linux/include/linux/skbuff.h
<<
>>
Prefs
   1/*
   2 *      Definitions for the 'struct sk_buff' memory handlers.
   3 *
   4 *      Authors:
   5 *              Alan Cox, <gw4pts@gw4pts.ampr.org>
   6 *              Florian La Roche, <rzsfl@rz.uni-sb.de>
   7 *
   8 *      This program is free software; you can redistribute it and/or
   9 *      modify it under the terms of the GNU General Public License
  10 *      as published by the Free Software Foundation; either version
  11 *      2 of the License, or (at your option) any later version.
  12 */
  13
  14#ifndef _LINUX_SKBUFF_H
  15#define _LINUX_SKBUFF_H
  16
  17#include <linux/kernel.h>
  18#include <linux/kmemcheck.h>
  19#include <linux/compiler.h>
  20#include <linux/time.h>
  21#include <linux/cache.h>
  22
  23#include <asm/atomic.h>
  24#include <asm/types.h>
  25#include <linux/spinlock.h>
  26#include <linux/net.h>
  27#include <linux/textsearch.h>
  28#include <net/checksum.h>
  29#include <linux/rcupdate.h>
  30#include <linux/dmaengine.h>
  31#include <linux/hrtimer.h>
  32
  33/* Don't change this without changing skb_csum_unnecessary! */
  34#define CHECKSUM_NONE 0
  35#define CHECKSUM_UNNECESSARY 1
  36#define CHECKSUM_COMPLETE 2
  37#define CHECKSUM_PARTIAL 3
  38
  39#define SKB_DATA_ALIGN(X)       (((X) + (SMP_CACHE_BYTES - 1)) & \
  40                                 ~(SMP_CACHE_BYTES - 1))
  41#define SKB_WITH_OVERHEAD(X)    \
  42        ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  43#define SKB_MAX_ORDER(X, ORDER) \
  44        SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
  45#define SKB_MAX_HEAD(X)         (SKB_MAX_ORDER((X), 0))
  46#define SKB_MAX_ALLOC           (SKB_MAX_ORDER(0, 2))
  47
  48/* A. Checksumming of received packets by device.
  49 *
  50 *      NONE: device failed to checksum this packet.
  51 *              skb->csum is undefined.
  52 *
  53 *      UNNECESSARY: device parsed packet and wouldbe verified checksum.
  54 *              skb->csum is undefined.
  55 *            It is bad option, but, unfortunately, many of vendors do this.
  56 *            Apparently with secret goal to sell you new device, when you
  57 *            will add new protocol to your host. F.e. IPv6. 8)
  58 *
  59 *      COMPLETE: the most generic way. Device supplied checksum of _all_
  60 *          the packet as seen by netif_rx in skb->csum.
  61 *          NOTE: Even if device supports only some protocols, but
  62 *          is able to produce some skb->csum, it MUST use COMPLETE,
  63 *          not UNNECESSARY.
  64 *
  65 *      PARTIAL: identical to the case for output below.  This may occur
  66 *          on a packet received directly from another Linux OS, e.g.,
  67 *          a virtualised Linux kernel on the same host.  The packet can
  68 *          be treated in the same way as UNNECESSARY except that on
  69 *          output (i.e., forwarding) the checksum must be filled in
  70 *          by the OS or the hardware.
  71 *
  72 * B. Checksumming on output.
  73 *
  74 *      NONE: skb is checksummed by protocol or csum is not required.
  75 *
  76 *      PARTIAL: device is required to csum packet as seen by hard_start_xmit
  77 *      from skb->csum_start to the end and to record the checksum
  78 *      at skb->csum_start + skb->csum_offset.
  79 *
  80 *      Device must show its capabilities in dev->features, set
  81 *      at device setup time.
  82 *      NETIF_F_HW_CSUM - it is clever device, it is able to checksum
  83 *                        everything.
  84 *      NETIF_F_NO_CSUM - loopback or reliable single hop media.
  85 *      NETIF_F_IP_CSUM - device is dumb. It is able to csum only
  86 *                        TCP/UDP over IPv4. Sigh. Vendors like this
  87 *                        way by an unknown reason. Though, see comment above
  88 *                        about CHECKSUM_UNNECESSARY. 8)
  89 *      NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
  90 *
  91 *      Any questions? No questions, good.              --ANK
  92 */
  93
  94struct net_device;
  95struct scatterlist;
  96struct pipe_inode_info;
  97
  98#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  99struct nf_conntrack {
 100        atomic_t use;
 101};
 102#endif
 103
 104#ifdef CONFIG_BRIDGE_NETFILTER
 105struct nf_bridge_info {
 106        atomic_t use;
 107        struct net_device *physindev;
 108        struct net_device *physoutdev;
 109        unsigned int mask;
 110        unsigned long data[32 / sizeof(unsigned long)];
 111};
 112#endif
 113
 114struct sk_buff_head {
 115        /* These two members must be first. */
 116        struct sk_buff  *next;
 117        struct sk_buff  *prev;
 118
 119        __u32           qlen;
 120        spinlock_t      lock;
 121};
 122
 123struct sk_buff;
 124
 125/* To allow 64K frame to be packed as single skb without frag_list */
 126#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
 127
 128typedef struct skb_frag_struct skb_frag_t;
 129
 130struct skb_frag_struct {
 131        struct page *page;
 132        __u32 page_offset;
 133        __u32 size;
 134};
 135
 136#define HAVE_HW_TIME_STAMP
 137
 138/**
 139 * struct skb_shared_hwtstamps - hardware time stamps
 140 * @hwtstamp:   hardware time stamp transformed into duration
 141 *              since arbitrary point in time
 142 * @syststamp:  hwtstamp transformed to system time base
 143 *
 144 * Software time stamps generated by ktime_get_real() are stored in
 145 * skb->tstamp. The relation between the different kinds of time
 146 * stamps is as follows:
 147 *
 148 * syststamp and tstamp can be compared against each other in
 149 * arbitrary combinations.  The accuracy of a
 150 * syststamp/tstamp/"syststamp from other device" comparison is
 151 * limited by the accuracy of the transformation into system time
 152 * base. This depends on the device driver and its underlying
 153 * hardware.
 154 *
 155 * hwtstamps can only be compared against other hwtstamps from
 156 * the same device.
 157 *
 158 * This structure is attached to packets as part of the
 159 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
 160 */
 161struct skb_shared_hwtstamps {
 162        ktime_t hwtstamp;
 163        ktime_t syststamp;
 164};
 165
 166/**
 167 * struct skb_shared_tx - instructions for time stamping of outgoing packets
 168 * @hardware:           generate hardware time stamp
 169 * @software:           generate software time stamp
 170 * @in_progress:        device driver is going to provide
 171 *                      hardware time stamp
 172 * @flags:              all shared_tx flags
 173 *
 174 * These flags are attached to packets as part of the
 175 * &skb_shared_info. Use skb_tx() to get a pointer.
 176 */
 177union skb_shared_tx {
 178        struct {
 179                __u8    hardware:1,
 180                        software:1,
 181                        in_progress:1;
 182        };
 183        __u8 flags;
 184};
 185
 186/* This data is invariant across clones and lives at
 187 * the end of the header data, ie. at skb->end.
 188 */
 189struct skb_shared_info {
 190        atomic_t        dataref;
 191        unsigned short  nr_frags;
 192        unsigned short  gso_size;
 193#ifdef CONFIG_HAS_DMA
 194        dma_addr_t      dma_head;
 195#endif
 196        /* Warning: this field is not always filled in (UFO)! */
 197        unsigned short  gso_segs;
 198        unsigned short  gso_type;
 199        __be32          ip6_frag_id;
 200        union skb_shared_tx tx_flags;
 201        struct sk_buff  *frag_list;
 202        struct skb_shared_hwtstamps hwtstamps;
 203        skb_frag_t      frags[MAX_SKB_FRAGS];
 204#ifdef CONFIG_HAS_DMA
 205        dma_addr_t      dma_maps[MAX_SKB_FRAGS];
 206#endif
 207        /* Intermediate layers must ensure that destructor_arg
 208         * remains valid until skb destructor */
 209        void *          destructor_arg;
 210};
 211
 212/* We divide dataref into two halves.  The higher 16 bits hold references
 213 * to the payload part of skb->data.  The lower 16 bits hold references to
 214 * the entire skb->data.  A clone of a headerless skb holds the length of
 215 * the header in skb->hdr_len.
