linux/fs/ubifs/recovery.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Adrian Hunter
  20 *          Artem Bityutskiy (Битюцкий Артём)
  21 */
  22
  23/*
  24 * This file implements functions needed to recover from unclean un-mounts.
  25 * When UBIFS is mounted, it checks a flag on the master node to determine if
  26 * an un-mount was completed sucessfully. If not, the process of mounting
  27 * incorparates additional checking and fixing of on-flash data structures.
  28 * UBIFS always cleans away all remnants of an unclean un-mount, so that
  29 * errors do not accumulate. However UBIFS defers recovery if it is mounted
  30 * read-only, and the flash is not modified in that case.
  31 */
  32
  33#include <linux/crc32.h>
  34#include "ubifs.h"
  35
  36/**
  37 * is_empty - determine whether a buffer is empty (contains all 0xff).
  38 * @buf: buffer to clean
  39 * @len: length of buffer
  40 *
  41 * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
  42 * %0 is returned.
  43 */
  44static int is_empty(void *buf, int len)
  45{
  46        uint8_t *p = buf;
  47        int i;
  48
  49        for (i = 0; i < len; i++)
  50                if (*p++ != 0xff)
  51                        return 0;
  52        return 1;
  53}
  54
  55/**
  56 * first_non_ff - find offset of the first non-0xff byte.
  57 * @buf: buffer to search in
  58 * @len: length of buffer
  59 *
  60 * This function returns offset of the first non-0xff byte in @buf or %-1 if
  61 * the buffer contains only 0xff bytes.
  62 */
  63static int first_non_ff(void *buf, int len)
  64{
  65        uint8_t *p = buf;
  66        int i;
  67
  68        for (i = 0; i < len; i++)
  69                if (*p++ != 0xff)
  70                        return i;
  71        return -1;
  72}
  73
  74/**
  75 * get_master_node - get the last valid master node allowing for corruption.
  76 * @c: UBIFS file-system description object
  77 * @lnum: LEB number
  78 * @pbuf: buffer containing the LEB read, is returned here
  79 * @mst: master node, if found, is returned here
  80 * @cor: corruption, if found, is returned here
  81 *
  82 * This function allocates a buffer, reads the LEB into it, and finds and
  83 * returns the last valid master node allowing for one area of corruption.
  84 * The corrupt area, if there is one, must be consistent with the assumption
  85 * that it is the result of an unclean unmount while the master node was being
  86 * written. Under those circumstances, it is valid to use the previously written
  87 * master node.
  88 *
  89 * This function returns %0 on success and a negative error code on failure.
  90 */
  91static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
  92                           struct ubifs_mst_node **mst, void **cor)
  93{
  94        const int sz = c->mst_node_alsz;
  95        int err, offs, len;
  96        void *sbuf, *buf;
  97
  98        sbuf = vmalloc(c->leb_size);
  99        if (!sbuf)
 100                return -ENOMEM;
 101
 102        err = ubi_read(c->ubi, lnum, sbuf, 0, c->leb_size);
 103        if (err && err != -EBADMSG)
 104                goto out_free;
 105
 106        /* Find the first position that is definitely not a node */
 107        offs = 0;
 108        buf = sbuf;
 109        len = c->leb_size;
 110        while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
 111                struct ubifs_ch *ch = buf;
 112
 113                if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
 114                        break;
 115                offs += sz;
 116                buf  += sz;
 117                len  -= sz;
 118        }
 119        /* See if there was a valid master node before that */
 120        if (offs) {
 121                int ret;
 122
 123                offs -= sz;
 124                buf  -= sz;
 125                len  += sz;
 126                ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
 127                if (ret != SCANNED_A_NODE && offs) {
 128                        /* Could have been corruption so check one place back */
 129                        offs -= sz;
 130                        buf  -= sz;
 131                        len  += sz;
 132                        ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
 133                        if (ret != SCANNED_A_NODE)
 134                                /*
 135                                 * We accept only one area of corruption because
 136                                 * we are assuming that it was caused while
 137                                 * trying to write a master node.
 138                                 */
 139                                goto out_err;
 140                }
 141                if (ret == SCANNED_A_NODE) {
 142                        struct ubifs_ch *ch = buf;
 143
 144                        if (ch->node_type != UBIFS_MST_NODE)
 145                                goto out_err;
 146                        dbg_rcvry("found a master node at %d:%d", lnum, offs);
 147                        *mst = buf;
 148                        offs += sz;
 149                        buf  += sz;
 150                        len  -= sz;
 151                }
 152        }
 153        /* Check for corruption */
 154        if (offs < c->leb_size) {
 155                if (!is_empty(buf, min_t(int, len, sz))) {
 156                        *cor = buf;
 157                        dbg_rcvry("found corruption at %d:%d", lnum, offs);
 158                }
 159                offs += sz;
 160                buf  += sz;
 161                len  -= sz;
 162        }
 163        /* Check remaining empty space */
 164        if (offs < c->leb_size)
 165                if (!is_empty(buf, len))
 166                        goto out_err;
 167        *pbuf = sbuf;
 168        return 0;
 169
 170out_err:
 171        err = -EINVAL;
 172out_free:
 173        vfree(sbuf);
 174        *mst = NULL;
 175        *cor = NULL;
 176        return err;
 177}
 178
 179/**
 180 * write_rcvrd_mst_node - write recovered master node.
 181 * @c: UBIFS file-system description object
 182 * @mst: master node
 183 *
 184 * This function returns %0 on success and a negative error code on failure.
 185 */
 186static int write_rcvrd_mst_node(struct ubifs_info *c,
 187                                struct ubifs_mst_node *mst)
 188{
 189        int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
 190        __le32 save_flags;
 191
 192        dbg_rcvry("recovery");
 193
 194        save_flags = mst->flags;
 195        mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
 196
 197        ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1);
 198        err = ubi_leb_change(c->ubi, lnum, mst, sz, UBI_SHORTTERM);
 199        if (err)
 200                goto out;
 201        err = ubi_leb_change(c->ubi, lnum + 1, mst, sz, UBI_SHORTTERM);
 202        if (err)
 203                goto out;
 204out:
 205        mst->flags = save_flags;
 206        return err;
 207}
 208
 209/**
 210 * ubifs_recover_master_node - recover the master node.
