linux/include/linux/regset.h
<<
>>
Prefs
   1/*
   2 * User-mode machine state access
   3 *
   4 * Copyright (C) 2007 Red Hat, Inc.  All rights reserved.
   5 *
   6 * This copyrighted material is made available to anyone wishing to use,
   7 * modify, copy, or redistribute it subject to the terms and conditions
   8 * of the GNU General Public License v.2.
   9 *
  10 * Red Hat Author: Roland McGrath.
  11 */
  12
  13#ifndef _LINUX_REGSET_H
  14#define _LINUX_REGSET_H 1
  15
  16#include <linux/compiler.h>
  17#include <linux/types.h>
  18#include <linux/uaccess.h>
  19struct task_struct;
  20struct user_regset;
  21
  22
  23/**
  24 * user_regset_active_fn - type of @active function in &struct user_regset
  25 * @target:     thread being examined
  26 * @regset:     regset being examined
  27 *
  28 * Return -%ENODEV if not available on the hardware found.
  29 * Return %0 if no interesting state in this thread.
  30 * Return >%0 number of @size units of interesting state.
  31 * Any get call fetching state beyond that number will
  32 * see the default initialization state for this data,
  33 * so a caller that knows what the default state is need
  34 * not copy it all out.
  35 * This call is optional; the pointer is %NULL if there
  36 * is no inexpensive check to yield a value < @n.
  37 */
  38typedef int user_regset_active_fn(struct task_struct *target,
  39                                  const struct user_regset *regset);
  40
  41/**
  42 * user_regset_get_fn - type of @get function in &struct user_regset
  43 * @target:     thread being examined
  44 * @regset:     regset being examined
  45 * @pos:        offset into the regset data to access, in bytes
  46 * @count:      amount of data to copy, in bytes
  47 * @kbuf:       if not %NULL, a kernel-space pointer to copy into
  48 * @ubuf:       if @kbuf is %NULL, a user-space pointer to copy into
  49 *
  50 * Fetch register values.  Return %0 on success; -%EIO or -%ENODEV
  51 * are usual failure returns.  The @pos and @count values are in
  52 * bytes, but must be properly aligned.  If @kbuf is non-null, that
  53 * buffer is used and @ubuf is ignored.  If @kbuf is %NULL, then
  54 * ubuf gives a userland pointer to access directly, and an -%EFAULT
  55 * return value is possible.
  56 */
  57typedef int user_regset_get_fn(struct task_struct *target,
  58                               const struct user_regset *regset,
  59                               unsigned int pos, unsigned int count,
  60                               void *kbuf, void __user *ubuf);
  61
  62/**
  63 * user_regset_set_fn - type of @set function in &struct user_regset
  64 * @target:     thread being examined
  65 * @regset:     regset being examined
  66 * @pos:        offset into the regset data to access, in bytes
  67 * @count:      amount of data to copy, in bytes
  68 * @kbuf:       if not %NULL, a kernel-space pointer to copy from
  69 * @ubuf:       if @kbuf is %NULL, a user-space pointer to copy from
  70 *
  71 * Store register values.  Return %0 on success; -%EIO or -%ENODEV
  72 * are usual failure returns.  The @pos and @count values are in
  73 * bytes, but must be properly aligned.  If @kbuf is non-null, that
  74 * buffer is used and @ubuf is ignored.  If @kbuf is %NULL, then
  75 * ubuf gives a userland pointer to access directly, and an -%EFAULT
  76 * return value is possible.
  77 */
  78typedef int user_regset_set_fn(struct task_struct *target,
  79                               const struct user_regset *regset,
  80                               unsigned int pos, unsigned int count,
  81                               const void *kbuf, const void __user *ubuf);
  82
  83/**
  84 * user_regset_writeback_fn - type of @writeback function in &struct user_regset
  85 * @target:     thread being examined
  86 * @regset:     regset being examined
  87 * @immediate:  zero if writeback at completion of next context switch is OK
  88 *
  89 * This call is optional; usually the pointer is %NULL.  When
  90 * provided, there is some user memory associated with this regset's
  91 * hardware, such as memory backing cached register data on register
  92 * window machines; the regset's data controls what user memory is
  93 * used (e.g. via the stack pointer value).
