c)
1220{
1221        int err, cnt;
1222
1223        dbg_lp("");
1224
1225        mutex_lock(&c->lp_mutex);
1226        err = dbg_chk_lpt_free_spc(c);
1227        if (err)
1228                goto out;
1229        err = dbg_check_ltab(c);
1230        if (err)
1231                goto out;
1232
1233        if (c->check_lpt_free) {
1234                /*
1235                 * We ensure there is enough free space in
1236                 * ubifs_lpt_post_commit() by marking nodes dirty. That
1237                 * information is lost when we unmount, so we also need
1238                 * to check free space once after mounting also.
1239                 */
1240                c->check_lpt_free = 0;
1241                while (need_write_all(c)) {
1242                        mutex_unlock(&c->lp_mutex);
1243                        err = lpt_gc(c);
1244                        if (err)
1245                                return err;
1246                        mutex_lock(&c->lp_mutex);
1247                }
1248        }
1249
1250        lpt_tgc_start(c);
1251
1252        if (!c->dirty_pn_cnt) {
1253                dbg_cmt("no cnodes to commit");
1254                err = 0;
1255                goto out;
1256        }
1257
1258        if (!c->big_lpt && need_write_all(c)) {
1259                /* If needed, write everything */
1260                err = make_tree_dirty(c);
1261                if (err)
1262                        goto out;
1263                lpt_tgc_start(c);
1264        }
1265
1266        if (c->big_lpt)
1267                populate_lsave(c);
1268
1269        cnt = get_cnodes_to_commit(c);
1270        ubifs_assert(cnt != 0);
1271
1272        err = layout_cnodes(c);
1273        if (err)
1274                goto out;
1275
1276        /* Copy the LPT's own lprops for end commit to write */
1277        memcpy(c->ltab_cmt, c->ltab,
1278               sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1279        c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY);
1280
1281out:
1282        mutex_unlock(&c->lp_mutex);
1283        return err;
1284}
1285
1286/**
1287 * free_obsolete_cnodes - free obsolete cnodes for commit end.
1288 * @c: UBIFS file-system description object
1289 */
1290static void free_obsolete_cnodes(struct ubifs_info *c)
1291{
1292        struct ubifs_cnode *cnode, *cnext;
1293
1294        cnext = c->lpt_cnext;
1295        if (!cnext)
1296                return;
1297        do {
1298                cnode = cnext;
1299                cnext = cnode->cnext;
1300                if (test_bit(OBSOLETE_CNODE, &cnode->flags))
1301                        kfree(cnode);
1302                else
1303                        cnode->cnext = NULL;
1304        } while (cnext != c->lpt_cnext);
1305        c->lpt_cnext = NULL;
1306}
1307
1308/**
1309 * ubifs_lpt_end_commit - finish the commit operation.
1310 * @c: the UBIFS file-system description object
1311 *
1312 * This function has to be called when the commit operation finishes. It
1313 * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to
1314 * the media. Returns zero in case of success and a negative error code in case
1315 * of failure.
1316 */
1317int ubifs_lpt_end_commit(struct ubifs_info *c)
1318{
1319        int err;
1320
1321        dbg_lp("");
1322
1323        if (!c->lpt_cnext)
1324                return 0;
1325
1326        err = write_cnodes(c);
1327        if (err)
1328                return err;
1329
1330        mutex_lock(&c->lp_mutex);
1331        free_obsolete_cnodes(c);
1332        mutex_unlock(&c->lp_mutex);
1333
1334        return 0;
1335}
1336
1337/**
1338 * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC.
1339 * @c: UBIFS file-system description object
1340 *
1341 * LPT trivial GC is completed after a commit. Also LPT GC is done after a
1342 * commit for the "big" LPT model.
1343 */
1344int ubifs_lpt_post_commit(struct ubifs_info *c)
1345{
1346        int err;
1347
1348        mutex_lock(&c->lp_mutex);
1349        err = lpt_tgc_end(c);
1350        if (err)
1351                goto out;
1352        if (c->big_lpt)
1353                while (need_write_all(c)) {
1354                        mutex_unlock(&c->lp_mutex);
1355                        err = lpt_gc(c);
1356                        if (err)
1357                                return err;
1358                        mutex_lock(&c->lp_mutex);
1359                }
1360out:
1361        mutex_unlock(&c->lp_mutex);
1362        return err;
1363}
1364
1365/**
1366 * first_nnode - find the first nnode in memory.
