linux/fs/xfs/linux-2.6/xfs_sync.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_types.h"
  21#include "xfs_bit.h"
  22#include "xfs_log.h"
  23#include "xfs_inum.h"
  24#include "xfs_trans.h"
  25#include "xfs_sb.h"
  26#include "xfs_ag.h"
  27#include "xfs_dir2.h"
  28#include "xfs_dmapi.h"
  29#include "xfs_mount.h"
  30#include "xfs_bmap_btree.h"
  31#include "xfs_alloc_btree.h"
  32#include "xfs_ialloc_btree.h"
  33#include "xfs_btree.h"
  34#include "xfs_dir2_sf.h"
  35#include "xfs_attr_sf.h"
  36#include "xfs_inode.h"
  37#include "xfs_dinode.h"
  38#include "xfs_error.h"
  39#include "xfs_mru_cache.h"
  40#include "xfs_filestream.h"
  41#include "xfs_vnodeops.h"
  42#include "xfs_utils.h"
  43#include "xfs_buf_item.h"
  44#include "xfs_inode_item.h"
  45#include "xfs_rw.h"
  46#include "xfs_quota.h"
  47
  48#include <linux/kthread.h>
  49#include <linux/freezer.h>
  50
  51
  52STATIC xfs_inode_t *
  53xfs_inode_ag_lookup(
  54        struct xfs_mount        *mp,
  55        struct xfs_perag        *pag,
  56        uint32_t                *first_index,
  57        int                     tag)
  58{
  59        int                     nr_found;
  60        struct xfs_inode        *ip;
  61
  62        /*
  63         * use a gang lookup to find the next inode in the tree
  64         * as the tree is sparse and a gang lookup walks to find
  65         * the number of objects requested.
  66         */
  67        read_lock(&pag->pag_ici_lock);
  68        if (tag == XFS_ICI_NO_TAG) {
  69                nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
  70                                (void **)&ip, *first_index, 1);
  71        } else {
  72                nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
  73                                (void **)&ip, *first_index, 1, tag);
  74        }
  75        if (!nr_found)
  76                goto unlock;
  77
  78        /*
  79         * Update the index for the next lookup. Catch overflows
  80         * into the next AG range which can occur if we have inodes
  81         * in the last block of the AG and we are currently
  82         * pointing to the last inode.
  83         */
  84        *first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
  85        if (*first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
  86                goto unlock;
  87
  88        return ip;
  89
  90unlock:
  91        read_unlock(&pag->pag_ici_lock);
  92        return NULL;
  93}
  94
  95STATIC int
  96xfs_inode_ag_walk(
  97        struct xfs_mount        *mp,
  98        xfs_agnumber_t          ag,
  99        int                     (*execute)(struct xfs_inode *ip,
 100                                           struct xfs_perag *pag, int flags),
 101        int                     flags,
 102        int                     tag)
 103{
 104        struct xfs_perag        *pag = &mp->m_perag[ag];
 105        uint32_t                first_index;
 106        int                     last_error = 0;
 107        int                     skipped;
 108
 109restart:
 110        skipped = 0;
 111        first_index = 0;
 112        do {
 113                int             error = 0;
 114                xfs_inode_t     *ip;
 115
 116                ip = xfs_inode_ag_lookup(mp, pag, &first_index, tag);
 117                if (!ip)
 118                        break;
 119
 120                error = execute(ip, pag, flags);
 121                if (error == EAGAIN) {
 122                        skipped++;
 123                        continue;
 124                }
 125                if (error)
 126                        last_error = error;
 127                /*
 128                 * bail out if the filesystem is corrupted.
 129                 */
 130                if (error == EFSCORRUPTED)
 131                        break;
 132
 133        } while (1);
 134
 135        if (skipped) {
 136                delay(1);
 137                goto restart;
 138        }
 139
 140        xfs_put_perag(mp, pag);
 141        return last_error;
 142}
 143
 144int
 145xfs_inode_ag_iterator(
 146        struct xfs_mount        *mp,
 147        int                     (*execute)(struct xfs_inode *ip,
 148                                           struct xfs_perag *pag, int flags),
 149        int                     flags,
 150        int                     tag)
 151{
 152        int                     error = 0;
 153        int                     last_error = 0;
 154        xfs_agnumber_t          ag;
 155
 156        for (ag = 0; ag < mp->m_sb.sb_agcount; ag++) {
 157                if (!mp->m_perag[ag].pag_ici_init)
 158                        continue;
 159                error = xfs_inode_ag_walk(mp, ag, execute, flags, tag);
 160                if (error) {
 161                        last_error = error;
 162                        if (error == EFSCORRUPTED)
 163                                break;
 164                }
 165        }
 166        return XFS_ERROR(last_error);
 167}
 168
 169/* must be called with pag_ici_lock held and releases it */
 170int
 171xfs_sync_inode_valid(
 172        struct xfs_inode        *ip,
 173        struct xfs_perag        *pag)
 174{
 175        struct inode            *inode = VFS_I(ip);
 176
 177        /* nothing to sync during shutdown */
 178        if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 179                read_unlock(&pag->pag_ici_lock);
 180                return EFSCORRUPTED;
 181        }
 182
 183        /*
 184         * If we can't get a reference on the inode, it must be in reclaim.
