linux/fs/ubifs/orphan.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Author: Adrian Hunter
  20 */
  21
  22#include "ubifs.h"
  23
  24/*
  25 * An orphan is an inode number whose inode node has been committed to the index
  26 * with a link count of zero. That happens when an open file is deleted
  27 * (unlinked) and then a commit is run. In the normal course of events the inode
  28 * would be deleted when the file is closed. However in the case of an unclean
  29 * unmount, orphans need to be accounted for. After an unclean unmount, the
  30 * orphans' inodes must be deleted which means either scanning the entire index
  31 * looking for them, or keeping a list on flash somewhere. This unit implements
  32 * the latter approach.
  33 *
  34 * The orphan area is a fixed number of LEBs situated between the LPT area and
  35 * the main area. The number of orphan area LEBs is specified when the file
  36 * system is created. The minimum number is 1. The size of the orphan area
  37 * should be so that it can hold the maximum number of orphans that are expected
  38 * to ever exist at one time.
  39 *
  40 * The number of orphans that can fit in a LEB is:
  41 *
  42 *         (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)
  43 *
  44 * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough.
  45 *
  46 * Orphans are accumulated in a rb-tree. When an inode's link count drops to
  47 * zero, the inode number is added to the rb-tree. It is removed from the tree
  48 * when the inode is deleted.  Any new orphans that are in the orphan tree when
  49 * the commit is run, are written to the orphan area in 1 or more orphan nodes.
  50 * If the orphan area is full, it is consolidated to make space.  There is
  51 * always enough space because validation prevents the user from creating more
  52 * than the maximum number of orphans allowed.
  53 */
  54
  55#ifdef CONFIG_UBIFS_FS_DEBUG
  56static int dbg_check_orphans(struct ubifs_info *c);
  57#else
  58#define dbg_check_orphans(c) 0
  59#endif
  60
  61/**
  62 * ubifs_add_orphan - add an orphan.
  63 * @c: UBIFS file-system description object
  64 * @inum: orphan inode number
  65 *
  66 * Add an orphan. This function is called when an inodes link count drops to
  67 * zero.
  68 */
  69int ubifs_add_orphan(struct ubifs_info *c, ino_t inum)
  70{
  71        struct ubifs_orphan *orphan, *o;
  72        struct rb_node **p, *parent = NULL;
  73
  74        orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS);
  75        if (!orphan)
  76                return -ENOMEM;
  77        orphan->inum = inum;
  78        orphan->new = 1;
  79
  80        spin_lock(&c->orphan_lock);
  81        if (c->tot_orphans >= c->max_orphans) {
  82                spin_unlock(&c->orphan_lock);
  83                kfree(orphan);
  84                return -ENFILE;
  85        }
  86        p = &c->orph_tree.rb_node;
  87        while (*p) {
  88                parent = *p;
  89                o = rb_entry(parent, struct ubifs_orphan, rb);
  90                if (inum < o->inum)
  91                        p = &(*p)->rb_left;
  92                else if (inum > o->inum)
  93                        p = &(*p)->rb_right;
  94                else {
  95                        dbg_err("orphaned twice");
  96                        spin_unlock(&c->orphan_lock);
  97                        kfree(orphan);
  98                        return 0;
  99                }
 100        }
 101        c->tot_orphans += 1;
 102        c->new_orphans += 1;
 103        rb_link_node(&orphan->rb, parent, p);
 104        rb_insert_color(&orphan->rb, &c->orph_tree);
 105        list_add_tail(&orphan->list, &c->orph_list);
 106        list_add_tail(&orphan->new_list, &c->orph_new);
 107        spin_unlock(&c->orphan_lock);
 108        dbg_gen("ino %lu", (unsigned long)inum);
 109        return 0;
 110}
 111
 112/**
 113 * ubifs_delete_orphan - delete an orphan.
 114 * @c: UBIFS file-system description object
 115 * @inum: orphan inode number
 116 *
 117 * Delete an orphan. This function is called when an inode is deleted.