 216 *
 217 * All users must obey the rule that the skb->data reference count must be
 218 * greater than or equal to the payload reference count.
 219 *
 220 * Holding a reference to the payload part means that the user does not
 221 * care about modifications to the header part of skb->data.
 222 */
 223#define SKB_DATAREF_SHIFT 16
 224#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
 225
 226
 227enum {
 228        SKB_FCLONE_UNAVAILABLE,
 229        SKB_FCLONE_ORIG,
 230        SKB_FCLONE_CLONE,
 231};
 232
 233enum {
 234        SKB_GSO_TCPV4 = 1 << 0,
 235        SKB_GSO_UDP = 1 << 1,
 236
 237        /* This indicates the skb is from an untrusted source. */
 238        SKB_GSO_DODGY = 1 << 2,
 239
 240        /* This indicates the tcp segment has CWR set. */
 241        SKB_GSO_TCP_ECN = 1 << 3,
 242
 243        SKB_GSO_TCPV6 = 1 << 4,
 244
 245        SKB_GSO_FCOE = 1 << 5,
 246};
 247
 248#if BITS_PER_LONG > 32
 249#define NET_SKBUFF_DATA_USES_OFFSET 1
 250#endif
 251
 252#ifdef NET_SKBUFF_DATA_USES_OFFSET
 253typedef unsigned int sk_buff_data_t;
 254#else
 255typedef unsigned char *sk_buff_data_t;
 256#endif
 257
 258/** 
 259 *      struct sk_buff - socket buffer
 260 *      @next: Next buffer in list
 261 *      @prev: Previous buffer in list
 262 *      @sk: Socket we are owned by
 263 *      @tstamp: Time we arrived
 264 *      @dev: Device we arrived on/are leaving by
 265 *      @transport_header: Transport layer header
 266 *      @network_header: Network layer header
 267 *      @mac_header: Link layer header
 268 *      @_skb_dst: destination entry
 269 *      @sp: the security path, used for xfrm
 270 *      @cb: Control buffer. Free for use by every layer. Put private vars here
 271 *      @len: Length of actual data
 272 *      @data_len: Data length
 273 *      @mac_len: Length of link layer header
 274 *      @hdr_len: writable header length of cloned skb
 275 *      @csum: Checksum (must include start/offset pair)
 276 *      @csum_start: Offset from skb->head where checksumming should start
 277 *      @csum_offset: Offset from csum_start where checksum should be stored
 278 *      @local_df: allow local fragmentation
 279 *      @cloned: Head may be cloned (check refcnt to be sure)
 280 *      @nohdr: Payload reference only, must not modify header
 281 *      @pkt_type: Packet class
 282 *      @fclone: skbuff clone status
 283 *      @ip_summed: Driver fed us an IP checksum
 284 *      @priority: Packet queueing priority
 285 *      @users: User count - see {datagram,tcp}.c
 286 *      @protocol: Packet protocol from driver
 287 *      @truesize: Buffer size 
 288 *      @head: Head of buffer
 289 *      @data: Data head pointer
 290 *      @tail: Tail pointer
 291 *      @end: End pointer
 292 *      @destructor: Destruct function
 293 *      @mark: Generic packet mark
 294 *      @nfct: Associated connection, if any
 295 *      @ipvs_property: skbuff is owned by ipvs
 296 *      @peeked: this packet has been seen already, so stats have been
 297 *              done for it, don't do them again
 298 *      @nf_trace: netfilter packet trace flag
 299 *      @nfctinfo: Relationship of this skb to the connection
 300 *      @nfct_reasm: netfilter conntrack re-assembly pointer
 301 *      @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
 302 *      @iif: ifindex of device we arrived on
 303 *      @queue_mapping: Queue mapping for multiqueue devices
 304 *      @tc_index: Traffic control index
 305 *      @tc_verd: traffic control verdict
 306 *      @ndisc_nodetype: router type (from link layer)
 307 *      @dma_cookie: a cookie to one of several possible DMA operations
 308 *              done by skb DMA functions
 309 *      @secmark: security marking
 310 *      @vlan_tci: vlan tag control information
 311 */
 312
 313struct sk_buff {
 314        /* These two members must be first. */
 315        struct sk_buff          *next;
 316        struct sk_buff          *prev;
 317
 318        struct sock             *sk;
 319        ktime_t                 tstamp;
 320        struct net_device       *dev;
 321
 322        unsigned long           _skb_dst;
 323#ifdef CONFIG_XFRM
 324        struct  sec_path        *sp;
 325#endif
 326        /*
 327         * This is the control buffer. It is free to use for every
 328         * layer. Please put your private variables there. If you
 329         * want to keep them across layers you have to do a skb_clone()
 330         * first. This is owned by whoever has the skb queued ATM.
 331         */
 332        char                    cb[48];
 333
 334        unsigned int            len,
 335                                data_len;
 336        __u16                   mac_len,
 337                                hdr_len;
 338        union {
 339                __wsum          csum;
 340                struct {
 341                        __u16   csum_start;
 342                        __u16   csum_offset;
 343                };
 344        };
 345        __u32                   priority;
 346        kmemcheck_bitfield_begin(flags1);
 347        __u8                    local_df:1,
 348                                cloned:1,
 349                                ip_summed:2,
 350                                nohdr:1,
 351                                nfctinfo:3;
 352        __u8                    pkt_type:3,
 353                                fclone:2,
 354                                ipvs_property:1,
 355                                peeked:1,
 356                                nf_trace:1;
 357        __be16                  protocol:16;
 358        kmemcheck_bitfield_end(flags1);
 359
 360        void                    (*destructor)(struct sk_buff *skb);
 361#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
 362        struct nf_conntrack     *nfct;
 363        struct sk_buff          *nfct_reasm;
 364#endif
 365#ifdef CONFIG_BRIDGE_NETFILTER
 366        struct nf_bridge_info   *nf_bridge;
 367#endif
 368
 369        int                     iif;
 370#ifdef CONFIG_NET_SCHED
 371        __u16                   tc_index;       /* traffic control index */
 372#ifdef CONFIG_NET_CLS_ACT
 373        __u16                   tc_verd;        /* traffic control verdict */
 374#endif
 375#endif
 376
 377        kmemcheck_bitfield_begin(flags2);
 378        __u16                   queue_mapping:16;
 379#ifdef CONFIG_IPV6_NDISC_NODETYPE
 380        __u8                    ndisc_nodetype:2;
 381#endif
 382        kmemcheck_bitfield_end(flags2);
 383
 384        /* 0/14 bit hole */
 385
 386#ifdef CONFIG_NET_DMA
 387        dma_cookie_t            dma_cookie;
 388#endif
 389#ifdef CONFIG_NETWORK_SECMARK
 390        __u32                   secmark;
 391#endif
 392
 393        __u32                   mark;
 394
 395        __u16                   vlan_tci;
 396
 397        sk_buff_data_t          transport_header;
 398        sk_buff_data_t          network_header;
 399        sk_buff_data_t          mac_header;
 400        /* These elements must be at the end, see alloc_skb() for details.  */
 401        sk_buff_data_t          tail;
 402        sk_buff_data_t          end;
 403        unsigned char           *head,
 404                                *data;
 405        unsigned int            truesize;
 406        atomic_t                users;
 407};
 408
 409#ifdef __KERNEL__
 410/*
 411 *      Handling routines are only of interest to the kernel
 412 */
 413#include <linux/slab.h>
 414
 415#include <asm/system.h>
 416
 417#ifdef CONFIG_HAS_DMA
 418#include <linux/dma-mapping.h>
 419extern int skb_dma_map(struct device *dev, struct sk_buff *skb,
 420                       enum dma_data_direction dir);
 421extern void skb_dma_unmap(struct device *dev, struct sk_buff *skb,
 422                          enum dma_data_direction dir);
 423#endif
 424
 425static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
 426{
 427        return (struct dst_entry *)skb->_skb_dst;
 428}
 429
 430static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
 431{
 432        skb->_skb_dst = (unsigned long)dst;
 433}
 434
 435static inline struct rtable *skb_rtable(const struct sk_buff *skb)
 436{
 437        return (struct rtable *)skb_dst(skb);
 438}
 439
 440extern void kfree_skb(struct sk_buff *skb);
 441extern void consume_skb(struct sk_buff *skb);
 442extern void            __kfree_skb(struct sk_buff *skb);
 443extern struct sk_buff *__alloc_skb(unsigned int size,
 444                                   gfp_t priority, int fclone, int node);
 445static inline struct sk_buff *alloc_skb(unsigned int size,
 446                                        gfp_t priority)
 447{
 448        return __alloc_skb(size, priority, 0, -1);
 449}
 450
 451static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
 452                                               gfp_t priority)
 453{
