linux/include/linux/bio.h
<<
>>
Prefs
   1/*
   2 * 2.5 block I/O model
   3 *
   4 * Copyright (C) 2001 Jens Axboe <axboe@suse.de>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public Licens
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
  19 */
  20#ifndef __LINUX_BIO_H
  21#define __LINUX_BIO_H
  22
  23#include <linux/highmem.h>
  24#include <linux/mempool.h>
  25#include <linux/ioprio.h>
  26
  27#ifdef CONFIG_BLOCK
  28
  29#include <asm/io.h>
  30
  31#define BIO_DEBUG
  32
  33#ifdef BIO_DEBUG
  34#define BIO_BUG_ON      BUG_ON
  35#else
  36#define BIO_BUG_ON
  37#endif
  38
  39#define BIO_MAX_PAGES           256
  40#define BIO_MAX_SIZE            (BIO_MAX_PAGES << PAGE_CACHE_SHIFT)
  41#define BIO_MAX_SECTORS         (BIO_MAX_SIZE >> 9)
  42
  43/*
  44 * was unsigned short, but we might as well be ready for > 64kB I/O pages
  45 */
  46struct bio_vec {
  47        struct page     *bv_page;
  48        unsigned int    bv_len;
  49        unsigned int    bv_offset;
  50};
  51
  52struct bio_set;
  53struct bio;
  54struct bio_integrity_payload;
  55typedef void (bio_end_io_t) (struct bio *, int);
  56typedef void (bio_destructor_t) (struct bio *);
  57
  58/*
  59 * main unit of I/O for the block layer and lower layers (ie drivers and
  60 * stacking drivers)
  61 */
  62struct bio {
  63        sector_t                bi_sector;      /* device address in 512 byte
  64                                                   sectors */
  65        struct bio              *bi_next;       /* request queue link */
  66        struct block_device     *bi_bdev;
  67        unsigned long           bi_flags;       /* status, command, etc */
  68        unsigned long           bi_rw;          /* bottom bits READ/WRITE,
  69                                                 * top bits priority
  70                                                 */
  71
  72        unsigned short          bi_vcnt;        /* how many bio_vec's */
  73        unsigned short          bi_idx;         /* current index into bvl_vec */
  74
  75        /* Number of segments in this BIO after
  76         * physical address coalescing is performed.
  77         */
  78        unsigned int            bi_phys_segments;
  79
  80        unsigned int            bi_size;        /* residual I/O count */
  81
  82        /*
  83         * To keep track of the max segment size, we account for the
  84         * sizes of the first and last mergeable segments in this bio.
  85         */
  86        unsigned int            bi_seg_front_size;
  87        unsigned int            bi_seg_back_size;
  88
  89        unsigned int            bi_max_vecs;    /* max bvl_vecs we can hold */
  90
  91        unsigned int            bi_comp_cpu;    /* completion CPU */
  92
  93        atomic_t                bi_cnt;         /* pin count */
  94
  95        struct bio_vec          *bi_io_vec;     /* the actual vec list */
  96
  97        bio_end_io_t            *bi_end_io;
  98
  99        void                    *bi_private;
 100#if defined(CONFIG_BLK_DEV_INTEGRITY)
 101        struct bio_integrity_payload *bi_integrity;  /* data integrity */
 102#endif
 103
 104        bio_destructor_t        *bi_destructor; /* destructor */
 105
 106        /*
 107         * We can inline a number of vecs at the end of the bio, to avoid
 108         * double allocations for a small number of bio_vecs. This member
 109         * MUST obviously be kept at the very end of the bio.