 118 */
 119void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum)
 120{
 121        struct ubifs_orphan *o;
 122        struct rb_node *p;
 123
 124        spin_lock(&c->orphan_lock);
 125        p = c->orph_tree.rb_node;
 126        while (p) {
 127                o = rb_entry(p, struct ubifs_orphan, rb);
 128                if (inum < o->inum)
 129                        p = p->rb_left;
 130                else if (inum > o->inum)
 131                        p = p->rb_right;
 132                else {
 133                        if (o->dnext) {
 134                                spin_unlock(&c->orphan_lock);
 135                                dbg_gen("deleted twice ino %lu",
 136                                        (unsigned long)inum);
 137                                return;
 138                        }
 139                        if (o->cnext) {
 140                                o->dnext = c->orph_dnext;
 141                                c->orph_dnext = o;
 142                                spin_unlock(&c->orphan_lock);
 143                                dbg_gen("delete later ino %lu",
 144                                        (unsigned long)inum);
 145                                return;
 146                        }
 147                        rb_erase(p, &c->orph_tree);
 148                        list_del(&o->list);
 149                        c->tot_orphans -= 1;
 150                        if (o->new) {
 151                                list_del(&o->new_list);
 152                                c->new_orphans -= 1;
 153                        }
 154                        spin_unlock(&c->orphan_lock);
 155                        kfree(o);
 156                        dbg_gen("inum %lu", (unsigned long)inum);
 157                        return;
 158                }
 159        }
 160        spin_unlock(&c->orphan_lock);
 161        dbg_err("missing orphan ino %lu", (unsigned long)inum);
 162        dbg_dump_stack();
 163}
 164
 165/**
 166 * ubifs_orphan_start_commit - start commit of orphans.
 167 * @c: UBIFS file-system description object
 168 *
 169 * Start commit of orphans.
 170 */
 171int ubifs_orphan_start_commit(struct ubifs_info *c)
 172{
 173        struct ubifs_orphan *orphan, **last;
 174
 175        spin_lock(&c->orphan_lock);
 176        last = &c->orph_cnext;
 177        list_for_each_entry(orphan, &c->orph_new, new_list) {
 178                ubifs_assert(orphan->new);
 179                orphan->new = 0;
 180                *last = orphan;
 181                last = &orphan->cnext;
 182        }
 183        *last = orphan->cnext;
 184        c->cmt_orphans = c->new_orphans;
 185        c->new_orphans = 0;
 186        dbg_cmt("%d orphans to commit", c->cmt_orphans);
 187        INIT_LIST_HEAD(&c->orph_new);
 188        if (c->tot_orphans == 0)
 189                c->no_orphs = 1;
 190        else
 191                c->no_orphs = 0;
 192        spin_unlock(&c->orphan_lock);
 193        return 0;
 194}
 195
 196/**
 197 * avail_orphs - calculate available space.
 198 * @c: UBIFS file-system description object
 199 *
 200 * This function returns the number of orphans that can be written in the
 201 * available space.
 202 */
 203static int avail_orphs(struct ubifs_info *c)
 204{
 205        int avail_lebs, avail, gap;
 206
 207        avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1;
 208        avail = avail_lebs *
 209               ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
 210        gap = c->leb_size - c->ohead_offs;
 211        if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64))
 212                avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
 213        return avail;
 214}
 215
 216/**
 217 * tot_avail_orphs - calculate total space.
 218 * @c: UBIFS file-system description object
 219 *
 220 * This function returns the number of orphans that can be written in half
 221 * the total space. That leaves half the space for adding new orphans.
 222 */
 223static int tot_avail_orphs(struct ubifs_info *c)
 224{
 225        int avail_lebs, avail;
 226
 227        avail_lebs = c->orph_lebs;
 228        avail = avail_lebs *
 229               ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
 230        return avail / 2;
 231}
 232
 233/**
 234 * do_write_orph_node - write a node to the orphan head.
 235 * @c: UBIFS file-system description object
 236 * @len: length of node
 237 * @atomic: write atomically
 238 *
 239 * This function writes a node to the orphan head from the orphan buffer. If
 240 * %atomic is not zero, then the write is done atomically. On success, %0 is
 241 * returned, otherwise a negative error code is returned.