1367 * @c: UBIFS file-system description object
1368 * @hght: height of tree where nnode found is returned here
1369 *
1370 * This function returns a pointer to the nnode found or %NULL if no nnode is
1371 * found. This function is a helper to 'ubifs_lpt_free()'.
1372 */
1373static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght)
1374{
1375        struct ubifs_nnode *nnode;
1376        int h, i, found;
1377
1378        nnode = c->nroot;
1379        *hght = 0;
1380        if (!nnode)
1381                return NULL;
1382        for (h = 1; h < c->lpt_hght; h++) {
1383                found = 0;
1384                for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1385                        if (nnode->nbranch[i].nnode) {
1386                                found = 1;
1387                                nnode = nnode->nbranch[i].nnode;
1388                                *hght = h;
1389                                break;
1390                        }
1391                }
1392                if (!found)
1393                        break;
1394        }
1395        return nnode;
1396}
1397
1398/**
1399 * next_nnode - find the next nnode in memory.
1400 * @c: UBIFS file-system description object
1401 * @nnode: nnode from which to start.
1402 * @hght: height of tree where nnode is, is passed and returned here
1403 *
1404 * This function returns a pointer to the nnode found or %NULL if no nnode is
1405 * found. This function is a helper to 'ubifs_lpt_free()'.
1406 */
1407static struct ubifs_nnode *next_nnode(struct ubifs_info *c,
1408                                      struct ubifs_nnode *nnode, int *hght)
1409{
1410        struct ubifs_nnode *parent;
1411        int iip, h, i, found;
1412
1413        parent = nnode->parent;
1414        if (!parent)
1415                return NULL;
1416        if (nnode->iip == UBIFS_LPT_FANOUT - 1) {
1417                *hght -= 1;
1418                return parent;
1419        }
1420        for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
1421                nnode = parent->nbranch[iip].nnode;
1422                if (nnode)
1423                        break;
1424        }
1425        if (!nnode) {
1426                *hght -= 1;
1427                return parent;
1428        }
1429        for (h = *hght + 1; h < c->lpt_hght; h++) {
1430                found = 0;
1431                for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1432                        if (nnode->nbranch[i].nnode) {
1433                                found = 1;
1434                                nnode = nnode->nbranch[i].nnode;
1435                                *hght = h;
1436                                break;
1437                        }
1438                }
1439                if (!found)
1440                        break;
1441        }
1442        return nnode;
1443}
1444
1445/**
1446 * ubifs_lpt_free - free resources owned by the LPT.
1447 * @c: UBIFS file-system description object
1448 * @wr_only: free only resources used for writing
1449 */
1450void ubifs_lpt_free(struct ubifs_info *c, int wr_only)
1451{
1452        struct ubifs_nnode *nnode;
1453        int i, hght;
1454
1455        /* Free write-only things first */
1456
1457        free_obsolete_cnodes(c); /* Leftover from a failed commit */
1458
1459        vfree(c->ltab_cmt);
1460        c->ltab_cmt = NULL;
1461        vfree(c->lpt_buf);
1462        c->lpt_buf = NULL;
1463        kfree(c->lsave);
1464        c->lsave = NULL;
1465
1466        if (wr_only)
1467                return;
1468
1469        /* Now free the rest */
1470
1471        nnode = first_nnode(c, &hght);
1472        while (nnode) {
1473                for (i = 0; i < UBIFS_LPT_FANOUT; i++)
1474                        kfree(nnode->nbranch[i].nnode);
1475                nnode = next_nnode(c, nnode, &hght);
1476        }
1477        for (i = 0; i < LPROPS_HEAP_CNT; i++)
1478                kfree(c->lpt_heap[i].arr);
1479        kfree(c->dirty_idx.arr);
1480        kfree(c->nroot);
1481        vfree(c->ltab);
1482        kfree(c->lpt_nod_buf);
1483}
1484
1485#ifdef CONFIG_UBIFS_FS_DEBUG
1486
1487/**
1488 * dbg_is_all_ff - determine if a buffer contains only 0xFF bytes.
1489 * @buf: buffer
1490 * @len: buffer length
1491 */
1492static int dbg_is_all_ff(uint8_t *buf, int len)
1493{
1494        int i;
1495
1496        for (i = 0; i < len; i++)
1497                if (buf[i] != 0xff)
1498                        return 0;
1499        return 1;
1500}
1501
1502/**
1503 * dbg_is_nnode_dirty - determine if a nnode is dirty.