 110         */
 111        struct bio_vec          bi_inline_vecs[0];
 112};
 113
 114/*
 115 * bio flags
 116 */
 117#define BIO_UPTODATE    0       /* ok after I/O completion */
 118#define BIO_RW_BLOCK    1       /* RW_AHEAD set, and read/write would block */
 119#define BIO_EOF         2       /* out-out-bounds error */
 120#define BIO_SEG_VALID   3       /* bi_phys_segments valid */
 121#define BIO_CLONED      4       /* doesn't own data */
 122#define BIO_BOUNCED     5       /* bio is a bounce bio */
 123#define BIO_USER_MAPPED 6       /* contains user pages */
 124#define BIO_EOPNOTSUPP  7       /* not supported */
 125#define BIO_CPU_AFFINE  8       /* complete bio on same CPU as submitted */
 126#define BIO_NULL_MAPPED 9       /* contains invalid user pages */
 127#define BIO_FS_INTEGRITY 10     /* fs owns integrity data, not block layer */
 128#define BIO_QUIET       11      /* Make BIO Quiet */
 129#define bio_flagged(bio, flag)  ((bio)->bi_flags & (1 << (flag)))
 130
 131/*
 132 * top 4 bits of bio flags indicate the pool this bio came from
 133 */
 134#define BIO_POOL_BITS           (4)
 135#define BIO_POOL_NONE           ((1UL << BIO_POOL_BITS) - 1)
 136#define BIO_POOL_OFFSET         (BITS_PER_LONG - BIO_POOL_BITS)
 137#define BIO_POOL_MASK           (1UL << BIO_POOL_OFFSET)
 138#define BIO_POOL_IDX(bio)       ((bio)->bi_flags >> BIO_POOL_OFFSET)    
 139
 140/*
 141 * bio bi_rw flags
 142 *
 143 * bit 0 -- data direction
 144 *      If not set, bio is a read from device. If set, it's a write to device.
 145 * bit 1 -- fail fast device errors
 146 * bit 2 -- fail fast transport errors
 147 * bit 3 -- fail fast driver errors
 148 * bit 4 -- rw-ahead when set
 149 * bit 5 -- barrier
 150 *      Insert a serialization point in the IO queue, forcing previously
 151 *      submitted IO to be completed before this one is issued.
 152 * bit 6 -- synchronous I/O hint.
 153 * bit 7 -- Unplug the device immediately after submitting this bio.
 154 * bit 8 -- metadata request
 155 *      Used for tracing to differentiate metadata and data IO. May also
 156 *      get some preferential treatment in the IO scheduler
 157 * bit 9 -- discard sectors
 158 *      Informs the lower level device that this range of sectors is no longer
 159 *      used by the file system and may thus be freed by the device. Used
 160 *      for flash based storage.
 161 *      Don't want driver retries for any fast fail whatever the reason.
 162 * bit 10 -- Tell the IO scheduler not to wait for more requests after this
 163        one has been submitted, even if it is a SYNC request.
 164 */
 165enum bio_rw_flags {
 166        BIO_RW,
 167        BIO_RW_FAILFAST_DEV,
 168        BIO_RW_FAILFAST_TRANSPORT,
 169        BIO_RW_FAILFAST_DRIVER,
 170        /* above flags must match REQ_* */
 171        BIO_RW_AHEAD,
 172        BIO_RW_BARRIER,
 173        BIO_RW_SYNCIO,
 174        BIO_RW_UNPLUG,
 175        BIO_RW_META,
 176        BIO_RW_DISCARD,
 177        BIO_RW_NOIDLE,
 178};
 179
 180/*
 181 * First four bits must match between bio->bi_rw and rq->cmd_flags, make
 182 * that explicit here.