 242 */
 243static int do_write_orph_node(struct ubifs_info *c, int len, int atomic)
 244{
 245        int err = 0;
 246
 247        if (atomic) {
 248                ubifs_assert(c->ohead_offs == 0);
 249                ubifs_prepare_node(c, c->orph_buf, len, 1);
 250                len = ALIGN(len, c->min_io_size);
 251                err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len,
 252                                       UBI_SHORTTERM);
 253        } else {
 254                if (c->ohead_offs == 0) {
 255                        /* Ensure LEB has been unmapped */
 256                        err = ubifs_leb_unmap(c, c->ohead_lnum);
 257                        if (err)
 258                                return err;
 259                }
 260                err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum,
 261                                       c->ohead_offs, UBI_SHORTTERM);
 262        }
 263        return err;
 264}
 265
 266/**
 267 * write_orph_node - write an orphan node.
 268 * @c: UBIFS file-system description object
 269 * @atomic: write atomically
 270 *
 271 * This function builds an orphan node from the cnext list and writes it to the
 272 * orphan head. On success, %0 is returned, otherwise a negative error code
 273 * is returned.
 274 */
 275static int write_orph_node(struct ubifs_info *c, int atomic)
 276{
 277        struct ubifs_orphan *orphan, *cnext;
 278        struct ubifs_orph_node *orph;
 279        int gap, err, len, cnt, i;
 280
 281        ubifs_assert(c->cmt_orphans > 0);
 282        gap = c->leb_size - c->ohead_offs;
 283        if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) {
 284                c->ohead_lnum += 1;
 285                c->ohead_offs = 0;
 286                gap = c->leb_size;
 287                if (c->ohead_lnum > c->orph_last) {
 288                        /*
 289                         * We limit the number of orphans so that this should
 290                         * never happen.
 291                         */
 292                        ubifs_err("out of space in orphan area");
 293                        return -EINVAL;
 294                }
 295        }
 296        cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
 297        if (cnt > c->cmt_orphans)
 298                cnt = c->cmt_orphans;
 299        len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64);
 300        ubifs_assert(c->orph_buf);
 301        orph = c->orph_buf;
 302        orph->ch.node_type = UBIFS_ORPH_NODE;
 303        spin_lock(&c->orphan_lock);
 304        cnext = c->orph_cnext;
 305        for (i = 0; i < cnt; i++) {
 306                orphan = cnext;
 307                orph->inos[i] = cpu_to_le64(orphan->inum);
 308                cnext = orphan->cnext;
 309                orphan->cnext = NULL;
 310        }
 311        c->orph_cnext = cnext;
 312        c->cmt_orphans -= cnt;
 313        spin_unlock(&c->orphan_lock);
 314        if (c->cmt_orphans)
 315                orph->cmt_no = cpu_to_le64(c->cmt_no);
 316        else
 317                /* Mark the last node of the commit */
 318                orph->cmt_no = cpu_to_le64((c->cmt_no) | (1ULL << 63));
 319        ubifs_assert(c->ohead_offs + len <= c->leb_size);
 320        ubifs_assert(c->ohead_lnum >= c->orph_first);
 321        ubifs_assert(c->ohead_lnum <= c->orph_last);
 322        err = do_write_orph_node(c, len, atomic);
 323        c->ohead_offs += ALIGN(len, c->min_io_size);
 324        c->ohead_offs = ALIGN(c->ohead_offs, 8);
 325        return err;
 326}
 327
 328/**
 329 * write_orph_nodes - write orphan nodes until there are no more to commit.
 330 * @c: UBIFS file-system description object
 331 * @atomic: write atomically
 332 *
 333 * This function writes orphan nodes for all the orphans to commit. On success,
 334 * %0 is returned, otherwise a negative error code is returned.
 335 */
 336static int write_orph_nodes(struct ubifs_info *c, int atomic)
 337{
 338        int err;
 339
 340        while (c->cmt_orphans > 0) {
 341                err = write_orph_node(c, atomic);
 342                if (err)
 343                        return err;
 344        }
 345        if (atomic) {
 346                int lnum;
 347
 348                /* Unmap any unused LEBs after consolidation */
 349                lnum = c->ohead_lnum + 1;
 350                for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) {
 351                        err = ubifs_leb_unmap(c, lnum);
 352                        if (err)
 353                                return err;
 354                }
 355        }
 356        return 0;
 357}
 358
 359/**
 360 * consolidate - consolidate the orphan area.
