linux/fs/ubifs/replay.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Adrian Hunter
  20 *          Artem Bityutskiy (Битюцкий Артём)
  21 */
  22
  23/*
  24 * This file contains journal replay code. It runs when the file-system is being
  25 * mounted and requires no locking.
  26 *
  27 * The larger is the journal, the longer it takes to scan it, so the longer it
  28 * takes to mount UBIFS. This is why the journal has limited size which may be
  29 * changed depending on the system requirements. But a larger journal gives
  30 * faster I/O speed because it writes the index less frequently. So this is a
  31 * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
  32 * larger is the journal, the more memory its index may consume.
  33 */
  34
  35#include "ubifs.h"
  36
  37/*
  38 * Replay flags.
  39 *
  40 * REPLAY_DELETION: node was deleted
  41 * REPLAY_REF: node is a reference node
  42 */
  43enum {
  44        REPLAY_DELETION = 1,
  45        REPLAY_REF = 2,
  46};
  47
  48/**
  49 * struct replay_entry - replay tree entry.
  50 * @lnum: logical eraseblock number of the node
  51 * @offs: node offset
  52 * @len: node length
  53 * @sqnum: node sequence number
  54 * @flags: replay flags
  55 * @rb: links the replay tree
  56 * @key: node key
  57 * @nm: directory entry name
  58 * @old_size: truncation old size
  59 * @new_size: truncation new size
  60 * @free: amount of free space in a bud
  61 * @dirty: amount of dirty space in a bud from padding and deletion nodes
  62 *
  63 * UBIFS journal replay must compare node sequence numbers, which means it must
  64 * build a tree of node information to insert into the TNC.
  65 */
  66struct replay_entry {
  67        int lnum;
  68        int offs;
  69        int len;
  70        unsigned long long sqnum;
  71        int flags;
  72        struct rb_node rb;
  73        union ubifs_key key;
  74        union {
  75                struct qstr nm;
  76                struct {
  77                        loff_t old_size;
  78                        loff_t new_size;
  79                };
  80                struct {
  81                        int free;
  82                        int dirty;
  83                };
  84        };
  85};
  86
  87/**
  88 * struct bud_entry - entry in the list of buds to replay.
  89 * @list: next bud in the list
  90 * @bud: bud description object
  91 * @free: free bytes in the bud
  92 * @sqnum: reference node sequence number
  93 */
  94struct bud_entry {
  95        struct list_head list;
  96        struct ubifs_bud *bud;
  97        int free;
  98        unsigned long long sqnum;
  99};
 100
 101/**
 102 * set_bud_lprops - set free and dirty space used by a bud.
 103 * @c: UBIFS file-system description object
 104 * @r: replay entry of bud
 105 */
 106static int set_bud_lprops(struct ubifs_info *c, struct replay_entry *r)
 107{
 108        const struct ubifs_lprops *lp;
 109        int err = 0, dirty;
 110
 111        ubifs_get_lprops(c);
 112
 113        lp = ubifs_lpt_lookup_dirty(c, r->lnum);
 114        if (IS_ERR(lp)) {
 115                err = PTR_ERR(lp);
 116                goto out;
 117        }
 118
 119        dirty = lp->dirty;
 120        if (r->offs == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
 121                /*
 122                 * The LEB was added to the journal with a starting offset of
 123                 * zero which means the LEB must have been empty. The LEB
 124                 * property values should be lp->free == c->leb_size and
 125                 * lp->dirty == 0, but that is not the case. The reason is that
 126                 * the LEB was garbage collected. The garbage collector resets
 127                 * the free and dirty space without recording it anywhere except
 128                 * lprops, so if there is not a commit then lprops does not have
 129                 * that information next time the file system is mounted.
 130                 *
 131                 * We do not need to adjust free space because the scan has told
 132                 * us the exact value which is recorded in the replay entry as
 133                 * r->free.
 134                 *
 135                 * However we do need to subtract from the dirty space the
 136                 * amount of space that the garbage collector reclaimed, which
 137                 * is the whole LEB minus the amount of space that was free.
 138                 */
 139                dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", r->lnum,
 140                        lp->free, lp->dirty);
 141                dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", r->lnum,
 142                        lp->free, lp->dirty);
 143                dirty -= c->leb_size - lp->free;
 144                /*
 145                 * If the replay order was perfect the dirty space would now be
 146                 * zero. The order is not perfect because the journal heads
 147                 * race with each other. This is not a problem but is does mean
 148                 * that the dirty space may temporarily exceed c->leb_size
 149                 * during the replay.