 211 * @c: UBIFS file-system description object
 212 *
 213 * This function recovers the master node from corruption that may occur due to
 214 * an unclean unmount.
 215 *
 216 * This function returns %0 on success and a negative error code on failure.
 217 */
 218int ubifs_recover_master_node(struct ubifs_info *c)
 219{
 220        void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
 221        struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
 222        const int sz = c->mst_node_alsz;
 223        int err, offs1, offs2;
 224
 225        dbg_rcvry("recovery");
 226
 227        err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
 228        if (err)
 229                goto out_free;
 230
 231        err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
 232        if (err)
 233                goto out_free;
 234
 235        if (mst1) {
 236                offs1 = (void *)mst1 - buf1;
 237                if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
 238                    (offs1 == 0 && !cor1)) {
 239                        /*
 240                         * mst1 was written by recovery at offset 0 with no
 241                         * corruption.
 242                         */
 243                        dbg_rcvry("recovery recovery");
 244                        mst = mst1;
 245                } else if (mst2) {
 246                        offs2 = (void *)mst2 - buf2;
 247                        if (offs1 == offs2) {
 248                                /* Same offset, so must be the same */
 249                                if (memcmp((void *)mst1 + UBIFS_CH_SZ,
 250                                           (void *)mst2 + UBIFS_CH_SZ,
 251                                           UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
 252                                        goto out_err;
 253                                mst = mst1;
 254                        } else if (offs2 + sz == offs1) {
 255                                /* 1st LEB was written, 2nd was not */
 256                                if (cor1)
 257                                        goto out_err;
 258                                mst = mst1;
 259                        } else if (offs1 == 0 && offs2 + sz >= c->leb_size) {
 260                                /* 1st LEB was unmapped and written, 2nd not */
 261                                if (cor1)
 262                                        goto out_err;
 263                                mst = mst1;
 264                        } else
 265                                goto out_err;
 266                } else {
 267                        /*
 268                         * 2nd LEB was unmapped and about to be written, so
 269                         * there must be only one master node in the first LEB
 270                         * and no corruption.
 271                         */
 272                        if (offs1 != 0 || cor1)
 273                                goto out_err;
 274                        mst = mst1;
 275                }
 276        } else {
 277                if (!mst2)
 278                        goto out_err;
 279                /*
 280                 * 1st LEB was unmapped and about to be written, so there must
 281                 * be no room left in 2nd LEB.
 282                 */
 283                offs2 = (void *)mst2 - buf2;
 284                if (offs2 + sz + sz <= c->leb_size)
 285                        goto out_err;
 286                mst = mst2;
 287        }
 288
 289        ubifs_msg("recovered master node from LEB %d",
 290                  (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
 291
 292        memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
 293
 294        if ((c->vfs_sb->s_flags & MS_RDONLY)) {
 295                /* Read-only mode. Keep a copy for switching to rw mode */
 296                c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
 297                if (!c->rcvrd_mst_node) {
 298                        err = -ENOMEM;
 299                        goto out_free;
 300                }
 301                memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
 302        } else {
 303                /* Write the recovered master node */
 304                c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
 305                err = write_rcvrd_mst_node(c, c->mst_node);
 306                if (err)
 307                        goto out_free;
 308        }
 309
 310        vfree(buf2);
 311        vfree(buf1);
 312
 313        return 0;
 314
 315out_err:
 316        err = -EINVAL;
 317out_free:
 318        ubifs_err("failed to recover master node");
 319        if (mst1) {
 320                dbg_err("dumping first master node");
 321                dbg_dump_node(c, mst1);
 322        }
 323        if (mst2) {
 324                dbg_err("dumping second master node");
 325                dbg_dump_node(c, mst2);
 326        }
 327        vfree(buf2);
 328        vfree(buf1);
 329        return err;
 330}
 331
 332/**
 333 * ubifs_write_rcvrd_mst_node - write the recovered master node.
 334 * @c: UBIFS file-system description object
 335 *
 336 * This function writes the master node that was recovered during mounting in
 337 * read-only mode and must now be written because we are remounting rw.
 338 *
 339 * This function returns %0 on success and a negative error code on failure.
 340 */
 341int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
 342{
 343        int err;
 344
 345        if (!c->rcvrd_mst_node)
 346                return 0;
 347        c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
 348        c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
 349        err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
 350        if (err)
 351                return err;
 352        kfree(c->rcvrd_mst_node);
 353        c->rcvrd_mst_node = NULL;
 354        return 0;
 355}
 356
 357/**
 358 * is_last_write - determine if an offset was in the last write to a LEB.
 359 * @c: UBIFS file-system description object
 360 * @buf: buffer to check
 361 * @offs: offset to check
 362 *
 363 * This function returns %1 if @offs was in the last write to the LEB whose data
 364 * is in @buf, otherwise %0 is returned.  The determination is made by checking
 365 * for subsequent empty space starting from the next @c->min_io_size boundary.
 366 */
 367static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
 368{
 369        int empty_offs, check_len;
 370        uint8_t *p;
 371
 372        /*
 373         * Round up to the next @c->min_io_size boundary i.e. @offs is in the
 374         * last wbuf written. After that should be empty space.
 375         */
 376        empty_offs = ALIGN(offs + 1, c->min_io_size);
 377        check_len = c->leb_size - empty_offs;
 378        p = buf + empty_offs - offs;
 379        return is_empty(p, check_len);
 380}
 381
 382/**
 383 * clean_buf - clean the data from an LEB sitting in a buffer.
 384 * @c: UBIFS file-system description object
 385 * @buf: buffer to clean
 386 * @lnum: LEB number to clean
 387 * @offs: offset from which to clean
 388 * @len: length of buffer
 389 *
 390 * This function pads up to the next min_io_size boundary (if there is one) and
 391 * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
 392 * @c->min_io_size boundary.