1504 * @c: the UBIFS file-system description object
1505 * @lnum: LEB number where nnode was written
1506 * @offs: offset where nnode was written
1507 */
1508static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs)
1509{
1510        struct ubifs_nnode *nnode;
1511        int hght;
1512
1513        /* Entire tree is in memory so first_nnode / next_nnode are OK */
1514        nnode = first_nnode(c, &hght);
1515        for (; nnode; nnode = next_nnode(c, nnode, &hght)) {
1516                struct ubifs_nbranch *branch;
1517
1518                cond_resched();
1519                if (nnode->parent) {
1520                        branch = &nnode->parent->nbranch[nnode->iip];
1521                        if (branch->lnum != lnum || branch->offs != offs)
1522                                continue;
1523                        if (test_bit(DIRTY_CNODE, &nnode->flags))
1524                                return 1;
1525                        return 0;
1526                } else {
1527                        if (c->lpt_lnum != lnum || c->lpt_offs != offs)
1528                                continue;
1529                        if (test_bit(DIRTY_CNODE, &nnode->flags))
1530                                return 1;
1531                        return 0;
1532                }
1533        }
1534        return 1;
1535}
1536
1537/**
1538 * dbg_is_pnode_dirty - determine if a pnode is dirty.
1539 * @c: the UBIFS file-system description object
1540 * @lnum: LEB number where pnode was written
1541 * @offs: offset where pnode was written
1542 */
1543static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs)
1544{
1545        int i, cnt;
1546
1547        cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1548        for (i = 0; i < cnt; i++) {
1549                struct ubifs_pnode *pnode;
1550                struct ubifs_nbranch *branch;
1551
1552                cond_resched();
1553                pnode = pnode_lookup(c, i);
1554                if (IS_ERR(pnode))
1555                        return PTR_ERR(pnode);
1556                branch = &pnode->parent->nbranch[pnode->iip];
1557                if (branch->lnum != lnum || branch->offs != offs)
1558                        continue;
1559                if (test_bit(DIRTY_CNODE, &pnode->flags))
1560                        return 1;
1561                return 0;
1562        }
1563        return 1;
1564}
1565
1566/**
1567 * dbg_is_ltab_dirty - determine if a ltab node is dirty.
1568 * @c: the UBIFS file-system description object
1569 * @lnum: LEB number where ltab node was written
1570 * @offs: offset where ltab node was written
1571 */
1572static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
1573{
1574        if (lnum != c->ltab_lnum || offs != c->ltab_offs)
1575                return 1;
1576        return (c->lpt_drty_flgs & LTAB_DIRTY) != 0;
1577}
1578
1579/**
1580 * dbg_is_lsave_dirty - determine if a lsave node is dirty.
1581 * @c: the UBIFS file-system description object
1582 * @lnum: LEB number where lsave node was written
1583 * @offs: offset where lsave node was written
1584 */
1585static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1586{
1587        if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1588                return 1;
1589        return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0;
1590}
1591
1592/**
1593 * dbg_is_node_dirty - determine if a node is dirty.
1594 * @c: the UBIFS file-system description object
1595 * @node_type: node type
1596 * @lnum: LEB number where node was written
1597 * @offs: offset where node was written
1598 */
1599static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum,
1600                             int offs)
1601{
1602        switch (node_type) {
1603        case UBIFS_LPT_NNODE:
1604                return dbg_is_nnode_dirty(c, lnum, offs);
1605        case UBIFS_LPT_PNODE:
1606                return dbg_is_pnode_dirty(c, lnum, offs);
1607        case UBIFS_LPT_LTAB:
1608                return dbg_is_ltab_dirty(c, lnum, offs);
1609        case UBIFS_LPT_LSAVE:
1610                return dbg_is_lsave_dirty(c, lnum, offs);
1611        }
1612        return 1;
1613}
1614
1615/**
1616 * dbg_check_ltab_lnum - check the ltab for a LPT LEB number.
1617 * @c: the UBIFS file-system description object
1618 * @lnum: LEB number where node was written
1619 * @offs: offset where node was written
1620 *
1621 * This function returns %0 on success and a negative error code on failure.