 361 * @c: UBIFS file-system description object
 362 *
 363 * This function enables consolidation by putting all the orphans into the list
 364 * to commit. The list is in the order that the orphans were added, and the
 365 * LEBs are written atomically in order, so at no time can orphans be lost by
 366 * an unclean unmount.
 367 *
 368 * This function returns %0 on success and a negative error code on failure.
 369 */
 370static int consolidate(struct ubifs_info *c)
 371{
 372        int tot_avail = tot_avail_orphs(c), err = 0;
 373
 374        spin_lock(&c->orphan_lock);
 375        dbg_cmt("there is space for %d orphans and there are %d",
 376                tot_avail, c->tot_orphans);
 377        if (c->tot_orphans - c->new_orphans <= tot_avail) {
 378                struct ubifs_orphan *orphan, **last;
 379                int cnt = 0;
 380
 381                /* Change the cnext list to include all non-new orphans */
 382                last = &c->orph_cnext;
 383                list_for_each_entry(orphan, &c->orph_list, list) {
 384                        if (orphan->new)
 385                                continue;
 386                        *last = orphan;
 387                        last = &orphan->cnext;
 388                        cnt += 1;
 389                }
 390                *last = orphan->cnext;
 391                ubifs_assert(cnt == c->tot_orphans - c->new_orphans);
 392                c->cmt_orphans = cnt;
 393                c->ohead_lnum = c->orph_first;
 394                c->ohead_offs = 0;
 395        } else {
 396                /*
 397                 * We limit the number of orphans so that this should
 398                 * never happen.
 399                 */
 400                ubifs_err("out of space in orphan area");
 401                err = -EINVAL;
 402        }
 403        spin_unlock(&c->orphan_lock);
 404        return err;
 405}
 406
 407/**
 408 * commit_orphans - commit orphans.
 409 * @c: UBIFS file-system description object
 410 *
 411 * This function commits orphans to flash. On success, %0 is returned,
 412 * otherwise a negative error code is returned.
 413 */
 414static int commit_orphans(struct ubifs_info *c)
 415{
 416        int avail, atomic = 0, err;
 417
 418        ubifs_assert(c->cmt_orphans > 0);
 419        avail = avail_orphs(c);
 420        if (avail < c->cmt_orphans) {
 421                /* Not enough space to write new orphans, so consolidate */
 422                err = consolidate(c);
 423                if (err)
 424                        return err;
 425                atomic = 1;
 426        }
 427        err = write_orph_nodes(c, atomic);
 428        return err;
 429}
 430
 431/**
 432 * erase_deleted - erase the orphans marked for deletion.
 433 * @c: UBIFS file-system description object
 434 *
 435 * During commit, the orphans being committed cannot be deleted, so they are
 436 * marked for deletion and deleted by this function. Also, the recovery
 437 * adds killed orphans to the deletion list, and therefore they are deleted
 438 * here too.
 439 */
 440static void erase_deleted(struct ubifs_info *c)
 441{
 442        struct ubifs_orphan *orphan, *dnext;
 443
 444        spin_lock(&c->orphan_lock);
 445        dnext = c->orph_dnext;
 446        while (dnext) {
 447                orphan = dnext;
 448                dnext = orphan->dnext;
 449                ubifs_assert(!orphan->new);
 450                rb_erase(&orphan->rb, &c->orph_tree);
 451                list_del(&orphan->list);
 452                c->tot_orphans -= 1;
 453                dbg_gen("deleting orphan ino %lu", (unsigned long)orphan->inum);
 454                kfree(orphan);
 455        }
 456        c->orph_dnext = NULL;
 457        spin_unlock(&c->orphan_lock);
 458}
 459
 460/**
 461 * ubifs_orphan_end_commit - end commit of orphans.
 462 * @c: UBIFS file-system description object
 463 *
 464 * End commit of orphans.
 465 */
 466int ubifs_orphan_end_commit(struct ubifs_info *c)
 467{
 468        int err;
 469
 470        if (c->cmt_orphans != 0) {
 471                err = commit_orphans(c);
 472                if (err)
 473                        return err;
 474        }
 475        erase_deleted(c);
 476        err = dbg_check_orphans(c);
 477        return err;
 478}
 479
 480/**
 481 * ubifs_clear_orphans - erase all LEBs used for orphans.
