linux/fs/ubifs/tnc.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Adrian Hunter
  20 *          Artem Bityutskiy (Битюцкий Артём)
  21 */
  22
  23/*
  24 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
  25 * the UBIFS B-tree.
  26 *
  27 * At the moment the locking rules of the TNC tree are quite simple and
  28 * straightforward. We just have a mutex and lock it when we traverse the
  29 * tree. If a znode is not in memory, we read it from flash while still having
  30 * the mutex locked.
  31 */
  32
  33#include <linux/crc32.h>
  34#include "ubifs.h"
  35
  36/*
  37 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
  38 * @NAME_LESS: name corresponding to the first argument is less than second
  39 * @NAME_MATCHES: names match
  40 * @NAME_GREATER: name corresponding to the second argument is greater than
  41 *                first
  42 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
  43 *
  44 * These constants were introduce to improve readability.
  45 */
  46enum {
  47        NAME_LESS    = 0,
  48        NAME_MATCHES = 1,
  49        NAME_GREATER = 2,
  50        NOT_ON_MEDIA = 3,
  51};
  52
  53/**
  54 * insert_old_idx - record an index node obsoleted since the last commit start.
  55 * @c: UBIFS file-system description object
  56 * @lnum: LEB number of obsoleted index node
  57 * @offs: offset of obsoleted index node
  58 *
  59 * Returns %0 on success, and a negative error code on failure.
  60 *
  61 * For recovery, there must always be a complete intact version of the index on
  62 * flash at all times. That is called the "old index". It is the index as at the
  63 * time of the last successful commit. Many of the index nodes in the old index
  64 * may be dirty, but they must not be erased until the next successful commit
  65 * (at which point that index becomes the old index).
  66 *
  67 * That means that the garbage collection and the in-the-gaps method of
  68 * committing must be able to determine if an index node is in the old index.
  69 * Most of the old index nodes can be found by looking up the TNC using the
  70 * 'lookup_znode()' function. However, some of the old index nodes may have
  71 * been deleted from the current index or may have been changed so much that
  72 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
  73 * That is what this function does. The RB-tree is ordered by LEB number and
  74 * offset because they uniquely identify the old index node.
  75 */
  76static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
  77{
  78        struct ubifs_old_idx *old_idx, *o;
  79        struct rb_node **p, *parent = NULL;
  80
  81        old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
  82        if (unlikely(!old_idx))
  83                return -ENOMEM;
  84        old_idx->lnum = lnum;
  85        old_idx->offs = offs;
  86
  87        p = &c->old_idx.rb_node;
  88        while (*p) {
  89                parent = *p;
  90                o = rb_entry(parent, struct ubifs_old_idx, rb);
  91                if (lnum < o->lnum)
  92                        p = &(*p)->rb_left;
  93                else if (lnum > o->lnum)
  94                        p = &(*p)->rb_right;
  95                else if (offs < o->offs)
  96                        p = &(*p)->rb_left;
  97                else if (offs > o->offs)
  98                        p = &(*p)->rb_right;
  99                else {
 100                        ubifs_err("old idx added twice!");
 101                        kfree(old_idx);
 102                        return 0;
 103                }
 104        }
 105        rb_link_node(&old_idx->rb, parent, p);
 106        rb_insert_color(&old_idx->rb, &c->old_idx);
 107        return 0;
 108}
 109
 110/**
 111 * insert_old_idx_znode - record a znode obsoleted since last commit start.
 112 * @c: UBIFS file-system description object
 113 * @znode: znode of obsoleted index node
 114 *
 115 * Returns %0 on success, and a negative error code on failure.
 116 */
 117int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
 118{
 119        if (znode->parent) {
 120                struct ubifs_zbranch *zbr;
 121
 122                zbr = &znode->parent->zbranch[znode->iip];
 123                if (zbr->len)
 124                        return insert_old_idx(c, zbr->lnum, zbr->offs);
 125        } else
 126                if (c->zroot.len)
 127                        return insert_old_idx(c, c->zroot.lnum,
 128                                              c->zroot.offs);
 129        return 0;
 130}
 131
 132/**
 133 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
 134 * @c: UBIFS file-system description object
 135 * @znode: znode of obsoleted index node
 136 *
 137 * Returns %0 on success, and a negative error code on failure.
 138 */
 139static int ins_clr_old_idx_znode(struct ubifs_info *c,
 140                                 struct ubifs_znode *znode)
 141{
 142        int err;
 143
 144        if (znode->parent) {
 145                struct ubifs_zbranch *zbr;
 146
 147                zbr = &znode->parent->zbranch[znode->iip];
 148                if (zbr->len) {
 149                        err = insert_old_idx(c, zbr->lnum, zbr->offs);
 150                        if (err)
 151                                return err;
 152                        zbr->lnum = 0;
 153                        zbr->offs = 0;
 154                        zbr->len = 0;
 155                }
 156        } else
 157                if (c->zroot.len) {
 158                        err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
 159                        if (err)
 160                                return err;
 161                        c->zroot.lnum = 0;
 162                        c->zroot.offs = 0;
 163                        c->zroot.len = 0;
 164                }
 165        return 0;
 166}
 167
 168/**
 169 * destroy_old_idx - destroy the old_idx RB-tree.
 170 * @c: UBIFS file-system description object
 171 *
 172 * During start commit, the old_idx RB-tree is used to avoid overwriting index
 173 * nodes that were in the index last commit but have since been deleted.  This
 174 * is necessary for recovery i.e. the old index must be kept intact until the
 175 * new index is successfully written.  The old-idx RB-tree is used for the
 176 * in-the-gaps method of writing index nodes and is destroyed every commit.
 177 */
 178void destroy_old_idx(struct ubifs_info *c)
 179{
 180        struct rb_node *this = c->old_idx.rb_node;
 181        struct ubifs_old_idx *old_idx;
 182
 183        while (this) {
 184                if (this->rb_left) {
 185                        this = this->rb_left;
 186                        continue;
 187                } else if (this->rb_right) {
 188                        this = this->rb_right;
 189                        continue;
 190                }
 191                old_idx = rb_entry(this, struct ubifs_old_idx, rb);
 192                this = rb_parent(this);
 193                if (this) {
 194                        if (this->rb_left == &old_idx->rb)
 195                                this->rb_left = NULL;
 196                        else
 197                                this->rb_right = NULL;
 198                }
 199                kfree(old_idx);
 200        }
 201        c->old_idx = RB_ROOT;
 202}
 203
 204/**
 205 * copy_znode - copy a dirty znode.
 206 * @c: UBIFS file-system description object
 207 * @znode: znode to copy
 208 *
 209 * A dirty znode being committed may not be changed, so it is copied.
 210 */
 211static struct ubifs_znode *copy_znode(struct ubifs_info *c,
 212                                      struct ubifs_znode *znode)
 213{
 214        struct ubifs_znode *zn;
 215
 216        zn = kmalloc(c->max_znode_sz, GFP_NOFS);
 217        if (unlikely(!zn))
 218                return ERR_PTR(-ENOMEM);
 219
 220        memcpy(zn, znode, c->max_znode_sz);
 221        zn->cnext = NULL;
 222        __set_bit(DIRTY_ZNODE, &zn->flags);
 223        __clear_bit(COW_ZNODE, &zn->flags);
 224
 225        ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags));
 226        __set_bit(OBSOLETE_ZNODE, &znode->flags);
 227
 228        if (znode->level != 0) {
 229                int i;
 230                const int n = zn->child_cnt;
 231
 232                /* The children now have new parent */
 233                for (i = 0; i < n; i++) {
 234                        struct ubifs_zbranch *zbr = &zn->zbranch[i];
 235
 236                        if (zbr->znode)
 237                                zbr->znode->parent = zn;
 238                }
 239        }
 240
 241        atomic_long_inc(&c->dirty_zn_cnt);
 242        return zn;
 243}
 244
 245/**
 246 * add_idx_dirt - add dirt due to a dirty znode.
 247 * @c: UBIFS file-system description object
 248 * @lnum: LEB number of index node
 249 * @dirt: size of index node
 250 *
 251 * This function updates lprops dirty space and the new size of the index.
 252 */
 253static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
 254{
 255        c->calc_idx_sz -= ALIGN(dirt, 8);
 256        return ubifs_add_dirt(c, lnum, dirt);
 257}
 258
 259/**
 260 * dirty_cow_znode - ensure a znode is not being committed.
 261 * @c: UBIFS file-system description object
 262 * @zbr: branch of znode to check
 263 *
 264 * Returns dirtied znode on success or negative error code on failure.
 265 */
 266static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
 267                                           struct ubifs_zbranch *zbr)
 268{
 269        struct ubifs_znode *znode = zbr->znode;
 270        struct ubifs_znode *zn;
 271        int err;
 272
 273        if (!test_bit(COW_ZNODE, &znode->flags)) {
 274                /* znode is not being committed */
 275                if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
 276                        atomic_long_inc(&c->dirty_zn_cnt);
 277                        atomic_long_dec(&c->clean_zn_cnt);
 278                        atomic_long_dec(&ubifs_clean_zn_cnt);
 279                        err = add_idx_dirt(c, zbr->lnum, zbr->len);
 280                        if (unlikely(err))
 281                                return ERR_PTR(err);
 282                }
 283                return znode;
 284        }
 285
 286        zn = copy_znode(c, znode);
 287        if (IS_ERR(zn))
 288                return zn;
 289
 290        if (zbr->len) {
 291                err = insert_old_idx(c, zbr->lnum, zbr->offs);
 292                if (unlikely(err))
 293                        return ERR_PTR(err);
 294                err = add_idx_dirt(c, zbr->lnum, zbr->len);
 295        } else
 296                err = 0;
 297
 298        zbr->znode = zn;
 299        zbr->lnum = 0;
 300        zbr->offs = 0;
 301        zbr->len = 0;
 302
 303        if (unlikely(err))
 304                return ERR_PTR(err);
 305        return zn;
 306}
 307
 308/**
 309 * lnc_add - add a leaf node to the leaf node cache.
 310 * @c: UBIFS file-system description object
 311 * @zbr: zbranch of leaf node
 312 * @node: leaf node
 313 *
 314 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
 315 * purpose of the leaf node cache is to save re-reading the same leaf node over
 316 * and over again. Most things are cached by VFS, however the file system must
 317 * cache directory entries for readdir and for resolving hash collisions. The
 318 * present implementation of the leaf node cache is extremely simple, and
 319 * allows for error returns that are not used but that may be needed if a more
 320 * complex implementation is created.
 321 *
 322 * Note, this function does not add the @node object to LNC directly, but
 323 * allocates a copy of the object and adds the copy to LNC. The reason for this
 324 * is that @node has been allocated outside of the TNC subsystem and will be
 325 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
 326 * may be changed at any time, e.g. freed by the shrinker.
 327 */
 328static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 329                   const void *node)
 330{
 331        int err;
 332        void *lnc_node;
 333        const struct ubifs_dent_node *dent = node;
 334
 335        ubifs_assert(!zbr->leaf);
 336        ubifs_assert(zbr->len != 0);
 337        ubifs_assert(is_hash_key(c, &zbr->key));
 338
 339        err = ubifs_validate_entry(c, dent);
 340        if (err) {
 341                dbg_dump_stack();
 342                dbg_dump_node(c, dent);
 343                return err;
 344        }
 345
 346        lnc_node = kmalloc(zbr->len, GFP_NOFS);
 347        if (!lnc_node)
 348                /* We don't have to have the cache, so no error */
 349                return 0;
 350
 351        memcpy(lnc_node, node, zbr->len);
 352        zbr->leaf = lnc_node;
 353        return 0;
 354}
 355
 356 /**
 357 * lnc_add_directly - add a leaf node to the leaf-node-cache.
 358 * @c: UBIFS file-system description object
 359 * @zbr: zbranch of leaf node
 360 * @node: leaf node
 361 *
 362 * This function is similar to 'lnc_add()', but it does not create a copy of
 363 * @node but inserts @node to TNC directly.
 364 */
 365static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 366                            void *node)
 367{
 368        int err;
 369
 370        ubifs_assert(!zbr->leaf);
 371        ubifs_assert(zbr->len != 0);
 372
 373        err = ubifs_validate_entry(c, node);
 374        if (err) {
 375                dbg_dump_stack();
 376                dbg_dump_node(c, node);
 377                return err;
 378        }
 379
 380        zbr->leaf = node;
 381        return 0;
 382}
 383
 384/**
 385 * lnc_free - remove a leaf node from the leaf node cache.
 386 * @zbr: zbranch of leaf node
 387 * @node: leaf node
 388 */
 389static void lnc_free(struct ubifs_zbranch *zbr)
 390{
 391        if (!zbr->leaf)
 392                return;
 393        kfree(zbr->leaf);
 394        zbr->leaf = NULL;
 395}
 396
 397/**
 398 * tnc_read_node_nm - read a "hashed" leaf node.
 399 * @c: UBIFS file-system description object
 400 * @zbr: key and position of the node
 401 * @node: node is returned here
 402 *
 403 * This function reads a "hashed" node defined by @zbr from the leaf node cache
 404 * (in it is there) or from the hash media, in which case the node is also
 405 * added to LNC. Returns zero in case of success or a negative negative error
 406 * code in case of failure.
 407 */
 408static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 409                            void *node)
 410{
 411        int err;
 412
 413        ubifs_assert(is_hash_key(c, &zbr->key));
 414
 415        if (zbr->leaf) {
 416                /* Read from the leaf node cache */
 417                ubifs_assert(zbr->len != 0);
 418                memcpy(node, zbr->leaf, zbr->len);
 419                return 0;
 420        }
 421
 422        err = ubifs_tnc_read_node(c, zbr, node);
 423        if (err)
 424                return err;
 425
 426        /* Add the node to the leaf node cache */
 427        err = lnc_add(c, zbr, node);
 428        return err;
 429}
 430
 431/**
 432 * try_read_node - read a node if it is a node.