 393 */
 394static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
 395                      int *offs, int *len)
 396{
 397        int empty_offs, pad_len;
 398
 399        lnum = lnum;
 400        dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
 401
 402        ubifs_assert(!(*offs & 7));
 403        empty_offs = ALIGN(*offs, c->min_io_size);
 404        pad_len = empty_offs - *offs;
 405        ubifs_pad(c, *buf, pad_len);
 406        *offs += pad_len;
 407        *buf += pad_len;
 408        *len -= pad_len;
 409        memset(*buf, 0xff, c->leb_size - empty_offs);
 410}
 411
 412/**
 413 * no_more_nodes - determine if there are no more nodes in a buffer.
 414 * @c: UBIFS file-system description object
 415 * @buf: buffer to check
 416 * @len: length of buffer
 417 * @lnum: LEB number of the LEB from which @buf was read
 418 * @offs: offset from which @buf was read
 419 *
 420 * This function ensures that the corrupted node at @offs is the last thing
 421 * written to a LEB. This function returns %1 if more data is not found and
 422 * %0 if more data is found.
 423 */
 424static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
 425                        int lnum, int offs)
 426{
 427        struct ubifs_ch *ch = buf;
 428        int skip, dlen = le32_to_cpu(ch->len);
 429
 430        /* Check for empty space after the corrupt node's common header */
 431        skip = ALIGN(offs + UBIFS_CH_SZ, c->min_io_size) - offs;
 432        if (is_empty(buf + skip, len - skip))
 433                return 1;
 434        /*
 435         * The area after the common header size is not empty, so the common
 436         * header must be intact. Check it.
 437         */
 438        if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) {
 439                dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs);
 440                return 0;
 441        }
 442        /* Now we know the corrupt node's length we can skip over it */
 443        skip = ALIGN(offs + dlen, c->min_io_size) - offs;
 444        /* After which there should be empty space */
 445        if (is_empty(buf + skip, len - skip))
 446                return 1;
 447        dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip);
 448        return 0;
 449}
 450
 451/**
 452 * fix_unclean_leb - fix an unclean LEB.
 453 * @c: UBIFS file-system description object
 454 * @sleb: scanned LEB information
 455 * @start: offset where scan started
 456 */
 457static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
 458                           int start)
 459{
 460        int lnum = sleb->lnum, endpt = start;
 461
 462        /* Get the end offset of the last node we are keeping */
 463        if (!list_empty(&sleb->nodes)) {
 464                struct ubifs_scan_node *snod;
 465
 466                snod = list_entry(sleb->nodes.prev,
 467                                  struct ubifs_scan_node, list);
 468                endpt = snod->offs + snod->len;
 469        }
 470
 471        if ((c->vfs_sb->s_flags & MS_RDONLY) && !c->remounting_rw) {
 472                /* Add to recovery list */
 473                struct ubifs_unclean_leb *ucleb;
 474
 475                dbg_rcvry("need to fix LEB %d start %d endpt %d",
 476                          lnum, start, sleb->endpt);
 477                ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
 478                if (!ucleb)
 479                        return -ENOMEM;
 480                ucleb->lnum = lnum;
 481                ucleb->endpt = endpt;
 482                list_add_tail(&ucleb->list, &c->unclean_leb_list);
 483        } else {
 484                /* Write the fixed LEB back to flash */
 485                int err;
 486
 487                dbg_rcvry("fixing LEB %d start %d endpt %d",
 488                          lnum, start, sleb->endpt);
 489                if (endpt == 0) {
 490                        err = ubifs_leb_unmap(c, lnum);
 491                        if (err)
 492                                return err;
 493                } else {
 494                        int len = ALIGN(endpt, c->min_io_size);
 495
 496                        if (start) {
 497                                err = ubi_read(c->ubi, lnum, sleb->buf, 0,
 498                                               start);
 499                                if (err)
 500                                        return err;
 501                        }
 502                        /* Pad to min_io_size */
 503                        if (len > endpt) {
 504                                int pad_len = len - ALIGN(endpt, 8);
 505
 506                                if (pad_len > 0) {
 507                                        void *buf = sleb->buf + len - pad_len;
 508
 509                                        ubifs_pad(c, buf, pad_len);
 510                                }
 511                        }
 512                        err = ubi_leb_change(c->ubi, lnum, sleb->buf, len,
 513                                             UBI_UNKNOWN);
 514                        if (err)
 515                                return err;
 516                }
 517        }
 518        return 0;
 519}
 520
 521/**
 522 * drop_incomplete_group - drop nodes from an incomplete group.
 523 * @sleb: scanned LEB information
 524 * @offs: offset of dropped nodes is returned here
 525 *
 526 * This function returns %1 if nodes are dropped and %0 otherwise.
 527 */
 528static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs)
 529{
 530        int dropped = 0;
 531
 532        while (!list_empty(&sleb->nodes)) {
 533                struct ubifs_scan_node *snod;
 534                struct ubifs_ch *ch;
 535
 536                snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
 537                                  list);
 538                ch = snod->node;
 539                if (ch->group_type != UBIFS_IN_NODE_GROUP)
 540                        return dropped;
 541                dbg_rcvry("dropping node at %d:%d", sleb->lnum, snod->offs);
 542                *offs = snod->offs;
 543                list_del(&snod->list);
 544                kfree(snod);
 545                sleb->nodes_cnt -= 1;
 546                dropped = 1;
 547        }
 548        return dropped;
 549}
 550
 551/**
 552 * ubifs_recover_leb - scan and recover a LEB.
 553 * @c: UBIFS file-system description object
 554 * @lnum: LEB number
 555 * @offs: offset
 556 * @sbuf: LEB-sized buffer to use
 557 * @grouped: nodes may be grouped for recovery
 558 *
 559 * This function does a scan of a LEB, but caters for errors that might have
 560 * been caused by the unclean unmount from which we are attempting to recover.
 561 * Returns %0 in case of success, %-EUCLEAN if an unrecoverable corruption is
 562 * found, and a negative error code in case of failure.