 482 * @c: UBIFS file-system description object
 483 *
 484 * If recovery is not required, then the orphans from the previous session
 485 * are not needed. This function locates the LEBs used to record
 486 * orphans, and un-maps them.
 487 */
 488int ubifs_clear_orphans(struct ubifs_info *c)
 489{
 490        int lnum, err;
 491
 492        for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
 493                err = ubifs_leb_unmap(c, lnum);
 494                if (err)
 495                        return err;
 496        }
 497        c->ohead_lnum = c->orph_first;
 498        c->ohead_offs = 0;
 499        return 0;
 500}
 501
 502/**
 503 * insert_dead_orphan - insert an orphan.
 504 * @c: UBIFS file-system description object
 505 * @inum: orphan inode number
 506 *
 507 * This function is a helper to the 'do_kill_orphans()' function. The orphan
 508 * must be kept until the next commit, so it is added to the rb-tree and the
 509 * deletion list.
 510 */
 511static int insert_dead_orphan(struct ubifs_info *c, ino_t inum)
 512{
 513        struct ubifs_orphan *orphan, *o;
 514        struct rb_node **p, *parent = NULL;
 515
 516        orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_KERNEL);
 517        if (!orphan)
 518                return -ENOMEM;
 519        orphan->inum = inum;
 520
 521        p = &c->orph_tree.rb_node;
 522        while (*p) {
 523                parent = *p;
 524                o = rb_entry(parent, struct ubifs_orphan, rb);
 525                if (inum < o->inum)
 526                        p = &(*p)->rb_left;
 527                else if (inum > o->inum)
 528                        p = &(*p)->rb_right;
 529                else {
 530                        /* Already added - no problem */
 531                        kfree(orphan);
 532                        return 0;
 533                }
 534        }
 535        c->tot_orphans += 1;
 536        rb_link_node(&orphan->rb, parent, p);
 537        rb_insert_color(&orphan->rb, &c->orph_tree);
 538        list_add_tail(&orphan->list, &c->orph_list);
 539        orphan->dnext = c->orph_dnext;
 540        c->orph_dnext = orphan;
 541        dbg_mnt("ino %lu, new %d, tot %d", (unsigned long)inum,
 542                c->new_orphans, c->tot_orphans);
 543        return 0;
 544}
 545
 546/**
 547 * do_kill_orphans - remove orphan inodes from the index.
 548 * @c: UBIFS file-system description object
 549 * @sleb: scanned LEB
 550 * @last_cmt_no: cmt_no of last orphan node read is passed and returned here
 551 * @outofdate: whether the LEB is out of date is returned here
 552 * @last_flagged: whether the end orphan node is encountered
 553 *
 554 * This function is a helper to the 'kill_orphans()' function. It goes through
 555 * every orphan node in a LEB and for every inode number recorded, removes
 556 * all keys for that inode from the TNC.
 557 */
 558static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
 559                           unsigned long long *last_cmt_no, int *outofdate,
 560                           int *last_flagged)
 561{
 562        struct ubifs_scan_node *snod;
 563        struct ubifs_orph_node *orph;
 564        unsigned long long cmt_no;
 565        ino_t inum;
 566        int i, n, err, first = 1;
 567
 568        list_for_each_entry(snod, &sleb->nodes, list) {
 569                if (snod->type != UBIFS_ORPH_NODE) {
 570                        ubifs_err("invalid node type %d in orphan area at "
 571                                  "%d:%d", snod->type, sleb->lnum, snod->offs);
 572                        dbg_dump_node(c, snod->node);
 573                        return -EINVAL;
 574                }
 575
 576                orph = snod->node;
 577
 578                /* Check commit number */
 579                cmt_no = le64_to_cpu(orph->cmt_no) & LLONG_MAX;
 580                /*
 581                 * The commit number on the master node may be less, because
 582                 * of a failed commit. If there are several failed commits in a
 583                 * row, the commit number written on orphan nodes will continue
 584                 * to increase (because the commit number is adjusted here) even
 585                 * though the commit number on the master node stays the same
 586                 * because the master node has not been re-written.