  94 *
  95 * Write register data back to user memory.  If the @immediate flag
  96 * is nonzero, it must be written to the user memory so uaccess or
  97 * access_process_vm() can see it when this call returns; if zero,
  98 * then it must be written back by the time the task completes a
  99 * context switch (as synchronized with wait_task_inactive()).
 100 * Return %0 on success or if there was nothing to do, -%EFAULT for
 101 * a memory problem (bad stack pointer or whatever), or -%EIO for a
 102 * hardware problem.
 103 */
 104typedef int user_regset_writeback_fn(struct task_struct *target,
 105                                     const struct user_regset *regset,
 106                                     int immediate);
 107
 108/**
 109 * struct user_regset - accessible thread CPU state
 110 * @n:                  Number of slots (registers).
 111 * @size:               Size in bytes of a slot (register).
 112 * @align:              Required alignment, in bytes.
 113 * @bias:               Bias from natural indexing.
 114 * @core_note_type:     ELF note @n_type value used in core dumps.
 115 * @get:                Function to fetch values.
 116 * @set:                Function to store values.
 117 * @active:             Function to report if regset is active, or %NULL.
 118 * @writeback:          Function to write data back to user memory, or %NULL.
 119 *
 120 * This data structure describes a machine resource we call a register set.
 121 * This is part of the state of an individual thread, not necessarily
 122 * actual CPU registers per se.  A register set consists of a number of
 123 * similar slots, given by @n.  Each slot is @size bytes, and aligned to
 124 * @align bytes (which is at least @size).
 125 *
 126 * These functions must be called only on the current thread or on a
 127 * thread that is in %TASK_STOPPED or %TASK_TRACED state, that we are
 128 * guaranteed will not be woken up and return to user mode, and that we
 129 * have called wait_task_inactive() on.  (The target thread always might
 130 * wake up for SIGKILL while these functions are working, in which case
 131 * that thread's user_regset state might be scrambled.)
 132 *
 133 * The @pos argument must be aligned according to @align; the @count
 134 * argument must be a multiple of @size.  These functions are not
 135 * responsible for checking for invalid arguments.
 136 *
 137 * When there is a natural value to use as an index, @bias gives the
 138 * difference between the natural index and the slot index for the
 139 * register set.  For example, x86 GDT segment descriptors form a regset;
 140 * the segment selector produces a natural index, but only a subset of
 141 * that index space is available as a regset (the TLS slots); subtracting
 142 * @bias from a segment selector index value computes the regset slot.
 143 *
 144 * If nonzero, @core_note_type gives the n_type field (NT_* value)
 145 * of the core file note in which this regset's data appears.
 146 * NT_PRSTATUS is a special case in that the regset data starts at
 147 * offsetof(struct elf_prstatus, pr_reg) into the note data; that is
 148 * part of the per-machine ELF formats userland knows about.  In
 149 * other cases, the core file note contains exactly the whole regset
 150 * (@n * @size) and nothing else.  The core file note is normally
 151 * omitted when there is an @active function and it returns zero.
 152 */
 153struct user_regset {
 154        user_regset_get_fn              *get;
 155        user_regset_set_fn              *set;
 156        user_regset_active_fn           *active;
 157        user_regset_writeback_fn        *writeback;
 158        unsigned int                    n;
 159        unsigned int                    size;
 160        unsigned int                    align;
 161        unsigned int                    bias;
 162        unsigned int                    core_note_type;
 163};
 164
 165/**
 166 * struct user_regset_view - available regsets
 167 * @name:       Identifier, e.g. UTS_MACHINE string.