 563 */
 564struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
 565                                         int offs, void *sbuf, int grouped)
 566{
 567        int err, len = c->leb_size - offs, need_clean = 0, quiet = 1;
 568        int empty_chkd = 0, start = offs;
 569        struct ubifs_scan_leb *sleb;
 570        void *buf = sbuf + offs;
 571
 572        dbg_rcvry("%d:%d", lnum, offs);
 573
 574        sleb = ubifs_start_scan(c, lnum, offs, sbuf);
 575        if (IS_ERR(sleb))
 576                return sleb;
 577
 578        if (sleb->ecc)
 579                need_clean = 1;
 580
 581        while (len >= 8) {
 582                int ret;
 583
 584                dbg_scan("look at LEB %d:%d (%d bytes left)",
 585                         lnum, offs, len);
 586
 587                cond_resched();
 588
 589                /*
 590                 * Scan quietly until there is an error from which we cannot
 591                 * recover
 592                 */
 593                ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
 594
 595                if (ret == SCANNED_A_NODE) {
 596                        /* A valid node, and not a padding node */
 597                        struct ubifs_ch *ch = buf;
 598                        int node_len;
 599
 600                        err = ubifs_add_snod(c, sleb, buf, offs);
 601                        if (err)
 602                                goto error;
 603                        node_len = ALIGN(le32_to_cpu(ch->len), 8);
 604                        offs += node_len;
 605                        buf += node_len;
 606                        len -= node_len;
 607                        continue;
 608                }
 609
 610                if (ret > 0) {
 611                        /* Padding bytes or a valid padding node */
 612                        offs += ret;
 613                        buf += ret;
 614                        len -= ret;
 615                        continue;
 616                }
 617
 618                if (ret == SCANNED_EMPTY_SPACE) {
 619                        if (!is_empty(buf, len)) {
 620                                if (!is_last_write(c, buf, offs))
 621                                        break;
 622                                clean_buf(c, &buf, lnum, &offs, &len);
 623                                need_clean = 1;
 624                        }
 625                        empty_chkd = 1;
 626                        break;
 627                }
 628
 629                if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE)
 630                        if (is_last_write(c, buf, offs)) {
 631                                clean_buf(c, &buf, lnum, &offs, &len);
 632                                need_clean = 1;
 633                                empty_chkd = 1;
 634                                break;
 635                        }
 636
 637                if (ret == SCANNED_A_CORRUPT_NODE)
 638                        if (no_more_nodes(c, buf, len, lnum, offs)) {
 639                                clean_buf(c, &buf, lnum, &offs, &len);
 640                                need_clean = 1;
 641                                empty_chkd = 1;
 642                                break;
 643                        }
 644
 645                if (quiet) {
 646                        /* Redo the last scan but noisily */
 647                        quiet = 0;
 648                        continue;
 649                }
 650
 651                switch (ret) {
 652                case SCANNED_GARBAGE:
 653                        dbg_err("garbage");
 654                        goto corrupted;
 655                case SCANNED_A_CORRUPT_NODE:
 656                case SCANNED_A_BAD_PAD_NODE:
 657                        dbg_err("bad node");
 658                        goto corrupted;
 659                default:
 660                        dbg_err("unknown");
 661                        err = -EINVAL;
 662                        goto error;
 663                }
 664        }
 665
 666        if (!empty_chkd && !is_empty(buf, len)) {
 667                if (is_last_write(c, buf, offs)) {
 668                        clean_buf(c, &buf, lnum, &offs, &len);
 669                        need_clean = 1;
 670                } else {
 671                        int corruption = first_non_ff(buf, len);
 672
 673                        ubifs_err("corrupt empty space LEB %d:%d, corruption "
 674                                  "starts at %d", lnum, offs, corruption);
 675                        /* Make sure we dump interesting non-0xFF data */
 676                        offs = corruption;
 677                        buf += corruption;
 678                        goto corrupted;
 679                }
 680        }
 681
 682        /* Drop nodes from incomplete group */
 683        if (grouped && drop_incomplete_group(sleb, &offs)) {
 684                buf = sbuf + offs;
 685                len = c->leb_size - offs;
 686                clean_buf(c, &buf, lnum, &offs, &len);
 687                need_clean = 1;
 688        }
 689
 690        if (offs % c->min_io_size) {
 691                clean_buf(c, &buf, lnum, &offs, &len);
 692                need_clean = 1;
 693        }
 694
 695        ubifs_end_scan(c, sleb, lnum, offs);
 696
 697        if (need_clean) {
 698                err = fix_unclean_leb(c, sleb, start);
 699                if (err)
 700                        goto error;
 701        }
 702
 703        return sleb;
 704
 705corrupted:
 706        ubifs_scanned_corruption(c, lnum, offs, buf);
 707        err = -EUCLEAN;
 708error:
 709        ubifs_err("LEB %d scanning failed", lnum);
 710        ubifs_scan_destroy(sleb);
 711        return ERR_PTR(err);
 712}
 713
 714/**
 715 * get_cs_sqnum - get commit start sequence number.
 716 * @c: UBIFS file-system description object
 717 * @lnum: LEB number of commit start node
 718 * @offs: offset of commit start node
 719 * @cs_sqnum: commit start sequence number is returned here
 720 *
 721 * This function returns %0 on success and a negative error code on failure.
 722 */
 723static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
 724                        unsigned long long *cs_sqnum)
 725{
 726        struct ubifs_cs_node *cs_node = NULL;
 727        int err, ret;
 728
 729        dbg_rcvry("at %d:%d", lnum, offs);
 730        cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
 731        if (!cs_node)
 732                return -ENOMEM;
 733        if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
 734                goto out_err;
 735        err = ubi_read(c->ubi, lnum, (void *)cs_node, offs, UBIFS_CS_NODE_SZ);
 736        if (err && err != -EBADMSG)
 737                goto out_free;
 738        ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
 739        if (ret != SCANNED_A_NODE) {
 740                dbg_err("Not a valid node");
 741                goto out_err;
 742        }
 743        if (cs_node->ch.node_type != UBIFS_CS_NODE) {
 744                dbg_err("Node a CS node, type is %d", cs_node->ch.node_type);
 745                goto out_err;
 746        }
 747        if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
 748                dbg_err("CS node cmt_no %llu != current cmt_no %llu",
 749                        (unsigned long long)le64_to_cpu(cs_node->cmt_no),
 750                        c->cmt_no);
 751                goto out_err;
 752        }
 753        *cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
 754        dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
 755        kfree(cs_node);
 756        return 0;
 757
 758out_err:
 759        err = -EINVAL;
 760out_free:
 761        ubifs_err("failed to get CS sqnum");
 762        kfree(cs_node);
 763        return err;
 764}
 765
 766/**
 767 * ubifs_recover_log_leb - scan and recover a log LEB.