 150                 */
 151                if (dirty != 0)
 152                        dbg_msg("LEB %d lp: %d free %d dirty "
 153                                "replay: %d free %d dirty", r->lnum, lp->free,
 154                                lp->dirty, r->free, r->dirty);
 155        }
 156        lp = ubifs_change_lp(c, lp, r->free, dirty + r->dirty,
 157                             lp->flags | LPROPS_TAKEN, 0);
 158        if (IS_ERR(lp)) {
 159                err = PTR_ERR(lp);
 160                goto out;
 161        }
 162out:
 163        ubifs_release_lprops(c);
 164        return err;
 165}
 166
 167/**
 168 * trun_remove_range - apply a replay entry for a truncation to the TNC.
 169 * @c: UBIFS file-system description object
 170 * @r: replay entry of truncation
 171 */
 172static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
 173{
 174        unsigned min_blk, max_blk;
 175        union ubifs_key min_key, max_key;
 176        ino_t ino;
 177
 178        min_blk = r->new_size / UBIFS_BLOCK_SIZE;
 179        if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
 180                min_blk += 1;
 181
 182        max_blk = r->old_size / UBIFS_BLOCK_SIZE;
 183        if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
 184                max_blk -= 1;
 185
 186        ino = key_inum(c, &r->key);
 187
 188        data_key_init(c, &min_key, ino, min_blk);
 189        data_key_init(c, &max_key, ino, max_blk);
 190
 191        return ubifs_tnc_remove_range(c, &min_key, &max_key);
 192}
 193
 194/**
 195 * apply_replay_entry - apply a replay entry to the TNC.
 196 * @c: UBIFS file-system description object
 197 * @r: replay entry to apply
 198 *
 199 * Apply a replay entry to the TNC.
 200 */
 201static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
 202{
 203        int err, deletion = ((r->flags & REPLAY_DELETION) != 0);
 204
 205        dbg_mnt("LEB %d:%d len %d flgs %d sqnum %llu %s", r->lnum,
 206                r->offs, r->len, r->flags, r->sqnum, DBGKEY(&r->key));
 207
 208        /* Set c->replay_sqnum to help deal with dangling branches. */
 209        c->replay_sqnum = r->sqnum;
 210
 211        if (r->flags & REPLAY_REF)
 212                err = set_bud_lprops(c, r);
 213        else if (is_hash_key(c, &r->key)) {
 214                if (deletion)
 215                        err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
 216                else
 217                        err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
 218                                               r->len, &r->nm);
 219        } else {
 220                if (deletion)
 221                        switch (key_type(c, &r->key)) {
 222                        case UBIFS_INO_KEY:
 223                        {
 224                                ino_t inum = key_inum(c, &r->key);
 225
 226                                err = ubifs_tnc_remove_ino(c, inum);
 227                                break;
 228                        }
 229                        case UBIFS_TRUN_KEY:
 230                                err = trun_remove_range(c, r);
 231                                break;
 232                        default:
 233                                err = ubifs_tnc_remove(c, &r->key);
 234                                break;
 235                        }
 236                else
 237                        err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
 238                                            r->len);
 239                if (err)
 240                        return err;
 241
 242                if (c->need_recovery)
 243                        err = ubifs_recover_size_accum(c, &r->key, deletion,
 244                                                       r->new_size);
 245        }
 246
 247        return err;
 248}
 249
 250/**
 251 * destroy_replay_tree - destroy the replay.
 252 * @c: UBIFS file-system description object
 253 *
 254 * Destroy the replay tree.
 255 */
 256static void destroy_replay_tree(struct ubifs_info *c)
 257{
 258        struct rb_node *this = c->replay_tree.rb_node;
 259        struct replay_entry *r;
 260
 261        while (this) {
 262                if (this->rb_left) {
 263                        this = this->rb_left;
 264                        continue;
 265                } else if (this->rb_right) {
 266                        this = this->rb_right;
 267                        continue;
 268                }
 269                r = rb_entry(this, struct replay_entry, rb);
 270                this = rb_parent(this);
 271                if (this) {
 272                        if (this->rb_left == &r->rb)
 273                                this->rb_left = NULL;
 274                        else
 275                                this->rb_right = NULL;
 276                }
 277                if (is_hash_key(c, &r->key))
 278                        kfree(r->nm.name);
 279                kfree(r);
 280        }
 281        c->replay_tree = RB_ROOT;
 282}
 283
 284/**
 285 * apply_replay_tree - apply the replay tree to the TNC.
 286 * @c: UBIFS file-system description object
 287 *
 288 * Apply the replay tree.
 289 * Returns zero in case of success and a negative error code in case of
 290 * failure.
