linux/include/linux/slab.h
<<
>>
Prefs
   1/*
   2 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
   3 *
   4 * (C) SGI 2006, Christoph Lameter
   5 *      Cleaned up and restructured to ease the addition of alternative
   6 *      implementations of SLAB allocators.
   7 */
   8
   9#ifndef _LINUX_SLAB_H
  10#define _LINUX_SLAB_H
  11
  12#include <linux/gfp.h>
  13#include <linux/types.h>
  14
  15/*
  16 * Flags to pass to kmem_cache_create().
  17 * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set.
  18 */
  19#define SLAB_DEBUG_FREE         0x00000100UL    /* DEBUG: Perform (expensive) checks on free */
  20#define SLAB_RED_ZONE           0x00000400UL    /* DEBUG: Red zone objs in a cache */
  21#define SLAB_POISON             0x00000800UL    /* DEBUG: Poison objects */
  22#define SLAB_HWCACHE_ALIGN      0x00002000UL    /* Align objs on cache lines */
  23#define SLAB_CACHE_DMA          0x00004000UL    /* Use GFP_DMA memory */
  24#define SLAB_STORE_USER         0x00010000UL    /* DEBUG: Store the last owner for bug hunting */
  25#define SLAB_PANIC              0x00040000UL    /* Panic if kmem_cache_create() fails */
  26/*
  27 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
  28 *
  29 * This delays freeing the SLAB page by a grace period, it does _NOT_
  30 * delay object freeing. This means that if you do kmem_cache_free()
  31 * that memory location is free to be reused at any time. Thus it may
  32 * be possible to see another object there in the same RCU grace period.
  33 *
  34 * This feature only ensures the memory location backing the object
  35 * stays valid, the trick to using this is relying on an independent
  36 * object validation pass. Something like:
  37 *
  38 *  rcu_read_lock()
  39 * again:
  40 *  obj = lockless_lookup(key);
  41 *  if (obj) {
  42 *    if (!try_get_ref(obj)) // might fail for free objects
  43 *      goto again;
  44 *
  45 *    if (obj->key != key) { // not the object we expected
  46 *      put_ref(obj);
  47 *      goto again;
  48 *    }
  49 *  }
  50 *  rcu_read_unlock();
  51 *
  52 * See also the comment on struct slab_rcu in mm/slab.c.
  53 */
  54#define SLAB_DESTROY_BY_RCU     0x00080000UL    /* Defer freeing slabs to RCU */
  55#define SLAB_MEM_SPREAD         0x00100000UL    /* Spread some memory over cpuset */
  56#define SLAB_TRACE              0x00200000UL    /* Trace allocations and frees */
  57
  58/* Flag to prevent checks on free */
  59#ifdef CONFIG_DEBUG_OBJECTS
  60# define SLAB_DEBUG_OBJECTS     0x00400000UL
  61#else
  62# define SLAB_DEBUG_OBJECTS     0x00000000UL
  63#endif
  64
  65#define SLAB_NOLEAKTRACE        0x00800000UL    /* Avoid kmemleak tracing */
  66
  67/* Don't track use of uninitialized memory */
  68#ifdef CONFIG_KMEMCHECK
  69# define SLAB_NOTRACK           0x01000000UL
  70#else
  71# define SLAB_NOTRACK           0x00000000UL
  72#endif
  73
  74/* The following flags affect the page allocator grouping pages by mobility */
  75#define SLAB_RECLAIM_ACCOUNT    0x00020000UL            /* Objects are reclaimable */
  76#define SLAB_TEMPORARY          SLAB_RECLAIM_ACCOUNT    /* Objects are short-lived */
  77/*
  78 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
  79 *
  80 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
  81 *
  82 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
  83 * Both make kfree a no-op.