 183 */
 184#define BIO_RW_RQ_MASK          0xf
 185
 186static inline bool bio_rw_flagged(struct bio *bio, enum bio_rw_flags flag)
 187{
 188        return (bio->bi_rw & (1 << flag)) != 0;
 189}
 190
 191/*
 192 * upper 16 bits of bi_rw define the io priority of this bio
 193 */
 194#define BIO_PRIO_SHIFT  (8 * sizeof(unsigned long) - IOPRIO_BITS)
 195#define bio_prio(bio)   ((bio)->bi_rw >> BIO_PRIO_SHIFT)
 196#define bio_prio_valid(bio)     ioprio_valid(bio_prio(bio))
 197
 198#define bio_set_prio(bio, prio)         do {                    \
 199        WARN_ON(prio >= (1 << IOPRIO_BITS));                    \
 200        (bio)->bi_rw &= ((1UL << BIO_PRIO_SHIFT) - 1);          \
 201        (bio)->bi_rw |= ((unsigned long) (prio) << BIO_PRIO_SHIFT);     \
 202} while (0)
 203
 204/*
 205 * various member access, note that bio_data should of course not be used
 206 * on highmem page vectors
 207 */
 208#define bio_iovec_idx(bio, idx) (&((bio)->bi_io_vec[(idx)]))
 209#define bio_iovec(bio)          bio_iovec_idx((bio), (bio)->bi_idx)
 210#define bio_page(bio)           bio_iovec((bio))->bv_page
 211#define bio_offset(bio)         bio_iovec((bio))->bv_offset
 212#define bio_segments(bio)       ((bio)->bi_vcnt - (bio)->bi_idx)
 213#define bio_sectors(bio)        ((bio)->bi_size >> 9)
 214#define bio_empty_barrier(bio)  (bio_rw_flagged(bio, BIO_RW_BARRIER) && !bio_has_data(bio) && !bio_rw_flagged(bio, BIO_RW_DISCARD))
 215
 216static inline unsigned int bio_cur_bytes(struct bio *bio)
 217{
 218        if (bio->bi_vcnt)
 219                return bio_iovec(bio)->bv_len;
 220        else /* dataless requests such as discard */
 221                return bio->bi_size;
 222}
 223
 224static inline void *bio_data(struct bio *bio)
 225{
 226        if (bio->bi_vcnt)
 227                return page_address(bio_page(bio)) + bio_offset(bio);
 228
 229        return NULL;
 230}
 231
 232static inline int bio_has_allocated_vec(struct bio *bio)
 233{
 234        return bio->bi_io_vec && bio->bi_io_vec != bio->bi_inline_vecs;
 235}
 236
 237/*
 238 * will die
 239 */
 240#define bio_to_phys(bio)        (page_to_phys(bio_page((bio))) + (unsigned long) bio_offset((bio)))
 241#define bvec_to_phys(bv)        (page_to_phys((bv)->bv_page) + (unsigned long) (bv)->bv_offset)
 242
 243/*
 244 * queues that have highmem support enabled may still need to revert to
 245 * PIO transfers occasionally and thus map high pages temporarily. For
 246 * permanent PIO fall back, user is probably better off disabling highmem
 247 * I/O completely on that queue (see ide-dma for example)
 248 */
 249#define __bio_kmap_atomic(bio, idx, kmtype)                             \
 250        (kmap_atomic(bio_iovec_idx((bio), (idx))->bv_page, kmtype) +    \
 251                bio_iovec_idx((bio), (idx))->bv_offset)
 252
 253#define __bio_kunmap_atomic(addr, kmtype) kunmap_atomic(addr, kmtype)
 254
 255/*
 256 * merge helpers etc
 257 */
 258
 259#define __BVEC_END(bio)         bio_iovec_idx((bio), (bio)->bi_vcnt - 1)
 260#define __BVEC_START(bio)       bio_iovec_idx((bio), (bio)->bi_idx)
 261
 262/* Default implementation of BIOVEC_PHYS_MERGEABLE */
 263#define __BIOVEC_PHYS_MERGEABLE(vec1, vec2)     \
 264        ((bvec_to_phys((vec1)) + (vec1)->bv_len) == bvec_to_phys((vec2)))
 265
 266/*
 267 * allow arch override, for eg virtualized architectures (put in asm/io.h)
 268 */
 269#ifndef BIOVEC_PHYS_MERGEABLE
 270#define BIOVEC_PHYS_MERGEABLE(vec1, vec2)       \
 271        __BIOVEC_PHYS_MERGEABLE(vec1, vec2)
 272#endif
 273
 274#define __BIO_SEG_BOUNDARY(addr1, addr2, mask) \
 275        (((addr1) | (mask)) == (((addr2) - 1) | (mask)))
 276#define BIOVEC_SEG_BOUNDARY(q, b1, b2) \
 277        __BIO_SEG_BOUNDARY(bvec_to_phys((b1)), bvec_to_phys((b2)) + (b2)->bv_len, queue_segment_boundary((q)))
 278#define BIO_SEG_BOUNDARY(q, b1, b2) \
 279        BIOVEC_SEG_BOUNDARY((q), __BVEC_END((b1)), __BVEC_START((b2)))
 280
 281#define bio_io_error(bio) bio_endio((bio), -EIO)
 282
 283/*
 284 * drivers should not use the __ version unless they _really_ want to
 285 * run through the entire bio and not just pending pieces
 286 */
 287#define __bio_for_each_segment(bvl, bio, i, start_idx)                  \
 288        for (bvl = bio_iovec_idx((bio), (start_idx)), i = (start_idx);  \
 289             i < (bio)->bi_vcnt;                                        \
 290             bvl++, i++)
 291
 292#define bio_for_each_segment(bvl, bio, i)                               \
 293        __bio_for_each_segment(bvl, bio, i, (bio)->bi_idx)
 294
 295/*
 296 * get a reference to a bio, so it won't disappear. the intended use is
 297 * something like:
 298 *
 299 * bio_get(bio);
 300 * submit_bio(rw, bio);
 301 * if (bio->bi_flags ...)