 291 */
 292static int apply_replay_tree(struct ubifs_info *c)
 293{
 294        struct rb_node *this = rb_first(&c->replay_tree);
 295
 296        while (this) {
 297                struct replay_entry *r;
 298                int err;
 299
 300                cond_resched();
 301
 302                r = rb_entry(this, struct replay_entry, rb);
 303                err = apply_replay_entry(c, r);
 304                if (err)
 305                        return err;
 306                this = rb_next(this);
 307        }
 308        return 0;
 309}
 310
 311/**
 312 * insert_node - insert a node to the replay tree.
 313 * @c: UBIFS file-system description object
 314 * @lnum: node logical eraseblock number
 315 * @offs: node offset
 316 * @len: node length
 317 * @key: node key
 318 * @sqnum: sequence number
 319 * @deletion: non-zero if this is a deletion
 320 * @used: number of bytes in use in a LEB
 321 * @old_size: truncation old size
 322 * @new_size: truncation new size
 323 *
 324 * This function inserts a scanned non-direntry node to the replay tree. The
 325 * replay tree is an RB-tree containing @struct replay_entry elements which are
 326 * indexed by the sequence number. The replay tree is applied at the very end
 327 * of the replay process. Since the tree is sorted in sequence number order,
 328 * the older modifications are applied first. This function returns zero in
 329 * case of success and a negative error code in case of failure.
 330 */
 331static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
 332                       union ubifs_key *key, unsigned long long sqnum,
 333                       int deletion, int *used, loff_t old_size,
 334                       loff_t new_size)
 335{
 336        struct rb_node **p = &c->replay_tree.rb_node, *parent = NULL;
 337        struct replay_entry *r;
 338
 339        if (key_inum(c, key) >= c->highest_inum)
 340                c->highest_inum = key_inum(c, key);
 341
 342        dbg_mnt("add LEB %d:%d, key %s", lnum, offs, DBGKEY(key));
 343        while (*p) {
 344                parent = *p;
 345                r = rb_entry(parent, struct replay_entry, rb);
 346                if (sqnum < r->sqnum) {
 347                        p = &(*p)->rb_left;
 348                        continue;
 349                } else if (sqnum > r->sqnum) {
 350                        p = &(*p)->rb_right;
 351                        continue;
 352                }
 353                ubifs_err("duplicate sqnum in replay");
 354                return -EINVAL;
 355        }
 356
 357        r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
 358        if (!r)
 359                return -ENOMEM;
 360
 361        if (!deletion)
 362                *used += ALIGN(len, 8);
 363        r->lnum = lnum;
 364        r->offs = offs;
 365        r->len = len;
 366        r->sqnum = sqnum;
 367        r->flags = (deletion ? REPLAY_DELETION : 0);
 368        r->old_size = old_size;
 369        r->new_size = new_size;
 370        key_copy(c, key, &r->key);
 371
 372        rb_link_node(&r->rb, parent, p);
 373        rb_insert_color(&r->rb, &c->replay_tree);
 374        return 0;
 375}
 376
 377/**
 378 * insert_dent - insert a directory entry node into the replay tree.
 379 * @c: UBIFS file-system description object
 380 * @lnum: node logical eraseblock number
 381 * @offs: node offset
 382 * @len: node length
 383 * @key: node key
 384 * @name: directory entry name
 385 * @nlen: directory entry name length
 386 * @sqnum: sequence number
 387 * @deletion: non-zero if this is a deletion
 388 * @used: number of bytes in use in a LEB
 389 *
 390 * This function inserts a scanned directory entry node to the replay tree.
 391 * Returns zero in case of success and a negative error code in case of
 392 * failure.
 393 *
 394 * This function is also used for extended attribute entries because they are
 395 * implemented as directory entry nodes.