 185         * Leave it for the reclaim code to flush. Also avoid inodes that
 186         * haven't been fully initialised.
 187         */
 188        if (!igrab(inode)) {
 189                read_unlock(&pag->pag_ici_lock);
 190                return ENOENT;
 191        }
 192        read_unlock(&pag->pag_ici_lock);
 193
 194        if (is_bad_inode(inode) || xfs_iflags_test(ip, XFS_INEW)) {
 195                IRELE(ip);
 196                return ENOENT;
 197        }
 198
 199        return 0;
 200}
 201
 202STATIC int
 203xfs_sync_inode_data(
 204        struct xfs_inode        *ip,
 205        struct xfs_perag        *pag,
 206        int                     flags)
 207{
 208        struct inode            *inode = VFS_I(ip);
 209        struct address_space *mapping = inode->i_mapping;
 210        int                     error = 0;
 211
 212        error = xfs_sync_inode_valid(ip, pag);
 213        if (error)
 214                return error;
 215
 216        if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
 217                goto out_wait;
 218
 219        if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
 220                if (flags & SYNC_TRYLOCK)
 221                        goto out_wait;
 222                xfs_ilock(ip, XFS_IOLOCK_SHARED);
 223        }
 224
 225        error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
 226                                0 : XFS_B_ASYNC, FI_NONE);
 227        xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 228
 229 out_wait:
 230        if (flags & SYNC_WAIT)
 231                xfs_ioend_wait(ip);
 232        IRELE(ip);
 233        return error;
 234}
 235
 236STATIC int
 237xfs_sync_inode_attr(
 238        struct xfs_inode        *ip,
 239        struct xfs_perag        *pag,
 240        int                     flags)
 241{
 242        int                     error = 0;
 243
 244        error = xfs_sync_inode_valid(ip, pag);
 245        if (error)
 246                return error;
 247
 248        xfs_ilock(ip, XFS_ILOCK_SHARED);
 249        if (xfs_inode_clean(ip))
 250                goto out_unlock;
 251        if (!xfs_iflock_nowait(ip)) {
 252                if (!(flags & SYNC_WAIT))
 253                        goto out_unlock;
 254                xfs_iflock(ip);
 255        }
 256
 257        if (xfs_inode_clean(ip)) {
 258                xfs_ifunlock(ip);
 259                goto out_unlock;
 260        }
 261
 262        error = xfs_iflush(ip, (flags & SYNC_WAIT) ?
 263                           XFS_IFLUSH_SYNC : XFS_IFLUSH_DELWRI);
 264
 265 out_unlock:
 266        xfs_iunlock(ip, XFS_ILOCK_SHARED);
 267        IRELE(ip);
 268        return error;
 269}
 270
 271/*
 272 * Write out pagecache data for the whole filesystem.
 273 */
 274int
 275xfs_sync_data(
 276        struct xfs_mount        *mp,
 277        int                     flags)
 278{
 279        int                     error;
 280
 281        ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
 282
 283        error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags,
 284                                      XFS_ICI_NO_TAG);
 285        if (error)
 286                return XFS_ERROR(error);
 287
 288        xfs_log_force(mp, 0,
 289                      (flags & SYNC_WAIT) ?
 290                       XFS_LOG_FORCE | XFS_LOG_SYNC :
 291                       XFS_LOG_FORCE);
 292        return 0;
 293}
 294
 295/*
 296 * Write out inode metadata (attributes) for the whole filesystem.
 297 */
 298int
 299xfs_sync_attr(
 300        struct xfs_mount        *mp,
 301        int                     flags)
 302{
 303        ASSERT((flags & ~SYNC_WAIT) == 0);
 304
 305        return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags,
 306                                     XFS_ICI_NO_TAG);
 307}
 308
 309STATIC int
 310xfs_commit_dummy_trans(
 311        struct xfs_mount        *mp,
 312        uint                    flags)
 313{
 314        struct xfs_inode        *ip = mp->m_rootip;
 315        struct xfs_trans        *tp;
 316        int                     error;
 317        int                     log_flags = XFS_LOG_FORCE;
 318
 319        if (flags & SYNC_WAIT)
 320                log_flags |= XFS_LOG_SYNC;
 321
 322        /*
 323         * Put a dummy transaction in the log to tell recovery
 324         * that all others are OK.
 325         */
 326        tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1);
 327        error = xfs_trans_reserve(tp, 0, XFS_ICHANGE_LOG_RES(mp), 0, 0, 0);
 328        if (error) {
 329                xfs_trans_cancel(tp, 0);
 330                return error;
 331        }
 332
 333        xfs_ilock(ip, XFS_ILOCK_EXCL);
 334
 335        xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 336        xfs_trans_ihold(tp, ip);
 337        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 338        error = xfs_trans_commit(tp, 0);
 339        xfs_iunlock(ip, XFS_ILOCK_EXCL);
 340
 341        /* the log force ensures this transaction is pushed to disk */
 342        xfs_log_force(mp, 0, log_flags);
 343        return error;
 344}
 345
 346int
 347xfs_sync_fsdata(
 348        struct xfs_mount        *mp,
 349        int                     flags)
 350{
 351        struct xfs_buf          *bp;
 352        struct xfs_buf_log_item *bip;
 353        int                     error = 0;
 354
 355        /*
 356         * If this is xfssyncd() then only sync the superblock if we can
 357         * lock it without sleeping and it is not pinned.
 358         */
 359        if (flags & SYNC_TRYLOCK) {
 360                ASSERT(!(flags & SYNC_WAIT));
 361
 362                bp = xfs_getsb(mp, XFS_BUF_TRYLOCK);
 363                if (!bp)
 364                        goto out;
 365
 366                bip = XFS_BUF_FSPRIVATE(bp, struct xfs_buf_log_item *);
 367                if (!bip || !xfs_buf_item_dirty(bip) || XFS_BUF_ISPINNED(bp))
 368                        goto out_brelse;
 369        } else {
 370                bp = xfs_getsb(mp, 0);
 371
 372                /*
 373                 * If the buffer is pinned then push on the log so we won't
 374                 * get stuck waiting in the write for someone, maybe
 375                 * ourselves, to flush the log.
 376                 *
 377                 * Even though we just pushed the log above, we did not have
 378                 * the superblock buffer locked at that point so it can
 379                 * become pinned in between there and here.
 380                 */
 381                if (XFS_BUF_ISPINNED(bp))
 382                        xfs_log_force(mp, 0, XFS_LOG_FORCE);
 383        }
 384
 385
 386        if (flags & SYNC_WAIT)
 387                XFS_BUF_UNASYNC(bp);
 388        else
 389                XFS_BUF_ASYNC(bp);
 390
 391        error = xfs_bwrite(mp, bp);
 392        if (error)
 393                return error;
 394
 395        /*
 396         * If this is a data integrity sync make sure all pending buffers
 397         * are flushed out for the log coverage check below.
 398         */
 399        if (flags & SYNC_WAIT)
 400                xfs_flush_buftarg(mp->m_ddev_targp, 1);
 401
 402        if (xfs_log_need_covered(mp))
 403                error = xfs_commit_dummy_trans(mp, flags);
 404        return error;
 405
 406 out_brelse:
 407        xfs_buf_relse(bp);
 408 out:
 409        return error;
 410}
 411
 412/*
 413 * When remounting a filesystem read-only or freezing the filesystem, we have
 414 * two phases to execute. This first phase is syncing the data before we
 415 * quiesce the filesystem, and the second is flushing all the inodes out after
 416 * we've waited for all the transactions created by the first phase to
 417 * complete. The second phase ensures that the inodes are written to their
 418 * location on disk rather than just existing in transactions in the log. This
 419 * means after a quiesce there is no log replay required to write the inodes to
 420 * disk (this is the main difference between a sync and a quiesce).
 421 */
 422/*
 423 * First stage of freeze - no writers will make progress now we are here,
 424 * so we flush delwri and delalloc buffers here, then wait for all I/O to
 425 * complete.  Data is frozen at that point. Metadata is not frozen,
 426 * transactions can still occur here so don't bother flushing the buftarg
 427 * because it'll just get dirty again.