 768 * @c: UBIFS file-system description object
 769 * @lnum: LEB number
 770 * @offs: offset
 771 * @sbuf: LEB-sized buffer to use
 772 *
 773 * This function does a scan of a LEB, but caters for errors that might have
 774 * been caused by the unclean unmount from which we are attempting to recover.
 775 *
 776 * This function returns %0 on success and a negative error code on failure.
 777 */
 778struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
 779                                             int offs, void *sbuf)
 780{
 781        struct ubifs_scan_leb *sleb;
 782        int next_lnum;
 783
 784        dbg_rcvry("LEB %d", lnum);
 785        next_lnum = lnum + 1;
 786        if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
 787                next_lnum = UBIFS_LOG_LNUM;
 788        if (next_lnum != c->ltail_lnum) {
 789                /*
 790                 * We can only recover at the end of the log, so check that the
 791                 * next log LEB is empty or out of date.
 792                 */
 793                sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0);
 794                if (IS_ERR(sleb))
 795                        return sleb;
 796                if (sleb->nodes_cnt) {
 797                        struct ubifs_scan_node *snod;
 798                        unsigned long long cs_sqnum = c->cs_sqnum;
 799
 800                        snod = list_entry(sleb->nodes.next,
 801                                          struct ubifs_scan_node, list);
 802                        if (cs_sqnum == 0) {
 803                                int err;
 804
 805                                err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
 806                                if (err) {
 807                                        ubifs_scan_destroy(sleb);
 808                                        return ERR_PTR(err);
 809                                }
 810                        }
 811                        if (snod->sqnum > cs_sqnum) {
 812                                ubifs_err("unrecoverable log corruption "
 813                                          "in LEB %d", lnum);
 814                                ubifs_scan_destroy(sleb);
 815                                return ERR_PTR(-EUCLEAN);
 816                        }
 817                }
 818                ubifs_scan_destroy(sleb);
 819        }
 820        return ubifs_recover_leb(c, lnum, offs, sbuf, 0);
 821}
 822
 823/**
 824 * recover_head - recover a head.
 825 * @c: UBIFS file-system description object
 826 * @lnum: LEB number of head to recover
 827 * @offs: offset of head to recover
 828 * @sbuf: LEB-sized buffer to use
 829 *
 830 * This function ensures that there is no data on the flash at a head location.
 831 *
 832 * This function returns %0 on success and a negative error code on failure.
 833 */
 834static int recover_head(const struct ubifs_info *c, int lnum, int offs,
 835                        void *sbuf)
 836{
 837        int len, err;
 838
 839        if (c->min_io_size > 1)
 840                len = c->min_io_size;
 841        else
 842                len = 512;
 843        if (offs + len > c->leb_size)
 844                len = c->leb_size - offs;
 845
 846        if (!len)
 847                return 0;
 848
 849        /* Read at the head location and check it is empty flash */
 850        err = ubi_read(c->ubi, lnum, sbuf, offs, len);
 851        if (err || !is_empty(sbuf, len)) {
 852                dbg_rcvry("cleaning head at %d:%d", lnum, offs);
 853                if (offs == 0)
 854                        return ubifs_leb_unmap(c, lnum);
 855                err = ubi_read(c->ubi, lnum, sbuf, 0, offs);
 856                if (err)
 857                        return err;
 858                return ubi_leb_change(c->ubi, lnum, sbuf, offs, UBI_UNKNOWN);
 859        }
 860
 861        return 0;
 862}
 863
 864/**
 865 * ubifs_recover_inl_heads - recover index and LPT heads.
 866 * @c: UBIFS file-system description object
 867 * @sbuf: LEB-sized buffer to use
 868 *
 869 * This function ensures that there is no data on the flash at the index and
 870 * LPT head locations.
 871 *
 872 * This deals with the recovery of a half-completed journal commit. UBIFS is
 873 * careful never to overwrite the last version of the index or the LPT. Because
 874 * the index and LPT are wandering trees, data from a half-completed commit will
 875 * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
 876 * assumed to be empty and will be unmapped anyway before use, or in the index
 877 * and LPT heads.
 878 *
 879 * This function returns %0 on success and a negative error code on failure.
 880 */
 881int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf)
 882{
 883        int err;
 884
 885        ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY) || c->remounting_rw);
 886
 887        dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
 888        err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
 889        if (err)
 890                return err;
 891
 892        dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
 893        err = recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
 894        if (err)
 895                return err;
 896
 897        return 0;
 898}
 899
 900/**
 901 *  clean_an_unclean_leb - read and write a LEB to remove corruption.
 902 * @c: UBIFS file-system description object
 903 * @ucleb: unclean LEB information
 904 * @sbuf: LEB-sized buffer to use
 905 *
 906 * This function reads a LEB up to a point pre-determined by the mount recovery,
 907 * checks the nodes, and writes the result back to the flash, thereby cleaning
 908 * off any following corruption, or non-fatal ECC errors.
 909 *
 910 * This function returns %0 on success and a negative error code on failure.