 454        return __alloc_skb(size, priority, 1, -1);
 455}
 456
 457extern int skb_recycle_check(struct sk_buff *skb, int skb_size);
 458
 459extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
 460extern struct sk_buff *skb_clone(struct sk_buff *skb,
 461                                 gfp_t priority);
 462extern struct sk_buff *skb_copy(const struct sk_buff *skb,
 463                                gfp_t priority);
 464extern struct sk_buff *pskb_copy(struct sk_buff *skb,
 465                                 gfp_t gfp_mask);
 466extern int             pskb_expand_head(struct sk_buff *skb,
 467                                        int nhead, int ntail,
 468                                        gfp_t gfp_mask);
 469extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
 470                                            unsigned int headroom);
 471extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
 472                                       int newheadroom, int newtailroom,
 473                                       gfp_t priority);
 474extern int             skb_to_sgvec(struct sk_buff *skb,
 475                                    struct scatterlist *sg, int offset,
 476                                    int len);
 477extern int             skb_cow_data(struct sk_buff *skb, int tailbits,
 478                                    struct sk_buff **trailer);
 479extern int             skb_pad(struct sk_buff *skb, int pad);
 480#define dev_kfree_skb(a)        consume_skb(a)
 481#define dev_consume_skb(a)      kfree_skb_clean(a)
 482extern void           skb_over_panic(struct sk_buff *skb, int len,
 483                                     void *here);
 484extern void           skb_under_panic(struct sk_buff *skb, int len,
 485                                      void *here);
 486
 487extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
 488                        int getfrag(void *from, char *to, int offset,
 489                        int len,int odd, struct sk_buff *skb),
 490                        void *from, int length);
 491
 492struct skb_seq_state
 493{
 494        __u32           lower_offset;
 495        __u32           upper_offset;
 496        __u32           frag_idx;
 497        __u32           stepped_offset;
 498        struct sk_buff  *root_skb;
 499        struct sk_buff  *cur_skb;
 500        __u8            *frag_data;
 501};
 502
 503extern void           skb_prepare_seq_read(struct sk_buff *skb,
 504                                           unsigned int from, unsigned int to,
 505                                           struct skb_seq_state *st);
 506extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
 507                                   struct skb_seq_state *st);
 508extern void           skb_abort_seq_read(struct skb_seq_state *st);
 509
 510extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
 511                                    unsigned int to, struct ts_config *config,
 512                                    struct ts_state *state);
 513
 514#ifdef NET_SKBUFF_DATA_USES_OFFSET
 515static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
 516{
 517        return skb->head + skb->end;
 518}
 519#else
 520static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
 521{
 522        return skb->end;
 523}
 524#endif
 525
 526/* Internal */
 527#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
 528
 529static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
 530{
 531        return &skb_shinfo(skb)->hwtstamps;
 532}
 533
 534static inline union skb_shared_tx *skb_tx(struct sk_buff *skb)
 535{
 536        return &skb_shinfo(skb)->tx_flags;
 537}
 538
 539/**
 540 *      skb_queue_empty - check if a queue is empty
 541 *      @list: queue head
 542 *
 543 *      Returns true if the queue is empty, false otherwise.
 544 */
 545static inline int skb_queue_empty(const struct sk_buff_head *list)
 546{
 547        return list->next == (struct sk_buff *)list;
 548}
 549
 550/**
 551 *      skb_queue_is_last - check if skb is the last entry in the queue
 552 *      @list: queue head
 553 *      @skb: buffer
 554 *
 555 *      Returns true if @skb is the last buffer on the list.
 556 */
 557static inline bool skb_queue_is_last(const struct sk_buff_head *list,
 558                                     const struct sk_buff *skb)
 559{
 560        return (skb->next == (struct sk_buff *) list);
 561}
 562
 563/**
 564 *      skb_queue_is_first - check if skb is the first entry in the queue
 565 *      @list: queue head
 566 *      @skb: buffer
 567 *
 568 *      Returns true if @skb is the first buffer on the list.
 569 */
 570static inline bool skb_queue_is_first(const struct sk_buff_head *list,
 571                                      const struct sk_buff *skb)
 572{
 573        return (skb->prev == (struct sk_buff *) list);
 574}
 575
 576/**
 577 *      skb_queue_next - return the next packet in the queue
 578 *      @list: queue head
 579 *      @skb: current buffer
 580 *
 581 *      Return the next packet in @list after @skb.  It is only valid to
 582 *      call this if skb_queue_is_last() evaluates to false.
 583 */
 584static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
 585                                             const struct sk_buff *skb)
 586{
 587        /* This BUG_ON may seem severe, but if we just return then we
 588         * are going to dereference garbage.
 589         */
 590        BUG_ON(skb_queue_is_last(list, skb));
 591        return skb->next;
 592}
 593
 594/**
 595 *      skb_queue_prev - return the prev packet in the queue
 596 *      @list: queue head
 597 *      @skb: current buffer
 598 *
 599 *      Return the prev packet in @list before @skb.  It is only valid to
 600 *      call this if skb_queue_is_first() evaluates to false.
 601 */
 602static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
 603                                             const struct sk_buff *skb)
 604{
 605        /* This BUG_ON may seem severe, but if we just return then we
 606         * are going to dereference garbage.
 607         */
 608        BUG_ON(skb_queue_is_first(list, skb));
 609        return skb->prev;
 610}
 611
 612/**
 613 *      skb_get - reference buffer
 614 *      @skb: buffer to reference
 615 *
 616 *      Makes another reference to a socket buffer and returns a pointer
 617 *      to the buffer.
 618 */
 619static inline struct sk_buff *skb_get(struct sk_buff *skb)
 620{
 621        atomic_inc(&skb->users);
 622        return skb;
 623}
 624
 625/*
 626 * If users == 1, we are the only owner and are can avoid redundant
 627 * atomic change.
 628 */
 629
 630/**
 631 *      skb_cloned - is the buffer a clone
 632 *      @skb: buffer to check
 633 *
 634 *      Returns true if the buffer was generated with skb_clone() and is
 635 *      one of multiple shared copies of the buffer. Cloned buffers are
 636 *      shared data so must not be written to under normal circumstances.
 637 */
 638static inline int skb_cloned(const struct sk_buff *skb)
 639{
 640        return skb->cloned &&
 641               (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
 642}
 643
 644/**
 645 *      skb_header_cloned - is the header a clone
 646 *      @skb: buffer to check
 647 *
 648 *      Returns true if modifying the header part of the buffer requires
 649 *      the data to be copied.
 650 */
 651static inline int skb_header_cloned(const struct sk_buff *skb)
 652{
 653        int dataref;
 654
 655        if (!skb->cloned)
 656                return 0;
 657
 658        dataref = atomic_read(&skb_shinfo(skb)->dataref);
 659        dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
 660        return dataref != 1;
 661}
 662
 663/**
 664 *      skb_header_release - release reference to header
 665 *      @skb: buffer to operate on
 666 *
 667 *      Drop a reference to the header part of the buffer.  This is done
 668 *      by acquiring a payload reference.  You must not read from the header
 669 *      part of skb->data after this.
 670 */
 671static inline void skb_header_release(struct sk_buff *skb)
 672{
 673        BUG_ON(skb->nohdr);
 674        skb->nohdr = 1;
 675        atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
 676}
 677
 678/**
 679 *      skb_shared - is the buffer shared
 680 *      @skb: buffer to check
 681 *
 682 *      Returns true if more than one person has a reference to this
 683 *      buffer.
 684 */
 685static inline int skb_shared(const struct sk_buff *skb)
 686{
 687        return atomic_read(&skb->users) != 1;
 688}
 689
 690/**
 691 *      skb_share_check - check if buffer is shared and if so clone it
 692 *      @skb: buffer to check
 693 *      @pri: priority for memory allocation
 694 *
 695 *      If the buffer is shared the buffer is cloned and the old copy
 696 *      drops a reference. A new clone with a single reference is returned.