  84 */
  85#define ZERO_SIZE_PTR ((void *)16)
  86
  87#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
  88                                (unsigned long)ZERO_SIZE_PTR)
  89
  90/*
  91 * struct kmem_cache related prototypes
  92 */
  93void __init kmem_cache_init(void);
  94int slab_is_available(void);
  95
  96struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
  97                        unsigned long,
  98                        void (*)(void *));
  99void kmem_cache_destroy(struct kmem_cache *);
 100int kmem_cache_shrink(struct kmem_cache *);
 101void kmem_cache_free(struct kmem_cache *, void *);
 102unsigned int kmem_cache_size(struct kmem_cache *);
 103const char *kmem_cache_name(struct kmem_cache *);
 104int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr);
 105
 106/*
 107 * Please use this macro to create slab caches. Simply specify the
 108 * name of the structure and maybe some flags that are listed above.
 109 *
 110 * The alignment of the struct determines object alignment. If you
 111 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
 112 * then the objects will be properly aligned in SMP configurations.
 113 */
 114#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
 115                sizeof(struct __struct), __alignof__(struct __struct),\
 116                (__flags), NULL)
 117
 118/*
 119 * The largest kmalloc size supported by the slab allocators is
 120 * 32 megabyte (2^25) or the maximum allocatable page order if that is
 121 * less than 32 MB.
 122 *
 123 * WARNING: Its not easy to increase this value since the allocators have
 124 * to do various tricks to work around compiler limitations in order to
 125 * ensure proper constant folding.
 126 */
 127#define KMALLOC_SHIFT_HIGH      ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
 128                                (MAX_ORDER + PAGE_SHIFT - 1) : 25)
 129
 130#define KMALLOC_MAX_SIZE        (1UL << KMALLOC_SHIFT_HIGH)
 131#define KMALLOC_MAX_ORDER       (KMALLOC_SHIFT_HIGH - PAGE_SHIFT)
 132
 133/*
 134 * Common kmalloc functions provided by all allocators
 135 */
 136void * __must_check __krealloc(const void *, size_t, gfp_t);
 137void * __must_check krealloc(const void *, size_t, gfp_t);
 138void kfree(const void *);
 139void kzfree(const void *);
 140size_t ksize(const void *);
 141
 142/*
 143 * Allocator specific definitions. These are mainly used to establish optimized
 144 * ways to convert kmalloc() calls to kmem_cache_alloc() invocations by
 145 * selecting the appropriate general cache at compile time.
 146 *
 147 * Allocators must define at least:
 148 *
 149 *      kmem_cache_alloc()
 150 *      __kmalloc()
 151 *      kmalloc()
 152 *
 153 * Those wishing to support NUMA must also define:
 154 *
 155 *      kmem_cache_alloc_node()
 156 *      kmalloc_node()
 157 *
 158 * See each allocator definition file for additional comments and
 159 * implementation notes.
 160 */
 161#ifdef CONFIG_SLUB
 162#include <linux/slub_def.h>
 163#elif defined(CONFIG_SLOB)
 164#include <linux/slob_def.h>
 165#else
 166#include <linux/slab_def.h>
 167#endif
 168
 169/**
 170 * kcalloc - allocate memory for an array. The memory is set to zero.
 171 * @n: number of elements.
 172 * @size: element size.
 173 * @flags: the type of memory to allocate.
 174 *
 175 * The @flags argument may be one of:
 176 *
 177 * %GFP_USER - Allocate memory on behalf of user.  May sleep.
 178 *
 179 * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
 180 *
 181 * %GFP_ATOMIC - Allocation will not sleep.  May use emergency pools.
 182 *   For example, use this inside interrupt handlers.
 183 *
 184 * %GFP_HIGHUSER - Allocate pages from high memory.
 185 *
 186 * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
 187 *
 188 * %GFP_NOFS - Do not make any fs calls while trying to get memory.
 189 *
 190 * %GFP_NOWAIT - Allocation will not sleep.
 191 *
 192 * %GFP_THISNODE - Allocate node-local memory only.
 193 *
 194 * %GFP_DMA - Allocation suitable for DMA.
 195 *   Should only be used for kmalloc() caches. Otherwise, use a
 196 *   slab created with SLAB_DMA.
 197 *
 198 * