linux/include/linux/ktime.h
<<
>>
Prefs
   1/*
   2 *  include/linux/ktime.h
   3 *
   4 *  ktime_t - nanosecond-resolution time format.
   5 *
   6 *   Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
   7 *   Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
   8 *
   9 *  data type definitions, declarations, prototypes and macros.
  10 *
  11 *  Started by: Thomas Gleixner and Ingo Molnar
  12 *
  13 *  Credits:
  14 *
  15 *      Roman Zippel provided the ideas and primary code snippets of
  16 *      the ktime_t union and further simplifications of the original
  17 *      code.
  18 *
  19 *  For licencing details see kernel-base/COPYING
  20 */
  21#ifndef _LINUX_KTIME_H
  22#define _LINUX_KTIME_H
  23
  24#include <linux/time.h>
  25#include <linux/jiffies.h>
  26
  27/*
  28 * ktime_t:
  29 *
  30 * On 64-bit CPUs a single 64-bit variable is used to store the hrtimers
  31 * internal representation of time values in scalar nanoseconds. The
  32 * design plays out best on 64-bit CPUs, where most conversions are
  33 * NOPs and most arithmetic ktime_t operations are plain arithmetic
  34 * operations.
  35 *
  36 * On 32-bit CPUs an optimized representation of the timespec structure
  37 * is used to avoid expensive conversions from and to timespecs. The
  38 * endian-aware order of the tv struct members is choosen to allow
  39 * mathematical operations on the tv64 member of the union too, which
  40 * for certain operations produces better code.
  41 *
  42 * For architectures with efficient support for 64/32-bit conversions the
  43 * plain scalar nanosecond based representation can be selected by the
  44 * config switch CONFIG_KTIME_SCALAR.
  45 */
  46union ktime {
  47        s64     tv64;
  48#if BITS_PER_LONG != 64 && !defined(CONFIG_KTIME_SCALAR)
  49        struct {
  50# ifdef __BIG_ENDIAN
  51        s32     sec, nsec;
  52# else
  53        s32     nsec, sec;
  54# endif
  55        } tv;
  56#endif
  57};
  58
  59typedef union ktime ktime_t;            /* Kill this */
  60
  61#define KTIME_MAX                       ((s64)~((u64)1 << 63))
  62#if (BITS_PER_LONG == 64)
  63# define KTIME_SEC_MAX                  (KTIME_MAX / NSEC_PER_SEC)
  64#else
  65# define KTIME_SEC_MAX                  LONG_MAX
  66#endif
  67
  68/*
  69 * ktime_t definitions when using the 64-bit scalar representation:
  70 */
  71
  72#if (BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)
  73
  74/**
  75 * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value
  76 * @secs:       seconds to set
  77 * @nsecs:      nanoseconds to set
  78 *
  79 * Return the ktime_t representation of the value
  80 */
  81static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
  82{
  83#if (BITS_PER_LONG == 64)
  84        if (unlikely(secs >= KTIME_SEC_MAX))
  85                return (ktime_t){ .tv64 = KTIME_MAX };
  86#endif
  87        return (ktime_t) { .tv64 = (s64)secs * NSEC_PER_SEC + (s64)nsecs };
  88}
  89
  90/* Subtract two ktime_t variables. rem = lhs -rhs: */
  91#define ktime_sub(lhs, rhs) \
  92                ({ (ktime_t){ .tv64 = (lhs).tv64 - (rhs).tv64 }; })
  93
  94/* Add two ktime_t variables. res = lhs + rhs: */
  95#define ktime_add(lhs, rhs) \
  96                ({ (ktime_t){ .tv64 = (lhs).tv64 + (rhs).tv64 }; })
  97
  98/*
  99 * Add a ktime_t variable and a scalar nanosecond value.
 100 * res = kt + nsval:
 101 */
 102#define ktime_add_ns(kt, nsval) \
 103                ({ (ktime_t){ .tv64 = (kt).tv64 + (nsval) }; })
 104
 105/*
 106 * Subtract a scalar nanosecod from a ktime_t variable
 107 * res = kt - nsval:
 108 */
 109#define ktime_sub_ns(kt, nsval) \
 110                ({ (ktime_t){ .tv64 = (kt).tv64 - (nsval) }; })
 111
 112/* convert a timespec to ktime_t format: */
 113static inline ktime_t timespec_to_ktime(struct timespec ts)
 114{
 115        return ktime_set(ts.tv_sec, ts.tv_nsec);
 116}
 117
 118/* convert a timeval to ktime_t format: */
 119static inline ktime_t timeval_to_ktime(struct timeval tv)
 120{
 121        return ktime_set(tv.tv_sec, tv.tv_usec * NSEC_PER_USEC);
 122}
 123
 124/* Map the ktime_t to timespec conversion to ns_to_timespec function */
 125#define ktime_to_timespec(kt)           ns_to_timespec((kt).tv64)
 126
 127/* Map the ktime_t to timeval conversion to ns_to_timeval function */
 128#define ktime_to_timeval(kt)            ns_to_timeval((kt).tv64)
 129
 130/* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */
 131#define ktime_to_ns(kt)                 ((kt).tv64)
 132
 133#else
 134
 135/*
 136 * Helper macros/inlines to get the ktime_t math right in the timespec
 137 * representation. The macros are sometimes ugly - their actual use is
 138 * pretty okay-ish, given the circumstances. We do all this for
 139 * performance reasons. The pure scalar nsec_t based code was nice and
 140 * simple, but created too many 64-bit / 32-bit conversions and divisions.
 141 *
 142 * Be especially aware that negative values are represented in a way
 143 * that the tv.sec field is negative and the tv.nsec field is greater
 144 * or equal to zero but less than nanoseconds per second. This is the
 145 * same representation which is used by timespecs.
 146 *
 147 *   tv.sec < 0 and 0 >= tv.nsec < NSEC_PER_SEC
 148 */
 149
 150/* Set a ktime_t variable to a value in sec/nsec representation: */
 151static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
 152{
 153        return (ktime_t) { .tv = { .sec = secs, .nsec = nsecs } };
 154}
 155
 156/**
 157 * ktime_sub - subtract two ktime_t variables
 158 * @lhs:        minuend
 159 * @rhs:        subtrahend
 160 *
 161 * Returns the remainder of the substraction
 162 */
 163static inline ktime_t ktime_sub(const ktime_t lhs, const ktime_t rhs)
 164{
 165        ktime_t res;
 166
 167        res.tv64 = lhs.tv64 - rhs.tv64;
 168        if (res.tv.nsec < 0)
 169                res.tv.nsec += NSEC_PER_SEC;
 170
 171        return res;
 172}
 173
 174/**
 175 * ktime_add - add two ktime_t variables
 176 * @add1:       addend1
 177 * @add2:       addend2
 178 *
 179 * Returns the sum of @add1 and @add2.
 180 */
 181static inline ktime_t ktime_add(const ktime_t add1, const ktime_t add2)
 182{
 183        ktime_t res;
 184
 185        res.tv64 = add1.tv64 + add2.tv64;
 186        /*
 187         * performance trick: the (u32) -NSEC gives 0x00000000Fxxxxxxx
 188         * so we subtract NSEC_PER_SEC and add 1 to the upper 32 bit.
 189         *
 190         * it's equivalent to:
 191         *   tv.nsec -= NSEC_PER_SEC
 192         *   tv.sec ++;
 193         */
 194        if (res.tv.nsec >= NSEC_PER_SEC)
 195                res.tv64 += (u32)-NSEC_PER_SEC;
 196
 197        return res;
 198}
 199
 200/**
 201 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 202 * @kt:         addend
 203 * @nsec:       the scalar nsec value to add
 204 *
 205 * Returns the sum of @kt and @nsec in ktime_t format
 206 */
 207extern ktime_t ktime_add_ns(const ktime_t kt, u64 nsec);
 208
 209/**
 210 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 211 * @kt:         minuend
 212 * @nsec:       the scalar nsec value to subtract
 213 *
 214 * Returns the subtraction of @nsec from @kt in ktime_t format
 215 */
 216extern ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec);
 217
 218/**
 219 * timespec_to_ktime - convert a timespec to ktime_t format
 220 * @ts:         the timespec variable to convert
 221 *
 222 * Returns a ktime_t variable with the converted timespec value
 223 */
 224static inline ktime_t timespec_to_ktime(const struct timespec ts)
 225{
 226        return (ktime_t) { .tv = { .sec = (s32)ts.tv_sec,
 227                                   .nsec = (s32)ts.tv_nsec } };
 228}
 229
 230/**
 231 * timeval_to_ktime - convert a timeval to ktime_t format
 232 * @tv:         the timeval variable to convert
 233 *
 234 * Returns a ktime_t variable with the converted timeval value
 235 */
 236static inline ktime_t timeval_to_ktime(const struct timeval tv)
 237{
 238        return (ktime_t) { .tv = { .sec = (s32)tv.tv_sec,
 239                                   .nsec = (s32)tv.tv_usec * 1000 } };
 240}
 241
 242/**
 243 * ktime_to_timespec - convert a ktime_t variable to timespec format
 244 * @kt:         the ktime_t variable to convert
 245 *
 246 * Returns the timespec representation of the ktime value
 247 */
 248static inline struct timespec ktime_to_timespec(const ktime_t kt)
 249{
 250        return (struct timespec) { .tv_sec = (time_t) kt.tv.sec,
 251                                   .tv_nsec = (long) kt.tv.nsec };
 252}
 253
 254/**
 255 * ktime_to_timeval - convert a ktime_t variable to timeval format
 256 * @kt:         the ktime_t variable to convert
 257 *
 258 * Returns the timeval representation of the ktime value
 259 */
 260static inline struct timeval ktime_to_timeval(const ktime_t kt)
 261{
 262        return (struct timeval) {
 263                .tv_sec = (time_t) kt.tv.sec,
 264                .tv_usec = (suseconds_t) (kt.tv.nsec / NSEC_PER_USEC) };
 265}
 266
 267/**
 268 * ktime_to_ns - convert a ktime_t variable to scalar nanoseconds
 269 * @kt:         the ktime_t variable to convert
 270 *
 271 * Returns the scalar nanoseconds representation of @kt
 272 */
 273static inline s64 ktime_to_ns(const ktime_t kt)
 274{
 275        return (s64) kt.tv.sec * NSEC_PER_SEC + kt.tv.nsec;
 276}
 277
 278#endif
 279
 280/**
 281 * ktime_equal - Compares two ktime_t variables to see if they are equal
 282 * @cmp1:       comparable1
 283 * @cmp2:       comparable2
 284 *
 285 * Compare two ktime_t variables, returns 1 if equal
 286 */
 287static inline int ktime_equal(const ktime_t cmp1, const ktime_t cmp2)
 288{
 289        return cmp1.tv64 == cmp2.tv64;
 290}
 291
 292static inline s64 ktime_to_us(const ktime_t kt)
 293{
 294        struct timeval tv = ktime_to_timeval(kt);
 295        return (s64) tv.tv_sec * USEC_PER_SEC + tv.tv_usec;
 296}
 297
 298static inline s64 ktime_us_delta(const ktime_t later, const ktime_t earlier)
 299{
 300       return ktime_to_us(ktime_sub(later, earlier));
 301}
 302
 303static inline ktime_t ktime_add_us(const ktime_t kt, const u64 usec)
 304{
 305        return ktime_add_ns(kt, usec * 1000);
 306}
 307
 308static inline ktime_t ktime_sub_us(const ktime_t kt, const u64 usec)
 309{
 310        return ktime_sub_ns(kt, usec * 1000);
 311}
 312
 313extern ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs);
 314
 315/*
 316 * The resolution of the clocks. The resolution value is returned in
 317 * the clock_getres() system call to give application programmers an
 318 * idea of the (in)accuracy of timers. Timer values are rounded up to
 319 * this resolution values.
 320 */
 321#define LOW_RES_NSEC            TICK_NSEC
 322#define KTIME_LOW_RES           (ktime_t){ .tv64 = LOW_RES_NSEC }
 323
 324/* Get the monotonic time in timespec format: */
 325extern void ktime_get_ts(struct timespec *ts);
 326
 327/* Get the real (wall-) time in timespec format: */
 328#define ktime_get_real_ts(ts)   getnstimeofday(ts)
 329
 330static inline ktime_t ns_to_ktime(u64 ns)
 331{
 332        static const ktime_t ktime_zero = { .tv64 = 0 };
 333        return ktime_add_ns(ktime_zero, ns);
 334}
 335
 336#endif
 337