 587                 */
 588                if (cmt_no > c->cmt_no)
 589                        c->cmt_no = cmt_no;
 590                if (cmt_no < *last_cmt_no && *last_flagged) {
 591                        /*
 592                         * The last orphan node had a higher commit number and
 593                         * was flagged as the last written for that commit
 594                         * number. That makes this orphan node, out of date.
 595                         */
 596                        if (!first) {
 597                                ubifs_err("out of order commit number %llu in "
 598                                          "orphan node at %d:%d",
 599                                          cmt_no, sleb->lnum, snod->offs);
 600                                dbg_dump_node(c, snod->node);
 601                                return -EINVAL;
 602                        }
 603                        dbg_rcvry("out of date LEB %d", sleb->lnum);
 604                        *outofdate = 1;
 605                        return 0;
 606                }
 607
 608                if (first)
 609                        first = 0;
 610
 611                n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
 612                for (i = 0; i < n; i++) {
 613                        inum = le64_to_cpu(orph->inos[i]);
 614                        dbg_rcvry("deleting orphaned inode %lu",
 615                                  (unsigned long)inum);
 616                        err = ubifs_tnc_remove_ino(c, inum);
 617                        if (err)
 618                                return err;
 619                        err = insert_dead_orphan(c, inum);
 620                        if (err)
 621                                return err;
 622                }
 623
 624                *last_cmt_no = cmt_no;
 625                if (le64_to_cpu(orph->cmt_no) & (1ULL << 63)) {
 626                        dbg_rcvry("last orph node for commit %llu at %d:%d",
 627                                  cmt_no, sleb->lnum, snod->offs);
 628                        *last_flagged = 1;
 629                } else
 630                        *last_flagged = 0;
 631        }
 632
 633        return 0;
 634}
 635
 636/**
 637 * kill_orphans - remove all orphan inodes from the index.
 638 * @c: UBIFS file-system description object
 639 *
 640 * If recovery is required, then orphan inodes recorded during the previous
 641 * session (which ended with an unclean unmount) must be deleted from the index.
 642 * This is done by updating the TNC, but since the index is not updated until
 643 * the next commit, the LEBs where the orphan information is recorded are not
 644 * erased until the next commit.
 645 */
 646static int kill_orphans(struct ubifs_info *c)
 647{
 648        unsigned long long last_cmt_no = 0;
 649        int lnum, err = 0, outofdate = 0, last_flagged = 0;
 650
 651        c->ohead_lnum = c->orph_first;
 652        c->ohead_offs = 0;
 653        /* Check no-orphans flag and skip this if no orphans */
 654        if (c->no_orphs) {
 655                dbg_rcvry("no orphans");
 656                return 0;
 657        }
 658        /*
 659         * Orph nodes always start at c->orph_first and are written to each
 660         * successive LEB in turn. Generally unused LEBs will have been unmapped
 661         * but may contain out of date orphan nodes if the unmap didn't go
 662         * through. In addition, the last orphan node written for each commit is
 663         * marked (top bit of orph->cmt_no is set to 1). It is possible that
 664         * there are orphan nodes from the next commit (i.e. the commit did not
 665         * complete successfully). In that case, no orphans will have been lost
 666         * due to the way that orphans are written, and any orphans added will
 667         * be valid orphans anyway and so can be deleted.
 668         */
 669        for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
 670                struct ubifs_scan_leb *sleb;
 671
 672                dbg_rcvry("LEB %d", lnum);
 673                sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1);
 674                if (IS_ERR(sleb)) {
 675                        if (PTR_ERR(sleb) == -EUCLEAN)
 676                                sleb = ubifs_recover_leb(c, lnum, 0, c->sbuf, 0);
 677                        if (IS_ERR(sleb)) {
 678                                err = PTR_ERR(sleb);
 679                                break;
 680                        }
 681                }
 682                err = do_kill_orphans(c, sleb, &last_cmt_no, &outofdate,
 683                                      &last_flagged);
 684                if (err || outofdate) {
 685                        ubifs_scan_destroy(sleb);
 686                        break;
 687                }
 688                if (sleb->endpt) {
 689                        c->ohead_lnum = lnum;
 690                        c->ohead_offs = sleb->endpt;
 691                }
 692                ubifs_scan_destroy(sleb);
 693        }
 694        return err;
 695}
 696
 697/**
 698 * ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them.