1622 */
1623static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum)
1624{
1625        int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len;
1626        int ret;
1627        void *buf = c->dbg->buf;
1628
1629        if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1630                return 0;
1631
1632        dbg_lp("LEB %d", lnum);
1633        err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1634        if (err) {
1635                dbg_msg("ubi_read failed, LEB %d, error %d", lnum, err);
1636                return err;
1637        }
1638        while (1) {
1639                if (!is_a_node(c, buf, len)) {
1640                        int i, pad_len;
1641
1642                        pad_len = get_pad_len(c, buf, len);
1643                        if (pad_len) {
1644                                buf += pad_len;
1645                                len -= pad_len;
1646                                dirty += pad_len;
1647                                continue;
1648                        }
1649                        if (!dbg_is_all_ff(buf, len)) {
1650                                dbg_msg("invalid empty space in LEB %d at %d",
1651                                        lnum, c->leb_size - len);
1652                                err = -EINVAL;
1653                        }
1654                        i = lnum - c->lpt_first;
1655                        if (len != c->ltab[i].free) {
1656                                dbg_msg("invalid free space in LEB %d "
1657                                        "(free %d, expected %d)",
1658                                        lnum, len, c->ltab[i].free);
1659                                err = -EINVAL;
1660                        }
1661                        if (dirty != c->ltab[i].dirty) {
1662                                dbg_msg("invalid dirty space in LEB %d "
1663                                        "(dirty %d, expected %d)",
1664                                        lnum, dirty, c->ltab[i].dirty);
1665                                err = -EINVAL;
1666                        }
1667                        return err;
1668                }
1669                node_type = get_lpt_node_type(c, buf, &node_num);
1670                node_len = get_lpt_node_len(c, node_type);
1671                ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len);
1672                if (ret == 1)
1673                        dirty += node_len;
1674                buf += node_len;
1675                len -= node_len;
1676        }
1677}
1678
1679/**
1680 * dbg_check_ltab - check the free and dirty space in the ltab.
1681 * @c: the UBIFS file-system description object
1682 *
1683 * This function returns %0 on success and a negative error code on failure.
1684 */
1685int dbg_check_ltab(struct ubifs_info *c)
1686{
1687        int lnum, err, i, cnt;
1688
1689        if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1690                return 0;
1691
1692        /* Bring the entire tree into memory */
1693        cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1694        for (i = 0; i < cnt; i++) {
1695                struct ubifs_pnode *pnode;
1696
1697                pnode = pnode_lookup(c, i);
1698                if (IS_ERR(pnode))
1699                        return PTR_ERR(pnode);
1700                cond_resched();
1701        }
1702
1703        /* Check nodes */
1704        err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0);
1705        if (err)
1706                return err;
1707
1708        /* Check each LEB */
1709        for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
1710                err = dbg_check_ltab_lnum(c, lnum);
1711                if (err) {
1712                        dbg_err("failed at LEB %d", lnum);
1713                        return err;
1714                }
1715        }
1716
1717        dbg_lp("succeeded");
1718        return 0;
1719}
1720
1721/**
1722 * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT.
1723 * @c: the UBIFS file-system description object
1724 *
1725 * This function returns %0 on success and a negative error code on failure.
1726 */
1727int dbg_chk_lpt_free_spc(struct ubifs_info *c)
1728{
1729        long long free = 0;
1730        int i;
1731
1732        if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1733                return 0;
1734
1735        for (i = 0; i < c->lpt_lebs; i++) {
1736                if (c->ltab[i].tgc || c->ltab[i].cmt)
1737                        continue;
1738                if (i + c->lpt_first == c->nhead_lnum)
1739                        free += c->leb_size - c->nhead_offs;
1740                else if (c->ltab[i].free == c->leb_size)
1741                        free += c->leb_size;
1742        }
1743        if (free < c->lpt_sz) {
1744                dbg_err("LPT space error: free %lld lpt_sz %lld",
1745                        free, c->lpt_sz);
1746                dbg_dump_lpt_info(c);
1747                dbg_dump_lpt_lebs(c);
1748                dump_stack();
1749                return -EINVAL;
1750        }
1751        return 0;
1752}
1753
1754/**
1755 * dbg_chk_lpt_sz - check LPT does not write more than LPT size.
1756 * @c: the UBIFS file-system description object
1757 * @action: what to do
1758 * @len: length written
1759 *
1760 * This function returns %0 on success and a negative error code on failure.
1761 * The @action argument may be one of:
1762 *   o %0 - LPT debugging checking starts, initialize debugging variables;
1763 *   o %1 - wrote an LPT node, increase LPT size by @len bytes;
1764 *   o %2 - switched to a different LEB and wasted @len bytes;
1765 *   o %3 - check that we've written the right number of bytes.
1766 *   o %4 - wasted @len bytes;
1767 */
1768int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len)
1769{
1770        struct ubifs_debug_info *d = c->dbg;
1771        long long chk_lpt_sz, lpt_sz;
1772        int err = 0;
1773
1774        if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1775                return 0;
1776
1777        switch (action) {
1778        case 0:
1779                d->chk_lpt_sz = 0;
1780                d->chk_lpt_sz2 = 0;
1781                d->chk_lpt_lebs = 0;
1782                d->chk_lpt_wastage = 0;
1783                if (c->dirty_pn_cnt > c->pnode_cnt) {
1784                        dbg_err("dirty pnodes %d exceed max %d",
1785                                c->dirty_pn_cnt, c->pnode_cnt);
1786                        err = -EINVAL;
1787                }
1788                if (c->dirty_nn_cnt > c->nnode_cnt) {
1789                        dbg_err("dirty nnodes %d exceed max %d",
1790                                c->dirty_nn_cnt, c->nnode_cnt);
1791                        err = -EINVAL;
1792                }
1793                return err;
1794        case 1:
1795                d->chk_lpt_sz += len;
1796                return 0;
1797        case 2:
1798                d->chk_lpt_sz += len;
1799                d->chk_lpt_wastage += len;
1800                d->chk_lpt_lebs += 1;
1801                return 0;
1802        case 3:
1803                chk_lpt_sz = c->leb_size;
1804                chk_lpt_sz *= d->chk_lpt_lebs;
1805                chk_lpt_sz += len - c->nhead_offs;
1806                if (d->chk_lpt_sz != chk_lpt_sz) {
1807                        dbg_err("LPT wrote %lld but space used was %lld",
1808                                d->chk_lpt_sz, chk_lpt_sz);
1809                        err = -EINVAL;
1810                }
1811                if (d->chk_lpt_sz > c->lpt_sz) {
1812                        dbg_err("LPT wrote %lld but lpt_sz is %lld",
1813                                d->chk_lpt_sz, c->lpt_sz);
1814                        err = -EINVAL;
1815                }
1816                if (d->chk_lpt_sz2 && d->chk_lpt_sz != d->chk_lpt_sz2) {
1817                        dbg_err("LPT layout size %lld but wrote %lld",
1818                                d->chk_lpt_sz, d->chk_lpt_sz2);
1819                        err = -EINVAL;
1820                }
1821                if (d->chk_lpt_sz2 && d->new_nhead_offs != len) {
1822                        dbg_err("LPT new nhead offs: expected %d was %d",
1823                                d->new_nhead_offs, len);
1824                        err = -EINVAL;
1825                }
1826                lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
1827                lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
1828                lpt_sz += c->ltab_sz;
1829                if (c->big_lpt)
1830                        lpt_sz += c->lsave_sz;
1831                if (d->chk_lpt_sz - d->chk_lpt_wastage > lpt_sz) {
1832                        dbg_err("LPT chk_lpt_sz %lld + waste %lld exceeds %lld",
1833                                d->chk_lpt_sz, d->chk_lpt_wastage, lpt_sz);
1834                        err = -EINVAL;
1835                }
1836                if (err) {
1837                        dbg_dump_lpt_info(c);
1838                        dbg_dump_lpt_lebs(c);
1839                        dump_stack();
1840                }
1841                d->chk_lpt_sz2 = d->chk_lpt_sz;
1842                d->chk_lpt_sz = 0;
1843                d->chk_lpt_wastage = 0;
1844                d->chk_lpt_lebs = 0;
1845                d->new_nhead_offs = len;
1846                return err;
1847        case 4:
1848                d->chk_lpt_sz += len;
1849                d->chk_lpt_wastage += len;
1850                return 0;
1851        default:
1852                return -EINVAL;
1853        }
1854}
1855
1856/**
1857 * dbg_dump_lpt_leb - dump an LPT LEB.