 302 *      do_something
 303 * bio_put(bio);
 304 *
 305 * without the bio_get(), it could potentially complete I/O before submit_bio
 306 * returns. and then bio would be freed memory when if (bio->bi_flags ...)
 307 * runs
 308 */
 309#define bio_get(bio)    atomic_inc(&(bio)->bi_cnt)
 310
 311#if defined(CONFIG_BLK_DEV_INTEGRITY)
 312/*
 313 * bio integrity payload
 314 */
 315struct bio_integrity_payload {
 316        struct bio              *bip_bio;       /* parent bio */
 317
 318        sector_t                bip_sector;     /* virtual start sector */
 319
 320        void                    *bip_buf;       /* generated integrity data */
 321        bio_end_io_t            *bip_end_io;    /* saved I/O completion fn */
 322
 323        unsigned int            bip_size;
 324
 325        unsigned short          bip_slab;       /* slab the bip came from */
 326        unsigned short          bip_vcnt;       /* # of integrity bio_vecs */
 327        unsigned short          bip_idx;        /* current bip_vec index */
 328
 329        struct work_struct      bip_work;       /* I/O completion */
 330        struct bio_vec          bip_vec[0];     /* embedded bvec array */
 331};
 332#endif /* CONFIG_BLK_DEV_INTEGRITY */
 333
 334/*
 335 * A bio_pair is used when we need to split a bio.
 336 * This can only happen for a bio that refers to just one
 337 * page of data, and in the unusual situation when the
 338 * page crosses a chunk/device boundary
 339 *
 340 * The address of the master bio is stored in bio1.bi_private
 341 * The address of the pool the pair was allocated from is stored
 342 *   in bio2.bi_private
 343 */
 344struct bio_pair {
 345        struct bio                      bio1, bio2;
 346        struct bio_vec                  bv1, bv2;
 347#if defined(CONFIG_BLK_DEV_INTEGRITY)
 348        struct bio_integrity_payload    bip1, bip2;
 349        struct bio_vec                  iv1, iv2;
 350#endif
 351        atomic_t                        cnt;
 352        int                             error;
 353};
 354extern struct bio_pair *bio_split(struct bio *bi, int first_sectors);
 355extern void bio_pair_release(struct bio_pair *dbio);
 356
 357extern struct bio_set *bioset_create(unsigned int, unsigned int);
 358extern void bioset_free(struct bio_set *);
 359
 360extern struct bio *bio_alloc(gfp_t, int);
 361extern struct bio *bio_kmalloc(gfp_t, int);
 362extern struct bio *bio_alloc_bioset(gfp_t, int, struct bio_set *);
 363extern void bio_put(struct bio *);
 364extern void bio_free(struct bio *, struct bio_set *);
 365
 366extern void bio_endio(struct bio *, int);
 367struct request_queue;
 368extern int bio_phys_segments(struct request_queue *, struct bio *);
 369
 370extern void __bio_clone(struct bio *, struct bio *);
 371extern struct bio *bio_clone(struct bio *, gfp_t);
 372
 373extern void bio_init(struct bio *);
 374
 375extern int bio_add_page(struct bio *, struct page *, unsigned int,unsigned int);
 376extern int bio_add_pc_page(struct request_queue *, struct bio *, struct page *,
 377                           unsigned int, unsigned int);
 378extern int bio_get_nr_vecs(struct block_device *);
 379extern sector_t bio_sector_offset(struct bio *, unsigned short, unsigned int);
 380extern struct bio *bio_map_user(struct request_queue *, struct block_device *,
 381                                unsigned long, unsigned int, int, gfp_t);
 382struct sg_iovec;
 383struct rq_map_data;
 384extern struct bio *bio_map_user_iov(struct request_queue *,
 385                                    struct block_device *,
 386                                    struct sg_iovec *, int, int, gfp_t);
 387extern void bio_unmap_user(struct bio *);
 388extern struct bio *bio_map_kern(struct request_queue *, void *, unsigned int,
 389                                gfp_t);
 390extern struct bio *bio_copy_kern(struct request_queue *, void *, unsigned int,
 391                                 gfp_t, int);
 392extern void bio_set_pages_dirty(struct bio *bio);
 393extern void bio_check_pages_dirty(struct bio *bio);
 394extern struct bio *bio_copy_user(struct request_queue *, struct rq_map_data *,
 395                                 unsigned long, unsigned int, int, gfp_t);
 396extern struct bio *bio_copy_user_iov(struct request_queue *,
 397                                     struct rq_map_data *, struct sg_iovec *,
 398                                     int, int, gfp_t);
 399extern int bio_uncopy_user(struct bio *);
 400void zero_fill_bio(struct bio *bio);
 401extern struct bio_vec *bvec_alloc_bs(gfp_t, int, unsigned long *, struct bio_set *);
 402extern void bvec_free_bs(struct bio_set *, struct bio_vec *, unsigned int);
 403extern unsigned int bvec_nr_vecs(unsigned short idx);
 404
 405/*
 406 * Allow queuer to specify a completion CPU for this bio
 407 */
 408static inline void bio_set_completion_cpu(struct bio *bio, unsigned int cpu)
 409{
 410        bio->bi_comp_cpu = cpu;
 411}
 412
 413/*
 414 * bio_set is used to allow other portions of the IO system to
 415 * allocate their own private memory pools for bio and iovec structures.
 416 * These memory pools in turn all allocate from the bio_slab
 417 * and the bvec_slabs[].
 418 */
 419#define BIO_POOL_SIZE 2
 420#define BIOVEC_NR_POOLS 6
 421#define BIOVEC_MAX_IDX  (BIOVEC_NR_POOLS - 1)
 422
 423struct bio_set {
 424        struct kmem_cache *bio_slab;
 425        unsigned int front_pad;
 426
 427        mempool_t *bio_pool;
 428#if defined(CONFIG_BLK_DEV_INTEGRITY)
 429        mempool_t *bio_integrity_pool;
 430#endif
 431        mempool_t *bvec_pool;
 432};
 433
 434struct biovec_slab {
 435        int nr_vecs;
 436        char *name;
 437        struct kmem_cache *slab;
 438};
 439
 440extern struct bio_set *fs_bio_set;
 441extern struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly;
 442
 443/*
 444 * a small number of entries is fine, not going to be performance critical.
 445 * basically we just need to survive
 446 */
 447#define BIO_SPLIT_ENTRIES 2
 448
 449#ifdef CONFIG_HIGHMEM
 450/*
 451 * remember never ever reenable interrupts between a bvec_kmap_irq and
 452 * bvec_kunmap_irq!
 453 *
 454 * This function MUST be inlined - it plays with the CPU interrupt flags.