 428 */
 429int
 430xfs_quiesce_data(
 431        struct xfs_mount        *mp)
 432{
 433        int error;
 434
 435        /* push non-blocking */
 436        xfs_sync_data(mp, 0);
 437        xfs_qm_sync(mp, SYNC_TRYLOCK);
 438
 439        /* push and block till complete */
 440        xfs_sync_data(mp, SYNC_WAIT);
 441        xfs_qm_sync(mp, SYNC_WAIT);
 442
 443        /* drop inode references pinned by filestreams */
 444        xfs_filestream_flush(mp);
 445
 446        /* write superblock and hoover up shutdown errors */
 447        error = xfs_sync_fsdata(mp, SYNC_WAIT);
 448
 449        /* flush data-only devices */
 450        if (mp->m_rtdev_targp)
 451                XFS_bflush(mp->m_rtdev_targp);
 452
 453        return error;
 454}
 455
 456STATIC void
 457xfs_quiesce_fs(
 458        struct xfs_mount        *mp)
 459{
 460        int     count = 0, pincount;
 461
 462        xfs_flush_buftarg(mp->m_ddev_targp, 0);
 463        xfs_reclaim_inodes(mp, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
 464
 465        /*
 466         * This loop must run at least twice.  The first instance of the loop
 467         * will flush most meta data but that will generate more meta data
 468         * (typically directory updates).  Which then must be flushed and
 469         * logged before we can write the unmount record.
 470         */
 471        do {
 472                xfs_sync_attr(mp, SYNC_WAIT);
 473                pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
 474                if (!pincount) {
 475                        delay(50);
 476                        count++;
 477                }
 478        } while (count < 2);
 479}
 480
 481/*
 482 * Second stage of a quiesce. The data is already synced, now we have to take
 483 * care of the metadata. New transactions are already blocked, so we need to
 484 * wait for any remaining transactions to drain out before proceding.
 485 */
 486void
 487xfs_quiesce_attr(
 488        struct xfs_mount        *mp)
 489{
 490        int     error = 0;
 491
 492        /* wait for all modifications to complete */
 493        while (atomic_read(&mp->m_active_trans) > 0)
 494                delay(100);
 495
 496        /* flush inodes and push all remaining buffers out to disk */
 497        xfs_quiesce_fs(mp);
 498
 499        /*
 500         * Just warn here till VFS can correctly support
 501         * read-only remount without racing.
 502         */
 503        WARN_ON(atomic_read(&mp->m_active_trans) != 0);
 504
 505        /* Push the superblock and write an unmount record */
 506        error = xfs_log_sbcount(mp, 1);
 507        if (error)
 508                xfs_fs_cmn_err(CE_WARN, mp,
 509                                "xfs_attr_quiesce: failed to log sb changes. "
 510                                "Frozen image may not be consistent.");
 511        xfs_log_unmount_write(mp);
 512        xfs_unmountfs_writesb(mp);
 513}
 514
 515/*
 516 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
 517 * Doing this has two advantages:
 518 * - It saves on stack space, which is tight in certain situations
 519 * - It can be used (with care) as a mechanism to avoid deadlocks.
 520 * Flushing while allocating in a full filesystem requires both.
 521 */
 522STATIC void
 523xfs_syncd_queue_work(
 524        struct xfs_mount *mp,
 525        void            *data,
 526        void            (*syncer)(struct xfs_mount *, void *),
 527        struct completion *completion)
 528{
 529        struct xfs_sync_work *work;
 530
 531        work = kmem_alloc(sizeof(struct xfs_sync_work), KM_SLEEP);
 532        INIT_LIST_HEAD(&work->w_list);
 533        work->w_syncer = syncer;
 534        work->w_data = data;
 535        work->w_mount = mp;
 536        work->w_completion = completion;
 537        spin_lock(&mp->m_sync_lock);
 538        list_add_tail(&work->w_list, &mp->m_sync_list);
 539        spin_unlock(&mp->m_sync_lock);
 540        wake_up_process(mp->m_sync_task);
 541}
 542
 543/*
 544 * Flush delayed allocate data, attempting to free up reserved space
 545 * from existing allocations.  At this point a new allocation attempt
 546 * has failed with ENOSPC and we are in the process of scratching our
 547 * heads, looking about for more room...
