1/* 2 * User-mode machine state access 3 * 4 * Copyright (C) 2007 Red Hat, Inc. All rights reserved. 5 * 6 * This copyrighted material is made available to anyone wishing to use, 7 * modify, copy, or redistribute it subject to the terms and conditions 8 * of the GNU General Public License v.2. 9 * 10 * Red Hat Author: Roland McGrath. 11 */ 12 13#ifndef _LINUX_REGSET_H 14#define _LINUX_REGSET_H 1 15 16#include <linux/compiler.h> 17#include <linux/types.h> 18#include <linux/uaccess.h> 19struct task_struct; 20struct user_regset; 21 22 23/** 24 * user_regset_active_fn - type of @active function in &struct user_regset 25 * @target: thread being examined 26 * @regset: regset being examined 27 * 28 * Return -%ENODEV if not available on the hardware found. 29 * Return %0 if no interesting state in this thread. 30 * Return >%0 number of @size units of interesting state. 31 * Any get call fetching state beyond that number will 32 * see the default initialization state for this data, 33 * so a caller that knows what the default state is need 34 * not copy it all out. 35 * This call is optional; the pointer is %NULL if there 36 * is no inexpensive check to yield a value < @n. 37 */ 38typedef int user_regset_active_fn(struct task_struct *target, 39 const struct user_regset *regset); 40 41/** 42 * user_regset_get_fn - type of @get function in &struct user_regset 43 * @target: thread being examined 44 * @regset: regset being examined 45 * @pos: offset into the regset data to access, in bytes 46 * @count: amount of data to copy, in bytes 47 * @kbuf: if not %NULL, a kernel-space pointer to copy into 48 * @ubuf: if @kbuf is %NULL, a user-space pointer to copy into 49 * 50 * Fetch register values. Return %0 on success; -%EIO or -%ENODEV 51 * are usual failure returns. The @pos and @count values are in 52 * bytes, but must be properly aligned. If @kbuf is non-null, that 53 * buffer is used and @ubuf is ignored. If @kbuf is %NULL, then 54 * ubuf gives a userland pointer to access directly, and an -%EFAULT 55 * return value is possible. 56 */ 57typedef int user_regset_get_fn(struct task_struct *target, 58 const struct user_regset *regset, 59 unsigned int pos, unsigned int count, 60 void *kbuf, void __user *ubuf); 61 62/** 63 * user_regset_set_fn - type of @set function in &struct user_regset 64 * @target: thread being examined 65 * @regset: regset being examined 66 * @pos: offset into the regset data to access, in bytes 67 * @count: amount of data to copy, in bytes 68 * @kbuf: if not %NULL, a kernel-space pointer to copy from 69 * @ubuf: if @kbuf is %NULL, a user-space pointer to copy from 70 * 71 * Store register values. Return %0 on success; -%EIO or -%ENODEV 72 * are usual failure returns. The @pos and @count values are in 73 * bytes, but must be properly aligned. If @kbuf is non-null, that 74 * buffer is used and @ubuf is ignored. If @kbuf is %NULL, then 75 * ubuf gives a userland pointer to access directly, and an -%EFAULT 76 * return value is possible. 77 */ 78typedef int user_regset_set_fn(struct task_struct *target, 79 const struct user_regset *regset, 80 unsigned int pos, unsigned int count, 81 const void *kbuf, const void __user *ubuf); 82 83/** 84 * user_regset_writeback_fn - type of @writeback function in &struct user_regset 85 * @target: thread being examined 86 * @regset: regset being examined 87 * @immediate: zero if writeback at completion of next context switch is OK 88 * 89 * This call is optional; usually the pointer is %NULL. When 90 * provided, there is some user memory associated with this regset's 91 * hardware, such as memory backing cached register data on register 92 * window machines; the regset's data controls what user memory is 93 * used (e.g. via the stack pointer value). 94 * 95 * Write register data back to user memory. If the @immediate flag 96 * is nonzero, it must be written to the user memory so uaccess or 97 * access_process_vm() can see it when this call returns; if zero, 98 * then it must be written back by the time the task completes a 99 * context switch (as synchronized with wait_task_inactive()). 100 * Return %0 on success or if there was nothing to do, -%EFAULT for 101 * a memory problem (bad stack pointer or whatever), or -%EIO for a 102 * hardware problem. 103 */ 104typedef int user_regset_writeback_fn(struct task_struct *target, 105 const struct user_regset *regset, 106 int immediate); 107 108/** 109 * struct user_regset - accessible thread CPU state 110 * @n: Number of slots (registers). 111 * @size: Size in bytes of a slot (register). 112 * @align: Required alignment, in bytes. 113 * @bias: Bias from natural indexing. 114 * @core_note_type: ELF note @n_type value used in core dumps. 115 * @get: Function to fetch values. 116 * @set: Function to store values. 117 * @active: Function to report if regset is active, or %NULL. 118 * @writeback: Function to write data back to user memory, or %NULL. 119 * 120 * This data structure describes a machine resource we call a register set. 121 * This is part of the state of an individual thread, not necessarily 122 * actual CPU registers per se. A register set consists of a number of 123 * similar slots, given by @n. Each slot is @size bytes, and aligned to 124 * @align bytes (which is at least @size). 125 * 126 * These functions must be called only on the current thread or on a 127 * thread that is in %TASK_STOPPED or %TASK_TRACED state, that we are 128 * guaranteed will not be woken up and return to user mode, and that we 129 * have called wait_task_inactive() on. (The target thread always might 130 * wake up for SIGKILL while these functions are working, in which case 131 * that thread's user_regset state might be scrambled.) 132 * 133 * The @pos argument must be aligned according to @align; the @count 134 * argument must be a multiple of @size. These functions are not 135 * responsible for checking for invalid arguments. 136 * 137 * When there is a natural value to use as an index, @bias gives the 138 * difference between the natural index and the slot index for the 139 * register set. For example, x86 GDT segment descriptors form a regset; 140 * the segment selector produces a natural index, but only a subset of 141 * that index space is available as a regset (the TLS slots); subtracting 142 * @bias from a segment selector index value computes the regset slot. 143 * 144 * If nonzero, @core_note_type gives the n_type field (NT_* value) 145 * of the core file note in which this regset's data appears. 146 * NT_PRSTATUS is a special case in that the regset data starts at 147 * offsetof(struct elf_prstatus, pr_reg) into the note data; that is 148 * part of the per-machine ELF formats userland knows about. In 149 * other cases, the core file note contains exactly the whole regset 150 * (@n * @size) and nothing else. The core file note is normally 151 * omitted when there is an @active function and it returns zero. 152 */ 153struct user_regset { 154 user_regset_get_fn *get; 155 user_regset_set_fn *set; 156 user_regset_active_fn *active; 157 user_regset_writeback_fn *writeback; 158 unsigned int n; 159 unsigned int size; 160 unsigned int align; 161 unsigned int bias; 162 unsigned int core_note_type; 163}; 164 165/** 166 * struct user_regset_view - available regsets 167 * @name: Identifier, e.g. UTS_MACHINE string. 168 * @regsets: Array of @n regsets available in this view. 169 * @n: Number of elements in @regsets. 170 * @e_machine: ELF header @e_machine %EM_* value written in core dumps. 171 * @e_flags: ELF header @e_flags value written in core dumps. 172 * @ei_osabi: ELF header @e_ident[%EI_OSABI] value written in core dumps. 173 * 174 * A regset view is a collection of regsets (&struct user_regset, 175 * above). This describes all the state of a thread that can be seen 176 * from a given architecture/ABI environment. More than one view might 177 * refer to the same &struct user_regset, or more than one regset 178 * might refer to the same machine-specific state in the thread. For 179 * example, a 32-bit thread's state could be examined from the 32-bit 180 * view or from the 64-bit view. Either method reaches the same thread 181 * register state, doing appropriate widening or truncation. 182 */ 183struct user_regset_view { 184 const char *name; 185 const struct user_regset *regsets; 186 unsigned int n; 187 u32 e_flags; 188 u16 e_machine; 189 u8 ei_osabi; 190}; 191 192/* 193 * This is documented here rather than at the definition sites because its 194 * implementation is machine-dependent but its interface is universal. 195 */ 196/** 197 * task_user_regset_view - Return the process's native regset view. 198 * @tsk: a thread of the process in question 199 * 200 * Return the &struct user_regset_view that is native for the given process. 201 * For example, what it would access when it called ptrace(). 202 * Throughout the life of the process, this only changes at exec. 203 */ 204const struct user_regset_view *task_user_regset_view(struct task_struct *tsk); 205 206 207/* 208 * These are helpers for writing regset get/set functions in arch code. 209 * Because @start_pos and @end_pos are always compile-time constants, 210 * these are inlined into very little code though they look large. 