 697 *      If the buffer is not shared the original buffer is returned. When
 698 *      being called from interrupt status or with spinlocks held pri must
 699 *      be GFP_ATOMIC.
 700 *
 701 *      NULL is returned on a memory allocation failure.
 702 */
 703static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
 704                                              gfp_t pri)
 705{
 706        might_sleep_if(pri & __GFP_WAIT);
 707        if (skb_shared(skb)) {
 708                struct sk_buff *nskb = skb_clone(skb, pri);
 709                kfree_skb(skb);
 710                skb = nskb;
 711        }
 712        return skb;
 713}
 714
 715/*
 716 *      Copy shared buffers into a new sk_buff. We effectively do COW on
 717 *      packets to handle cases where we have a local reader and forward
 718 *      and a couple of other messy ones. The normal one is tcpdumping
 719 *      a packet thats being forwarded.
 720 */
 721
 722/**
 723 *      skb_unshare - make a copy of a shared buffer
 724 *      @skb: buffer to check
 725 *      @pri: priority for memory allocation
 726 *
 727 *      If the socket buffer is a clone then this function creates a new
 728 *      copy of the data, drops a reference count on the old copy and returns
 729 *      the new copy with the reference count at 1. If the buffer is not a clone
 730 *      the original buffer is returned. When called with a spinlock held or
 731 *      from interrupt state @pri must be %GFP_ATOMIC
 732 *
 733 *      %NULL is returned on a memory allocation failure.
 734 */
 735static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
 736                                          gfp_t pri)
 737{
 738        might_sleep_if(pri & __GFP_WAIT);
 739        if (skb_cloned(skb)) {
 740                struct sk_buff *nskb = skb_copy(skb, pri);
 741                kfree_skb(skb); /* Free our shared copy */
 742                skb = nskb;
 743        }
 744        return skb;
 745}
 746
 747/**
 748 *      skb_peek
 749 *      @list_: list to peek at
 750 *
 751 *      Peek an &sk_buff. Unlike most other operations you _MUST_
 752 *      be careful with this one. A peek leaves the buffer on the
 753 *      list and someone else may run off with it. You must hold
 754 *      the appropriate locks or have a private queue to do this.
 755 *
 756 *      Returns %NULL for an empty list or a pointer to the head element.
 757 *      The reference count is not incremented and the reference is therefore
 758 *      volatile. Use with caution.
 759 */
 760static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
 761{
 762        struct sk_buff *list = ((struct sk_buff *)list_)->next;
 763        if (list == (struct sk_buff *)list_)
 764                list = NULL;
 765        return list;
 766}
 767
 768/**
 769 *      skb_peek_tail
 770 *      @list_: list to peek at
 771 *
 772 *      Peek an &sk_buff. Unlike most other operations you _MUST_
 773 *      be careful with this one. A peek leaves the buffer on the
 774 *      list and someone else may run off with it. You must hold
 775 *      the appropriate locks or have a private queue to do this.
 776 *
 777 *      Returns %NULL for an empty list or a pointer to the tail element.
 778 *      The reference count is not incremented and the reference is therefore
 779 *      volatile. Use with caution.
 780 */
 781static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
 782{
 783        struct sk_buff *list = ((struct sk_buff *)list_)->prev;
 784        if (list == (struct sk_buff *)list_)
 785                list = NULL;
 786        return list;
 787}
 788
 789/**
 790 *      skb_queue_len   - get queue length
 791 *      @list_: list to measure
 792 *
 793 *      Return the length of an &sk_buff queue.
 794 */
 795static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
 796{
 797        return list_->qlen;
 798}
 799
 800/**
 801 *      __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
 802 *      @list: queue to initialize
 803 *
 804 *      This initializes only the list and queue length aspects of
 805 *      an sk_buff_head object.  This allows to initialize the list
 806 *      aspects of an sk_buff_head without reinitializing things like
 807 *      the spinlock.  It can also be used for on-stack sk_buff_head
 808 *      objects where the spinlock is known to not be used.
 809 */
 810static inline void __skb_queue_head_init(struct sk_buff_head *list)
 811{
 812        list->prev = list->next = (struct sk_buff *)list;
 813        list->qlen = 0;
 814}
 815
 816/*
 817 * This function creates a split out lock class for each invocation;
 818 * this is needed for now since a whole lot of users of the skb-queue
 819 * infrastructure in drivers have different locking usage (in hardirq)
 820 * than the networking core (in softirq only). In the long run either the
 821 * network layer or drivers should need annotation to consolidate the
 822 * main types of usage into 3 classes.
 823 */
 824static inline void skb_queue_head_init(struct sk_buff_head *list)
 825{
 826        spin_lock_init(&list->lock);
 827        __skb_queue_head_init(list);
 828}
 829
 830static inline void skb_queue_head_init_class(struct sk_buff_head *list,
 831                struct lock_class_key *class)
 832{
 833        skb_queue_head_init(list);
 834        lockdep_set_class(&list->lock, class);
 835}
 836
 837/*
 838 *      Insert an sk_buff on a list.
 839 *
 840 *      The "__skb_xxxx()" functions are the non-atomic ones that
 841 *      can only be called with interrupts disabled.
 842 */
 843extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
 844static inline void __skb_insert(struct sk_buff *newsk,
 845                                struct sk_buff *prev, struct sk_buff *next,
 846                                struct sk_buff_head *list)
 847{
 848        newsk->next = next;
 849        newsk->prev = prev;
 850        next->prev  = prev->next = newsk;
 851        list->qlen++;
 852}
 853
 854static inline void __skb_queue_splice(const struct sk_buff_head *list,
 855                                      struct sk_buff *prev,
 856                                      struct sk_buff *next)
 857{
 858        struct sk_buff *first = list->next;
 859        struct sk_buff *last = list->prev;
 860
 861        first->prev = prev;
 862        prev->next = first;
 863
 864        last->next = next;
 865        next->prev = last;
 866}
 867
 868/**
 869 *      skb_queue_splice - join two skb lists, this is designed for stacks
 870 *      @list: the new list to add
 871 *      @head: the place to add it in the first list
 872 */
 873static inline void skb_queue_splice(const struct sk_buff_head *list,
 874                                    struct sk_buff_head *head)
 875{
 876        if (!skb_queue_empty(list)) {
 877                __skb_queue_splice(list, (struct sk_buff *) head, head->next);
 878                head->qlen += list->qlen;
 879        }
 880}
 881
 882/**
 883 *      skb_queue_splice - join two skb lists and reinitialise the emptied list
 884 *      @list: the new list to add
 885 *      @head: the place to add it in the first list
 886 *
 887 *      The list at @list is reinitialised
 888 */
 889static inline void skb_queue_splice_init(struct sk_buff_head *list,
 890                                         struct sk_buff_head *head)
 891{
 892        if (!skb_queue_empty(list)) {
 893                __skb_queue_splice(list, (struct sk_buff *) head, head->next);
 894                head->qlen += list->qlen;
 895                __skb_queue_head_init(list);
 896        }
 897}
 898
 899/**
 900 *      skb_queue_splice_tail - join two skb lists, each list being a queue
 901 *      @list: the new list to add
 902 *      @head: the place to add it in the first list
 903 */
 904static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
 905                                         struct sk_buff_head *head)
 906{
 907        if (!skb_queue_empty(list)) {
 908                __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
 909                head->qlen += list->qlen;
 910        }
 911}
 912
 913/**
 914 *      skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
 915 *      @list: the new list to add
 916 *      @head: the place to add it in the first list
 917 *
 918 *      Each of the lists is a queue.
 919 *      The list at @list is reinitialised
 920 */
 921static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
 922                                              struct sk_buff_head *head)
 923{
 924        if (!skb_queue_empty(list)) {
 925                __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
 926                head->qlen += list->qlen;
 927                __skb_queue_head_init(list);
 928        }
 929}
 930
 931/**
 932 *      __skb_queue_after - queue a buffer at the list head
 933 *      @list: list to use
 934 *      @prev: place after this buffer
 935 *      @newsk: buffer to queue
 936 *
 937 *      Queue a buffer int the middle of a list. This function takes no locks
 938 *      and you must therefore hold required locks before calling it.
 939 *
 940 *      A buffer cannot be placed on two lists at the same time.