 548 */
 549STATIC void
 550xfs_flush_inodes_work(
 551        struct xfs_mount *mp,
 552        void            *arg)
 553{
 554        struct inode    *inode = arg;
 555        xfs_sync_data(mp, SYNC_TRYLOCK);
 556        xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT);
 557        iput(inode);
 558}
 559
 560void
 561xfs_flush_inodes(
 562        xfs_inode_t     *ip)
 563{
 564        struct inode    *inode = VFS_I(ip);
 565        DECLARE_COMPLETION_ONSTACK(completion);
 566
 567        igrab(inode);
 568        xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inodes_work, &completion);
 569        wait_for_completion(&completion);
 570        xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
 571}
 572
 573/*
 574 * Every sync period we need to unpin all items, reclaim inodes, sync
 575 * quota and write out the superblock. We might need to cover the log
 576 * to indicate it is idle.
 577 */
 578STATIC void
 579xfs_sync_worker(
 580        struct xfs_mount *mp,
 581        void            *unused)
 582{
 583        int             error;
 584
 585        if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
 586                xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
 587                xfs_reclaim_inodes(mp, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
 588                /* dgc: errors ignored here */
 589                error = xfs_qm_sync(mp, SYNC_TRYLOCK);
 590                error = xfs_sync_fsdata(mp, SYNC_TRYLOCK);
 591        }
 592        mp->m_sync_seq++;
 593        wake_up(&mp->m_wait_single_sync_task);
 594}
 595
 596STATIC int
 597xfssyncd(
 598        void                    *arg)
 599{
 600        struct xfs_mount        *mp = arg;
 601        long                    timeleft;
 602        xfs_sync_work_t         *work, *n;
 603        LIST_HEAD               (tmp);
 604
 605        set_freezable();
 606        timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
 607        for (;;) {
 608                timeleft = schedule_timeout_interruptible(timeleft);
 609                /* swsusp */
 610                try_to_freeze();
 611                if (kthread_should_stop() && list_empty(&mp->m_sync_list))
 612                        break;
 613
 614                spin_lock(&mp->m_sync_lock);
 615                /*
 616                 * We can get woken by laptop mode, to do a sync -
 617                 * that's the (only!) case where the list would be
 618                 * empty with time remaining.
 619                 */
 620                if (!timeleft || list_empty(&mp->m_sync_list)) {
 621                        if (!timeleft)
 622                                timeleft = xfs_syncd_centisecs *
 623                                                        msecs_to_jiffies(10);
 624                        INIT_LIST_HEAD(&mp->m_sync_work.w_list);
 625                        list_add_tail(&mp->m_sync_work.w_list,
 626                                        &mp->m_sync_list);
 627                }
 628                list_for_each_entry_safe(work, n, &mp->m_sync_list, w_list)
 629                        list_move(&work->w_list, &tmp);
 630                spin_unlock(&mp->m_sync_lock);
 631
 632                list_for_each_entry_safe(work, n, &tmp, w_list) {
 633                        (*work->w_syncer)(mp, work->w_data);
 634                        list_del(&work->w_list);
 635                        if (work == &mp->m_sync_work)
 636                                continue;
 637                        if (work->w_completion)
 638                                complete(work->w_completion);
 639                        kmem_free(work);
 640                }
 641        }
 642
 643        return 0;
 644}
 645
 646int
 647xfs_syncd_init(
 648        struct xfs_mount        *mp)
 649{
 650        mp->m_sync_work.w_syncer = xfs_sync_worker;
 651        mp->m_sync_work.w_mount = mp;
 652        mp->m_sync_work.w_completion = NULL;
 653        mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd");
 654        if (IS_ERR(mp->m_sync_task))
 655                return -PTR_ERR(mp->m_sync_task);
 656        return 0;
 657}
 658
 659void
 660xfs_syncd_stop(
 661        struct xfs_mount        *mp)
 662{
 663        kthread_stop(mp->m_sync_task);
 664}
 665
 666int
 667xfs_reclaim_inode(
 668        xfs_inode_t     *ip,
 669        int             locked,
 670        int             sync_mode)
 671{
 672        xfs_perag_t     *pag = xfs_get_perag(ip->i_mount, ip->i_ino);
 673
 674        /* The hash lock here protects a thread in xfs_iget_core from
 675         * racing with us on linking the inode back with a vnode.
 676         * Once we have the XFS_IRECLAIM flag set it will not touch
 677         * us.