211 * 212 * Use one or more calls sequentially for each chunk of regset data stored 213 * contiguously in memory. Call with constants for @start_pos and @end_pos, 214 * giving the range of byte positions in the regset that data corresponds 215 * to; @end_pos can be -1 if this chunk is at the end of the regset layout. 216 * Each call updates the arguments to point past its chunk. 217 */ 218 219static inline int user_regset_copyout(unsigned int *pos, unsigned int *count, 220 void **kbuf, 221 void __user **ubuf, const void *data, 222 const int start_pos, const int end_pos) 223{ 224 if (*count == 0) 225 return 0; 226 BUG_ON(*pos < start_pos); 227 if (end_pos < 0 || *pos < end_pos) { 228 unsigned int copy = (end_pos < 0 ? *count 229 : min(*count, end_pos - *pos)); 230 data += *pos - start_pos; 231 if (*kbuf) { 232 memcpy(*kbuf, data, copy); 233 *kbuf += copy; 234 } else if (__copy_to_user(*ubuf, data, copy)) 235 return -EFAULT; 236 else 237 *ubuf += copy; 238 *pos += copy; 239 *count -= copy; 240 } 241 return 0; 242} 243 244static inline int user_regset_copyin(unsigned int *pos, unsigned int *count, 245 const void **kbuf, 246 const void __user **ubuf, void *data, 247 const int start_pos, const int end_pos) 248{ 249 if (*count == 0) 250 return 0; 251 BUG_ON(*pos < start_pos); 252 if (end_pos < 0 || *pos < end_pos) { 253 unsigned int copy = (end_pos < 0 ? *count 254 : min(*count, end_pos - *pos)); 255 data += *pos - start_pos; 256 if (*kbuf) { 257 memcpy(data, *kbuf, copy); 258 *kbuf += copy; 259 } else if (__copy_from_user(data, *ubuf, copy)) 260 return -EFAULT; 261 else 262 *ubuf += copy; 263 *pos += copy; 264 *count -= copy; 265 } 266 return 0; 267} 268 269/* 270 * These two parallel the two above, but for portions of a regset layout 271 * that always read as all-zero or for which writes are ignored. 272 */ 273static inline int user_regset_copyout_zero(unsigned int *pos, 274 unsigned int *count, 275 void **kbuf, void __user **ubuf, 276 const int start_pos, 277 const int end_pos) 278{ 279 if (*count == 0) 280 return 0; 281 BUG_ON(*pos < start_pos); 282 if (end_pos < 0 || *pos < end_pos) { 283 unsigned int copy = (end_pos < 0 ? *count 284 : min(*count, end_pos - *pos)); 285 if (*kbuf) { 286 memset(*kbuf, 0, copy); 287 *kbuf += copy; 288 } else if (__clear_user(*ubuf, copy)) 289 return -EFAULT; 290 else 291 *ubuf += copy; 292 *pos += copy; 293 *count -= copy; 294 } 295 return 0; 296} 297 298static inline int user_regset_copyin_ignore(unsigned int *pos, 299 unsigned int *count, 300 const void **kbuf, 301 const void __user **ubuf, 302 const int start_pos, 303 const int end_pos) 304{ 305 if (*count == 0) 306 return 0; 307 BUG_ON(*pos < start_pos); 308 if (end_pos < 0 || *pos < end_pos) { 309 unsigned int copy = (end_pos < 0 ? *count 310 : min(*count, end_pos - *pos)); 311 if (*kbuf) 312 *kbuf += copy; 313 else 314 *ubuf += copy; 315 *pos += copy; 316 *count -= copy; 317 } 318 return 0; 319} 320 321/** 322 * copy_regset_to_user - fetch a thread's user_regset data into user memory 323 * @target: thread to be examined 324 * @view: &struct user_regset_view describing user thread machine state 325 * @setno: index in @view->regsets 326 * @offset: offset into the regset data, in bytes 327 * @size: amount of data to copy, in bytes 328 * @data: user-mode pointer to copy into 329 */ 330static inline int copy_regset_to_user(struct task_struct *target, 331 const struct user_regset_view *view, 332 unsigned int setno, 333 unsigned int offset, unsigned int size, 334 void __user *data) 335{ 336 const struct user_regset *regset = &view->regsets[setno]; 337 338 if (!access_ok(VERIFY_WRITE, data, size)) 339 return -EIO; 340 341 return regset->get(target, regset, offset, size, NULL, data); 342} 343 344/** 345 * copy_regset_from_user - store into thread's user_regset data from user memory 346 * @target: thread to be examined 347 * @view: &struct user_regset_view describing user thread machine state 348 * @setno: index in @view->regsets 349 * @offset: offset into the regset data, in bytes 350 * @size: amount of data to copy, in bytes 351 * @data: user-mode pointer to copy from 352 */ 353static inline int copy_regset_from_user(struct task_struct *target, 354 const struct user_regset_view *view, 355 unsigned int setno, 356 unsigned int offset, unsigned int size, 357 const void __user *data) 358{ 359 const struct user_regset *regset = &view->regsets[setno]; 360 361 if (!access_ok(VERIFY_READ, data, size)) 362 return -EIO; 363 364 return regset->set(target, regset, offset, size, NULL, data); 365} 366 367 368#endif /* <linux/regset.h> */ 369