 941 */
 942static inline void __skb_queue_after(struct sk_buff_head *list,
 943                                     struct sk_buff *prev,
 944                                     struct sk_buff *newsk)
 945{
 946        __skb_insert(newsk, prev, prev->next, list);
 947}
 948
 949extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
 950                       struct sk_buff_head *list);
 951
 952static inline void __skb_queue_before(struct sk_buff_head *list,
 953                                      struct sk_buff *next,
 954                                      struct sk_buff *newsk)
 955{
 956        __skb_insert(newsk, next->prev, next, list);
 957}
 958
 959/**
 960 *      __skb_queue_head - queue a buffer at the list head
 961 *      @list: list to use
 962 *      @newsk: buffer to queue
 963 *
 964 *      Queue a buffer at the start of a list. This function takes no locks
 965 *      and you must therefore hold required locks before calling it.
 966 *
 967 *      A buffer cannot be placed on two lists at the same time.
 968 */
 969extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
 970static inline void __skb_queue_head(struct sk_buff_head *list,
 971                                    struct sk_buff *newsk)
 972{
 973        __skb_queue_after(list, (struct sk_buff *)list, newsk);
 974}
 975
 976/**
 977 *      __skb_queue_tail - queue a buffer at the list tail
 978 *      @list: list to use
 979 *      @newsk: buffer to queue
 980 *
 981 *      Queue a buffer at the end of a list. This function takes no locks
 982 *      and you must therefore hold required locks before calling it.
 983 *
 984 *      A buffer cannot be placed on two lists at the same time.
 985 */
 986extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
 987static inline void __skb_queue_tail(struct sk_buff_head *list,
 988                                   struct sk_buff *newsk)
 989{
 990        __skb_queue_before(list, (struct sk_buff *)list, newsk);
 991}
 992
 993/*
 994 * remove sk_buff from list. _Must_ be called atomically, and with
 995 * the list known..
 996 */
 997extern void        skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
 998static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
 999{
1000        struct sk_buff *next, *prev;
1001
1002        list->qlen--;
1003        next       = skb->next;
1004        prev       = skb->prev;
1005        skb->next  = skb->prev = NULL;
1006        next->prev = prev;
1007        prev->next = next;
1008}
1009
1010/**
1011 *      __skb_dequeue - remove from the head of the queue
1012 *      @list: list to dequeue from
1013 *
1014 *      Remove the head of the list. This function does not take any locks
1015 *      so must be used with appropriate locks held only. The head item is
1016 *      returned or %NULL if the list is empty.
1017 */
1018extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1019static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1020{
1021        struct sk_buff *skb = skb_peek(list);
1022        if (skb)
1023                __skb_unlink(skb, list);
1024        return skb;
1025}
1026
1027/**
1028 *      __skb_dequeue_tail - remove from the tail of the queue
1029 *      @list: list to dequeue from
1030 *
1031 *      Remove the tail of the list. This function does not take any locks
1032 *      so must be used with appropriate locks held only. The tail item is
1033 *      returned or %NULL if the list is empty.
1034 */
1035extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1036static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1037{
1038        struct sk_buff *skb = skb_peek_tail(list);
1039        if (skb)
1040                __skb_unlink(skb, list);
1041        return skb;
1042}
1043
1044
1045static inline int skb_is_nonlinear(const struct sk_buff *skb)
1046{
1047        return skb->data_len;
1048}
1049
1050static inline unsigned int skb_headlen(const struct sk_buff *skb)
1051{
1052        return skb->len - skb->data_len;
1053}
1054
1055static inline int skb_pagelen(const struct sk_buff *skb)
1056{
1057        int i, len = 0;
1058
1059        for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1060                len += skb_shinfo(skb)->frags[i].size;
1061        return len + skb_headlen(skb);
1062}
1063
1064static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1065                                      struct page *page, int off, int size)
1066{
1067        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1068
1069        frag->page                = page;
1070        frag->page_offset         = off;
1071        frag->size                = size;
1072        skb_shinfo(skb)->nr_frags = i + 1;
1073}
1074
1075extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1076                            int off, int size);
1077
1078#define SKB_PAGE_ASSERT(skb)    BUG_ON(skb_shinfo(skb)->nr_frags)
1079#define SKB_FRAG_ASSERT(skb)    BUG_ON(skb_has_frags(skb))
1080#define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1081
1082#ifdef NET_SKBUFF_DATA_USES_OFFSET
1083static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1084{
1085        return skb->head + skb->tail;
1086}
1087
1088static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1089{
1090        skb->tail = skb->data - skb->head;
1091}
1092
1093static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1094{
1095        skb_reset_tail_pointer(skb);
1096        skb->tail += offset;
1097}
1098#else /* NET_SKBUFF_DATA_USES_OFFSET */
1099static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1100{
1101        return skb->tail;
1102}
1103
1104static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1105{
1106        skb->tail = skb->data;
1107}
1108
1109static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1110{
1111        skb->tail = skb->data + offset;
1112}
1113
1114#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1115
1116/*
1117 *      Add data to an sk_buff
1118 */
1119extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1120static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1121{
1122        unsigned char *tmp = skb_tail_pointer(skb);
1123        SKB_LINEAR_ASSERT(skb);
1124        skb->tail += len;
1125        skb->len  += len;
1126        return tmp;
1127}
1128
1129extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1130static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1131{
1132        skb->data -= len;
1133        skb->len  += len;
1134        return skb->data;
1135}
1136
1137extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1138static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1139{
1140        skb->len -= len;
1141        BUG_ON(skb->len < skb->data_len);
1142        return skb->data += len;
1143}
1144
1145extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1146
1147static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1148{
1149        if (len > skb_headlen(skb) &&
1150            !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1151                return NULL;
1152        skb->len -= len;
1153        return skb->data += len;
1154}
1155
1156static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1157{
1158        return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1159}
1160
1161static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1162{
1163        if (likely(len <= skb_headlen(skb)))
1164                return 1;
1165        if (unlikely(len > skb->len))
1166                return 0;
1167        return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1168}
1169
1170/**
1171 *      skb_headroom - bytes at buffer head
1172 *      @skb: buffer to check
1173 *
1174 *      Return the number of bytes of free space at the head of an &sk_buff.
1175 */
1176static inline unsigned int skb_headroom(const struct sk_buff *skb)
1177{
1178        return skb->data - skb->head;
1179}
1180
1181/**
1182 *      skb_tailroom - bytes at buffer end
1183 *      @skb: buffer to check
1184 *
1185 *      Return the number of bytes of free space at the tail of an sk_buff
1186 */
1187static inline int skb_tailroom(const struct sk_buff *skb)
1188{
1189        return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1190}
1191
1192/**
1193 *      skb_reserve - adjust headroom
1194 *      @skb: buffer to alter
1195 *      @len: bytes to move
1196 *
1197 *      Increase the headroom of an empty &sk_buff by reducing the tail
1198 *      room. This is only allowed for an empty buffer.