 678         */
 679        write_lock(&pag->pag_ici_lock);
 680        spin_lock(&ip->i_flags_lock);
 681        if (__xfs_iflags_test(ip, XFS_IRECLAIM) ||
 682            !__xfs_iflags_test(ip, XFS_IRECLAIMABLE)) {
 683                spin_unlock(&ip->i_flags_lock);
 684                write_unlock(&pag->pag_ici_lock);
 685                if (locked) {
 686                        xfs_ifunlock(ip);
 687                        xfs_iunlock(ip, XFS_ILOCK_EXCL);
 688                }
 689                return -EAGAIN;
 690        }
 691        __xfs_iflags_set(ip, XFS_IRECLAIM);
 692        spin_unlock(&ip->i_flags_lock);
 693        write_unlock(&pag->pag_ici_lock);
 694        xfs_put_perag(ip->i_mount, pag);
 695
 696        /*
 697         * If the inode is still dirty, then flush it out.  If the inode
 698         * is not in the AIL, then it will be OK to flush it delwri as
 699         * long as xfs_iflush() does not keep any references to the inode.
 700         * We leave that decision up to xfs_iflush() since it has the
 701         * knowledge of whether it's OK to simply do a delwri flush of
 702         * the inode or whether we need to wait until the inode is
 703         * pulled from the AIL.
 704         * We get the flush lock regardless, though, just to make sure
 705         * we don't free it while it is being flushed.
 706         */
 707        if (!locked) {
 708                xfs_ilock(ip, XFS_ILOCK_EXCL);
 709                xfs_iflock(ip);
 710        }
 711
 712        /*
 713         * In the case of a forced shutdown we rely on xfs_iflush() to
 714         * wait for the inode to be unpinned before returning an error.
 715         */
 716        if (!is_bad_inode(VFS_I(ip)) && xfs_iflush(ip, sync_mode) == 0) {
 717                /* synchronize with xfs_iflush_done */
 718                xfs_iflock(ip);
 719                xfs_ifunlock(ip);
 720        }
 721
 722        xfs_iunlock(ip, XFS_ILOCK_EXCL);
 723        xfs_ireclaim(ip);
 724        return 0;
 725}
 726
 727void
 728__xfs_inode_set_reclaim_tag(
 729        struct xfs_perag        *pag,
 730        struct xfs_inode        *ip)
 731{
 732        radix_tree_tag_set(&pag->pag_ici_root,
 733                           XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
 734                           XFS_ICI_RECLAIM_TAG);
 735}
 736
 737/*
 738 * We set the inode flag atomically with the radix tree tag.
 739 * Once we get tag lookups on the radix tree, this inode flag
 740 * can go away.
 741 */
 742void
 743xfs_inode_set_reclaim_tag(
 744        xfs_inode_t     *ip)
 745{
 746        xfs_mount_t     *mp = ip->i_mount;
 747        xfs_perag_t     *pag = xfs_get_perag(mp, ip->i_ino);
 748
 749        read_lock(&pag->pag_ici_lock);
 750        spin_lock(&ip->i_flags_lock);
 751        __xfs_inode_set_reclaim_tag(pag, ip);
 752        __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
 753        spin_unlock(&ip->i_flags_lock);
 754        read_unlock(&pag->pag_ici_lock);
 755        xfs_put_perag(mp, pag);
 756}
 757
 758void
 759__xfs_inode_clear_reclaim_tag(
 760        xfs_mount_t     *mp,
 761        xfs_perag_t     *pag,
 762        xfs_inode_t     *ip)
 763{
 764        radix_tree_tag_clear(&pag->pag_ici_root,
 765                        XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
 766}
 767
 768STATIC int
 769xfs_reclaim_inode_now(
 770        struct xfs_inode        *ip,
 771        struct xfs_perag        *pag,
 772        int                     flags)
 773{
 774        /* ignore if already under reclaim */
 775        if (xfs_iflags_test(ip, XFS_IRECLAIM)) {
 776                read_unlock(&pag->pag_ici_lock);
 777                return 0;
 778        }
 779        read_unlock(&pag->pag_ici_lock);
 780
 781        return xfs_reclaim_inode(ip, 0, flags);
 782}
 783
 784int
 785xfs_reclaim_inodes(
 786        xfs_mount_t     *mp,
 787        int             mode)
 788{
 789        return xfs_inode_ag_iterator(mp, xfs_reclaim_inode_now, mode,
 790                                        XFS_ICI_RECLAIM_TAG);
 791}
 792