 168 * @regsets:    Array of @n regsets available in this view.
 169 * @n:          Number of elements in @regsets.
 170 * @e_machine:  ELF header @e_machine %EM_* value written in core dumps.
 171 * @e_flags:    ELF header @e_flags value written in core dumps.
 172 * @ei_osabi:   ELF header @e_ident[%EI_OSABI] value written in core dumps.
 173 *
 174 * A regset view is a collection of regsets (&struct user_regset,
 175 * above).  This describes all the state of a thread that can be seen
 176 * from a given architecture/ABI environment.  More than one view might
 177 * refer to the same &struct user_regset, or more than one regset
 178 * might refer to the same machine-specific state in the thread.  For
 179 * example, a 32-bit thread's state could be examined from the 32-bit
 180 * view or from the 64-bit view.  Either method reaches the same thread
 181 * register state, doing appropriate widening or truncation.
 182 */
 183struct user_regset_view {
 184        const char *name;
 185        const struct user_regset *regsets;
 186        unsigned int n;
 187        u32 e_flags;
 188        u16 e_machine;
 189        u8 ei_osabi;
 190};
 191
 192/*
 193 * This is documented here rather than at the definition sites because its
 194 * implementation is machine-dependent but its interface is universal.
 195 */
 196/**
 197 * task_user_regset_view - Return the process's native regset view.
 198 * @tsk: a thread of the process in question
 199 *
 200 * Return the &struct user_regset_view that is native for the given process.
 201 * For example, what it would access when it called ptrace().
 202 * Throughout the life of the process, this only changes at exec.
 203 */
 204const struct user_regset_view *task_user_regset_view(struct task_struct *tsk);
 205
 206
 207/*
 208 * These are helpers for writing regset get/set functions in arch code.
 209 * Because @start_pos and @end_pos are always compile-time constants,
 210 * these are inlined into very little code though they look large.
 211 *
 212 * Use one or more calls sequentially for each chunk of regset data stored
 213 * contiguously in memory.  Call with constants for @start_pos and @end_pos,
 214 * giving the range of byte positions in the regset that data corresponds
 215 * to; @end_pos can be -1 if this chunk is at the end of the regset layout.
 216 * Each call updates the arguments to point past its chunk.
 217 */
 218
 219static inline int user_regset_copyout(unsigned int *pos, unsigned int *count,
 220                                      void **kbuf,
 221                                      void __user **ubuf, const void *data,
 222                                      const int start_pos, const int end_pos)
 223{
 224        if (*count == 0)
 225                return 0;
 226        BUG_ON(*pos < start_pos);
 227        if (end_pos < 0 || *pos < end_pos) {
 228                unsigned int copy = (end_pos < 0 ? *count
 229                                     : min(*count, end_pos - *pos));
 230                data += *pos - start_pos;
 231                if (*kbuf) {
 232                        memcpy(*kbuf, data, copy);
 233                        *kbuf += copy;
 234                } else if (__copy_to_user(*ubuf, data, copy))
 235                        return -EFAULT;
 236                else
 237                        *ubuf += copy;
 238                *pos += copy;
 239                *count -= copy;
 240        }
 241        return 0;
 242}
 243
 244static inline int user_regset_copyin(unsigned int *pos, unsigned int *count,
 245                                     const void **kbuf,
 246                                     const void __user **ubuf, void *data,
 247                                     const int start_pos, const int end_pos)
 248{
 249        if (*count == 0)
 250                return 0;
 251        BUG_ON(*pos < start_pos);
 252        if (end_pos < 0 || *pos < end_pos) {
 253                unsigned int copy = (end_pos < 0 ? *count
 254                                     : min(*count, end_pos - *pos));
 255                data += *pos - start_pos;
 256                if (*kbuf) {
 257                        memcpy(data, *kbuf, copy);
 258                        *kbuf += copy;
 259                } else if (__copy_from_user(data, *ubuf, copy))
 260                        return -EFAULT;
 261                else
 262                        *ubuf += copy;
 263                *pos += copy;
 264                *count -= copy;
 265        }
 266        return 0;
 267}
 268
 269/*
 270 * These two parallel the two above, but for portions of a regset layout
 271 * that always read as all-zero or for which writes are ignored.