1199 */
1200static inline void skb_reserve(struct sk_buff *skb, int len)
1201{
1202        skb->data += len;
1203        skb->tail += len;
1204}
1205
1206#ifdef NET_SKBUFF_DATA_USES_OFFSET
1207static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1208{
1209        return skb->head + skb->transport_header;
1210}
1211
1212static inline void skb_reset_transport_header(struct sk_buff *skb)
1213{
1214        skb->transport_header = skb->data - skb->head;
1215}
1216
1217static inline void skb_set_transport_header(struct sk_buff *skb,
1218                                            const int offset)
1219{
1220        skb_reset_transport_header(skb);
1221        skb->transport_header += offset;
1222}
1223
1224static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1225{
1226        return skb->head + skb->network_header;
1227}
1228
1229static inline void skb_reset_network_header(struct sk_buff *skb)
1230{
1231        skb->network_header = skb->data - skb->head;
1232}
1233
1234static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1235{
1236        skb_reset_network_header(skb);
1237        skb->network_header += offset;
1238}
1239
1240static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1241{
1242        return skb->head + skb->mac_header;
1243}
1244
1245static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1246{
1247        return skb->mac_header != ~0U;
1248}
1249
1250static inline void skb_reset_mac_header(struct sk_buff *skb)
1251{
1252        skb->mac_header = skb->data - skb->head;
1253}
1254
1255static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1256{
1257        skb_reset_mac_header(skb);
1258        skb->mac_header += offset;
1259}
1260
1261#else /* NET_SKBUFF_DATA_USES_OFFSET */
1262
1263static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1264{
1265        return skb->transport_header;
1266}
1267
1268static inline void skb_reset_transport_header(struct sk_buff *skb)
1269{
1270        skb->transport_header = skb->data;
1271}
1272
1273static inline void skb_set_transport_header(struct sk_buff *skb,
1274                                            const int offset)
1275{
1276        skb->transport_header = skb->data + offset;
1277}
1278
1279static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1280{
1281        return skb->network_header;
1282}
1283
1284static inline void skb_reset_network_header(struct sk_buff *skb)
1285{
1286        skb->network_header = skb->data;
1287}
1288
1289static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1290{
1291        skb->network_header = skb->data + offset;
1292}
1293
1294static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1295{
1296        return skb->mac_header;
1297}
1298
1299static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1300{
1301        return skb->mac_header != NULL;
1302}
1303
1304static inline void skb_reset_mac_header(struct sk_buff *skb)
1305{
1306        skb->mac_header = skb->data;
1307}
1308
1309static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1310{
1311        skb->mac_header = skb->data + offset;
1312}
1313#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1314
1315static inline int skb_transport_offset(const struct sk_buff *skb)
1316{
1317        return skb_transport_header(skb) - skb->data;
1318}
1319
1320static inline u32 skb_network_header_len(const struct sk_buff *skb)
1321{
1322        return skb->transport_header - skb->network_header;
1323}
1324
1325static inline int skb_network_offset(const struct sk_buff *skb)
1326{
1327        return skb_network_header(skb) - skb->data;
1328}
1329
1330/*
1331 * CPUs often take a performance hit when accessing unaligned memory
1332 * locations. The actual performance hit varies, it can be small if the
1333 * hardware handles it or large if we have to take an exception and fix it
1334 * in software.
1335 *
1336 * Since an ethernet header is 14 bytes network drivers often end up with
1337 * the IP header at an unaligned offset. The IP header can be aligned by
1338 * shifting the start of the packet by 2 bytes. Drivers should do this
1339 * with:
1340 *
1341 * skb_reserve(skb, NET_IP_ALIGN);
1342 *
1343 * The downside to this alignment of the IP header is that the DMA is now
1344 * unaligned. On some architectures the cost of an unaligned DMA is high
1345 * and this cost outweighs the gains made by aligning the IP header.
1346 *
1347 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1348 * to be overridden.
1349 */
1350#ifndef NET_IP_ALIGN
1351#define NET_IP_ALIGN    2
1352#endif
1353
1354/*
1355 * The networking layer reserves some headroom in skb data (via
1356 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1357 * the header has to grow. In the default case, if the header has to grow
1358 * 32 bytes or less we avoid the reallocation.
1359 *
1360 * Unfortunately this headroom changes the DMA alignment of the resulting
1361 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1362 * on some architectures. An architecture can override this value,
1363 * perhaps setting it to a cacheline in size (since that will maintain
1364 * cacheline alignment of the DMA). It must be a power of 2.
1365 *
1366 * Various parts of the networking layer expect at least 32 bytes of
1367 * headroom, you should not reduce this.
1368 */
1369#ifndef NET_SKB_PAD
1370#define NET_SKB_PAD     32
1371#endif
1372
1373extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1374
1375static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1376{
1377        if (unlikely(skb->data_len)) {
1378                WARN_ON(1);
1379                return;
1380        }
1381        skb->len = len;
1382        skb_set_tail_pointer(skb, len);
1383}
1384
1385extern void skb_trim(struct sk_buff *skb, unsigned int len);
1386
1387static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1388{
1389        if (skb->data_len)
1390                return ___pskb_trim(skb, len);
1391        __skb_trim(skb, len);
1392        return 0;
1393}
1394
1395static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1396{
1397        return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1398}
1399
1400/**
1401 *      pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1402 *      @skb: buffer to alter
1403 *      @len: new length
1404 *
1405 *      This is identical to pskb_trim except that the caller knows that
1406 *      the skb is not cloned so we should never get an error due to out-
1407 *      of-memory.
1408 */
1409static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1410{
1411        int err = pskb_trim(skb, len);
1412        BUG_ON(err);
1413}
1414
1415/**
1416 *      skb_orphan - orphan a buffer
1417 *      @skb: buffer to orphan
1418 *
1419 *      If a buffer currently has an owner then we call the owner's
1420 *      destructor function and make the @skb unowned. The buffer continues
1421 *      to exist but is no longer charged to its former owner.
1422 */
1423static inline void skb_orphan(struct sk_buff *skb)
1424{
1425        if (skb->destructor)
1426                skb->destructor(skb);
1427        skb->destructor = NULL;
1428        skb->sk         = NULL;
1429}
1430
1431/**
1432 *      __skb_queue_purge - empty a list
1433 *      @list: list to empty
1434 *
1435 *      Delete all buffers on an &sk_buff list. Each buffer is removed from
1436 *      the list and one reference dropped. This function does not take the
1437 *      list lock and the caller must hold the relevant locks to use it.
1438 */
1439extern void skb_queue_purge(struct sk_buff_head *list);
1440static inline void __skb_queue_purge(struct sk_buff_head *list)
1441{
1442        struct sk_buff *skb;
1443        while ((skb = __skb_dequeue(list)) != NULL)
1444                kfree_skb(skb);
1445}
1446
1447/**
1448 *      __dev_alloc_skb - allocate an skbuff for receiving
1449 *      @length: length to allocate
1450 *      @gfp_mask: get_free_pages mask, passed to alloc_skb
1451 *
1452 *      Allocate a new &sk_buff and assign it a usage count of one. The
1453 *      buffer has unspecified headroom built in. Users should allocate
1454 *      the headroom they think they need without accounting for the
1455 *      built in space. The built in space is used for optimisations.
1456 *
1457 *      %NULL is returned if there is no free memory.
1458 */
1459static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1460                                              gfp_t gfp_mask)
1461{
1462        struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1463        if (likely(skb))
1464                skb_reserve(skb, NET_SKB_PAD);
1465        return skb;
1466}
1467
1468extern struct sk_buff *dev_alloc_skb(unsigned int length);
1469
1470extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1471                unsigned int length, gfp_t gfp_mask);
1472
1473/**
1474 *      netdev_alloc_skb - allocate an skbuff for rx on a specific device
1475 *      @dev: network device to receive on
1476 *      @length: length to allocate
1477 *
1478 *      Allocate a new &sk_buff and assign it a usage count of one. The
1479 *      buffer has unspecified headroom built in. Users should allocate
1480 *      the headroom they think they need without accounting for the
1481 *      built in space. The built in space is used for optimisations.
1482 *
1483 *      %NULL is returned if there is no free memory. Although this function
1484 *      allocates memory it can be called from an interrupt.
1485 */
1486static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1487                unsigned int length)
1488{
1489        return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1490}
1491
1492extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask);
1493
1494/**
1495 *      netdev_alloc_page - allocate a page for ps-rx on a specific device
1496 *      @dev: network device to receive on
1497 *
1498 *      Allocate a new page node local to the specified device.
1499 *
1500 *      %NULL is returned if there is no free memory.
1501 */
1502static inline struct page *netdev_alloc_page(struct net_device *dev)
1503{
1504        return __netdev_alloc_page(dev, GFP_ATOMIC);
1505}
1506
1507static inline void netdev_free_page(struct net_device *dev, struct page *page)
1508{
1509        __free_page(page);
1510}
1511
1512/**
1513 *      skb_clone_writable - is the header of a clone writable
1514 *      @skb: buffer to check
1515 *      @len: length up to which to write
1516 *
1517 *      Returns true if modifying the header part of the cloned buffer
1518 *      does not requires the data to be copied.
1519 */
1520static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1521{
1522        return !skb_header_cloned(skb) &&
1523               skb_headroom(skb) + len <= skb->hdr_len;
1524}
1525
1526static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1527                            int cloned)
1528{
1529        int delta = 0;
1530
1531        if (headroom < NET_SKB_PAD)
1532                headroom = NET_SKB_PAD;
1533        if (headroom > skb_headroom(skb))
1534                delta = headroom - skb_headroom(skb);
1535
1536        if (delta || cloned)
1537                return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1538                                        GFP_ATOMIC);
1539        return 0;
1540}
1541
1542/**
1543 *      skb_cow - copy header of skb when it is required
1544 *      @skb: buffer to cow
1545 *      @headroom: needed headroom
1546 *
1547 *      If the skb passed lacks sufficient headroom or its data part
1548 *      is shared, data is reallocated. If reallocation fails, an error
1549 *      is returned and original skb is not changed.
1550 *
1551 *      The result is skb with writable area skb->head...skb->tail
1552 *      and at least @headroom of space at head.
1553 */
1554static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1555{
1556        return __skb_cow(skb, headroom, skb_cloned(skb));
1557}
1558
1559/**
1560 *      skb_cow_head - skb_cow but only making the head writable
1561 *      @skb: buffer to cow
1562 *      @headroom: needed headroom
1563 *
1564 *      This function is identical to skb_cow except that we replace the
1565 *      skb_cloned check by skb_header_cloned.  It should be used when
1566 *      you only need to push on some header and do not need to modify
1567 *      the data.
1568 */
1569static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1570{
1571        return __skb_cow(skb, headroom, skb_header_cloned(skb));
1572}
1573
1574/**
1575 *      skb_padto       - pad an skbuff up to a minimal size
1576 *      @skb: buffer to pad
1577 *      @len: minimal length
1578 *
1579 *      Pads up a buffer to ensure the trailing bytes exist and are
1580 *      blanked. If the buffer already contains sufficient data it
1581 *      is untouched. Otherwise it is extended. Returns zero on
1582 *      success. The skb is freed on error.
1583 */
1584 
1585static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1586{
1587        unsigned int size = skb->len;
1588        if (likely(size >= len))
1589                return 0;
1590        return skb_pad(skb, len - size);
1591}
1592
1593static inline int skb_add_data(struct sk_buff *skb,
1594                               char __user *from, int copy)
1595{
1596        const int off = skb->len;
1597
1598        if (skb->ip_summed == CHECKSUM_NONE) {
1599                int err = 0;
1600                __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1601                                                            copy, 0, &err);
1602                if (!err) {
1603                        skb->csum = csum_block_add(skb->csum, csum, off);
1604                        return 0;
1605                }
1606        } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1607                return 0;
1608
1609        __skb_trim(skb, off);
1610        return -EFAULT;
1611}
1612
1613static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1614                                   struct page *page, int off)
1615{
1616        if (i) {
1617                struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1618
1619                return page == frag->page &&
1620                       off == frag->page_offset + frag->size;
1621        }
1622        return 0;
1623}
1624
1625static inline int __skb_linearize(struct sk_buff *skb)
1626{
1627        return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1628}
1629
1630/**
1631 *      skb_linearize - convert paged skb to linear one
1632 *      @skb: buffer to linarize
1633 *
1634 *      If there is no free memory -ENOMEM is returned, otherwise zero
1635 *      is returned and the old skb data released.
1636 */
1637static inline int skb_linearize(struct sk_buff *skb)
1638{
1639        return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1640}
1641
1642/**
1643 *      skb_linearize_cow - make sure skb is linear and writable
1644 *      @skb: buffer to process
1645 *
1646 *      If there is no free memory -ENOMEM is returned, otherwise zero
1647 *      is returned and the old skb data released.
1648 */
1649static inline int skb_linearize_cow(struct sk_buff *skb)
1650{
1651        return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1652               __skb_linearize(skb) : 0;
1653}
1654
1655/**
1656 *      skb_postpull_rcsum - update checksum for received skb after pull
1657 *      @skb: buffer to update
1658 *      @start: start of data before pull
1659 *      @len: length of data pulled
1660 *
1661 *      After doing a pull on a received packet, you need to call this to
1662 *      update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1663 *      CHECKSUM_NONE so that it can be recomputed from scratch.
1664 */
1665
1666static inline void skb_postpull_rcsum(struct sk_buff *skb,
1667                                      const void *start, unsigned int len)
1668{
1669        if (skb->ip_summed == CHECKSUM_COMPLETE)
1670                skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1671}
1672
1673unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1674
1675/**
1676 *      pskb_trim_rcsum - trim received skb and update checksum
1677 *      @skb: buffer to trim
1678 *      @len: new length
1679 *
1680 *      This is exactly the same as pskb_trim except that it ensures the
1681 *      checksum of received packets are still valid after the operation.
1682 */
1683
1684static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1685{
1686        if (likely(len >= skb->len))
1687                return 0;
1688        if (skb->ip_summed == CHECKSUM_COMPLETE)
1689                skb->ip_summed = CHECKSUM_NONE;
1690        return __pskb_trim(skb, len);
1691}
1692
1693#define skb_queue_walk(queue, skb) \
1694                for (skb = (queue)->next;                                       \
1695                     prefetch(skb->next), (skb != (struct sk_buff *)(queue));   \
1696                     skb = skb->next)
1697
1698#define skb_queue_walk_safe(queue, skb, tmp)                                    \
1699                for (skb = (queue)->next, tmp = skb->next;                      \
1700                     skb != (struct sk_buff *)(queue);                          \
1701                     skb = tmp, tmp = skb->next)
1702
1703#define skb_queue_walk_from(queue, skb)                                         \
1704                for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1705                     skb = skb->next)
1706
1707#define skb_queue_walk_from_safe(queue, skb, tmp)                               \
1708                for (tmp = skb->next;                                           \
1709                     skb != (struct sk_buff *)(queue);                          \
1710                     skb = tmp, tmp = skb->next)
1711
1712#define skb_queue_reverse_walk(queue, skb) \
1713                for (skb = (queue)->prev;                                       \
1714                     prefetch(skb->prev), (skb != (struct sk_buff *)(queue));   \
1715                     skb = skb->prev)
1716
1717
1718static inline bool skb_has_frags(const struct sk_buff *skb)
1719{
1720        return skb_shinfo(skb)->frag_list != NULL;
1721}
1722
1723static inline void skb_frag_list_init(struct sk_buff *skb)
1724{
1725        skb_shinfo(skb)->frag_list = NULL;
1726}
1727
1728static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
1729{
1730        frag->next = skb_shinfo(skb)->frag_list;
1731        skb_shinfo(skb)->frag_list = frag;
1732}
1733
1734#define skb_walk_frags(skb, iter)       \
1735        for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
1736
1737extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1738                                           int *peeked, int *err);
1739extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1740                                         int noblock, int *err);
1741extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1742                                     struct poll_table_struct *wait);
1743extern int             skb_copy_datagram_iovec(const struct sk_buff *from,
1744                                               int offset, struct iovec *to,
1745                                               int size);
1746extern int             skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1747                                                        int hlen,
1748                                                        struct iovec *iov);
1749extern int             skb_copy_datagram_from_iovec(struct sk_buff *skb,
1750                                                    int offset,
1751                                                    const struct iovec *from,
1752                                                    int from_offset,
1753                                                    int len);
1754extern int             skb_copy_datagram_const_iovec(const struct sk_buff *from,
1755                                                     int offset,
1756                                                     const struct iovec *to,
1757                                                     int to_offset,
1758                                                     int size);
1759extern void            skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1760extern void            skb_free_datagram_locked(struct sock *sk,
1761                                                struct sk_buff *skb);
1762extern int             skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1763                                         unsigned int flags);
1764extern __wsum          skb_checksum(const struct sk_buff *skb, int offset,
1765                                    int len, __wsum csum);
1766extern int             skb_copy_bits(const struct sk_buff *skb, int offset,
1767                                     void *to, int len);
1768extern int             skb_store_bits(struct sk_buff *skb, int offset,
1769                                      const void *from, int len);
1770extern __wsum          skb_copy_and_csum_bits(const struct sk_buff *skb,
1771                                              int offset, u8 *to, int len,
1772                                              __wsum csum);
1773extern int             skb_splice_bits(struct sk_buff *skb,
1774                                                unsigned int offset,
1775                                                struct pipe_inode_info *pipe,
1776                                                unsigned int len,
1777                                                unsigned int flags);
1778extern void            skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1779extern void            skb_split(struct sk_buff *skb,
1780                                 struct sk_buff *skb1, const u32 len);
1781extern int             skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1782                                 int shiftlen);
1783
1784extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1785
1786static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1787                                       int len, void *buffer)
1788{
1789        int hlen = skb_headlen(skb);
1790
1791        if (hlen - offset >= len)
1792                return skb->data + offset;
1793
1794        if (skb_copy_bits(skb, offset, buffer, len) < 0)
1795                return NULL;
1796
1797        return buffer;
1798}
1799
1800static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1801                                             void *to,
1802                                             const unsigned int len)
1803{
1804        memcpy(to, skb->data, len);
1805}
1806
1807static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1808                                                    const int offset, void *to,
1809                                                    const unsigned int len)
1810{
1811        memcpy(to, skb->data + offset, len);
1812}
1813
1814static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1815                                           const void *from,
1816                                           const unsigned int len)
1817{
1818        memcpy(skb->data, from, len);
1819}
1820
1821static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1822                                                  const int offset,
1823                                                  const void *from,
1824                                                  const unsigned int len)
1825{
1826        memcpy(skb->data + offset, from, len);
1827}
1828
1829extern void skb_init(void);
1830
1831static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
1832{
1833        return skb->tstamp;
1834}
1835
1836/**
1837 *      skb_get_timestamp - get timestamp from a skb
1838 *      @skb: skb to get stamp from
1839 *      @stamp: pointer to struct timeval to store stamp in
1840 *
1841 *      Timestamps are stored in the skb as offsets to a base timestamp.