 396 */
 397static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
 398                       union ubifs_key *key, const char *name, int nlen,
 399                       unsigned long long sqnum, int deletion, int *used)
 400{
 401        struct rb_node **p = &c->replay_tree.rb_node, *parent = NULL;
 402        struct replay_entry *r;
 403        char *nbuf;
 404
 405        if (key_inum(c, key) >= c->highest_inum)
 406                c->highest_inum = key_inum(c, key);
 407
 408        dbg_mnt("add LEB %d:%d, key %s", lnum, offs, DBGKEY(key));
 409        while (*p) {
 410                parent = *p;
 411                r = rb_entry(parent, struct replay_entry, rb);
 412                if (sqnum < r->sqnum) {
 413                        p = &(*p)->rb_left;
 414                        continue;
 415                }
 416                if (sqnum > r->sqnum) {
 417                        p = &(*p)->rb_right;
 418                        continue;
 419                }
 420                ubifs_err("duplicate sqnum in replay");
 421                return -EINVAL;
 422        }
 423
 424        r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
 425        if (!r)
 426                return -ENOMEM;
 427        nbuf = kmalloc(nlen + 1, GFP_KERNEL);
 428        if (!nbuf) {
 429                kfree(r);
 430                return -ENOMEM;
 431        }
 432
 433        if (!deletion)
 434                *used += ALIGN(len, 8);
 435        r->lnum = lnum;
 436        r->offs = offs;
 437        r->len = len;
 438        r->sqnum = sqnum;
 439        r->nm.len = nlen;
 440        memcpy(nbuf, name, nlen);
 441        nbuf[nlen] = '\0';
 442        r->nm.name = nbuf;
 443        r->flags = (deletion ? REPLAY_DELETION : 0);
 444        key_copy(c, key, &r->key);
 445
 446        ubifs_assert(!*p);
 447        rb_link_node(&r->rb, parent, p);
 448        rb_insert_color(&r->rb, &c->replay_tree);
 449        return 0;
 450}
 451
 452/**
 453 * ubifs_validate_entry - validate directory or extended attribute entry node.
 454 * @c: UBIFS file-system description object
 455 * @dent: the node to validate
 456 *
 457 * This function validates directory or extended attribute entry node @dent.
 458 * Returns zero if the node is all right and a %-EINVAL if not.
 459 */
 460int ubifs_validate_entry(struct ubifs_info *c,
 461                         const struct ubifs_dent_node *dent)
 462{
 463        int key_type = key_type_flash(c, dent->key);
 464        int nlen = le16_to_cpu(dent->nlen);
 465
 466        if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
 467            dent->type >= UBIFS_ITYPES_CNT ||
 468            nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
 469            strnlen(dent->name, nlen) != nlen ||
 470            le64_to_cpu(dent->inum) > MAX_INUM) {
 471                ubifs_err("bad %s node", key_type == UBIFS_DENT_KEY ?
 472                          "directory entry" : "extended attribute entry");
 473                return -EINVAL;
 474        }
 475
 476        if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
 477                ubifs_err("bad key type %d", key_type);
 478                return -EINVAL;
 479        }
 480
 481        return 0;
 482}
 483
 484/**
 485 * replay_bud - replay a bud logical eraseblock.
 486 * @c: UBIFS file-system description object
 487 * @lnum: bud logical eraseblock number to replay
 488 * @offs: bud start offset
 489 * @jhead: journal head to which this bud belongs
 490 * @free: amount of free space in the bud is returned here
 491 * @dirty: amount of dirty space from padding and deletion nodes is returned
 492 * here
 493 *
 494 * This function returns zero in case of success and a negative error code in
 495 * case of failure.
 496 */
 497static int replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
 498                      int *free, int *dirty)
 499{
 500        int err = 0, used = 0;
 501        struct ubifs_scan_leb *sleb;
 502        struct ubifs_scan_node *snod;
 503        struct ubifs_bud *bud;
 504
 505        dbg_mnt("replay bud LEB %d, head %d", lnum, jhead);
 506        if (c->need_recovery)
 507                sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, jhead != GCHD);
 508        else
 509                sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
 510        if (IS_ERR(sleb))
 511                return PTR_ERR(sleb);
 512
 513        /*
 514         * The bud does not have to start from offset zero - the beginning of
 515         * the 'lnum' LEB may contain previously committed data. One of the
 516         * things we have to do in replay is to correctly update lprops with
 517         * newer information about this LEB.
 518         *
 519         * At this point lprops thinks that this LEB has 'c->leb_size - offs'
 520         * bytes of free space because it only contain information about
 521         * committed data.
 522         *
 523         * But we know that real amount of free space is 'c->leb_size -
 524         * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
 525         * 'sleb->endpt' is used by bud data. We have to correctly calculate
 526         * how much of these data are dirty and update lprops with this
 527         * information.
 528         *
 529         * The dirt in that LEB region is comprised of padding nodes, deletion
 530         * nodes, truncation nodes and nodes which are obsoleted by subsequent
 531         * nodes in this LEB. So instead of calculating clean space, we
 532         * calculate used space ('used' variable).