 433 * @c: UBIFS file-system description object
 434 * @buf: buffer to read to
 435 * @type: node type
 436 * @len: node length (not aligned)
 437 * @lnum: LEB number of node to read
 438 * @offs: offset of node to read
 439 *
 440 * This function tries to read a node of known type and length, checks it and
 441 * stores it in @buf. This function returns %1 if a node is present and %0 if
 442 * a node is not present. A negative error code is returned for I/O errors.
 443 * This function performs that same function as ubifs_read_node except that
 444 * it does not require that there is actually a node present and instead
 445 * the return code indicates if a node was read.
 446 *
 447 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
 448 * is true (it is controlled by corresponding mount option). However, if
 449 * @c->always_chk_crc is true, @c->no_chk_data_crc is ignored and CRC is always
 450 * checked.
 451 */
 452static int try_read_node(const struct ubifs_info *c, void *buf, int type,
 453                         int len, int lnum, int offs)
 454{
 455        int err, node_len;
 456        struct ubifs_ch *ch = buf;
 457        uint32_t crc, node_crc;
 458
 459        dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
 460
 461        err = ubi_read(c->ubi, lnum, buf, offs, len);
 462        if (err) {
 463                ubifs_err("cannot read node type %d from LEB %d:%d, error %d",
 464                          type, lnum, offs, err);
 465                return err;
 466        }
 467
 468        if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
 469                return 0;
 470
 471        if (ch->node_type != type)
 472                return 0;
 473
 474        node_len = le32_to_cpu(ch->len);
 475        if (node_len != len)
 476                return 0;
 477
 478        if (type == UBIFS_DATA_NODE && !c->always_chk_crc && c->no_chk_data_crc)
 479                return 1;
 480
 481        crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
 482        node_crc = le32_to_cpu(ch->crc);
 483        if (crc != node_crc)
 484                return 0;
 485
 486        return 1;
 487}
 488
 489/**
 490 * fallible_read_node - try to read a leaf node.
 491 * @c: UBIFS file-system description object
 492 * @key:  key of node to read
 493 * @zbr:  position of node
 494 * @node: node returned
 495 *
 496 * This function tries to read a node and returns %1 if the node is read, %0
 497 * if the node is not present, and a negative error code in the case of error.
 498 */
 499static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
 500                              struct ubifs_zbranch *zbr, void *node)
 501{
 502        int ret;
 503
 504        dbg_tnc("LEB %d:%d, key %s", zbr->lnum, zbr->offs, DBGKEY(key));
 505
 506        ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
 507                            zbr->offs);
 508        if (ret == 1) {
 509                union ubifs_key node_key;
 510                struct ubifs_dent_node *dent = node;
 511
 512                /* All nodes have key in the same place */
 513                key_read(c, &dent->key, &node_key);
 514                if (keys_cmp(c, key, &node_key) != 0)
 515                        ret = 0;
 516        }
 517        if (ret == 0 && c->replaying)
 518                dbg_mnt("dangling branch LEB %d:%d len %d, key %s",
 519                        zbr->lnum, zbr->offs, zbr->len, DBGKEY(key));
 520        return ret;
 521}
 522
 523/**
 524 * matches_name - determine if a direntry or xattr entry matches a given name.
 525 * @c: UBIFS file-system description object
 526 * @zbr: zbranch of dent
 527 * @nm: name to match
 528 *
 529 * This function checks if xentry/direntry referred by zbranch @zbr matches name
 530 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
 531 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
 532 * of failure, a negative error code is returned.
 533 */
 534static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 535                        const struct qstr *nm)
 536{
 537        struct ubifs_dent_node *dent;
 538        int nlen, err;
 539
 540        /* If possible, match against the dent in the leaf node cache */
 541        if (!zbr->leaf) {
 542                dent = kmalloc(zbr->len, GFP_NOFS);
 543                if (!dent)
 544                        return -ENOMEM;
 545
 546                err = ubifs_tnc_read_node(c, zbr, dent);
 547                if (err)
 548                        goto out_free;
 549
 550                /* Add the node to the leaf node cache */
 551                err = lnc_add_directly(c, zbr, dent);
 552                if (err)
 553                        goto out_free;
 554        } else
 555                dent = zbr->leaf;
 556
 557        nlen = le16_to_cpu(dent->nlen);
 558        err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
 559        if (err == 0) {
 560                if (nlen == nm->len)
 561                        return NAME_MATCHES;
 562                else if (nlen < nm->len)
 563                        return NAME_LESS;
 564                else
 565                        return NAME_GREATER;
 566        } else if (err < 0)
 567                return NAME_LESS;
 568        else
 569                return NAME_GREATER;
 570
 571out_free:
 572        kfree(dent);
 573        return err;
 574}
 575
 576/**
 577 * get_znode - get a TNC znode that may not be loaded yet.
 578 * @c: UBIFS file-system description object
 579 * @znode: parent znode
 580 * @n: znode branch slot number
 581 *
 582 * This function returns the znode or a negative error code.
 583 */
 584static struct ubifs_znode *get_znode(struct ubifs_info *c,
 585                                     struct ubifs_znode *znode, int n)
 586{
 587        struct ubifs_zbranch *zbr;
 588
 589        zbr = &znode->zbranch[n];
 590        if (zbr->znode)
 591                znode = zbr->znode;
 592        else
 593                znode = ubifs_load_znode(c, zbr, znode, n);
 594        return znode;
 595}
 596
 597/**
 598 * tnc_next - find next TNC entry.
 599 * @c: UBIFS file-system description object
 600 * @zn: znode is passed and returned here
 601 * @n: znode branch slot number is passed and returned here
 602 *
 603 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
 604 * no next entry, or a negative error code otherwise.
 605 */
 606static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
 607{
 608        struct ubifs_znode *znode = *zn;
 609        int nn = *n;
 610
 611        nn += 1;
 612        if (nn < znode->child_cnt) {
 613                *n = nn;
 614                return 0;
 615        }
 616        while (1) {
 617                struct ubifs_znode *zp;
 618
 619                zp = znode->parent;
 620                if (!zp)
 621                        return -ENOENT;
 622                nn = znode->iip + 1;
 623                znode = zp;
 624                if (nn < znode->child_cnt) {
 625                        znode = get_znode(c, znode, nn);
 626                        if (IS_ERR(znode))
 627                                return PTR_ERR(znode);
 628                        while (znode->level != 0) {
 629                                znode = get_znode(c, znode, 0);
 630                                if (IS_ERR(znode))
 631                                        return PTR_ERR(znode);
 632                        }
 633                        nn = 0;
 634                        break;
 635                }
 636        }
 637        *zn = znode;
 638        *n = nn;
 639        return 0;
 640}
 641
 642/**
 643 * tnc_prev - find previous TNC entry.
 644 * @c: UBIFS file-system description object
 645 * @zn: znode is returned here
 646 * @n: znode branch slot number is passed and returned here
 647 *
 648 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
 649 * there is no next entry, or a negative error code otherwise.
 650 */
 651static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
 652{
 653        struct ubifs_znode *znode = *zn;
 654        int nn = *n;
 655
 656        if (nn > 0) {
 657                *n = nn - 1;
 658                return 0;
 659        }
 660        while (1) {
 661                struct ubifs_znode *zp;
 662
 663                zp = znode->parent;
 664                if (!zp)
 665                        return -ENOENT;
 666                nn = znode->iip - 1;
 667                znode = zp;
 668                if (nn >= 0) {
 669                        znode = get_znode(c, znode, nn);
 670                        if (IS_ERR(znode))
 671                                return PTR_ERR(znode);
 672                        while (znode->level != 0) {
 673                                nn = znode->child_cnt - 1;
 674                                znode = get_znode(c, znode, nn);
 675                                if (IS_ERR(znode))
 676                                        return PTR_ERR(znode);
 677                        }
 678                        nn = znode->child_cnt - 1;
 679                        break;
 680                }
 681        }
 682        *zn = znode;
 683        *n = nn;
 684        return 0;
 685}
 686
 687/**
 688 * resolve_collision - resolve a collision.
 689 * @c: UBIFS file-system description object
 690 * @key: key of a directory or extended attribute entry
 691 * @zn: znode is returned here
 692 * @n: zbranch number is passed and returned here
 693 * @nm: name of the entry
 694 *
 695 * This function is called for "hashed" keys to make sure that the found key
 696 * really corresponds to the looked up node (directory or extended attribute
 697 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
 698 * %0 is returned if @nm is not found and @zn and @n are set to the previous
 699 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
 700 * This means that @n may be set to %-1 if the leftmost key in @zn is the
 701 * previous one. A negative error code is returned on failures.
 702 */
 703static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
 704                             struct ubifs_znode **zn, int *n,
 705                             const struct qstr *nm)
 706{
 707        int err;
 708
 709        err = matches_name(c, &(*zn)->zbranch[*n], nm);
 710        if (unlikely(err < 0))
 711                return err;
 712        if (err == NAME_MATCHES)
 713                return 1;
 714
 715        if (err == NAME_GREATER) {
 716                /* Look left */
 717                while (1) {
 718                        err = tnc_prev(c, zn, n);
 719                        if (err == -ENOENT) {
 720                                ubifs_assert(*n == 0);
 721                                *n = -1;
 722                                return 0;
 723                        }
 724                        if (err < 0)
 725                                return err;
 726                        if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
 727                                /*
 728                                 * We have found the branch after which we would
 729                                 * like to insert, but inserting in this znode
 730                                 * may still be wrong. Consider the following 3
 731                                 * znodes, in the case where we are resolving a
 732                                 * collision with Key2.
 733                                 *
 734                                 *                  znode zp
 735                                 *            ----------------------
 736                                 * level 1     |  Key0  |  Key1  |
 737                                 *            -----------------------
 738                                 *                 |            |
 739                                 *       znode za  |            |  znode zb
 740                                 *          ------------      ------------
 741                                 * level 0  |  Key0  |        |  Key2  |
 742                                 *          ------------      ------------
 743                                 *
 744                                 * The lookup finds Key2 in znode zb. Lets say
 745                                 * there is no match and the name is greater so
 746                                 * we look left. When we find Key0, we end up
 747                                 * here. If we return now, we will insert into
 748                                 * znode za at slot n = 1.  But that is invalid
 749                                 * according to the parent's keys.  Key2 must
 750                                 * be inserted into znode zb.
 751                                 *
 752                                 * Note, this problem is not relevant for the
 753                                 * case when we go right, because
 754                                 * 'tnc_insert()' would correct the parent key.
 755                                 */
 756                                if (*n == (*zn)->child_cnt - 1) {
 757                                        err = tnc_next(c, zn, n);
 758                                        if (err) {
 759                                                /* Should be impossible */
 760                                                ubifs_assert(0);
 761                                                if (err == -ENOENT)
 762                                                        err = -EINVAL;
 763                                                return err;
 764                                        }
 765                                        ubifs_assert(*n == 0);
 766                                        *n = -1;
 767                                }
 768                                return 0;
 769                        }
 770                        err = matches_name(c, &(*zn)->zbranch[*n], nm);
 771                        if (err < 0)
 772                                return err;
 773                        if (err == NAME_LESS)
 774                                return 0;
 775                        if (err == NAME_MATCHES)
 776                                return 1;
 777                        ubifs_assert(err == NAME_GREATER);
 778                }
 779        } else {
 780                int nn = *n;
 781                struct ubifs_znode *znode = *zn;
 782
 783                /* Look right */
 784                while (1) {
 785                        err = tnc_next(c, &znode, &nn);
 786                        if (err == -ENOENT)
 787                                return 0;
 788                        if (err < 0)
 789                                return err;
 790                        if (keys_cmp(c, &znode->zbranch[nn].key, key))
 791                                return 0;
 792                        err = matches_name(c, &znode->zbranch[nn], nm);
 793                        if (err < 0)
 794                                return err;
 795                        if (err == NAME_GREATER)
 796                                return 0;
 797                        *zn = znode;
 798                        *n = nn;
 799                        if (err == NAME_MATCHES)
 800                                return 1;
 801                        ubifs_assert(err == NAME_LESS);
 802                }
 803        }
 804}
 805
 806/**
 807 * fallible_matches_name - determine if a dent matches a given name.
 808 * @c: UBIFS file-system description object
 809 * @zbr: zbranch of dent
 810 * @nm: name to match
 811 *
 812 * This is a "fallible" version of 'matches_name()' function which does not
 813 * panic if the direntry/xentry referred by @zbr does not exist on the media.
 814 *
 815 * This function checks if xentry/direntry referred by zbranch @zbr matches name
 816 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
 817 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
 818 * if xentry/direntry referred by @zbr does not exist on the media. A negative
 819 * error code is returned in case of failure.
 820 */
 821static int fallible_matches_name(struct ubifs_info *c,
 822                                 struct ubifs_zbranch *zbr,
 823                                 const struct qstr *nm)
 824{
 825        struct ubifs_dent_node *dent;
 826        int nlen, err;
 827
 828        /* If possible, match against the dent in the leaf node cache */
 829        if (!zbr->leaf) {
 830                dent = kmalloc(zbr->len, GFP_NOFS);
 831                if (!dent)
 832                        return -ENOMEM;
 833
 834                err = fallible_read_node(c, &zbr->key, zbr, dent);
 835                if (err < 0)
 836                        goto out_free;
 837                if (err == 0) {
 838                        /* The node was not present */
 839                        err = NOT_ON_MEDIA;
 840                        goto out_free;
 841                }
 842                ubifs_assert(err == 1);
 843
 844                err = lnc_add_directly(c, zbr, dent);
 845                if (err)
 846                        goto out_free;
 847        } else
 848                dent = zbr->leaf;
 849
 850        nlen = le16_to_cpu(dent->nlen);
 851        err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
 852        if (err == 0) {
 853                if (nlen == nm->len)
 854                        return NAME_MATCHES;
 855                else if (nlen < nm->len)
 856                        return NAME_LESS;
 857                else
 858                        return NAME_GREATER;
 859        } else if (err < 0)
 860                return NAME_LESS;
 861        else
 862                return NAME_GREATER;
 863
 864out_free:
 865        kfree(dent);
 866        return err;
 867}
 868
 869/**
 870 * fallible_resolve_collision - resolve a collision even if nodes are missing.