 455 */
 456static __always_inline char *bvec_kmap_irq(struct bio_vec *bvec,
 457                unsigned long *flags)
 458{
 459        unsigned long addr;
 460
 461        /*
 462         * might not be a highmem page, but the preempt/irq count
 463         * balancing is a lot nicer this way
 464         */
 465        local_irq_save(*flags);
 466        addr = (unsigned long) kmap_atomic(bvec->bv_page, KM_BIO_SRC_IRQ);
 467
 468        BUG_ON(addr & ~PAGE_MASK);
 469
 470        return (char *) addr + bvec->bv_offset;
 471}
 472
 473static __always_inline void bvec_kunmap_irq(char *buffer,
 474                unsigned long *flags)
 475{
 476        unsigned long ptr = (unsigned long) buffer & PAGE_MASK;
 477
 478        kunmap_atomic((void *) ptr, KM_BIO_SRC_IRQ);
 479        local_irq_restore(*flags);
 480}
 481
 482#else
 483#define bvec_kmap_irq(bvec, flags)      (page_address((bvec)->bv_page) + (bvec)->bv_offset)
 484#define bvec_kunmap_irq(buf, flags)     do { *(flags) = 0; } while (0)
 485#endif
 486
 487static inline char *__bio_kmap_irq(struct bio *bio, unsigned short idx,
 488                                   unsigned long *flags)
 489{
 490        return bvec_kmap_irq(bio_iovec_idx(bio, idx), flags);
 491}
 492#define __bio_kunmap_irq(buf, flags)    bvec_kunmap_irq(buf, flags)
 493
 494#define bio_kmap_irq(bio, flags) \
 495        __bio_kmap_irq((bio), (bio)->bi_idx, (flags))
 496#define bio_kunmap_irq(buf,flags)       __bio_kunmap_irq(buf, flags)
 497
 498/*
 499 * Check whether this bio carries any data or not. A NULL bio is allowed.
 500 */
 501static inline int bio_has_data(struct bio *bio)
 502{
 503        return bio && bio->bi_io_vec != NULL;
 504}
 505
 506/*
 507 * BIO list management for use by remapping drivers (e.g. DM or MD) and loop.
 508 *
 509 * A bio_list anchors a singly-linked list of bios chained through the bi_next
 510 * member of the bio.  The bio_list also caches the last list member to allow
 511 * fast access to the tail.
 512 */
 513struct bio_list {
 514        struct bio *head;
 515        struct bio *tail;
 516};
 517
 518static inline int bio_list_empty(const struct bio_list *bl)
 519{
 520        return bl->head == NULL;
 521}
 522
 523static inline void bio_list_init(struct bio_list *bl)
 524{
 525        bl->head = bl->tail = NULL;
 526}
 527
 528#define bio_list_for_each(bio, bl) \
 529        for (bio = (bl)->head; bio; bio = bio->bi_next)
 530
 531static inline unsigned bio_list_size(const struct bio_list *bl)
 532{
 533        unsigned sz = 0;
 534        struct bio *bio;
 535
 536        bio_list_for_each(bio, bl)
 537                sz++;
 538
 539        return sz;
 540}
 541
 542static inline void bio_list_add(struct bio_list *bl, struct bio *bio)
 543{
 544        bio->bi_next = NULL;
 545
 546        if (bl->tail)
 547                bl->tail->bi_next = bio;
 548        else
 549                bl->head = bio;
 550
 551        bl->tail = bio;
 552}
 553
 554static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio)
 555{
 556        bio->bi_next = bl->head;
 557
 558        bl->head = bio;
 559
 560        if (!bl->tail)
 561                bl->tail = bio;
 562}
 563
 564static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2)
 565{
 566        if (!bl2->head)
 567                return;
 568
 569        if (bl->tail)
 570                bl->tail->bi_next = bl2->head;
 571        else
 572                bl->head = bl2->head;
 573
 574        bl->tail = bl2->tail;
 575}
 576
 577static inline void bio_list_merge_head(struct bio_list *bl,
 578                                       struct bio_list *bl2)
 579{
 580        if (!bl2->head)