1858 * @c: UBIFS file-system description object
1859 * @lnum: LEB number to dump
1860 *
1861 * This function dumps an LEB from LPT area. Nodes in this area are very
1862 * different to nodes in the main area (e.g., they do not have common headers,
1863 * they do not have 8-byte alignments, etc), so we have a separate function to
1864 * dump LPT area LEBs. Note, LPT has to be locked by the caller.
1865 */
1866static void dump_lpt_leb(const struct ubifs_info *c, int lnum)
1867{
1868        int err, len = c->leb_size, node_type, node_num, node_len, offs;
1869        void *buf = c->dbg->buf;
1870
1871        printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
1872               current->pid, lnum);
1873        err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1874        if (err) {
1875                ubifs_err("cannot read LEB %d, error %d", lnum, err);
1876                return;
1877        }
1878        while (1) {
1879                offs = c->leb_size - len;
1880                if (!is_a_node(c, buf, len)) {
1881                        int pad_len;
1882
1883                        pad_len = get_pad_len(c, buf, len);
1884                        if (pad_len) {
1885                                printk(KERN_DEBUG "LEB %d:%d, pad %d bytes\n",
1886                                       lnum, offs, pad_len);
1887                                buf += pad_len;
1888                                len -= pad_len;
1889                                continue;
1890                        }
1891                        if (len)
1892                                printk(KERN_DEBUG "LEB %d:%d, free %d bytes\n",
1893                                       lnum, offs, len);
1894                        break;
1895                }
1896
1897                node_type = get_lpt_node_type(c, buf, &node_num);
1898                switch (node_type) {
1899                case UBIFS_LPT_PNODE:
1900                {
1901                        node_len = c->pnode_sz;
1902                        if (c->big_lpt)
1903                                printk(KERN_DEBUG "LEB %d:%d, pnode num %d\n",
1904                                       lnum, offs, node_num);
1905                        else
1906                                printk(KERN_DEBUG "LEB %d:%d, pnode\n",
1907                                       lnum, offs);
1908                        break;
1909                }
1910                case UBIFS_LPT_NNODE:
1911                {
1912                        int i;
1913                        struct ubifs_nnode nnode;
1914
1915                        node_len = c->nnode_sz;
1916                        if (c->big_lpt)
1917                                printk(KERN_DEBUG "LEB %d:%d, nnode num %d, ",
1918                                       lnum, offs, node_num);
1919                        else
1920                                printk(KERN_DEBUG "LEB %d:%d, nnode, ",
1921                                       lnum, offs);
1922                        err = ubifs_unpack_nnode(c, buf, &nnode);
1923                        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1924                                printk(KERN_CONT "%d:%d", nnode.nbranch[i].lnum,
1925                                       nnode.nbranch[i].offs);
1926                                if (i != UBIFS_LPT_FANOUT - 1)
1927                                        printk(KERN_CONT ", ");
1928                        }
1929                        printk(KERN_CONT "\n");
1930                        break;
1931                }
1932                case UBIFS_LPT_LTAB:
1933                        node_len = c->ltab_sz;
1934                        printk(KERN_DEBUG "LEB %d:%d, ltab\n",
1935                               lnum, offs);
1936                        break;
1937                case UBIFS_LPT_LSAVE:
1938                        node_len = c->lsave_sz;
1939                        printk(KERN_DEBUG "LEB %d:%d, lsave len\n", lnum, offs);
1940                        break;
1941                default:
1942                        ubifs_err("LPT node type %d not recognized", node_type);
1943                        return;
1944                }
1945
1946                buf += node_len;
1947                len -= node_len;
1948        }
1949
1950        printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
1951               current->pid, lnum);
1952}
1953
1954/**
1955 * dbg_dump_lpt_lebs - dump LPT lebs.
1956 * @c: UBIFS file-system description object
1957 *
1958 * This function dumps all LPT LEBs. The caller has to make sure the LPT is
1959 * locked.
1960 */
1961void dbg_dump_lpt_lebs(const struct ubifs_info *c)
1962{
1963        int i;
1964
1965        printk(KERN_DEBUG "(pid %d) start dumping all LPT LEBs\n",
1966               current->pid);
1967        for (i = 0; i < c->lpt_lebs; i++)
1968                dump_lpt_leb(c, i + c->lpt_first);
1969        printk(KERN_DEBUG "(pid %d) finish dumping all LPT LEBs\n",
1970               current->pid);
1971}
1972
1973#endif /* CONFIG_UBIFS_FS_DEBUG */
1974