 911 */
 912static int clean_an_unclean_leb(const struct ubifs_info *c,
 913                                struct ubifs_unclean_leb *ucleb, void *sbuf)
 914{
 915        int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
 916        void *buf = sbuf;
 917
 918        dbg_rcvry("LEB %d len %d", lnum, len);
 919
 920        if (len == 0) {
 921                /* Nothing to read, just unmap it */
 922                err = ubifs_leb_unmap(c, lnum);
 923                if (err)
 924                        return err;
 925                return 0;
 926        }
 927
 928        err = ubi_read(c->ubi, lnum, buf, offs, len);
 929        if (err && err != -EBADMSG)
 930                return err;
 931
 932        while (len >= 8) {
 933                int ret;
 934
 935                cond_resched();
 936
 937                /* Scan quietly until there is an error */
 938                ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
 939
 940                if (ret == SCANNED_A_NODE) {
 941                        /* A valid node, and not a padding node */
 942                        struct ubifs_ch *ch = buf;
 943                        int node_len;
 944
 945                        node_len = ALIGN(le32_to_cpu(ch->len), 8);
 946                        offs += node_len;
 947                        buf += node_len;
 948                        len -= node_len;
 949                        continue;
 950                }
 951
 952                if (ret > 0) {
 953                        /* Padding bytes or a valid padding node */
 954                        offs += ret;
 955                        buf += ret;
 956                        len -= ret;
 957                        continue;
 958                }
 959
 960                if (ret == SCANNED_EMPTY_SPACE) {
 961                        ubifs_err("unexpected empty space at %d:%d",
 962                                  lnum, offs);
 963                        return -EUCLEAN;
 964                }
 965
 966                if (quiet) {
 967                        /* Redo the last scan but noisily */
 968                        quiet = 0;
 969                        continue;
 970                }
 971
 972                ubifs_scanned_corruption(c, lnum, offs, buf);
 973                return -EUCLEAN;
 974        }
 975
 976        /* Pad to min_io_size */
 977        len = ALIGN(ucleb->endpt, c->min_io_size);
 978        if (len > ucleb->endpt) {
 979                int pad_len = len - ALIGN(ucleb->endpt, 8);
 980
 981                if (pad_len > 0) {
 982                        buf = c->sbuf + len - pad_len;
 983                        ubifs_pad(c, buf, pad_len);
 984                }
 985        }
 986
 987        /* Write back the LEB atomically */
 988        err = ubi_leb_change(c->ubi, lnum, sbuf, len, UBI_UNKNOWN);
 989        if (err)
 990                return err;
 991
 992        dbg_rcvry("cleaned LEB %d", lnum);
 993
 994        return 0;
 995}
 996
 997/**
 998 * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
 999 * @c: UBIFS file-system description object
1000 * @sbuf: LEB-sized buffer to use
1001 *
1002 * This function cleans a LEB identified during recovery that needs to be
1003 * written but was not because UBIFS was mounted read-only. This happens when
1004 * remounting to read-write mode.
1005 *
1006 * This function returns %0 on success and a negative error code on failure.
1007 */
1008int ubifs_clean_lebs(const struct ubifs_info *c, void *sbuf)
1009{
1010        dbg_rcvry("recovery");
1011        while (!list_empty(&c->unclean_leb_list)) {
1012                struct ubifs_unclean_leb *ucleb;
1013                int err;
1014
1015                ucleb = list_entry(c->unclean_leb_list.next,
1016                                   struct ubifs_unclean_leb, list);
1017                err = clean_an_unclean_leb(c, ucleb, sbuf);
1018                if (err)
1019                        return err;
1020                list_del(&ucleb->list);
1021                kfree(ucleb);
1022        }
1023        return 0;
1024}
1025
1026/**
1027 * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
1028 * @c: UBIFS file-system description object
1029 *
1030 * Out-of-place garbage collection requires always one empty LEB with which to
1031 * start garbage collection. The LEB number is recorded in c->gc_lnum and is
1032 * written to the master node on unmounting. In the case of an unclean unmount
1033 * the value of gc_lnum recorded in the master node is out of date and cannot
1034 * be used. Instead, recovery must allocate an empty LEB for this purpose.
1035 * However, there may not be enough empty space, in which case it must be
1036 * possible to GC the dirtiest LEB into the GC head LEB.
1037 *
1038 * This function also runs the commit which causes the TNC updates from
1039 * size-recovery and orphans to be written to the flash. That is important to
1040 * ensure correct replay order for subsequent mounts.
1041 *
1042 * This function returns %0 on success and a negative error code on failure.
1043 */
1044int ubifs_rcvry_gc_commit(struct ubifs_info *c)
1045{
1046        struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
1047        struct ubifs_lprops lp;
1048        int lnum, err;
1049
1050        c->gc_lnum = -1;
1051        if (wbuf->lnum == -1) {
1052                dbg_rcvry("no GC head LEB");
1053                goto find_free;
1054        }
1055        /*
1056         * See whether the used space in the dirtiest LEB fits in the GC head
1057         * LEB.
1058         */
1059        if (wbuf->offs == c->leb_size) {
1060                dbg_rcvry("no room in GC head LEB");
1061                goto find_free;
1062        }
1063        err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
1064        if (err) {
1065                if (err == -ENOSPC)
1066                        dbg_err("could not find a dirty LEB");
1067                return err;
1068        }
1069        ubifs_assert(!(lp.flags & LPROPS_INDEX));
1070        lnum = lp.lnum;
1071        if (lp.free + lp.dirty == c->leb_size) {
1072                /* An empty LEB was returned */
1073                if (lp.free != c->leb_size) {
1074                        err = ubifs_change_one_lp(c, lnum, c->leb_size,
1075                                                  0, 0, 0, 0);
1076                        if (err)
1077                                return err;
1078                }
1079                err = ubifs_leb_unmap(c, lnum);
1080                if (err)
1081                        return err;
1082                c->gc_lnum = lnum;
1083                dbg_rcvry("allocated LEB %d for GC", lnum);
1084                /* Run the commit */
1085                dbg_rcvry("committing");
1086                return ubifs_run_commit(c);
1087        }
1088        /*
1089         * There was no empty LEB so the used space in the dirtiest LEB must fit
1090         * in the GC head LEB.
1091         */
1092        if (lp.free + lp.dirty < wbuf->offs) {
1093                dbg_rcvry("LEB %d doesn't fit in GC head LEB %d:%d",
1094                          lnum, wbuf->lnum, wbuf->offs);
1095                err = ubifs_return_leb(c, lnum);
1096                if (err)
1097                        return err;
1098                goto find_free;
1099        }
1100        /*
1101         * We run the commit before garbage collection otherwise subsequent
1102         * mounts will see the GC and orphan deletion in a different order.
1103         */
1104        dbg_rcvry("committing");
1105        err = ubifs_run_commit(c);
1106        if (err)
1107                return err;
1108        /*
1109         * The data in the dirtiest LEB fits in the GC head LEB, so do the GC
1110         * - use locking to keep 'ubifs_assert()' happy.