 272 */
 273static inline int user_regset_copyout_zero(unsigned int *pos,
 274                                           unsigned int *count,
 275                                           void **kbuf, void __user **ubuf,
 276                                           const int start_pos,
 277                                           const int end_pos)
 278{
 279        if (*count == 0)
 280                return 0;
 281        BUG_ON(*pos < start_pos);
 282        if (end_pos < 0 || *pos < end_pos) {
 283                unsigned int copy = (end_pos < 0 ? *count
 284                                     : min(*count, end_pos - *pos));
 285                if (*kbuf) {
 286                        memset(*kbuf, 0, copy);
 287                        *kbuf += copy;
 288                } else if (__clear_user(*ubuf, copy))
 289                        return -EFAULT;
 290                else
 291                        *ubuf += copy;
 292                *pos += copy;
 293                *count -= copy;
 294        }
 295        return 0;
 296}
 297
 298static inline int user_regset_copyin_ignore(unsigned int *pos,
 299                                            unsigned int *count,
 300                                            const void **kbuf,
 301                                            const void __user **ubuf,
 302                                            const int start_pos,
 303                                            const int end_pos)
 304{
 305        if (*count == 0)
 306                return 0;
 307        BUG_ON(*pos < start_pos);
 308        if (end_pos < 0 || *pos < end_pos) {
 309                unsigned int copy = (end_pos < 0 ? *count
 310                                     : min(*count, end_pos - *pos));
 311                if (*kbuf)
 312                        *kbuf += copy;
 313                else
 314                        *ubuf += copy;
 315                *pos += copy;
 316                *count -= copy;
 317        }
 318        return 0;
 319}
 320
 321/**
 322 * copy_regset_to_user - fetch a thread's user_regset data into user memory
 323 * @target:     thread to be examined
 324 * @view:       &struct user_regset_view describing user thread machine state
 325 * @setno:      index in @view->regsets
 326 * @offset:     offset into the regset data, in bytes
 327 * @size:       amount of data to copy, in bytes
 328 * @data:       user-mode pointer to copy into
 329 */
 330static inline int copy_regset_to_user(struct task_struct *target,
 331                                      const struct user_regset_view *view,
 332                                      unsigned int setno,
 333                                      unsigned int offset, unsigned int size,
 334                                      void __user *data)
 335{
 336        const struct user_regset *regset = &view->regsets[setno];
 337
 338        if (!access_ok(VERIFY_WRITE, data, size))
 339                return -EIO;
 340
 341        return regset->get(target, regset, offset, size, NULL, data);
 342}
 343
 344/**
 345 * copy_regset_from_user - store into thread's user_regset data from user memory
 346 * @target:     thread to be examined
 347 * @view:       &struct user_regset_view describing user thread machine state
 348 * @setno:      index in @view->regsets
 349 * @offset:     offset into the regset data, in bytes
 350 * @size:       amount of data to copy, in bytes
 351 * @data:       user-mode pointer to copy from
 352 */
 353static inline int copy_regset_from_user(struct task_struct *target,
 354                                        const struct user_regset_view *view,
 355                                        unsigned int setno,
 356                                        unsigned int offset, unsigned int size,
 357                                        const void __user *data)
 358{
 359        const struct user_regset *regset = &view->regsets[setno];
 360
 361        if (!access_ok(VERIFY_READ, data, size))
 362                return -EIO;
 363
 364        return regset->set(target, regset, offset, size, NULL, data);
 365}
 366
 367
 368#endif  /* <linux/regset.h> */
 369