1842 *      This function converts the offset back to a struct timeval and stores
1843 *      it in stamp.
1844 */
1845static inline void skb_get_timestamp(const struct sk_buff *skb,
1846                                     struct timeval *stamp)
1847{
1848        *stamp = ktime_to_timeval(skb->tstamp);
1849}
1850
1851static inline void skb_get_timestampns(const struct sk_buff *skb,
1852                                       struct timespec *stamp)
1853{
1854        *stamp = ktime_to_timespec(skb->tstamp);
1855}
1856
1857static inline void __net_timestamp(struct sk_buff *skb)
1858{
1859        skb->tstamp = ktime_get_real();
1860}
1861
1862static inline ktime_t net_timedelta(ktime_t t)
1863{
1864        return ktime_sub(ktime_get_real(), t);
1865}
1866
1867static inline ktime_t net_invalid_timestamp(void)
1868{
1869        return ktime_set(0, 0);
1870}
1871
1872/**
1873 * skb_tstamp_tx - queue clone of skb with send time stamps
1874 * @orig_skb:   the original outgoing packet
1875 * @hwtstamps:  hardware time stamps, may be NULL if not available
1876 *
1877 * If the skb has a socket associated, then this function clones the
1878 * skb (thus sharing the actual data and optional structures), stores
1879 * the optional hardware time stamping information (if non NULL) or
1880 * generates a software time stamp (otherwise), then queues the clone
1881 * to the error queue of the socket.  Errors are silently ignored.
1882 */
1883extern void skb_tstamp_tx(struct sk_buff *orig_skb,
1884                        struct skb_shared_hwtstamps *hwtstamps);
1885
1886extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1887extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1888
1889static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1890{
1891        return skb->ip_summed & CHECKSUM_UNNECESSARY;
1892}
1893
1894/**
1895 *      skb_checksum_complete - Calculate checksum of an entire packet
1896 *      @skb: packet to process
1897 *
1898 *      This function calculates the checksum over the entire packet plus
1899 *      the value of skb->csum.  The latter can be used to supply the
1900 *      checksum of a pseudo header as used by TCP/UDP.  It returns the
1901 *      checksum.
1902 *
1903 *      For protocols that contain complete checksums such as ICMP/TCP/UDP,
1904 *      this function can be used to verify that checksum on received
1905 *      packets.  In that case the function should return zero if the
1906 *      checksum is correct.  In particular, this function will return zero
1907 *      if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1908 *      hardware has already verified the correctness of the checksum.
1909 */
1910static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1911{
1912        return skb_csum_unnecessary(skb) ?
1913               0 : __skb_checksum_complete(skb);
1914}
1915
1916#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1917extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1918static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1919{
1920        if (nfct && atomic_dec_and_test(&nfct->use))
1921                nf_conntrack_destroy(nfct);
1922}
1923static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1924{
1925        if (nfct)
1926                atomic_inc(&nfct->use);
1927}
1928static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1929{
1930        if (skb)
1931                atomic_inc(&skb->users);
1932}
1933static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1934{
1935        if (skb)
1936                kfree_skb(skb);
1937}
1938#endif
1939#ifdef CONFIG_BRIDGE_NETFILTER
1940static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1941{
1942        if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1943                kfree(nf_bridge);
1944}
1945static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1946{
1947        if (nf_bridge)
1948                atomic_inc(&nf_bridge->use);
1949}
1950#endif /* CONFIG_BRIDGE_NETFILTER */
1951static inline void nf_reset(struct sk_buff *skb)
1952{
1953#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1954        nf_conntrack_put(skb->nfct);
1955        skb->nfct = NULL;
1956        nf_conntrack_put_reasm(skb->nfct_reasm);
1957        skb->nfct_reasm = NULL;
1958#endif
1959#ifdef CONFIG_BRIDGE_NETFILTER
1960        nf_bridge_put(skb->nf_bridge);
1961        skb->nf_bridge = NULL;
1962#endif
1963}
1964
1965/* Note: This doesn't put any conntrack and bridge info in dst. */
1966static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1967{
1968#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1969        dst->nfct = src->nfct;
1970        nf_conntrack_get(src->nfct);
1971        dst->nfctinfo = src->nfctinfo;
1972        dst->nfct_reasm = src->nfct_reasm;
1973        nf_conntrack_get_reasm(src->nfct_reasm);
1974#endif
1975#ifdef CONFIG_BRIDGE_NETFILTER
1976        dst->nf_bridge  = src->nf_bridge;
1977        nf_bridge_get(src->nf_bridge);
1978#endif
1979}
1980
1981static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1982{
1983#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1984        nf_conntrack_put(dst->nfct);
1985        nf_conntrack_put_reasm(dst->nfct_reasm);
1986#endif
1987#ifdef CONFIG_BRIDGE_NETFILTER
1988        nf_bridge_put(dst->nf_bridge);
1989#endif
1990        __nf_copy(dst, src);
1991}
1992
1993#ifdef CONFIG_NETWORK_SECMARK
1994static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1995{
1996        to->secmark = from->secmark;
1997}
1998
1999static inline void skb_init_secmark(struct sk_buff *skb)
2000{
2001        skb->secmark = 0;
2002}
2003#else
2004static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2005{ }
2006
2007static inline void skb_init_secmark(struct sk_buff *skb)
2008{ }
2009#endif
2010
2011static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2012{
2013        skb->queue_mapping = queue_mapping;
2014}
2015
2016static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2017{
2018        return skb->queue_mapping;
2019}
2020
2021static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2022{
2023        to->queue_mapping = from->queue_mapping;
2024}
2025
2026static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2027{
2028        skb->queue_mapping = rx_queue + 1;
2029}
2030
2031static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2032{
2033        return skb->queue_mapping - 1;
2034}
2035
2036static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2037{
2038        return (skb->queue_mapping != 0);
2039}
2040
2041extern u16 skb_tx_hash(const struct net_device *dev,
2042                       const struct sk_buff *skb);
2043
2044#ifdef CONFIG_XFRM
2045static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2046{
2047        return skb->sp;
2048}
2049#else
2050static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2051{
2052        return NULL;
2053}
2054#endif
2055
2056static inline int skb_is_gso(const struct sk_buff *skb)
2057{
2058        return skb_shinfo(skb)->gso_size;
2059}
2060
2061static inline int skb_is_gso_v6(const struct sk_buff *skb)
2062{
2063        return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2064}
2065
2066extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2067
2068static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2069{
2070        /* LRO sets gso_size but not gso_type, whereas if GSO is really
2071         * wanted then gso_type will be set. */
2072        struct skb_shared_info *shinfo = skb_shinfo(skb);
2073        if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
2074                __skb_warn_lro_forwarding(skb);
2075                return true;
2076        }
2077        return false;
2078}
2079
2080static inline void skb_forward_csum(struct sk_buff *skb)
2081{
2082        /* Unfortunately we don't support this one.  Any brave souls? */
2083        if (skb->ip_summed == CHECKSUM_COMPLETE)
2084                skb->ip_summed = CHECKSUM_NONE;
2085}
2086
2087bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2088#endif  /* __KERNEL__ */
2089#endif  /* _LINUX_SKBUFF_H */
2090