 533         */
 534
 535        list_for_each_entry(snod, &sleb->nodes, list) {
 536                int deletion = 0;
 537
 538                cond_resched();
 539
 540                if (snod->sqnum >= SQNUM_WATERMARK) {
 541                        ubifs_err("file system's life ended");
 542                        goto out_dump;
 543                }
 544
 545                if (snod->sqnum > c->max_sqnum)
 546                        c->max_sqnum = snod->sqnum;
 547
 548                switch (snod->type) {
 549                case UBIFS_INO_NODE:
 550                {
 551                        struct ubifs_ino_node *ino = snod->node;
 552                        loff_t new_size = le64_to_cpu(ino->size);
 553
 554                        if (le32_to_cpu(ino->nlink) == 0)
 555                                deletion = 1;
 556                        err = insert_node(c, lnum, snod->offs, snod->len,
 557                                          &snod->key, snod->sqnum, deletion,
 558                                          &used, 0, new_size);
 559                        break;
 560                }
 561                case UBIFS_DATA_NODE:
 562                {
 563                        struct ubifs_data_node *dn = snod->node;
 564                        loff_t new_size = le32_to_cpu(dn->size) +
 565                                          key_block(c, &snod->key) *
 566                                          UBIFS_BLOCK_SIZE;
 567
 568                        err = insert_node(c, lnum, snod->offs, snod->len,
 569                                          &snod->key, snod->sqnum, deletion,
 570                                          &used, 0, new_size);
 571                        break;
 572                }
 573                case UBIFS_DENT_NODE:
 574                case UBIFS_XENT_NODE:
 575                {
 576                        struct ubifs_dent_node *dent = snod->node;
 577
 578                        err = ubifs_validate_entry(c, dent);
 579                        if (err)
 580                                goto out_dump;
 581
 582                        err = insert_dent(c, lnum, snod->offs, snod->len,
 583                                          &snod->key, dent->name,
 584                                          le16_to_cpu(dent->nlen), snod->sqnum,
 585                                          !le64_to_cpu(dent->inum), &used);
 586                        break;
 587                }
 588                case UBIFS_TRUN_NODE:
 589                {
 590                        struct ubifs_trun_node *trun = snod->node;
 591                        loff_t old_size = le64_to_cpu(trun->old_size);
 592                        loff_t new_size = le64_to_cpu(trun->new_size);
 593                        union ubifs_key key;
 594
 595                        /* Validate truncation node */
 596                        if (old_size < 0 || old_size > c->max_inode_sz ||
 597                            new_size < 0 || new_size > c->max_inode_sz ||
 598                            old_size <= new_size) {
 599                                ubifs_err("bad truncation node");
 600                                goto out_dump;
 601                        }
 602
 603                        /*
 604                         * Create a fake truncation key just to use the same
 605                         * functions which expect nodes to have keys.
 606                         */
 607                        trun_key_init(c, &key, le32_to_cpu(trun->inum));
 608                        err = insert_node(c, lnum, snod->offs, snod->len,
 609                                          &key, snod->sqnum, 1, &used,
 610                                          old_size, new_size);
 611                        break;
 612                }
 613                default:
 614                        ubifs_err("unexpected node type %d in bud LEB %d:%d",
 615                                  snod->type, lnum, snod->offs);
 616                        err = -EINVAL;
 617                        goto out_dump;
 618                }
 619                if (err)
 620                        goto out;
 621        }
 622
 623        bud = ubifs_search_bud(c, lnum);
 624        if (!bud)
 625                BUG();
 626
 627        ubifs_assert(sleb->endpt - offs >= used);
 628        ubifs_assert(sleb->endpt % c->min_io_size == 0);
 629
 630        if (sleb->endpt + c->min_io_size <= c->leb_size &&
 631            !(c->vfs_sb->s_flags & MS_RDONLY))
 632                err = ubifs_wbuf_seek_nolock(&c->jheads[jhead].wbuf, lnum,
 633                                             sleb->endpt, UBI_SHORTTERM);
 634
 635        *dirty = sleb->endpt - offs - used;
 636        *free = c->leb_size - sleb->endpt;
 637
 638out:
 639        ubifs_scan_destroy(sleb);
 640        return err;
 641
 642out_dump:
 643        ubifs_err("bad node is at LEB %d:%d", lnum, snod->offs);
 644        dbg_dump_node(c, snod->node);
 645        ubifs_scan_destroy(sleb);
 646        return -EINVAL;
 647}
 648
 649/**
 650 * insert_ref_node - insert a reference node to the replay tree.
 651 * @c: UBIFS file-system description object
 652 * @lnum: node logical eraseblock number
 653 * @offs: node offset
 654 * @sqnum: sequence number
 655 * @free: amount of free space in bud
 656 * @dirty: amount of dirty space from padding and deletion nodes
 657 *
 658 * This function inserts a reference node to the replay tree and returns zero
 659 * in case of success or a negative error code in case of failure.