 581                return;
 582
 583        if (bl->head)
 584                bl2->tail->bi_next = bl->head;
 585        else
 586                bl->tail = bl2->tail;
 587
 588        bl->head = bl2->head;
 589}
 590
 591static inline struct bio *bio_list_peek(struct bio_list *bl)
 592{
 593        return bl->head;
 594}
 595
 596static inline struct bio *bio_list_pop(struct bio_list *bl)
 597{
 598        struct bio *bio = bl->head;
 599
 600        if (bio) {
 601                bl->head = bl->head->bi_next;
 602                if (!bl->head)
 603                        bl->tail = NULL;
 604
 605                bio->bi_next = NULL;
 606        }
 607
 608        return bio;
 609}
 610
 611static inline struct bio *bio_list_get(struct bio_list *bl)
 612{
 613        struct bio *bio = bl->head;
 614
 615        bl->head = bl->tail = NULL;
 616
 617        return bio;
 618}
 619
 620#if defined(CONFIG_BLK_DEV_INTEGRITY)
 621
 622#define bip_vec_idx(bip, idx)   (&(bip->bip_vec[(idx)]))
 623#define bip_vec(bip)            bip_vec_idx(bip, 0)
 624
 625#define __bip_for_each_vec(bvl, bip, i, start_idx)                      \
 626        for (bvl = bip_vec_idx((bip), (start_idx)), i = (start_idx);    \
 627             i < (bip)->bip_vcnt;                                       \
 628             bvl++, i++)
 629
 630#define bip_for_each_vec(bvl, bip, i)                                   \
 631        __bip_for_each_vec(bvl, bip, i, (bip)->bip_idx)
 632
 633#define bio_integrity(bio) (bio->bi_integrity != NULL)
 634
 635extern struct bio_integrity_payload *bio_integrity_alloc_bioset(struct bio *, gfp_t, unsigned int, struct bio_set *);
 636extern struct bio_integrity_payload *bio_integrity_alloc(struct bio *, gfp_t, unsigned int);
 637extern void bio_integrity_free(struct bio *, struct bio_set *);
 638extern int bio_integrity_add_page(struct bio *, struct page *, unsigned int, unsigned int);
 639extern int bio_integrity_enabled(struct bio *bio);
 640extern int bio_integrity_set_tag(struct bio *, void *, unsigned int);
 641extern int bio_integrity_get_tag(struct bio *, void *, unsigned int);
 642extern int bio_integrity_prep(struct bio *);
 643extern void bio_integrity_endio(struct bio *, int);
 644extern void bio_integrity_advance(struct bio *, unsigned int);
 645extern void bio_integrity_trim(struct bio *, unsigned int, unsigned int);
 646extern void bio_integrity_split(struct bio *, struct bio_pair *, int);
 647extern int bio_integrity_clone(struct bio *, struct bio *, gfp_t, struct bio_set *);
 648extern int bioset_integrity_create(struct bio_set *, int);
 649extern void bioset_integrity_free(struct bio_set *);
 650extern void bio_integrity_init(void);
 651
 652#else /* CONFIG_BLK_DEV_INTEGRITY */
 653
 654#define bio_integrity(a)                (0)
 655#define bioset_integrity_create(a, b)   (0)
 656#define bio_integrity_prep(a)           (0)
 657#define bio_integrity_enabled(a)        (0)
 658#define bio_integrity_clone(a, b, c, d) (0)
 659#define bioset_integrity_free(a)        do { } while (0)
 660#define bio_integrity_free(a, b)        do { } while (0)
 661#define bio_integrity_endio(a, b)       do { } while (0)
 662#define bio_integrity_advance(a, b)     do { } while (0)
 663#define bio_integrity_trim(a, b, c)     do { } while (0)
 664#define bio_integrity_split(a, b, c)    do { } while (0)
 665#define bio_integrity_set_tag(a, b, c)  do { } while (0)
 666#define bio_integrity_get_tag(a, b, c)  do { } while (0)
 667#define bio_integrity_init(a)           do { } while (0)
 668
 669#endif /* CONFIG_BLK_DEV_INTEGRITY */
 670
 671#endif /* CONFIG_BLOCK */
 672#endif /* __LINUX_BIO_H */
 673