 871 * @c: UBIFS file-system description object
 872 * @key: key
 873 * @zn: znode is returned here
 874 * @n: branch number is passed and returned here
 875 * @nm: name of directory entry
 876 * @adding: indicates caller is adding a key to the TNC
 877 *
 878 * This is a "fallible" version of the 'resolve_collision()' function which
 879 * does not panic if one of the nodes referred to by TNC does not exist on the
 880 * media. This may happen when replaying the journal if a deleted node was
 881 * Garbage-collected and the commit was not done. A branch that refers to a node
 882 * that is not present is called a dangling branch. The following are the return
 883 * codes for this function:
 884 *  o if @nm was found, %1 is returned and @zn and @n are set to the found
 885 *    branch;
 886 *  o if we are @adding and @nm was not found, %0 is returned;
 887 *  o if we are not @adding and @nm was not found, but a dangling branch was
 888 *    found, then %1 is returned and @zn and @n are set to the dangling branch;
 889 *  o a negative error code is returned in case of failure.
 890 */
 891static int fallible_resolve_collision(struct ubifs_info *c,
 892                                      const union ubifs_key *key,
 893                                      struct ubifs_znode **zn, int *n,
 894                                      const struct qstr *nm, int adding)
 895{
 896        struct ubifs_znode *o_znode = NULL, *znode = *zn;
 897        int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
 898
 899        cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
 900        if (unlikely(cmp < 0))
 901                return cmp;
 902        if (cmp == NAME_MATCHES)
 903                return 1;
 904        if (cmp == NOT_ON_MEDIA) {
 905                o_znode = znode;
 906                o_n = nn;
 907                /*
 908                 * We are unlucky and hit a dangling branch straight away.
 909                 * Now we do not really know where to go to find the needed
 910                 * branch - to the left or to the right. Well, let's try left.
 911                 */
 912                unsure = 1;
 913        } else if (!adding)
 914                unsure = 1; /* Remove a dangling branch wherever it is */
 915
 916        if (cmp == NAME_GREATER || unsure) {
 917                /* Look left */
 918                while (1) {
 919                        err = tnc_prev(c, zn, n);
 920                        if (err == -ENOENT) {
 921                                ubifs_assert(*n == 0);
 922                                *n = -1;
 923                                break;
 924                        }
 925                        if (err < 0)
 926                                return err;
 927                        if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
 928                                /* See comments in 'resolve_collision()' */
 929                                if (*n == (*zn)->child_cnt - 1) {
 930                                        err = tnc_next(c, zn, n);
 931                                        if (err) {
 932                                                /* Should be impossible */
 933                                                ubifs_assert(0);
 934                                                if (err == -ENOENT)
 935                                                        err = -EINVAL;
 936                                                return err;
 937                                        }
 938                                        ubifs_assert(*n == 0);
 939                                        *n = -1;
 940                                }
 941                                break;
 942                        }
 943                        err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
 944                        if (err < 0)
 945                                return err;
 946                        if (err == NAME_MATCHES)
 947                                return 1;
 948                        if (err == NOT_ON_MEDIA) {
 949                                o_znode = *zn;
 950                                o_n = *n;
 951                                continue;
 952                        }
 953                        if (!adding)
 954                                continue;
 955                        if (err == NAME_LESS)
 956                                break;
 957                        else
 958                                unsure = 0;
 959                }
 960        }
 961
 962        if (cmp == NAME_LESS || unsure) {
 963                /* Look right */
 964                *zn = znode;
 965                *n = nn;
 966                while (1) {
 967                        err = tnc_next(c, &znode, &nn);
 968                        if (err == -ENOENT)
 969                                break;
 970                        if (err < 0)
 971                                return err;
 972                        if (keys_cmp(c, &znode->zbranch[nn].key, key))
 973                                break;
 974                        err = fallible_matches_name(c, &znode->zbranch[nn], nm);
 975                        if (err < 0)
 976                                return err;
 977                        if (err == NAME_GREATER)
 978                                break;
 979                        *zn = znode;
 980                        *n = nn;
 981                        if (err == NAME_MATCHES)
 982                                return 1;
 983                        if (err == NOT_ON_MEDIA) {
 984                                o_znode = znode;
 985                                o_n = nn;
 986                        }
 987                }
 988        }
 989
 990        /* Never match a dangling branch when adding */
 991        if (adding || !o_znode)
 992                return 0;
 993
 994        dbg_mnt("dangling match LEB %d:%d len %d %s",
 995                o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
 996                o_znode->zbranch[o_n].len, DBGKEY(key));
 997        *zn = o_znode;
 998        *n = o_n;
 999        return 1;
1000}
1001
1002/**
1003 * matches_position - determine if a zbranch matches a given position.
1004 * @zbr: zbranch of dent
1005 * @lnum: LEB number of dent to match
1006 * @offs: offset of dent to match
1007 *
1008 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1009 */
1010static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1011{
1012        if (zbr->lnum == lnum && zbr->offs == offs)
1013                return 1;
1014        else
1015                return 0;
1016}
1017
1018/**
1019 * resolve_collision_directly - resolve a collision directly.
1020 * @c: UBIFS file-system description object
1021 * @key: key of directory entry
1022 * @zn: znode is passed and returned here
1023 * @n: zbranch number is passed and returned here
1024 * @lnum: LEB number of dent node to match
1025 * @offs: offset of dent node to match
1026 *
1027 * This function is used for "hashed" keys to make sure the found directory or
1028 * extended attribute entry node is what was looked for. It is used when the
1029 * flash address of the right node is known (@lnum:@offs) which makes it much
1030 * easier to resolve collisions (no need to read entries and match full
1031 * names). This function returns %1 and sets @zn and @n if the collision is
1032 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1033 * previous directory entry. Otherwise a negative error code is returned.
1034 */
1035static int resolve_collision_directly(struct ubifs_info *c,
1036                                      const union ubifs_key *key,
1037                                      struct ubifs_znode **zn, int *n,
1038                                      int lnum, int offs)
1039{
1040        struct ubifs_znode *znode;
1041        int nn, err;
1042
1043        znode = *zn;
1044        nn = *n;
1045        if (matches_position(&znode->zbranch[nn], lnum, offs))
1046                return 1;
1047
1048        /* Look left */
1049        while (1) {
1050                err = tnc_prev(c, &znode, &nn);
1051                if (err == -ENOENT)
1052                        break;
1053                if (err < 0)
1054                        return err;
1055                if (keys_cmp(c, &znode->zbranch[nn].key, key))
1056                        break;
1057                if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1058                        *zn = znode;
1059                        *n = nn;
1060                        return 1;
1061                }
1062        }
1063
1064        /* Look right */
1065        znode = *zn;
1066        nn = *n;
1067        while (1) {
1068                err = tnc_next(c, &znode, &nn);
1069                if (err == -ENOENT)
1070                        return 0;
1071                if (err < 0)
1072                        return err;
1073                if (keys_cmp(c, &znode->zbranch[nn].key, key))
1074                        return 0;
1075                *zn = znode;
1076                *n = nn;
1077                if (matches_position(&znode->zbranch[nn], lnum, offs))
1078                        return 1;
1079        }
1080}
1081
1082/**
1083 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1084 * @c: UBIFS file-system description object
1085 * @znode: znode to dirty
1086 *
1087 * If we do not have a unique key that resides in a znode, then we cannot
1088 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1089 * This function records the path back to the last dirty ancestor, and then
1090 * dirties the znodes on that path.
1091 */
1092static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1093                                               struct ubifs_znode *znode)
1094{
1095        struct ubifs_znode *zp;
1096        int *path = c->bottom_up_buf, p = 0;
1097
1098        ubifs_assert(c->zroot.znode);
1099        ubifs_assert(znode);
1100        if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1101                kfree(c->bottom_up_buf);
1102                c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
1103                                           GFP_NOFS);
1104                if (!c->bottom_up_buf)
1105                        return ERR_PTR(-ENOMEM);
1106                path = c->bottom_up_buf;
1107        }
1108        if (c->zroot.znode->level) {
1109                /* Go up until parent is dirty */
1110                while (1) {
1111                        int n;
1112
1113                        zp = znode->parent;
1114                        if (!zp)
1115                                break;
1116                        n = znode->iip;
1117                        ubifs_assert(p < c->zroot.znode->level);
1118                        path[p++] = n;
1119                        if (!zp->cnext && ubifs_zn_dirty(znode))
1120                                break;
1121                        znode = zp;
1122                }
1123        }
1124
1125        /* Come back down, dirtying as we go */
1126        while (1) {
1127                struct ubifs_zbranch *zbr;
1128
1129                zp = znode->parent;
1130                if (zp) {
1131                        ubifs_assert(path[p - 1] >= 0);
1132                        ubifs_assert(path[p - 1] < zp->child_cnt);
1133                        zbr = &zp->zbranch[path[--p]];
1134                        znode = dirty_cow_znode(c, zbr);
1135                } else {
1136                        ubifs_assert(znode == c->zroot.znode);
1137                        znode = dirty_cow_znode(c, &c->zroot);
1138                }
1139                if (IS_ERR(znode) || !p)
1140                        break;
1141                ubifs_assert(path[p - 1] >= 0);
1142                ubifs_assert(path[p - 1] < znode->child_cnt);
1143                znode = znode->zbranch[path[p - 1]].znode;
1144        }
1145
1146        return znode;
1147}
1148
1149/**
1150 * ubifs_lookup_level0 - search for zero-level znode.
1151 * @c: UBIFS file-system description object
1152 * @key:  key to lookup
1153 * @zn: znode is returned here
1154 * @n: znode branch slot number is returned here
1155 *
1156 * This function looks up the TNC tree and search for zero-level znode which
1157 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1158 * cases:
1159 *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1160 *     is returned and slot number of the matched branch is stored in @n;
1161 *   o not exact match, which means that zero-level znode does not contain
1162 *     @key, then %0 is returned and slot number of the closest branch is stored
1163 *     in @n;
1164 *   o @key is so small that it is even less than the lowest key of the
1165 *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1166 *
1167 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1168 * function reads corresponding indexing nodes and inserts them to TNC. In
1169 * case of failure, a negative error code is returned.
1170 */
1171int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1172                        struct ubifs_znode **zn, int *n)
1173{
1174        int err, exact;
1175        struct ubifs_znode *znode;
1176        unsigned long time = get_seconds();
1177
1178        dbg_tnc("search key %s", DBGKEY(key));
1179
1180        znode = c->zroot.znode;
1181        if (unlikely(!znode)) {
1182                znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1183                if (IS_ERR(znode))
1184                        return PTR_ERR(znode);
1185        }
1186
1187        znode->time = time;
1188
1189        while (1) {
1190                struct ubifs_zbranch *zbr;
1191
1192                exact = ubifs_search_zbranch(c, znode, key, n);
1193
1194                if (znode->level == 0)
1195                        break;
1196
1197                if (*n < 0)
1198                        *n = 0;
1199                zbr = &znode->zbranch[*n];
1200
1201                if (zbr->znode) {
1202                        znode->time = time;
1203                        znode = zbr->znode;
1204                        continue;
1205                }
1206
1207                /* znode is not in TNC cache, load it from the media */
1208                znode = ubifs_load_znode(c, zbr, znode, *n);
1209                if (IS_ERR(znode))
1210                        return PTR_ERR(znode);
1211        }
1212
1213        *zn = znode;
1214        if (exact || !is_hash_key(c, key) || *n != -1) {
1215                dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1216                return exact;
1217        }
1218
1219        /*
1220         * Here is a tricky place. We have not found the key and this is a
1221         * "hashed" key, which may collide. The rest of the code deals with
1222         * situations like this:
1223         *
1224         *                  | 3 | 5 |
1225         *                  /       \
1226         *          | 3 | 5 |      | 6 | 7 | (x)
1227         *
1228         * Or more a complex example:
1229         *
1230         *                | 1 | 5 |
1231         *                /       \
1232         *       | 1 | 3 |         | 5 | 8 |
1233         *              \           /
1234         *          | 5 | 5 |   | 6 | 7 | (x)
1235         *
1236         * In the examples, if we are looking for key "5", we may reach nodes
1237         * marked with "(x)". In this case what we have do is to look at the
1238         * left and see if there is "5" key there. If there is, we have to
1239         * return it.
1240         *
1241         * Note, this whole situation is possible because we allow to have
1242         * elements which are equivalent to the next key in the parent in the
1243         * children of current znode. For example, this happens if we split a
1244         * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1245         * like this:
1246         *                      | 3 | 5 |
1247         *                       /     \
1248         *                | 3 | 5 |   | 5 | 6 | 7 |
1249         *                              ^
1250         * And this becomes what is at the first "picture" after key "5" marked
1251         * with "^" is removed. What could be done is we could prohibit
1252         * splitting in the middle of the colliding sequence. Also, when
1253         * removing the leftmost key, we would have to correct the key of the
1254         * parent node, which would introduce additional complications. Namely,
1255         * if we changed the leftmost key of the parent znode, the garbage
1256         * collector would be unable to find it (GC is doing this when GC'ing
1257         * indexing LEBs). Although we already have an additional RB-tree where
1258         * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1259         * after the commit. But anyway, this does not look easy to implement
1260         * so we did not try this.