 660 */
 661static int insert_ref_node(struct ubifs_info *c, int lnum, int offs,
 662                           unsigned long long sqnum, int free, int dirty)
 663{
 664        struct rb_node **p = &c->replay_tree.rb_node, *parent = NULL;
 665        struct replay_entry *r;
 666
 667        dbg_mnt("add ref LEB %d:%d", lnum, offs);
 668        while (*p) {
 669                parent = *p;
 670                r = rb_entry(parent, struct replay_entry, rb);
 671                if (sqnum < r->sqnum) {
 672                        p = &(*p)->rb_left;
 673                        continue;
 674                } else if (sqnum > r->sqnum) {
 675                        p = &(*p)->rb_right;
 676                        continue;
 677                }
 678                ubifs_err("duplicate sqnum in replay tree");
 679                return -EINVAL;
 680        }
 681
 682        r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
 683        if (!r)
 684                return -ENOMEM;
 685
 686        r->lnum = lnum;
 687        r->offs = offs;
 688        r->sqnum = sqnum;
 689        r->flags = REPLAY_REF;
 690        r->free = free;
 691        r->dirty = dirty;
 692
 693        rb_link_node(&r->rb, parent, p);
 694        rb_insert_color(&r->rb, &c->replay_tree);
 695        return 0;
 696}
 697
 698/**
 699 * replay_buds - replay all buds.
 700 * @c: UBIFS file-system description object
 701 *
 702 * This function returns zero in case of success and a negative error code in
 703 * case of failure.
 704 */
 705static int replay_buds(struct ubifs_info *c)
 706{
 707        struct bud_entry *b;
 708        int err, uninitialized_var(free), uninitialized_var(dirty);
 709
 710        list_for_each_entry(b, &c->replay_buds, list) {
 711                err = replay_bud(c, b->bud->lnum, b->bud->start, b->bud->jhead,
 712                                 &free, &dirty);
 713                if (err)
 714                        return err;
 715                err = insert_ref_node(c, b->bud->lnum, b->bud->start, b->sqnum,
 716                                      free, dirty);
 717                if (err)
 718                        return err;
 719        }
 720
 721        return 0;
 722}
 723
 724/**
 725 * destroy_bud_list - destroy the list of buds to replay.
 726 * @c: UBIFS file-system description object
 727 */
 728static void destroy_bud_list(struct ubifs_info *c)
 729{
 730        struct bud_entry *b;
 731
 732        while (!list_empty(&c->replay_buds)) {
 733                b = list_entry(c->replay_buds.next, struct bud_entry, list);
 734                list_del(&b->list);
 735                kfree(b);
 736        }
 737}
 738
 739/**
 740 * add_replay_bud - add a bud to the list of buds to replay.
 741 * @c: UBIFS file-system description object
 742 * @lnum: bud logical eraseblock number to replay
 743 * @offs: bud start offset
 744 * @jhead: journal head to which this bud belongs
 745 * @sqnum: reference node sequence number
 746 *
 747 * This function returns zero in case of success and a negative error code in
 748 * case of failure.
 749 */
 750static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
 751                          unsigned long long sqnum)
 752{
 753        struct ubifs_bud *bud;
 754        struct bud_entry *b;
 755
 756        dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
 757
 758        bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
 759        if (!bud)
 760                return -ENOMEM;
 761
 762        b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
 763        if (!b) {
 764                kfree(bud);
 765                return -ENOMEM;
 766        }
 767
 768        bud->lnum = lnum;
 769        bud->start = offs;
 770        bud->jhead = jhead;
 771        ubifs_add_bud(c, bud);
 772
 773        b->bud = bud;
 774        b->sqnum = sqnum;
 775        list_add_tail(&b->list, &c->replay_buds);
 776
 777        return 0;
 778}
 779
 780/**
 781 * validate_ref - validate a reference node.
 782 * @c: UBIFS file-system description object
 783 * @ref: the reference node to validate
 784 * @ref_lnum: LEB number of the reference node
 785 * @ref_offs: reference node offset
 786 *
 787 * This function returns %1 if a bud reference already exists for the LEB. %0 is
 788 * returned if the reference node is new, otherwise %-EINVAL is returned if
 789 * validation failed.
 790 */
 791static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
 792{
 793        struct ubifs_bud *bud;
 794        int lnum = le32_to_cpu(ref->lnum);
 795        unsigned int offs = le32_to_cpu(ref->offs);
 796        unsigned int jhead = le32_to_cpu(ref->jhead);
 797
 798        /*
 799         * ref->offs may point to the end of LEB when the journal head points
 800         * to the end of LEB and we write reference node for it during commit.
 801         * So this is why we require 'offs > c->leb_size'.