1111         */
1112        dbg_rcvry("GC'ing LEB %d", lnum);
1113        mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1114        err = ubifs_garbage_collect_leb(c, &lp);
1115        if (err >= 0) {
1116                int err2 = ubifs_wbuf_sync_nolock(wbuf);
1117
1118                if (err2)
1119                        err = err2;
1120        }
1121        mutex_unlock(&wbuf->io_mutex);
1122        if (err < 0) {
1123                dbg_err("GC failed, error %d", err);
1124                if (err == -EAGAIN)
1125                        err = -EINVAL;
1126                return err;
1127        }
1128        if (err != LEB_RETAINED) {
1129                dbg_err("GC returned %d", err);
1130                return -EINVAL;
1131        }
1132        err = ubifs_leb_unmap(c, c->gc_lnum);
1133        if (err)
1134                return err;
1135        dbg_rcvry("allocated LEB %d for GC", lnum);
1136        return 0;
1137
1138find_free:
1139        /*
1140         * There is no GC head LEB or the free space in the GC head LEB is too
1141         * small. Allocate gc_lnum by calling 'ubifs_find_free_leb_for_idx()' so
1142         * GC is not run.
1143         */
1144        lnum = ubifs_find_free_leb_for_idx(c);
1145        if (lnum < 0) {
1146                dbg_err("could not find an empty LEB");
1147                return lnum;
1148        }
1149        /* And reset the index flag */
1150        err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
1151                                  LPROPS_INDEX, 0);
1152        if (err)
1153                return err;
1154        c->gc_lnum = lnum;
1155        dbg_rcvry("allocated LEB %d for GC", lnum);
1156        /* Run the commit */
1157        dbg_rcvry("committing");
1158        return ubifs_run_commit(c);
1159}
1160
1161/**
1162 * struct size_entry - inode size information for recovery.
1163 * @rb: link in the RB-tree of sizes
1164 * @inum: inode number
1165 * @i_size: size on inode
1166 * @d_size: maximum size based on data nodes
1167 * @exists: indicates whether the inode exists
1168 * @inode: inode if pinned in memory awaiting rw mode to fix it
1169 */
1170struct size_entry {
1171        struct rb_node rb;
1172        ino_t inum;
1173        loff_t i_size;
1174        loff_t d_size;
1175        int exists;
1176        struct inode *inode;
1177};
1178
1179/**
1180 * add_ino - add an entry to the size tree.
1181 * @c: UBIFS file-system description object
1182 * @inum: inode number
1183 * @i_size: size on inode
1184 * @d_size: maximum size based on data nodes
1185 * @exists: indicates whether the inode exists
1186 */
1187static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
1188                   loff_t d_size, int exists)
1189{
1190        struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
1191        struct size_entry *e;
1192
1193        while (*p) {
1194                parent = *p;
1195                e = rb_entry(parent, struct size_entry, rb);
1196                if (inum < e->inum)
1197                        p = &(*p)->rb_left;
1198                else
1199                        p = &(*p)->rb_right;
1200        }
1201
1202        e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
1203        if (!e)
1204                return -ENOMEM;
1205
1206        e->inum = inum;
1207        e->i_size = i_size;
1208        e->d_size = d_size;
1209        e->exists = exists;
1210
1211        rb_link_node(&e->rb, parent, p);
1212        rb_insert_color(&e->rb, &c->size_tree);
1213
1214        return 0;
1215}
1216
1217/**
1218 * find_ino - find an entry on the size tree.
1219 * @c: UBIFS file-system description object
1220 * @inum: inode number
1221 */
1222static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
1223{
1224        struct rb_node *p = c->size_tree.rb_node;
1225        struct size_entry *e;
1226
1227        while (p) {
1228                e = rb_entry(p, struct size_entry, rb);
1229                if (inum < e->inum)
1230                        p = p->rb_left;
1231                else if (inum > e->inum)
1232                        p = p->rb_right;
1233                else
1234                        return e;
1235        }
1236        return NULL;
1237}
1238
1239/**
1240 * remove_ino - remove an entry from the size tree.
1241 * @c: UBIFS file-system description object
1242 * @inum: inode number
1243 */
1244static void remove_ino(struct ubifs_info *c, ino_t inum)
1245{
1246        struct size_entry *e = find_ino(c, inum);
1247
1248        if (!e)
1249                return;
1250        rb_erase(&e->rb, &c->size_tree);
1251        kfree(e);
1252}
1253
1254/**
1255 * ubifs_destroy_size_tree - free resources related to the size tree.
1256 * @c: UBIFS file-system description object
1257 */
1258void ubifs_destroy_size_tree(struct ubifs_info *c)
1259{
1260        struct rb_node *this = c->size_tree.rb_node;
1261        struct size_entry *e;
1262
1263        while (this) {
1264                if (this->rb_left) {
1265                        this = this->rb_left;
1266                        continue;
1267                } else if (this->rb_right) {
1268                        this = this->rb_right;
1269                        continue;
1270                }
1271                e = rb_entry(this, struct size_entry, rb);
1272                if (e->inode)
1273                        iput(e->inode);
1274                this = rb_parent(this);
1275                if (this) {
1276                        if (this->rb_left == &e->rb)
1277                                this->rb_left = NULL;
1278                        else
1279                                this->rb_right = NULL;
1280                }
1281                kfree(e);
1282        }
1283        c->size_tree = RB_ROOT;
1284}
1285
1286/**
1287 * ubifs_recover_size_accum - accumulate inode sizes for recovery.
1288 * @c: UBIFS file-system description object
1289 * @key: node key
1290 * @deletion: node is for a deletion
1291 * @new_size: inode size
1292 *
1293 * This function has two purposes:
1294 *     1) to ensure there are no data nodes that fall outside the inode size
1295 *     2) to ensure there are no data nodes for inodes that do not exist
1296 * To accomplish those purposes, a rb-tree is constructed containing an entry
1297 * for each inode number in the journal that has not been deleted, and recording
1298 * the size from the inode node, the maximum size of any data node (also altered
1299 * by truncations) and a flag indicating a inode number for which no inode node
1300 * was present in the journal.
1301 *
1302 * Note that there is still the possibility that there are data nodes that have
1303 * been committed that are beyond the inode size, however the only way to find
1304 * them would be to scan the entire index. Alternatively, some provision could
1305 * be made to record the size of inodes at the start of commit, which would seem
1306 * very cumbersome for a scenario that is quite unlikely and the only negative
1307 * consequence of which is wasted space.