1261         */
1262        err = tnc_prev(c, &znode, n);
1263        if (err == -ENOENT) {
1264                dbg_tnc("found 0, lvl %d, n -1", znode->level);
1265                *n = -1;
1266                return 0;
1267        }
1268        if (unlikely(err < 0))
1269                return err;
1270        if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1271                dbg_tnc("found 0, lvl %d, n -1", znode->level);
1272                *n = -1;
1273                return 0;
1274        }
1275
1276        dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1277        *zn = znode;
1278        return 1;
1279}
1280
1281/**
1282 * lookup_level0_dirty - search for zero-level znode dirtying.
1283 * @c: UBIFS file-system description object
1284 * @key:  key to lookup
1285 * @zn: znode is returned here
1286 * @n: znode branch slot number is returned here
1287 *
1288 * This function looks up the TNC tree and search for zero-level znode which
1289 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1290 * cases:
1291 *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1292 *     is returned and slot number of the matched branch is stored in @n;
1293 *   o not exact match, which means that zero-level znode does not contain @key
1294 *     then %0 is returned and slot number of the closed branch is stored in
1295 *     @n;
1296 *   o @key is so small that it is even less than the lowest key of the
1297 *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1298 *
1299 * Additionally all znodes in the path from the root to the located zero-level
1300 * znode are marked as dirty.
1301 *
1302 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1303 * function reads corresponding indexing nodes and inserts them to TNC. In
1304 * case of failure, a negative error code is returned.
1305 */
1306static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1307                               struct ubifs_znode **zn, int *n)
1308{
1309        int err, exact;
1310        struct ubifs_znode *znode;
1311        unsigned long time = get_seconds();
1312
1313        dbg_tnc("search and dirty key %s", DBGKEY(key));
1314
1315        znode = c->zroot.znode;
1316        if (unlikely(!znode)) {
1317                znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1318                if (IS_ERR(znode))
1319                        return PTR_ERR(znode);
1320        }
1321
1322        znode = dirty_cow_znode(c, &c->zroot);
1323        if (IS_ERR(znode))
1324                return PTR_ERR(znode);
1325
1326        znode->time = time;
1327
1328        while (1) {
1329                struct ubifs_zbranch *zbr;
1330
1331                exact = ubifs_search_zbranch(c, znode, key, n);
1332
1333                if (znode->level == 0)
1334                        break;
1335
1336                if (*n < 0)
1337                        *n = 0;
1338                zbr = &znode->zbranch[*n];
1339
1340                if (zbr->znode) {
1341                        znode->time = time;
1342                        znode = dirty_cow_znode(c, zbr);
1343                        if (IS_ERR(znode))
1344                                return PTR_ERR(znode);
1345                        continue;
1346                }
1347
1348                /* znode is not in TNC cache, load it from the media */
1349                znode = ubifs_load_znode(c, zbr, znode, *n);
1350                if (IS_ERR(znode))
1351                        return PTR_ERR(znode);
1352                znode = dirty_cow_znode(c, zbr);
1353                if (IS_ERR(znode))
1354                        return PTR_ERR(znode);
1355        }
1356
1357        *zn = znode;
1358        if (exact || !is_hash_key(c, key) || *n != -1) {
1359                dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1360                return exact;
1361        }
1362
1363        /*
1364         * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1365         * code.
1366         */
1367        err = tnc_prev(c, &znode, n);
1368        if (err == -ENOENT) {
1369                *n = -1;
1370                dbg_tnc("found 0, lvl %d, n -1", znode->level);
1371                return 0;
1372        }
1373        if (unlikely(err < 0))
1374                return err;
1375        if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1376                *n = -1;
1377                dbg_tnc("found 0, lvl %d, n -1", znode->level);
1378                return 0;
1379        }
1380
1381        if (znode->cnext || !ubifs_zn_dirty(znode)) {
1382                znode = dirty_cow_bottom_up(c, znode);
1383                if (IS_ERR(znode))
1384                        return PTR_ERR(znode);
1385        }
1386
1387        dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1388        *zn = znode;
1389        return 1;
1390}
1391
1392/**
1393 * maybe_leb_gced - determine if a LEB may have been garbage collected.
1394 * @c: UBIFS file-system description object
1395 * @lnum: LEB number
1396 * @gc_seq1: garbage collection sequence number
1397 *
1398 * This function determines if @lnum may have been garbage collected since
1399 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1400 * %0 is returned.
1401 */
1402static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1403{
1404        int gc_seq2, gced_lnum;
1405
1406        gced_lnum = c->gced_lnum;
1407        smp_rmb();
1408        gc_seq2 = c->gc_seq;
1409        /* Same seq means no GC */
1410        if (gc_seq1 == gc_seq2)
1411                return 0;
1412        /* Different by more than 1 means we don't know */
1413        if (gc_seq1 + 1 != gc_seq2)
1414                return 1;
1415        /*
1416         * We have seen the sequence number has increased by 1. Now we need to
1417         * be sure we read the right LEB number, so read it again.
1418         */
1419        smp_rmb();
1420        if (gced_lnum != c->gced_lnum)
1421                return 1;
1422        /* Finally we can check lnum */
1423        if (gced_lnum == lnum)
1424                return 1;
1425        return 0;
1426}
1427
1428/**
1429 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1430 * @c: UBIFS file-system description object
1431 * @key: node key to lookup
1432 * @node: the node is returned here
1433 * @lnum: LEB number is returned here
1434 * @offs: offset is returned here
1435 *
1436 * This function looks up and reads node with key @key. The caller has to make
1437 * sure the @node buffer is large enough to fit the node. Returns zero in case
1438 * of success, %-ENOENT if the node was not found, and a negative error code in
1439 * case of failure. The node location can be returned in @lnum and @offs.
1440 */
1441int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1442                     void *node, int *lnum, int *offs)
1443{
1444        int found, n, err, safely = 0, gc_seq1;
1445        struct ubifs_znode *znode;
1446        struct ubifs_zbranch zbr, *zt;
1447
1448again:
1449        mutex_lock(&c->tnc_mutex);
1450        found = ubifs_lookup_level0(c, key, &znode, &n);
1451        if (!found) {
1452                err = -ENOENT;
1453                goto out;
1454        } else if (found < 0) {
1455                err = found;
1456                goto out;
1457        }
1458        zt = &znode->zbranch[n];
1459        if (lnum) {
1460                *lnum = zt->lnum;
1461                *offs = zt->offs;
1462        }
1463        if (is_hash_key(c, key)) {
1464                /*
1465                 * In this case the leaf node cache gets used, so we pass the
1466                 * address of the zbranch and keep the mutex locked
1467                 */
1468                err = tnc_read_node_nm(c, zt, node);
1469                goto out;
1470        }
1471        if (safely) {
1472                err = ubifs_tnc_read_node(c, zt, node);
1473                goto out;
1474        }
1475        /* Drop the TNC mutex prematurely and race with garbage collection */
1476        zbr = znode->zbranch[n];
1477        gc_seq1 = c->gc_seq;
1478        mutex_unlock(&c->tnc_mutex);
1479
1480        if (ubifs_get_wbuf(c, zbr.lnum)) {
1481                /* We do not GC journal heads */
1482                err = ubifs_tnc_read_node(c, &zbr, node);
1483                return err;
1484        }
1485
1486        err = fallible_read_node(c, key, &zbr, node);
1487        if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1488                /*
1489                 * The node may have been GC'ed out from under us so try again
1490                 * while keeping the TNC mutex locked.
1491                 */
1492                safely = 1;
1493                goto again;
1494        }
1495        return 0;
1496
1497out:
1498        mutex_unlock(&c->tnc_mutex);
1499        return err;
1500}
1501
1502/**
1503 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1504 * @c: UBIFS file-system description object
1505 * @bu: bulk-read parameters and results
1506 *
1507 * Lookup consecutive data node keys for the same inode that reside
1508 * consecutively in the same LEB. This function returns zero in case of success
1509 * and a negative error code in case of failure.
1510 *
1511 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1512 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1513 * maximum possible amount of nodes for bulk-read.
1514 */
1515int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1516{
1517        int n, err = 0, lnum = -1, uninitialized_var(offs);
1518        int uninitialized_var(len);
1519        unsigned int block = key_block(c, &bu->key);
1520        struct ubifs_znode *znode;
1521
1522        bu->cnt = 0;
1523        bu->blk_cnt = 0;
1524        bu->eof = 0;
1525
1526        mutex_lock(&c->tnc_mutex);
1527        /* Find first key */
1528        err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1529        if (err < 0)
1530                goto out;
1531        if (err) {
1532                /* Key found */
1533                len = znode->zbranch[n].len;
1534                /* The buffer must be big enough for at least 1 node */
1535                if (len > bu->buf_len) {
1536                        err = -EINVAL;
1537                        goto out;
1538                }
1539                /* Add this key */
1540                bu->zbranch[bu->cnt++] = znode->zbranch[n];
1541                bu->blk_cnt += 1;
1542                lnum = znode->zbranch[n].lnum;
1543                offs = ALIGN(znode->zbranch[n].offs + len, 8);
1544        }
1545        while (1) {
1546                struct ubifs_zbranch *zbr;
1547                union ubifs_key *key;
1548                unsigned int next_block;
1549
1550                /* Find next key */
1551                err = tnc_next(c, &znode, &n);
1552                if (err)
1553                        goto out;
1554                zbr = &znode->zbranch[n];
1555                key = &zbr->key;
1556                /* See if there is another data key for this file */
1557                if (key_inum(c, key) != key_inum(c, &bu->key) ||
1558                    key_type(c, key) != UBIFS_DATA_KEY) {
1559                        err = -ENOENT;
1560                        goto out;
1561                }
1562                if (lnum < 0) {
1563                        /* First key found */
1564                        lnum = zbr->lnum;
1565                        offs = ALIGN(zbr->offs + zbr->len, 8);
1566                        len = zbr->len;
1567                        if (len > bu->buf_len) {
1568                                err = -EINVAL;
1569                                goto out;
1570                        }
1571                } else {
1572                        /*
1573                         * The data nodes must be in consecutive positions in
1574                         * the same LEB.
1575                         */
1576                        if (zbr->lnum != lnum || zbr->offs != offs)
1577                                goto out;
1578                        offs += ALIGN(zbr->len, 8);
1579                        len = ALIGN(len, 8) + zbr->len;
1580                        /* Must not exceed buffer length */
1581                        if (len > bu->buf_len)
1582                                goto out;
1583                }
1584                /* Allow for holes */
1585                next_block = key_block(c, key);
1586                bu->blk_cnt += (next_block - block - 1);
1587                if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1588                        goto out;
1589                block = next_block;
1590                /* Add this key */
1591                bu->zbranch[bu->cnt++] = *zbr;
1592                bu->blk_cnt += 1;
1593                /* See if we have room for more */
1594                if (bu->cnt >= UBIFS_MAX_BULK_READ)
1595                        goto out;
1596                if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1597                        goto out;
1598        }
1599out:
1600        if (err == -ENOENT) {
1601                bu->eof = 1;
1602                err = 0;
1603        }
1604        bu->gc_seq = c->gc_seq;
1605        mutex_unlock(&c->tnc_mutex);
1606        if (err)
1607                return err;
1608        /*
1609         * An enormous hole could cause bulk-read to encompass too many
1610         * page cache pages, so limit the number here.
1611         */
1612        if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1613                bu->blk_cnt = UBIFS_MAX_BULK_READ;
1614        /*
1615         * Ensure that bulk-read covers a whole number of page cache
1616         * pages.
1617         */
1618        if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1619            !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1620                return 0;
1621        if (bu->eof) {
1622                /* At the end of file we can round up */
1623                bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1624                return 0;
1625        }
1626        /* Exclude data nodes that do not make up a whole page cache page */
1627        block = key_block(c, &bu->key) + bu->blk_cnt;
1628        block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1629        while (bu->cnt) {
1630                if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1631                        break;
1632                bu->cnt -= 1;
1633        }
1634        return 0;
1635}
1636
1637/**
1638 * read_wbuf - bulk-read from a LEB with a wbuf.
1639 * @wbuf: wbuf that may overlap the read
1640 * @buf: buffer into which to read
1641 * @len: read length
1642 * @lnum: LEB number from which to read
1643 * @offs: offset from which to read
1644 *
1645 * This functions returns %0 on success or a negative error code on failure.
1646 */
1647static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1648                     int offs)
1649{
1650        const struct ubifs_info *c = wbuf->c;
1651        int rlen, overlap;
1652
1653        dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1654        ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1655        ubifs_assert(!(offs & 7) && offs < c->leb_size);
1656        ubifs_assert(offs + len <= c->leb_size);
1657
1658        spin_lock(&wbuf->lock);
1659        overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1660        if (!overlap) {
1661                /* We may safely unlock the write-buffer and read the data */
1662                spin_unlock(&wbuf->lock);
1663                return ubi_read(c->ubi, lnum, buf, offs, len);
1664        }
1665
1666        /* Don't read under wbuf */
1667        rlen = wbuf->offs - offs;
1668        if (rlen < 0)
1669                rlen = 0;
1670
1671        /* Copy the rest from the write-buffer */
1672        memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1673        spin_unlock(&wbuf->lock);
1674
1675        if (rlen > 0)
1676                /* Read everything that goes before write-buffer */
1677                return ubi_read(c->ubi, lnum, buf, offs, rlen);
1678
1679        return 0;
1680}
1681
1682/**
1683 * validate_data_node - validate data nodes for bulk-read.
1684 * @c: UBIFS file-system description object
1685 * @buf: buffer containing data node to validate
1686 * @zbr: zbranch of data node to validate
1687 *
1688 * This functions returns %0 on success or a negative error code on failure.
1689 */
1690static int validate_data_node(struct ubifs_info *c, void *buf,
1691                              struct ubifs_zbranch *zbr)
1692{
1693        union ubifs_key key1;
1694        struct ubifs_ch *ch = buf;
1695        int err, len;
1696
1697        if (ch->node_type != UBIFS_DATA_NODE) {
1698                ubifs_err("bad node type (%d but expected %d)",
1699                          ch->node_type, UBIFS_DATA_NODE);
1700                goto out_err;
1701        }
1702
1703        err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
1704        if (err) {
1705                ubifs_err("expected node type %d", UBIFS_DATA_NODE);
1706                goto out;
1707        }
1708
1709        len = le32_to_cpu(ch->len);
1710        if (len != zbr->len) {
1711                ubifs_err("bad node length %d, expected %d", len, zbr->len);
1712                goto out_err;
1713        }
1714
1715        /* Make sure the key of the read node is correct */
1716        key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1717        if (!keys_eq(c, &zbr->key, &key1)) {
1718                ubifs_err("bad key in node at LEB %d:%d",
1719                          zbr->lnum, zbr->offs);
1720                dbg_tnc("looked for key %s found node's key %s",
1721                        DBGKEY(&zbr->key), DBGKEY1(&key1));
1722                goto out_err;
1723        }
1724
1725        return 0;
1726
1727out_err:
1728        err = -EINVAL;
1729out:
1730        ubifs_err("bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1731        dbg_dump_node(c, buf);
1732        dbg_dump_stack();
1733        return err;
1734}
1735
1736/**
1737 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1738 * @c: UBIFS file-system description object
1739 * @bu: bulk-read parameters and results
1740 *
1741 * This functions reads and validates the data nodes that were identified by the
1742 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1743 * -EAGAIN to indicate a race with GC, or another negative error code on
1744 * failure.
1745 */
1746int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1747{
1748        int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1749        struct ubifs_wbuf *wbuf;
1750        void *buf;
1751
1752        len = bu->zbranch[bu->cnt - 1].offs;
1753        len += bu->zbranch[bu->cnt - 1].len - offs;
1754        if (len > bu->buf_len) {
1755                ubifs_err("buffer too small %d vs %d", bu->buf_len, len);
1756                return -EINVAL;
1757        }
1758
1759        /* Do the read */
1760        wbuf = ubifs_get_wbuf(c, lnum);
1761        if (wbuf)
1762                err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1763        else
1764                err = ubi_read(c->ubi, lnum, bu->buf, offs, len);
1765
1766        /* Check for a race with GC */
1767        if (maybe_leb_gced(c, lnum, bu->gc_seq))
1768                return -EAGAIN;
1769
1770        if (err && err != -EBADMSG) {
1771                ubifs_err("failed to read from LEB %d:%d, error %d",
1772                          lnum, offs, err);
1773                dbg_dump_stack();
1774                dbg_tnc("key %s", DBGKEY(&bu->key));
1775                return err;
1776        }
1777
1778        /* Validate the nodes read */
1779        buf = bu->buf;
1780        for (i = 0; i < bu->cnt; i++) {
1781                err = validate_data_node(c, buf, &bu->zbranch[i]);
1782                if (err)
1783                        return err;
1784                buf = buf + ALIGN(bu->zbranch[i].len, 8);
1785        }
1786
1787        return 0;
1788}
1789
1790/**
1791 * do_lookup_nm- look up a "hashed" node.
1792 * @c: UBIFS file-system description object
1793 * @key: node key to lookup
1794 * @node: the node is returned here
1795 * @nm: node name
1796 *
1797 * This function look up and reads a node which contains name hash in the key.
1798 * Since the hash may have collisions, there may be many nodes with the same
1799 * key, so we have to sequentially look to all of them until the needed one is
1800 * found. This function returns zero in case of success, %-ENOENT if the node
1801 * was not found, and a negative error code in case of failure.
1802 */
1803static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1804                        void *node, const struct qstr *nm)
1805{
1806        int found, n, err;
1807        struct ubifs_znode *znode;
1808
1809        dbg_tnc("name '%.*s' key %s", nm->len, nm->name, DBGKEY(key));
1810        mutex_lock(&c->tnc_mutex);
1811        found = ubifs_lookup_level0(c, key, &znode, &n);
1812        if (!found) {
1813                err = -ENOENT;
1814                goto out_unlock;
1815        } else if (found < 0) {
1816                err = found;
1817                goto out_unlock;
1818        }
1819
1820        ubifs_assert(n >= 0);
1821
1822        err = resolve_collision(c, key, &znode, &n, nm);
1823        dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1824        if (unlikely(err < 0))
1825                goto out_unlock;
1826        if (err == 0) {
1827                err = -ENOENT;
1828                goto out_unlock;
1829        }
1830
1831        err = tnc_read_node_nm(c, &znode->zbranch[n], node);
1832
1833out_unlock:
1834        mutex_unlock(&c->tnc_mutex);
1835        return err;
1836}
1837
1838/**
1839 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1840 * @c: UBIFS file-system description object
1841 * @key: node key to lookup
1842 * @node: the node is returned here
1843 * @nm: node name
1844 *
1845 * This function look up and reads a node which contains name hash in the key.
1846 * Since the hash may have collisions, there may be many nodes with the same
1847 * key, so we have to sequentially look to all of them until the needed one is
1848 * found. This function returns zero in case of success, %-ENOENT if the node
1849 * was not found, and a negative error code in case of failure.
1850 */
1851int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1852                        void *node, const struct qstr *nm)
1853{
1854        int err, len;
1855        const struct ubifs_dent_node *dent = node;
1856
1857        /*
1858         * We assume that in most of the cases there are no name collisions and
1859         * 'ubifs_tnc_lookup()' returns us the right direntry.
1860         */
1861        err = ubifs_tnc_lookup(c, key, node);
1862        if (err)
1863                return err;
1864
1865        len = le16_to_cpu(dent->nlen);
1866        if (nm->len == len && !memcmp(dent->name, nm->name, len))
1867                return 0;
1868
1869        /*
1870         * Unluckily, there are hash collisions and we have to iterate over
1871         * them look at each direntry with colliding name hash sequentially.
1872         */
1873        return do_lookup_nm(c, key, node, nm);
1874}
1875
1876/**
1877 * correct_parent_keys - correct parent znodes' keys.
1878 * @c: UBIFS file-system description object
1879 * @znode: znode to correct parent znodes for
1880 *
1881 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1882 * zbranch changes, keys of parent znodes have to be corrected. This helper
1883 * function is called in such situations and corrects the keys if needed.
1884 */
1885static void correct_parent_keys(const struct ubifs_info *c,
1886                                struct ubifs_znode *znode)
1887{
1888        union ubifs_key *key, *key1;
1889
1890        ubifs_assert(znode->parent);
1891        ubifs_assert(znode->iip == 0);
1892
1893        key = &znode->zbranch[0].key;
1894        key1 = &znode->parent->zbranch[0].key;
1895
1896        while (keys_cmp(c, key, key1) < 0) {
1897                key_copy(c, key, key1);
1898                znode = znode->parent;
1899                znode->alt = 1;
1900                if (!znode->parent || znode->iip)
1901                        break;
1902                key1 = &znode->parent->zbranch[0].key;
1903        }
1904}
1905
1906/**
1907 * insert_zbranch - insert a zbranch into a znode.
1908 * @znode: znode into which to insert
1909 * @zbr: zbranch to insert
1910 * @n: slot number to insert to
1911 *
1912 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
1913 * znode's array of zbranches and keeps zbranches consolidated, so when a new
1914 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
1915 * slot, zbranches starting from @n have to be moved right.
1916 */
1917static void insert_zbranch(struct ubifs_znode *znode,
1918                           const struct ubifs_zbranch *zbr, int n)
1919{
1920        int i;
1921
1922        ubifs_assert(ubifs_zn_dirty(znode));
1923
1924        if (znode->level) {
1925                for (i = znode->child_cnt; i > n; i--) {
1926                        znode->zbranch[i] = znode->zbranch[i - 1];
1927                        if (znode->zbranch[i].znode)
1928                                znode->zbranch[i].znode->iip = i;
1929                }
1930                if (zbr->znode)
1931                        zbr->znode->iip = n;
1932        } else
1933                for (i = znode->child_cnt; i > n; i--)
1934                        znode->zbranch[i] = znode->zbranch[i - 1];
1935
1936        znode->zbranch[n] = *zbr;
1937        znode->child_cnt += 1;
1938
1939        /*
1940         * After inserting at slot zero, the lower bound of the key range of
1941         * this znode may have changed. If this znode is subsequently split
1942         * then the upper bound of the key range may change, and furthermore
1943         * it could change to be lower than the original lower bound. If that
1944         * happens, then it will no longer be possible to find this znode in the
1945         * TNC using the key from the index node on flash. That is bad because
1946         * if it is not found, we will assume it is obsolete and may overwrite
1947         * it. Then if there is an unclean unmount, we will start using the
1948         * old index which will be broken.
1949         *
1950         * So we first mark znodes that have insertions at slot zero, and then
1951         * if they are split we add their lnum/offs to the old_idx tree.
1952         */
1953        if (n == 0)
1954                znode->alt = 1;
1955}
1956
1957/**
1958 * tnc_insert - insert a node into TNC.
1959 * @c: UBIFS file-system description object
1960 * @znode: znode to insert into
1961 * @zbr: branch to insert
1962 * @n: slot number to insert new zbranch to
1963 *
1964 * This function inserts a new node described by @zbr into znode @znode. If
1965 * znode does not have a free slot for new zbranch, it is split. Parent znodes
1966 * are splat as well if needed. Returns zero in case of success or a negative
1967 * error code in case of failure.
1968 */
1969static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
1970                      struct ubifs_zbranch *zbr, int n)
1971{
1972        struct ubifs_znode *zn, *zi, *zp;
1973        int i, keep, move, appending = 0;
1974        union ubifs_key *key = &zbr->key, *key1;
1975
1976        ubifs_assert(n >= 0 && n <= c->fanout);
1977
1978        /* Implement naive insert for now */
1979again:
1980        zp = znode->parent;
1981        if (znode->child_cnt < c->fanout) {
1982                ubifs_assert(n != c->fanout);
1983                dbg_tnc("inserted at %d level %d, key %s", n, znode->level,
1984                        DBGKEY(key));
1985
1986                insert_zbranch(znode, zbr, n);
1987
1988                /* Ensure parent's key is correct */
1989                if (n == 0 && zp && znode->iip == 0)
1990                        correct_parent_keys(c, znode);
1991
1992                return 0;
1993        }
1994
1995        /*
1996         * Unfortunately, @znode does not have more empty slots and we have to
1997         * split it.
1998         */
1999        dbg_tnc("splitting level %d, key %s", znode->level, DBGKEY(key));
2000
2001        if (znode->alt)
2002                /*
2003                 * We can no longer be sure of finding this znode by key, so we
2004                 * record it in the old_idx tree.
2005                 */
2006                ins_clr_old_idx_znode(c, znode);
2007
2008        zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2009        if (!zn)
2010                return -ENOMEM;
2011        zn->parent = zp;
2012        zn->level = znode->level;
2013
2014        /* Decide where to split */
2015        if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2016                /* Try not to split consecutive data keys */
2017                if (n == c->fanout) {
2018                        key1 = &znode->zbranch[n - 1].key;
2019                        if (key_inum(c, key1) == key_inum(c, key) &&
2020                            key_type(c, key1) == UBIFS_DATA_KEY)
2021                                appending = 1;
2022                } else
2023                        goto check_split;
2024        } else if (appending && n != c->fanout) {
2025                /* Try not to split consecutive data keys */
2026                appending = 0;
2027check_split:
2028                if (n >= (c->fanout + 1) / 2) {
2029                        key1 = &znode->zbranch[0].key;
2030                        if (key_inum(c, key1) == key_inum(c, key) &&
2031                            key_type(c, key1) == UBIFS_DATA_KEY) {
2032                                key1 = &znode->zbranch[n].key;
2033                                if (key_inum(c, key1) != key_inum(c, key) ||
2034                                    key_type(c, key1) != UBIFS_DATA_KEY) {
2035                                        keep = n;
2036                                        move = c->fanout - keep;
2037                                        zi = znode;
2038                                        goto do_split;
2039                                }
2040                        }
2041                }
2042        }
2043
2044        if (appending) {
2045                keep = c->fanout;
2046                move = 0;
2047        } else {
2048                keep = (c->fanout + 1) / 2;
2049                move = c->fanout - keep;
2050        }
2051
2052        /*
2053         * Although we don't at present, we could look at the neighbors and see
2054         * if we can move some zbranches there.
2055         */
2056
2057        if (n < keep) {
2058                /* Insert into existing znode */
2059                zi = znode;
2060                move += 1;
2061                keep -= 1;
2062        } else {
2063                /* Insert into new znode */
2064                zi = zn;
2065                n -= keep;
2066                /* Re-parent */
2067                if (zn->level != 0)
2068                        zbr->znode->parent = zn;
2069        }
2070
2071do_split:
2072
2073        __set_bit(DIRTY_ZNODE, &zn->flags);
2074        atomic_long_inc(&c->dirty_zn_cnt);
2075
2076        zn->child_cnt = move;
2077        znode->child_cnt = keep;
2078
2079        dbg_tnc("moving %d, keeping %d", move, keep);
2080
2081        /* Move zbranch */
2082        for (i = 0; i < move; i++) {
2083                zn->zbranch[i] = znode->zbranch[keep + i];
2084                /* Re-parent */
2085                if (zn->level != 0)
2086                        if (zn->zbranch[i].znode) {
2087                                zn->zbranch[i].znode->parent = zn;
2088                                zn->zbranch[i].znode->iip = i;
2089                        }
2090        }
2091
2092        /* Insert new key and branch */
2093        dbg_tnc("inserting at %d level %d, key %s", n, zn->level, DBGKEY(key));
2094
2095        insert_zbranch(zi, zbr, n);
2096
2097        /* Insert new znode (produced by spitting) into the parent */
2098        if (zp) {
2099                if (n == 0 && zi == znode && znode->iip == 0)
2100                        correct_parent_keys(c, znode);
2101
2102                /* Locate insertion point */
2103                n = znode->iip + 1;
2104
2105                /* Tail recursion */
2106                zbr->key = zn->zbranch[0].key;
2107                zbr->znode = zn;
2108                zbr->lnum = 0;
2109                zbr->offs = 0;
2110                zbr->len = 0;
2111                znode = zp;
2112
2113                goto again;
2114        }
2115
2116        /* We have to split root znode */
2117        dbg_tnc("creating new zroot at level %d", znode->level + 1);
2118
2119        zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2120        if (!zi)
2121                return -ENOMEM;
2122
2123        zi->child_cnt = 2;
2124        zi->level = znode->level + 1;
2125
2126        __set_bit(DIRTY_ZNODE, &zi->flags);
2127        atomic_long_inc(&c->dirty_zn_cnt);
2128
2129        zi->zbranch[0].key = znode->zbranch[0].key;
2130        zi->zbranch[0].znode = znode;
2131        zi->zbranch[0].lnum = c->zroot.lnum;
2132        zi->zbranch[0].offs = c->zroot.offs;
2133        zi->zbranch[0].len = c->zroot.len;
2134        zi->zbranch[1].key = zn->zbranch[0].key;
2135        zi->zbranch[1].znode = zn;
2136
2137        c->zroot.lnum = 0;
2138        c->zroot.offs = 0;
2139        c->zroot.len = 0;
2140        c->zroot.znode = zi;
2141
2142        zn->parent = zi;
2143        zn->iip = 1;
2144        znode->parent = zi;
2145        znode->iip = 0;
2146
2147        return 0;
2148}
2149
2150/**
2151 * ubifs_tnc_add - add a node to TNC.
2152 * @c: UBIFS file-system description object
2153 * @key: key to add
2154 * @lnum: LEB number of node
2155 * @offs: node offset
2156 * @len: node length
2157 *
2158 * This function adds a node with key @key to TNC. The node may be new or it may
2159 * obsolete some existing one. Returns %0 on success or negative error code on
2160 * failure.
2161 */
2162int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2163                  int offs, int len)
2164{
2165        int found, n, err = 0;
2166        struct ubifs_znode *znode;
2167
2168        mutex_lock(&c->tnc_mutex);
2169        dbg_tnc("%d:%d, len %d, key %s", lnum, offs, len, DBGKEY(key));
2170        found = lookup_level0_dirty(c, key, &znode, &n);
2171        if (!found) {
2172                struct ubifs_zbranch zbr;
2173
2174                zbr.znode = NULL;
2175                zbr.lnum = lnum;
2176                zbr.offs = offs;
2177                zbr.len = len;
2178                key_copy(c, key, &zbr.key);
2179                err = tnc_insert(c, znode, &zbr, n + 1);
2180        } else if (found == 1) {
2181                struct ubifs_zbranch *zbr = &znode->zbranch[n];
2182
2183                lnc_free(zbr);
2184                err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2185                zbr->lnum = lnum;
2186                zbr->offs = offs;
2187                zbr->len = len;
2188        } else
2189                err = found;
2190        if (!err)
2191                err = dbg_check_tnc(c, 0);
2192        mutex_unlock(&c->tnc_mutex);
2193
2194        return err;
2195}
2196
2197/**
2198 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2199 * @c: UBIFS file-system description object
2200 * @key: key to add
2201 * @old_lnum: LEB number of old node
2202 * @old_offs: old node offset
2203 * @lnum: LEB number of node
2204 * @offs: node offset
2205 * @len: node length
2206 *
2207 * This function replaces a node with key @key in the TNC only if the old node
2208 * is found.  This function is called by garbage collection when node are moved.
2209 * Returns %0 on success or negative error code on failure.
2210 */
2211int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2212                      int old_lnum, int old_offs, int lnum, int offs, int len)
2213{
2214        int found, n, err = 0;
2215        struct ubifs_znode *znode;
2216
2217        mutex_lock(&c->tnc_mutex);
2218        dbg_tnc("old LEB %d:%d, new LEB %d:%d, len %d, key %s", old_lnum,
2219                old_offs, lnum, offs, len, DBGKEY(key));
2220        found = lookup_level0_dirty(c, key, &znode, &n);
2221        if (found < 0) {
2222                err = found;
2223                goto out_unlock;
2224        }
2225
2226        if (found == 1) {
2227                struct ubifs_zbranch *zbr = &znode->zbranch[n];
2228
2229                found = 0;
2230                if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2231                        lnc_free(zbr);
2232                        err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2233                        if (err)
2234                                goto out_unlock;
2235                        zbr->lnum = lnum;
2236                        zbr->offs = offs;
2237                        zbr->len = len;
2238                        found = 1;
2239                } else if (is_hash_key(c, key)) {
2240                        found = resolve_collision_directly(c, key, &znode, &n,
2241                                                           old_lnum, old_offs);
2242                        dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2243                                found, znode, n, old_lnum, old_offs);
2244                        if (found < 0) {
2245                                err = found;
2246                                goto out_unlock;
2247                        }
2248
2249                        if (found) {
2250                                /* Ensure the znode is dirtied */
2251                                if (znode->cnext || !ubifs_zn_dirty(znode)) {
2252                                        znode = dirty_cow_bottom_up(c, znode);
2253                                        if (IS_ERR(znode)) {
2254                                                err = PTR_ERR(znode);
2255                                                goto out_unlock;
2256                                        }
2257                                }
2258                                zbr = &znode->zbranch[n];
2259                                lnc_free(zbr);
2260                                err = ubifs_add_dirt(c, zbr->lnum,
2261                                                     zbr->len);
2262                                if (err)
2263                                        goto out_unlock;
2264                                zbr->lnum = lnum;
2265                                zbr->offs = offs;
2266                                zbr->len = len;
2267                        }
2268                }
2269        }
2270
2271        if (!found)
2272                err = ubifs_add_dirt(c, lnum, len);
2273
2274        if (!err)
2275                err = dbg_check_tnc(c, 0);
2276
2277out_unlock:
2278        mutex_unlock(&c->tnc_mutex);
2279        return err;
2280}
2281
2282/**
2283 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2284 * @c: UBIFS file-system description object
2285 * @key: key to add
2286 * @lnum: LEB number of node
2287 * @offs: node offset
2288 * @len: node length
2289 * @nm: node name
2290 *
2291 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2292 * may have collisions, like directory entry keys.
2293 */
2294int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2295                     int lnum, int offs, int len, const struct qstr *nm)
2296{
2297        int found, n, err = 0;
2298        struct ubifs_znode *znode;
2299
2300        mutex_lock(&c->tnc_mutex);
2301        dbg_tnc("LEB %d:%d, name '%.*s', key %s", lnum, offs, nm->len, nm->name,
2302                DBGKEY(key));
2303        found = lookup_level0_dirty(c, key, &znode, &n);
2304        if (found < 0) {
2305                err = found;
2306                goto out_unlock;
2307        }
2308
2309        if (found == 1) {
2310                if (c->replaying)
2311                        found = fallible_resolve_collision(c, key, &znode, &n,
2312                                                           nm, 1);
2313                else
2314                        found = resolve_collision(c, key, &znode, &n, nm);
2315                dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2316                if (found < 0) {
2317                        err = found;
2318                        goto out_unlock;
2319                }
2320
2321                /* Ensure the znode is dirtied */
2322                if (znode->cnext || !ubifs_zn_dirty(znode)) {
2323                        znode = dirty_cow_bottom_up(c, znode);
2324                        if (IS_ERR(znode)) {
2325                                err = PTR_ERR(znode);
2326                                goto out_unlock;
2327                        }
2328                }
2329
2330                if (found == 1) {
2331                        struct ubifs_zbranch *zbr = &znode->zbranch[n];
2332
2333                        lnc_free(zbr);
2334                        err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2335                        zbr->lnum = lnum;
2336                        zbr->offs = offs;
2337                        zbr->len = len;
2338                        goto out_unlock;
2339                }
2340        }
2341
2342        if (!found) {
2343                struct ubifs_zbranch zbr;
2344
2345                zbr.znode = NULL;
2346                zbr.lnum = lnum;
2347                zbr.offs = offs;
2348                zbr.len = len;
2349                key_copy(c, key, &zbr.key);
2350                err = tnc_insert(c, znode, &zbr, n + 1);
2351                if (err)
2352                        goto out_unlock;
2353                if (c->replaying) {
2354                        /*
2355                         * We did not find it in the index so there may be a
2356                         * dangling branch still in the index. So we remove it
2357                         * by passing 'ubifs_tnc_remove_nm()' the same key but
2358                         * an unmatchable name.
2359                         */
2360                        struct qstr noname = { .len = 0, .name = "" };
2361
2362                        err = dbg_check_tnc(c, 0);
2363                        mutex_unlock(&c->tnc_mutex);
2364                        if (err)
2365                                return err;
2366                        return ubifs_tnc_remove_nm(c, key, &noname);
2367                }
2368        }
2369
2370out_unlock:
2371        if (!err)
2372                err = dbg_check_tnc(c, 0);
2373        mutex_unlock(&c->tnc_mutex);
2374        return err;
2375}
2376
2377/**
2378 * tnc_delete - delete a znode form TNC.
2379 * @c: UBIFS file-system description object
2380 * @znode: znode to delete from
2381 * @n: zbranch slot number to delete
2382 *
2383 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2384 * case of success and a negative error code in case of failure.
2385 */
2386static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2387{
2388        struct ubifs_zbranch *zbr;
2389        struct ubifs_znode *zp;
2390        int i, err;
2391
2392        /* Delete without merge for now */
2393        ubifs_assert(znode->level == 0);
2394        ubifs_assert(n >= 0 && n < c->fanout);
2395        dbg_tnc("deleting %s", DBGKEY(&znode->zbranch[n].key));
2396
2397        zbr = &znode->zbranch[n];
2398        lnc_free(zbr);
2399
2400        err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2401        if (err) {
2402                dbg_dump_znode(c, znode);
2403                return err;
2404        }
2405
2406        /* We do not "gap" zbranch slots */
2407        for (i = n; i < znode->child_cnt - 1; i++)
2408                znode->zbranch[i] = znode->zbranch[i + 1];
2409        znode->child_cnt -= 1;
2410
2411        if (znode->child_cnt > 0)
2412                return 0;
2413
2414        /*
2415         * This was the last zbranch, we have to delete this znode from the
2416         * parent.
2417         */
2418
2419        do {
2420                ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags));
2421                ubifs_assert(ubifs_zn_dirty(znode));
2422
2423                zp = znode->parent;
2424                n = znode->iip;
2425
2426                atomic_long_dec(&c->dirty_zn_cnt);
2427
2428                err = insert_old_idx_znode(c, znode);
2429                if (err)
2430                        return err;
2431
2432                if (znode->cnext) {
2433                        __set_bit(OBSOLETE_ZNODE, &znode->flags);
2434                        atomic_long_inc(&c->clean_zn_cnt);
2435                        atomic_long_inc(&ubifs_clean_zn_cnt);
2436                } else
2437                        kfree(znode);
2438                znode = zp;
2439        } while (znode->child_cnt == 1); /* while removing last child */
2440
2441        /* Remove from znode, entry n - 1 */
2442        znode->child_cnt -= 1;
2443        ubifs_assert(znode->level != 0);
2444        for (i = n; i < znode->child_cnt; i++) {
2445                znode->zbranch[i] = znode->zbranch[i + 1];
2446                if (znode->zbranch[i].znode)
2447                        znode->zbranch[i].znode->iip = i;
2448        }
2449
2450        /*
2451         * If this is the root and it has only 1 child then
2452         * collapse the tree.
2453         */
2454        if (!znode->parent) {
2455                while (znode->child_cnt == 1 && znode->level != 0) {
2456                        zp = znode;
2457                        zbr = &znode->zbranch[0];
2458                        znode = get_znode(c, znode, 0);
2459                        if (IS_ERR(znode))
2460                                return PTR_ERR(znode);
2461                        znode = dirty_cow_znode(c, zbr);
2462                        if (IS_ERR(znode))
2463                                return PTR_ERR(znode);
2464                        znode->parent = NULL;
2465                        znode->iip = 0;
2466                        if (c->zroot.len) {
2467                                err = insert_old_idx(c, c->zroot.lnum,
2468                                                     c->zroot.offs);
2469                                if (err)
2470                                        return err;
2471                        }
2472                        c->zroot.lnum = zbr->lnum;
2473                        c->zroot.offs = zbr->offs;
2474                        c->zroot.len = zbr->len;
2475                        c->zroot.znode = znode;
2476                        ubifs_assert(!test_bit(OBSOLETE_ZNODE,
2477                                     &zp->flags));
2478                        ubifs_assert(test_bit(DIRTY_ZNODE, &zp->flags));
2479                        atomic_long_dec(&c->dirty_zn_cnt);
2480
2481                        if (zp->cnext) {
2482                                __set_bit(OBSOLETE_ZNODE, &zp->flags);
2483                                atomic_long_inc(&c->clean_zn_cnt);
2484                                atomic_long_inc(&ubifs_clean_zn_cnt);
2485                        } else
2486                                kfree(zp);
2487                }
2488        }
2489
2490        return 0;
2491}
2492
2493/**
2494 * ubifs_tnc_remove - remove an index entry of a node.
2495 * @c: UBIFS file-system description object
2496 * @key: key of node
2497 *
2498 * Returns %0 on success or negative error code on failure.
2499 */
2500int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2501{
2502        int found, n, err = 0;
2503        struct ubifs_znode *znode;
2504
2505        mutex_lock(&c->tnc_mutex);
2506        dbg_tnc("key %s", DBGKEY(key));
2507        found = lookup_level0_dirty(c, key, &znode, &n);
2508        if (found < 0) {
2509                err = found;
2510                goto out_unlock;
2511        }
2512        if (found == 1)
2513                err = tnc_delete(c, znode, n);
2514        if (!err)
2515                err = dbg_check_tnc(c, 0);
2516
2517out_unlock:
2518        mutex_unlock(&c->tnc_mutex);
2519        return err;
2520}
2521
2522/**
2523 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2524 * @c: UBIFS file-system description object
2525 * @key: key of node
2526 * @nm: directory entry name
2527 *
2528 * Returns %0 on success or negative error code on failure.
2529 */
2530int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2531                        const struct qstr *nm)
2532{
2533        int n, err;
2534        struct ubifs_znode *znode;
2535
2536        mutex_lock(&c->tnc_mutex);
2537        dbg_tnc("%.*s, key %s", nm->len, nm->name, DBGKEY(key));
2538        err = lookup_level0_dirty(c, key, &znode, &n);
2539        if (err < 0)
2540                goto out_unlock;
2541
2542        if (err) {
2543                if (c->replaying)
2544                        err = fallible_resolve_collision(c, key, &znode, &n,
2545                                                         nm, 0);
2546                else
2547                        err = resolve_collision(c, key, &znode, &n, nm);
2548                dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2549                if (err < 0)
2550                        goto out_unlock;
2551                if (err) {
2552                        /* Ensure the znode is dirtied */
2553                        if (znode->cnext || !ubifs_zn_dirty(znode)) {
2554                                    znode = dirty_cow_bottom_up(c, znode);
2555                                    if (IS_ERR(znode)) {
2556                                            err = PTR_ERR(znode);
2557                                            goto out_unlock;
2558                                    }
2559                        }
2560                        err = tnc_delete(c, znode, n);
2561                }
2562        }
2563
2564out_unlock:
2565        if (!err)
2566                err = dbg_check_tnc(c, 0);
2567        mutex_unlock(&c->tnc_mutex);
2568        return err;
2569}
2570
2571/**
2572 * key_in_range - determine if a key falls within a range of keys.
2573 * @c: UBIFS file-system description object
2574 * @key: key to check
2575 * @from_key: lowest key in range
2576 * @to_key: highest key in range
2577 *
2578 * This function returns %1 if the key is in range and %0 otherwise.
2579 */
2580static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2581                        union ubifs_key *from_key, union ubifs_key *to_key)
2582{
2583        if (keys_cmp(c, key, from_key) < 0)
2584                return 0;
2585        if (keys_cmp(c, key, to_key) > 0)
2586                return 0;
2587        return 1;
2588}
2589
2590/**
2591 * ubifs_tnc_remove_range - remove index entries in range.
2592 * @c: UBIFS file-system description object
2593 * @from_key: lowest key to remove
2594 * @to_key: highest key to remove
2595 *
2596 * This function removes index entries starting at @from_key and ending at
2597 * @to_key.  This function returns zero in case of success and a negative error
2598 * code in case of failure.
2599 */
2600int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2601                           union ubifs_key *to_key)
2602{
2603        int i, n, k, err = 0;
2604        struct ubifs_znode *znode;
2605        union ubifs_key *key;
2606
2607        mutex_lock(&c->tnc_mutex);
2608        while (1) {
2609                /* Find first level 0 znode that contains keys to remove */
2610                err = ubifs_lookup_level0(c, from_key, &znode, &n);
2611                if (err < 0)
2612                        goto out_unlock;
2613
2614                if (err)
2615                        key = from_key;
2616                else {
2617                        err = tnc_next(c, &znode, &n);
2618                        if (err == -ENOENT) {
2619                                err = 0;
2620                                goto out_unlock;
2621                        }
2622                        if (err < 0)
2623                                goto out_unlock;
2624                        key = &znode->zbranch[n].key;
2625                        if (!key_in_range(c, key, from_key, to_key)) {
2626                                err = 0;
2627                                goto out_unlock;
2628                        }
2629                }
2630
2631                /* Ensure the znode is dirtied */
2632                if (znode->cnext || !ubifs_zn_dirty(znode)) {
2633                        znode = dirty_cow_bottom_up(c, znode);
2634                        if (IS_ERR(znode)) {
2635                                err = PTR_ERR(znode);
2636                                goto out_unlock;
2637                        }
2638                }
2639
2640                /* Remove all keys in range except the first */
2641                for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2642                        key = &znode->zbranch[i].key;
2643                        if (!key_in_range(c, key, from_key, to_key))
2644                                break;
2645                        lnc_free(&znode->zbranch[i]);
2646                        err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2647                                             znode->zbranch[i].len);
2648                        if (err) {
2649                                dbg_dump_znode(c, znode);
2650                                goto out_unlock;
2651                        }
2652                        dbg_tnc("removing %s", DBGKEY(key));
2653                }
2654                if (k) {
2655                        for (i = n + 1 + k; i < znode->child_cnt; i++)
2656                                znode->zbranch[i - k] = znode->zbranch[i];
2657                        znode->child_cnt -= k;
2658                }
2659
2660                /* Now delete the first */
2661                err = tnc_delete(c, znode, n);
2662                if (err)
2663                        goto out_unlock;
2664        }
2665
2666out_unlock:
2667        if (!err)
2668                err = dbg_check_tnc(c, 0);
2669        mutex_unlock(&c->tnc_mutex);
2670        return err;
2671}
2672
2673/**
2674 * ubifs_tnc_remove_ino - remove an inode from TNC.
2675 * @c: UBIFS file-system description object
2676 * @inum: inode number to remove
2677 *
2678 * This function remove inode @inum and all the extended attributes associated
2679 * with the anode from TNC and returns zero in case of success or a negative
2680 * error code in case of failure.
2681 */
2682int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2683{
2684        union ubifs_key key1, key2;
2685        struct ubifs_dent_node *xent, *pxent = NULL;
2686        struct qstr nm = { .name = NULL };
2687
2688        dbg_tnc("ino %lu", (unsigned long)inum);
2689
2690        /*
2691         * Walk all extended attribute entries and remove them together with
2692         * corresponding extended attribute inodes.
2693         */
2694        lowest_xent_key(c, &key1, inum);
2695        while (1) {
2696                ino_t xattr_inum;
2697                int err;
2698
2699                xent = ubifs_tnc_next_ent(c, &key1, &nm);
2700                if (IS_ERR(xent)) {
2701                        err = PTR_ERR(xent);
2702                        if (err == -ENOENT)
2703                                break;
2704                        return err;
2705                }
2706
2707                xattr_inum = le64_to_cpu(xent->inum);
2708                dbg_tnc("xent '%s', ino %lu", xent->name,
2709                        (unsigned long)xattr_inum);
2710
2711                nm.name = xent->name;
2712                nm.len = le16_to_cpu(xent->nlen);
2713                err = ubifs_tnc_remove_nm(c, &key1, &nm);
2714                if (err) {
2715                        kfree(xent);
2716                        return err;
2717                }
2718
2719                lowest_ino_key(c, &key1, xattr_inum);
2720                highest_ino_key(c, &key2, xattr_inum);
2721                err = ubifs_tnc_remove_range(c, &key1, &key2);
2722                if (err) {
2723                        kfree(xent);
2724                        return err;
2725                }
2726
2727                kfree(pxent);
2728                pxent = xent;
2729                key_read(c, &xent->key, &key1);
2730        }
2731
2732        kfree(pxent);
2733        lowest_ino_key(c, &key1, inum);
2734        highest_ino_key(c, &key2, inum);
2735
2736        return ubifs_tnc_remove_range(c, &key1, &key2);
2737}
2738
2739/**
2740 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2741 * @c: UBIFS file-system description object
2742 * @key: key of last entry
2743 * @nm: name of last entry found or %NULL
2744 *
2745 * This function finds and reads the next directory or extended attribute entry
2746 * after the given key (@key) if there is one. @nm is used to resolve
2747 * collisions.
2748 *
2749 * If the name of the current entry is not known and only the key is known,
2750 * @nm->name has to be %NULL. In this case the semantics of this function is a
2751 * little bit different and it returns the entry corresponding to this key, not
2752 * the next one. If the key was not found, the closest "right" entry is
2753 * returned.
2754 *
2755 * If the fist entry has to be found, @key has to contain the lowest possible
2756 * key value for this inode and @name has to be %NULL.
2757 *
2758 * This function returns the found directory or extended attribute entry node
2759 * in case of success, %-ENOENT is returned if no entry was found, and a
2760 * negative error code is returned in case of failure.
2761 */
2762struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2763                                           union ubifs_key *key,
2764                                           const struct qstr *nm)
2765{
2766        int n, err, type = key_type(c, key);
2767        struct ubifs_znode *znode;
2768        struct ubifs_dent_node *dent;
2769        struct ubifs_zbranch *zbr;
2770        union ubifs_key *dkey;
2771
2772        dbg_tnc("%s %s", nm->name ? (char *)nm->name : "(lowest)", DBGKEY(key));
2773        ubifs_assert(is_hash_key(c, key));
2774
2775        mutex_lock(&c->tnc_mutex);
2776        err = ubifs_lookup_level0(c, key, &znode, &n);
2777        if (unlikely(err < 0))
2778                goto out_unlock;
2779
2780        if (nm->name) {
2781                if (err) {
2782                        /* Handle collisions */
2783                        err = resolve_collision(c, key, &znode, &n, nm);
2784                        dbg_tnc("rc returned %d, znode %p, n %d",
2785                                err, znode, n);
2786                        if (unlikely(err < 0))
2787                                goto out_unlock;
2788                }
2789
2790                /* Now find next entry */
2791                err = tnc_next(c, &znode, &n);
2792                if (unlikely(err))
2793                        goto out_unlock;
2794        } else {
2795                /*
2796                 * The full name of the entry was not given, in which case the
2797                 * behavior of this function is a little different and it
2798                 * returns current entry, not the next one.
2799                 */
2800                if (!err) {
2801                        /*
2802                         * However, the given key does not exist in the TNC
2803                         * tree and @znode/@n variables contain the closest
2804                         * "preceding" element. Switch to the next one.
2805                         */
2806                        err = tnc_next(c, &znode, &n);
2807                        if (err)
2808                                goto out_unlock;
2809                }
2810        }
2811
2812        zbr = &znode->zbranch[n];
2813        dent = kmalloc(zbr->len, GFP_NOFS);
2814        if (unlikely(!dent)) {
2815                err = -ENOMEM;
2816                goto out_unlock;
2817        }
2818
2819        /*
2820         * The above 'tnc_next()' call could lead us to the next inode, check
2821         * this.
2822         */
2823        dkey = &zbr->key;
2824        if (key_inum(c, dkey) != key_inum(c, key) ||
2825            key_type(c, dkey) != type) {
2826                err = -ENOENT;
2827                goto out_free;
2828        }
2829
2830        err = tnc_read_node_nm(c, zbr, dent);
2831        if (unlikely(err))
2832                goto out_free;
2833
2834        mutex_unlock(&c->tnc_mutex);
2835        return dent;
2836
2837out_free:
2838        kfree(dent);
2839out_unlock:
2840        mutex_unlock(&c->tnc_mutex);
2841        return ERR_PTR(err);
2842}
2843
2844/**
2845 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
2846 * @c: UBIFS file-system description object
2847 *
2848 * Destroy left-over obsolete znodes from a failed commit.
2849 */
2850static void tnc_destroy_cnext(struct ubifs_info *c)
2851{
2852        struct ubifs_znode *cnext;
2853
2854        if (!c->cnext)
2855                return;
2856        ubifs_assert(c->cmt_state == COMMIT_BROKEN);
2857        cnext = c->cnext;
2858        do {
2859                struct ubifs_znode *znode = cnext;
2860
2861                cnext = cnext->cnext;
2862                if (test_bit(OBSOLETE_ZNODE, &znode->flags))
2863                        kfree(znode);
2864        } while (cnext && cnext != c->cnext);
2865}
2866
2867/**
2868 * ubifs_tnc_close - close TNC subsystem and free all related resources.
2869 * @c: UBIFS file-system description object
2870 */
2871void ubifs_tnc_close(struct ubifs_info *c)
2872{
2873        long clean_freed;
2874
2875        tnc_destroy_cnext(c);
2876        if (c->zroot.znode) {
2877                clean_freed = ubifs_destroy_tnc_subtree(c->zroot.znode);
2878                atomic_long_sub(clean_freed, &ubifs_clean_zn_cnt);
2879        }
2880        kfree(c->gap_lebs);
2881        kfree(c->ilebs);
2882        destroy_old_idx(c);
2883}
2884
2885/**
2886 * left_znode - get the znode to the left.
2887 * @c: UBIFS file-system description object
2888 * @znode: znode
2889 *
2890 * This function returns a pointer to the znode to the left of @znode or NULL if
2891 * there is not one. A negative error code is returned on failure.
2892 */
2893static struct ubifs_znode *left_znode(struct ubifs_info *c,
2894                                      struct ubifs_znode *znode)
2895{
2896        int level = znode->level;
2897
2898        while (1) {
2899                int n = znode->iip - 1;
2900
2901                /* Go up until we can go left */
2902                znode = znode->parent;
2903                if (!znode)
2904                        return NULL;
2905                if (n >= 0) {
2906                        /* Now go down the rightmost branch to 'level' */
2907                        znode = get_znode(c, znode, n);
2908                        if (IS_ERR(znode))
2909                                return znode;
2910                        while (znode->level != level) {
2911                                n = znode->child_cnt - 1;
2912                                znode = get_znode(c, znode, n);
2913                                if (IS_ERR(znode))
2914                                        return znode;
2915                        }
2916                        break;
2917                }
2918        }
2919        return znode;
2920}
2921
2922/**
2923 * right_znode - get the znode to the right.
2924 * @c: UBIFS file-system description object
2925 * @znode: znode
2926 *
2927 * This function returns a pointer to the znode to the right of @znode or NULL
2928 * if there is not one. A negative error code is returned on failure.
2929 */
2930static struct ubifs_znode *right_znode(struct ubifs_info *c,
2931                                       struct ubifs_znode *znode)
2932{
2933        int level = znode->level;
2934
2935        while (1) {
2936                int n = znode->iip + 1;
2937
2938                /* Go up until we can go right */
2939                znode = znode->parent;
2940                if (!znode)
2941                        return NULL;
2942                if (n < znode->child_cnt) {
2943                        /* Now go down the leftmost branch to 'level' */
2944                        znode = get_znode(c, znode, n);
2945                        if (IS_ERR(znode))
2946                                return znode;
2947                        while (znode->level != level) {
2948                                znode = get_znode(c, znode, 0);
2949                                if (IS_ERR(znode))
2950                                        return znode;
2951                        }
2952                        break;
2953                }
2954        }
2955        return znode;
2956}
2957
2958/**
2959 * lookup_znode - find a particular indexing node from TNC.
2960 * @c: UBIFS file-system description object
2961 * @key: index node key to lookup
2962 * @level: index node level
2963 * @lnum: index node LEB number
2964 * @offs: index node offset
2965 *
2966 * This function searches an indexing node by its first key @key and its
2967 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
2968 * nodes it traverses to TNC. This function is called fro indexing nodes which
2969 * were found on the media by scanning, for example when garbage-collecting or
2970 * when doing in-the-gaps commit. This means that the indexing node which is
2971 * looked for does not have to have exactly the same leftmost key @key, because
2972 * the leftmost key may have been changed, in which case TNC will contain a
2973 * dirty znode which still refers the same @lnum:@offs. This function is clever
2974 * enough to recognize such indexing nodes.
2975 *
2976 * Note, if a znode was deleted or changed too much, then this function will
2977 * not find it. For situations like this UBIFS has the old index RB-tree
2978 * (indexed by @lnum:@offs).
2979 *
2980 * This function returns a pointer to the znode found or %NULL if it is not
2981 * found. A negative error code is returned on failure.
2982 */
2983static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
2984                                        union ubifs_key *key, int level,
2985                                        int lnum, int offs)
2986{
2987        struct ubifs_znode *znode, *zn;
2988        int n, nn;
2989
2990        /*
2991         * The arguments have probably been read off flash, so don't assume
2992         * they are valid.
2993         */
2994        if (level < 0)
2995                return ERR_PTR(-EINVAL);
2996
2997        /* Get the root znode */
2998        znode = c->zroot.znode;
2999        if (!znode) {
3000                znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3001                if (IS_ERR(znode))
3002                        return znode;
3003        }
3004        /* Check if it is the one we are looking for */
3005        if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3006                return znode;
3007        /* Descend to the parent level i.e. (level + 1) */
3008        if (level >= znode->level)
3009                return NULL;
3010        while (1) {
3011                ubifs_search_zbranch(c, znode, key, &n);
3012                if (n < 0) {
3013                        /*
3014                         * We reached a znode where the leftmost key is greater
3015                         * than the key we are searching for. This is the same
3016                         * situation as the one described in a huge comment at
3017                         * the end of the 'ubifs_lookup_level0()' function. And
3018                         * for exactly the same reasons we have to try to look
3019                         * left before giving up.
3020                         */
3021                        znode = left_znode(c, znode);
3022                        if (!znode)
3023                                return NULL;
3024                        if (IS_ERR(znode))
3025                                return znode;
3026                        ubifs_search_zbranch(c, znode, key, &n);
3027                        ubifs_assert(n >= 0);
3028                }
3029                if (znode->level == level + 1)
3030                        break;
3031                znode = get_znode(c, znode, n);
3032                if (IS_ERR(znode))
3033                        return znode;
3034        }
3035        /* Check if the child is the one we are looking for */
3036        if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3037                return get_znode(c, znode, n);
3038        /* If the key is unique, there is nowhere else to look */
3039        if (!is_hash_key(c, key))
3040                return NULL;
3041        /*
3042         * The key is not unique and so may be also in the znodes to either
3043         * side.
3044         */
3045        zn = znode;
3046        nn = n;
3047        /* Look left */
3048        while (1) {
3049                /* Move one branch to the left */
3050                if (n)
3051                        n -= 1;
3052                else {
3053                        znode = left_znode(c, znode);
3054                        if (!znode)
3055                                break;
3056                        if (IS_ERR(znode))
3057                                return znode;
3058                        n = znode->child_cnt - 1;
3059                }
3060                /* Check it */
3061                if (znode->zbranch[n].lnum == lnum &&
3062                    znode->zbranch[n].offs == offs)
3063                        return get_znode(c, znode, n);
3064                /* Stop if the key is less than the one we are looking for */
3065                if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3066                        break;
3067        }
3068        /* Back to the middle */
3069        znode = zn;
3070        n = nn;
3071        /* Look right */
3072        while (1) {
3073                /* Move one branch to the right */
3074                if (++n >= znode->child_cnt) {
3075                        znode = right_znode(c, znode);
3076                        if (!znode)
3077                                break;
3078                        if (IS_ERR(znode))
3079                                return znode;
3080                        n = 0;
3081                }
3082                /* Check it */
3083                if (znode->zbranch[n].lnum == lnum &&
3084                    znode->zbranch[n].offs == offs)
3085                        return get_znode(c, znode, n);
3086                /* Stop if the key is greater than the one we are looking for */
3087                if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3088                        break;
3089        }
3090        return NULL;
3091}
3092
3093/**
3094 * is_idx_node_in_tnc - determine if an index node is in the TNC.
3095 * @c: UBIFS file-system description object
3096 * @key: key of index node
3097 * @level: index node level
3098 * @lnum: LEB number of index node
3099 * @offs: offset of index node
3100 *
3101 * This function returns %0 if the index node is not referred to in the TNC, %1
3102 * if the index node is referred to in the TNC and the corresponding znode is
3103 * dirty, %2 if an index node is referred to in the TNC and the corresponding
3104 * znode is clean, and a negative error code in case of failure.
3105 *
3106 * Note, the @key argument has to be the key of the first child. Also note,
3107 * this function relies on the fact that 0:0 is never a valid LEB number and
3108 * offset for a main-area node.
3109 */
3110int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3111                       int lnum, int offs)
3112{
3113        struct ubifs_znode *znode;
3114
3115        znode = lookup_znode(c, key, level, lnum, offs);
3116        if (!znode)
3117                return 0;
3118        if (IS_ERR(znode))
3119                return PTR_ERR(znode);
3120
3121        return ubifs_zn_dirty(znode) ? 1 : 2;
3122}
3123
3124/**
3125 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3126 * @c: UBIFS file-system description object
3127 * @key: node key
3128 * @lnum: node LEB number
3129 * @offs: node offset
3130 *
3131 * This function returns %1 if the node is referred to in the TNC, %0 if it is
3132 * not, and a negative error code in case of failure.
3133 *
3134 * Note, this function relies on the fact that 0:0 is never a valid LEB number
3135 * and offset for a main-area node.
3136 */
3137static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3138                               int lnum, int offs)
3139{
3140        struct ubifs_zbranch *zbr;
3141        struct ubifs_znode *znode, *zn;
3142        int n, found, err, nn;
3143        const int unique = !is_hash_key(c, key);
3144
3145        found = ubifs_lookup_level0(c, key, &znode, &n);
3146        if (found < 0)
3147                return found; /* Error code */
3148        if (!found)
3149                return 0;
3150        zbr = &znode->zbranch[n];
3151        if (lnum == zbr->lnum && offs == zbr->offs)
3152                return 1; /* Found it */
3153        if (unique)
3154                return 0;
3155        /*
3156         * Because the key is not unique, we have to look left
3157         * and right as well
3158         */
3159        zn = znode;
3160        nn = n;
3161        /* Look left */
3162        while (1) {
3163                err = tnc_prev(c, &znode, &n);
3164                if (err == -ENOENT)
3165                        break;
3166                if (err)
3167                        return err;
3168                if (keys_cmp(c, key, &znode->zbranch[n].key))
3169                        break;
3170                zbr = &znode->zbranch[n];
3171                if (lnum == zbr->lnum && offs == zbr->offs)
3172                        return 1; /* Found it */
3173        }
3174        /* Look right */
3175        znode = zn;
3176        n = nn;
3177        while (1) {
3178                err = tnc_next(c, &znode, &n);
3179                if (err) {
3180                        if (err == -ENOENT)
3181                                return 0;
3182                        return err;
3183                }
3184                if (keys_cmp(c, key, &znode->zbranch[n].key))
3185                        break;
3186                zbr = &znode->zbranch[n];
3187                if (lnum == zbr->lnum && offs == zbr->offs)
3188                        return 1; /* Found it */
3189        }
3190        return 0;
3191}
3192
3193/**
3194 * ubifs_tnc_has_node - determine whether a node is in the TNC.
3195 * @c: UBIFS file-system description object
3196 * @key: node key
3197 * @level: index node level (if it is an index node)
3198 * @lnum: node LEB number
3199 * @offs: node offset
3200 * @is_idx: non-zero if the node is an index node
3201 *
3202 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3203 * negative error code in case of failure. For index nodes, @key has to be the
3204 * key of the first child. An index node is considered to be in the TNC only if
3205 * the corresponding znode is clean or has not been loaded.
3206 */
3207int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3208                       int lnum, int offs, int is_idx)
3209{
3210        int err;
3211
3212        mutex_lock(&c->tnc_mutex);
3213        if (is_idx) {
3214                err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3215                if (err < 0)
3216                        goto out_unlock;
3217                if (err == 1)
3218                        /* The index node was found but it was dirty */
3219                        err = 0;
3220                else if (err == 2)
3221                        /* The index node was found and it was clean */
3222                        err = 1;
3223                else
3224                        BUG_ON(err != 0);
3225        } else
3226                err = is_leaf_node_in_tnc(c, key, lnum, offs);
3227
3228out_unlock:
3229        mutex_unlock(&c->tnc_mutex);
3230        return err;
3231}
3232
3233/**
3234 * ubifs_dirty_idx_node - dirty an index node.
3235 * @c: UBIFS file-system description object
3236 * @key: index node key
3237 * @level: index node level
3238 * @lnum: index node LEB number
3239 * @offs: index node offset
3240 *
3241 * This function loads and dirties an index node so that it can be garbage
3242 * collected. The @key argument has to be the key of the first child. This
3243 * function relies on the fact that 0:0 is never a valid LEB number and offset
3244 * for a main-area node. Returns %0 on success and a negative error code on
3245 * failure.
3246 */
3247int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3248                         int lnum, int offs)
3249{
3250        struct ubifs_znode *znode;
3251        int err = 0;
3252
3253        mutex_lock(&c->tnc_mutex);
3254        znode = lookup_znode(c, key, level, lnum, offs);
3255        if (!znode)
3256                goto out_unlock;
3257        if (IS_ERR(znode)) {
3258                err = PTR_ERR(znode);
3259                goto out_unlock;
3260        }
3261        znode = dirty_cow_bottom_up(c, znode);
3262        if (IS_ERR(znode)) {
3263                err = PTR_ERR(znode);
3264                goto out_unlock;
3265        }
3266
3267out_unlock:
3268        mutex_unlock(&c->tnc_mutex);
3269        return err;
3270}
3271
3272#ifdef CONFIG_UBIFS_FS_DEBUG
3273
3274/**
3275 * dbg_check_inode_size - check if inode size is correct.
3276 * @c: UBIFS file-system description object
3277 * @inum: inode number
3278 * @size: inode size
3279 *
3280 * This function makes sure that the inode size (@size) is correct and it does
3281 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3282 * if it has a data page beyond @size, and other negative error code in case of
3283 * other errors.
3284 */
3285int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3286                         loff_t size)
3287{
3288        int err, n;
3289        union ubifs_key from_key, to_key, *key;
3290        struct ubifs_znode *znode;
3291        unsigned int block;
3292
3293        if (!S_ISREG(inode->i_mode))
3294                return 0;
3295        if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
3296                return 0;
3297
3298        block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3299        data_key_init(c, &from_key, inode->i_ino, block);
3300        highest_data_key(c, &to_key, inode->i_ino);
3301
3302        mutex_lock(&c->tnc_mutex);
3303        err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3304        if (err < 0)
3305                goto out_unlock;
3306
3307        if (err) {
3308                err = -EINVAL;
3309                key = &from_key;
3310                goto out_dump;
3311        }
3312
3313        err = tnc_next(c, &znode, &n);
3314        if (err == -ENOENT) {
3315                err = 0;
3316                goto out_unlock;
3317        }
3318        if (err < 0)
3319                goto out_unlock;
3320
3321        ubifs_assert(err == 0);
3322        key = &znode->zbranch[n].key;
3323        if (!key_in_range(c, key, &from_key, &to_key))
3324                goto out_unlock;
3325
3326out_dump:
3327        block = key_block(c, key);
3328        ubifs_err("inode %lu has size %lld, but there are data at offset %lld "
3329                  "(data key %s)", (unsigned long)inode->i_ino, size,
3330                  ((loff_t)block) << UBIFS_BLOCK_SHIFT, DBGKEY(key));
3331        dbg_dump_inode(c, inode);
3332        dbg_dump_stack();
3333        err = -EINVAL;
3334
3335out_unlock:
3336        mutex_unlock(&c->tnc_mutex);
3337        return err;
3338}
3339
3340#endif /* CONFIG_UBIFS_FS_DEBUG */
3341