 802         */
 803        if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
 804            lnum < c->main_first || offs > c->leb_size ||
 805            offs & (c->min_io_size - 1))
 806                return -EINVAL;
 807
 808        /* Make sure we have not already looked at this bud */
 809        bud = ubifs_search_bud(c, lnum);
 810        if (bud) {
 811                if (bud->jhead == jhead && bud->start <= offs)
 812                        return 1;
 813                ubifs_err("bud at LEB %d:%d was already referred", lnum, offs);
 814                return -EINVAL;
 815        }
 816
 817        return 0;
 818}
 819
 820/**
 821 * replay_log_leb - replay a log logical eraseblock.
 822 * @c: UBIFS file-system description object
 823 * @lnum: log logical eraseblock to replay
 824 * @offs: offset to start replaying from
 825 * @sbuf: scan buffer
 826 *
 827 * This function replays a log LEB and returns zero in case of success, %1 if
 828 * this is the last LEB in the log, and a negative error code in case of
 829 * failure.
 830 */
 831static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
 832{
 833        int err;
 834        struct ubifs_scan_leb *sleb;
 835        struct ubifs_scan_node *snod;
 836        const struct ubifs_cs_node *node;
 837
 838        dbg_mnt("replay log LEB %d:%d", lnum, offs);
 839        sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
 840        if (IS_ERR(sleb)) {
 841                if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
 842                        return PTR_ERR(sleb);
 843                sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
 844                if (IS_ERR(sleb))
 845                        return PTR_ERR(sleb);
 846        }
 847
 848        if (sleb->nodes_cnt == 0) {
 849                err = 1;
 850                goto out;
 851        }
 852
 853        node = sleb->buf;
 854
 855        snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
 856        if (c->cs_sqnum == 0) {
 857                /*
 858                 * This is the first log LEB we are looking at, make sure that
 859                 * the first node is a commit start node. Also record its
 860                 * sequence number so that UBIFS can determine where the log
 861                 * ends, because all nodes which were have higher sequence
 862                 * numbers.
 863                 */
 864                if (snod->type != UBIFS_CS_NODE) {
 865                        dbg_err("first log node at LEB %d:%d is not CS node",
 866                                lnum, offs);
 867                        goto out_dump;
 868                }
 869                if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
 870                        dbg_err("first CS node at LEB %d:%d has wrong "
 871                                "commit number %llu expected %llu",
 872                                lnum, offs,
 873                                (unsigned long long)le64_to_cpu(node->cmt_no),
 874                                c->cmt_no);
 875                        goto out_dump;
 876                }
 877
 878                c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
 879                dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
 880        }
 881
 882        if (snod->sqnum < c->cs_sqnum) {
 883                /*
 884                 * This means that we reached end of log and now
 885                 * look to the older log data, which was already
 886                 * committed but the eraseblock was not erased (UBIFS
 887                 * only un-maps it). So this basically means we have to
 888                 * exit with "end of log" code.
 889                 */
 890                err = 1;
 891                goto out;
 892        }
 893
 894        /* Make sure the first node sits at offset zero of the LEB */
 895        if (snod->offs != 0) {
 896                dbg_err("first node is not at zero offset");
 897                goto out_dump;
 898        }
 899
 900        list_for_each_entry(snod, &sleb->nodes, list) {
 901
 902                cond_resched();
 903
 904                if (snod->sqnum >= SQNUM_WATERMARK) {
 905                        ubifs_err("file system's life ended");
 906                        goto out_dump;
 907                }
 908
 909                if (snod->sqnum < c->cs_sqnum) {
 910                        dbg_err("bad sqnum %llu, commit sqnum %llu",
 911                                snod->sqnum, c->cs_sqnum);
 912                        goto out_dump;
 913                }
 914
 915                if (snod->sqnum > c->max_sqnum)
 916                        c->max_sqnum = snod->sqnum;
 917
 918                switch (snod->type) {
 919                case UBIFS_REF_NODE: {
 920                        const struct ubifs_ref_node *ref = snod->node;
 921
 922                        err = validate_ref(c, ref);
 923                        if (err == 1)
 924                                break; /* Already have this bud */
 925                        if (err)
 926                                goto out_dump;
 927
 928                        err = add_replay_bud(c, le32_to_cpu(ref->lnum),
 929                                             le32_to_cpu(ref->offs),
 930                                             le32_to_cpu(ref->jhead),
 931                                             snod->sqnum);
 932                        if (err)
 933                                goto out;
 934
 935                        break;
 936                }
 937                case UBIFS_CS_NODE:
 938                        /* Make sure it sits at the beginning of LEB */
 939                        if (snod->offs != 0) {
 940                                ubifs_err("unexpected node in log");
 941                                goto out_dump;
 942                        }
 943                        break;
 944                default:
 945                        ubifs_err("unexpected node in log");
 946                        goto out_dump;
 947                }
 948        }
 949
 950        if (sleb->endpt || c->lhead_offs >= c->leb_size) {
 951                c->lhead_lnum = lnum;
 952                c->lhead_offs = sleb->endpt;
 953        }
 954
 955        err = !sleb->endpt;
 956out:
 957        ubifs_scan_destroy(sleb);
 958        return err;
 959
 960out_dump:
 961        ubifs_err("log error detected while replaying the log at LEB %d:%d",
 962                  lnum, offs + snod->offs);
 963        dbg_dump_node(c, snod->node);
 964        ubifs_scan_destroy(sleb);
 965        return -EINVAL;
 966}
 967
 968/**
 969 * take_ihead - update the status of the index head in lprops to 'taken'.