 699 * @c: UBIFS file-system description object
 700 * @unclean: indicates recovery from unclean unmount
 701 * @read_only: indicates read only mount
 702 *
 703 * This function is called when mounting to erase orphans from the previous
 704 * session. If UBIFS was not unmounted cleanly, then the inodes recorded as
 705 * orphans are deleted.
 706 */
 707int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only)
 708{
 709        int err = 0;
 710
 711        c->max_orphans = tot_avail_orphs(c);
 712
 713        if (!read_only) {
 714                c->orph_buf = vmalloc(c->leb_size);
 715                if (!c->orph_buf)
 716                        return -ENOMEM;
 717        }
 718
 719        if (unclean)
 720                err = kill_orphans(c);
 721        else if (!read_only)
 722                err = ubifs_clear_orphans(c);
 723
 724        return err;
 725}
 726
 727#ifdef CONFIG_UBIFS_FS_DEBUG
 728
 729struct check_orphan {
 730        struct rb_node rb;
 731        ino_t inum;
 732};
 733
 734struct check_info {
 735        unsigned long last_ino;
 736        unsigned long tot_inos;
 737        unsigned long missing;
 738        unsigned long long leaf_cnt;
 739        struct ubifs_ino_node *node;
 740        struct rb_root root;
 741};
 742
 743static int dbg_find_orphan(struct ubifs_info *c, ino_t inum)
 744{
 745        struct ubifs_orphan *o;
 746        struct rb_node *p;
 747
 748        spin_lock(&c->orphan_lock);
 749        p = c->orph_tree.rb_node;
 750        while (p) {
 751                o = rb_entry(p, struct ubifs_orphan, rb);
 752                if (inum < o->inum)
 753                        p = p->rb_left;
 754                else if (inum > o->inum)
 755                        p = p->rb_right;
 756                else {
 757                        spin_unlock(&c->orphan_lock);
 758                        return 1;
 759                }
 760        }
 761        spin_unlock(&c->orphan_lock);
 762        return 0;
 763}
 764
 765static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum)
 766{
 767        struct check_orphan *orphan, *o;
 768        struct rb_node **p, *parent = NULL;
 769
 770        orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS);
 771        if (!orphan)
 772                return -ENOMEM;
 773        orphan->inum = inum;
 774
 775        p = &root->rb_node;
 776        while (*p) {
 777                parent = *p;
 778                o = rb_entry(parent, struct check_orphan, rb);
 779                if (inum < o->inum)
 780                        p = &(*p)->rb_left;
 781                else if (inum > o->inum)
 782                        p = &(*p)->rb_right;
 783                else {
 784                        kfree(orphan);
 785                        return 0;
 786                }
 787        }
 788        rb_link_node(&orphan->rb, parent, p);
 789        rb_insert_color(&orphan->rb, root);
 790        return 0;
 791}
 792
 793static int dbg_find_check_orphan(struct rb_root *root, ino_t inum)
 794{
 795        struct check_orphan *o;
 796        struct rb_node *p;
 797
 798        p = root->rb_node;
 799        while (p) {
 800                o = rb_entry(p, struct check_orphan, rb);
 801                if (inum < o->inum)
 802                        p = p->rb_left;
 803                else if (inum > o->inum)
 804                        p = p->rb_right;
 805                else
 806                        return 1;
 807        }
 808        return 0;
 809}
 810
 811static void dbg_free_check_tree(struct rb_root *root)
 812{
 813        struct rb_node *this = root->rb_node;
 814        struct check_orphan *o;
 815
 816        while (this) {
 817                if (this->rb_left) {
 818                        this = this->rb_left;
 819                        continue;
 820                } else if (this->rb_right) {
 821                        this = this->rb_right;
 822                        continue;
 823                }
 824                o = rb_entry(this, struct check_orphan, rb);
 825                this = rb_parent(this);
 826                if (this) {
 827                        if (this->rb_left == &o->rb)
 828                                this->rb_left = NULL;
 829                        else
 830                                this->rb_right = NULL;
 831                }
 832                kfree(o);
 833        }
 834}
 835
 836static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 837                            void *priv)