1308 *
1309 * This functions returns %0 on success and a negative error code on failure.
1310 */
1311int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
1312                             int deletion, loff_t new_size)
1313{
1314        ino_t inum = key_inum(c, key);
1315        struct size_entry *e;
1316        int err;
1317
1318        switch (key_type(c, key)) {
1319        case UBIFS_INO_KEY:
1320                if (deletion)
1321                        remove_ino(c, inum);
1322                else {
1323                        e = find_ino(c, inum);
1324                        if (e) {
1325                                e->i_size = new_size;
1326                                e->exists = 1;
1327                        } else {
1328                                err = add_ino(c, inum, new_size, 0, 1);
1329                                if (err)
1330                                        return err;
1331                        }
1332                }
1333                break;
1334        case UBIFS_DATA_KEY:
1335                e = find_ino(c, inum);
1336                if (e) {
1337                        if (new_size > e->d_size)
1338                                e->d_size = new_size;
1339                } else {
1340                        err = add_ino(c, inum, 0, new_size, 0);
1341                        if (err)
1342                                return err;
1343                }
1344                break;
1345        case UBIFS_TRUN_KEY:
1346                e = find_ino(c, inum);
1347                if (e)
1348                        e->d_size = new_size;
1349                break;
1350        }
1351        return 0;
1352}
1353
1354/**
1355 * fix_size_in_place - fix inode size in place on flash.
1356 * @c: UBIFS file-system description object
1357 * @e: inode size information for recovery
1358 */
1359static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
1360{
1361        struct ubifs_ino_node *ino = c->sbuf;
1362        unsigned char *p;
1363        union ubifs_key key;
1364        int err, lnum, offs, len;
1365        loff_t i_size;
1366        uint32_t crc;
1367
1368        /* Locate the inode node LEB number and offset */
1369        ino_key_init(c, &key, e->inum);
1370        err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
1371        if (err)
1372                goto out;
1373        /*
1374         * If the size recorded on the inode node is greater than the size that
1375         * was calculated from nodes in the journal then don't change the inode.
1376         */
1377        i_size = le64_to_cpu(ino->size);
1378        if (i_size >= e->d_size)
1379                return 0;
1380        /* Read the LEB */
1381        err = ubi_read(c->ubi, lnum, c->sbuf, 0, c->leb_size);
1382        if (err)
1383                goto out;
1384        /* Change the size field and recalculate the CRC */
1385        ino = c->sbuf + offs;
1386        ino->size = cpu_to_le64(e->d_size);
1387        len = le32_to_cpu(ino->ch.len);
1388        crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
1389        ino->ch.crc = cpu_to_le32(crc);
1390        /* Work out where data in the LEB ends and free space begins */
1391        p = c->sbuf;
1392        len = c->leb_size - 1;
1393        while (p[len] == 0xff)
1394                len -= 1;
1395        len = ALIGN(len + 1, c->min_io_size);
1396        /* Atomically write the fixed LEB back again */
1397        err = ubi_leb_change(c->ubi, lnum, c->sbuf, len, UBI_UNKNOWN);
1398        if (err)
1399                goto out;
1400        dbg_rcvry("inode %lu at %d:%d size %lld -> %lld ",
1401                  (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
1402        return 0;
1403
1404out:
1405        ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d",
1406                   (unsigned long)e->inum, e->i_size, e->d_size, err);
1407        return err;
1408}
1409
1410/**
1411 * ubifs_recover_size - recover inode size.
1412 * @c: UBIFS file-system description object
1413 *
1414 * This function attempts to fix inode size discrepancies identified by the
1415 * 'ubifs_recover_size_accum()' function.
1416 *
1417 * This functions returns %0 on success and a negative error code on failure.
1418 */
1419int ubifs_recover_size(struct ubifs_info *c)
1420{
1421        struct rb_node *this = rb_first(&c->size_tree);
1422
1423        while (this) {
1424                struct size_entry *e;
1425                int err;
1426
1427                e = rb_entry(this, struct size_entry, rb);
1428                if (!e->exists) {
1429                        union ubifs_key key;
1430
1431                        ino_key_init(c, &key, e->inum);
1432                        err = ubifs_tnc_lookup(c, &key, c->sbuf);
1433                        if (err && err != -ENOENT)
1434                                return err;
1435                        if (err == -ENOENT) {
1436                                /* Remove data nodes that have no inode */
1437                                dbg_rcvry("removing ino %lu",
1438                                          (unsigned long)e->inum);
1439                                err = ubifs_tnc_remove_ino(c, e->inum);
1440                                if (err)
1441                                        return err;
1442                        } else {
1443                                struct ubifs_ino_node *ino = c->sbuf;
1444
1445                                e->exists = 1;
1446                                e->i_size = le64_to_cpu(ino->size);
1447                        }
1448                }
1449                if (e->exists && e->i_size < e->d_size) {
1450                        if (!e->inode && (c->vfs_sb->s_flags & MS_RDONLY)) {
1451                                /* Fix the inode size and pin it in memory */
1452                                struct inode *inode;
1453
1454                                inode = ubifs_iget(c->vfs_sb, e->inum);
1455                                if (IS_ERR(inode))
1456                                        return PTR_ERR(inode);
1457                                if (inode->i_size < e->d_size) {
1458                                        dbg_rcvry("ino %lu size %lld -> %lld",
1459                                                  (unsigned long)e->inum,
1460                                                  e->d_size, inode->i_size);
1461                                        inode->i_size = e->d_size;
1462                                        ubifs_inode(inode)->ui_size = e->d_size;
1463                                        e->inode = inode;
1464                                        this = rb_next(this);
1465                                        continue;
1466                                }
1467                                iput(inode);
1468                        } else {
1469                                /* Fix the size in place */
1470                                err = fix_size_in_place(c, e);
1471                                if (err)
1472                                        return err;
1473                                if (e->inode)
1474                                        iput(e->inode);
1475                        }
1476                }
1477                this = rb_next(this);
1478                rb_erase(&e->rb, &c->size_tree);
1479                kfree(e);
1480        }
1481        return 0;
1482}
1483