 970 * @c: UBIFS file-system description object
 971 *
 972 * This function returns the amount of free space in the index head LEB or a
 973 * negative error code.
 974 */
 975static int take_ihead(struct ubifs_info *c)
 976{
 977        const struct ubifs_lprops *lp;
 978        int err, free;
 979
 980        ubifs_get_lprops(c);
 981
 982        lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
 983        if (IS_ERR(lp)) {
 984                err = PTR_ERR(lp);
 985                goto out;
 986        }
 987
 988        free = lp->free;
 989
 990        lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
 991                             lp->flags | LPROPS_TAKEN, 0);
 992        if (IS_ERR(lp)) {
 993                err = PTR_ERR(lp);
 994                goto out;
 995        }
 996
 997        err = free;
 998out:
 999        ubifs_release_lprops(c);
1000        return err;
1001}
1002
1003/**
1004 * ubifs_replay_journal - replay journal.
1005 * @c: UBIFS file-system description object
1006 *
1007 * This function scans the journal, replays and cleans it up. It makes sure all
1008 * memory data structures related to uncommitted journal are built (dirty TNC
1009 * tree, tree of buds, modified lprops, etc).
1010 */
1011int ubifs_replay_journal(struct ubifs_info *c)
1012{
1013        int err, i, lnum, offs, free;
1014        void *sbuf = NULL;
1015
1016        BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
1017
1018        /* Update the status of the index head in lprops to 'taken' */
1019        free = take_ihead(c);
1020        if (free < 0)
1021                return free; /* Error code */
1022
1023        if (c->ihead_offs != c->leb_size - free) {
1024                ubifs_err("bad index head LEB %d:%d", c->ihead_lnum,
1025                          c->ihead_offs);
1026                return -EINVAL;
1027        }
1028
1029        sbuf = vmalloc(c->leb_size);
1030        if (!sbuf)
1031                return -ENOMEM;
1032
1033        dbg_mnt("start replaying the journal");
1034
1035        c->replaying = 1;
1036
1037        lnum = c->ltail_lnum = c->lhead_lnum;
1038        offs = c->lhead_offs;
1039
1040        for (i = 0; i < c->log_lebs; i++, lnum++) {
1041                if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) {
1042                        /*
1043                         * The log is logically circular, we reached the last
1044                         * LEB, switch to the first one.
1045                         */
1046                        lnum = UBIFS_LOG_LNUM;
1047                        offs = 0;
1048                }
1049                err = replay_log_leb(c, lnum, offs, sbuf);
1050                if (err == 1)
1051                        /* We hit the end of the log */
1052                        break;
1053                if (err)
1054                        goto out;
1055                offs = 0;
1056        }
1057
1058        err = replay_buds(c);
1059        if (err)
1060                goto out;
1061
1062        err = apply_replay_tree(c);
1063        if (err)
1064                goto out;
1065
1066        /*
1067         * UBIFS budgeting calculations use @c->budg_uncommitted_idx variable
1068         * to roughly estimate index growth. Things like @c->min_idx_lebs
1069         * depend on it. This means we have to initialize it to make sure
1070         * budgeting works properly.
1071         */
1072        c->budg_uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
1073        c->budg_uncommitted_idx *= c->max_idx_node_sz;
1074
1075        ubifs_assert(c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
1076        dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, "
1077                "highest_inum %lu", c->lhead_lnum, c->lhead_offs, c->max_sqnum,
1078                (unsigned long)c->highest_inum);
1079out:
1080        destroy_replay_tree(c);
1081        destroy_bud_list(c);
1082        vfree(sbuf);
1083        c->replaying = 0;
1084        return err;
1085}
1086