 838{
 839        struct check_info *ci = priv;
 840        ino_t inum;
 841        int err;
 842
 843        inum = key_inum(c, &zbr->key);
 844        if (inum != ci->last_ino) {
 845                /* Lowest node type is the inode node, so it comes first */
 846                if (key_type(c, &zbr->key) != UBIFS_INO_KEY)
 847                        ubifs_err("found orphan node ino %lu, type %d",
 848                                  (unsigned long)inum, key_type(c, &zbr->key));
 849                ci->last_ino = inum;
 850                ci->tot_inos += 1;
 851                err = ubifs_tnc_read_node(c, zbr, ci->node);
 852                if (err) {
 853                        ubifs_err("node read failed, error %d", err);
 854                        return err;
 855                }
 856                if (ci->node->nlink == 0)
 857                        /* Must be recorded as an orphan */
 858                        if (!dbg_find_check_orphan(&ci->root, inum) &&
 859                            !dbg_find_orphan(c, inum)) {
 860                                ubifs_err("missing orphan, ino %lu",
 861                                          (unsigned long)inum);
 862                                ci->missing += 1;
 863                        }
 864        }
 865        ci->leaf_cnt += 1;
 866        return 0;
 867}
 868
 869static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb)
 870{
 871        struct ubifs_scan_node *snod;
 872        struct ubifs_orph_node *orph;
 873        ino_t inum;
 874        int i, n, err;
 875
 876        list_for_each_entry(snod, &sleb->nodes, list) {
 877                cond_resched();
 878                if (snod->type != UBIFS_ORPH_NODE)
 879                        continue;
 880                orph = snod->node;
 881                n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
 882                for (i = 0; i < n; i++) {
 883                        inum = le64_to_cpu(orph->inos[i]);
 884                        err = dbg_ins_check_orphan(&ci->root, inum);
 885                        if (err)
 886                                return err;
 887                }
 888        }
 889        return 0;
 890}
 891
 892static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci)
 893{
 894        int lnum, err = 0;
 895
 896        /* Check no-orphans flag and skip this if no orphans */
 897        if (c->no_orphs)
 898                return 0;
 899
 900        for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
 901                struct ubifs_scan_leb *sleb;
 902
 903                sleb = ubifs_scan(c, lnum, 0, c->dbg->buf, 0);
 904                if (IS_ERR(sleb)) {
 905                        err = PTR_ERR(sleb);
 906                        break;
 907                }
 908
 909                err = dbg_read_orphans(ci, sleb);
 910                ubifs_scan_destroy(sleb);
 911                if (err)
 912                        break;
 913        }
 914
 915        return err;
 916}
 917
 918static int dbg_check_orphans(struct ubifs_info *c)
 919{
 920        struct check_info ci;
 921        int err;
 922
 923        if (!(ubifs_chk_flags & UBIFS_CHK_ORPH))
 924                return 0;
 925
 926        ci.last_ino = 0;
 927        ci.tot_inos = 0;
 928        ci.missing  = 0;
 929        ci.leaf_cnt = 0;
 930        ci.root = RB_ROOT;
 931        ci.node = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
 932        if (!ci.node) {
 933                ubifs_err("out of memory");
 934                return -ENOMEM;
 935        }
 936
 937        err = dbg_scan_orphans(c, &ci);
 938        if (err)
 939                goto out;
 940
 941        err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci);
 942        if (err) {
 943                ubifs_err("cannot scan TNC, error %d", err);
 944                goto out;
 945        }
 946
 947        if (ci.missing) {
 948                ubifs_err("%lu missing orphan(s)", ci.missing);
 949                err = -EINVAL;
 950                goto out;
 951        }
 952
 953        dbg_cmt("last inode number is %lu", ci.last_ino);
 954        dbg_cmt("total number of inodes is %lu", ci.tot_inos);
 955        dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt);
 956
 957out:
 958        dbg_free_check_tree(&ci.root);
 959        kfree(ci.node);
 960        return err;
 961}
 962
 963#endif /* CONFIG_UBIFS_FS_DEBUG */
 964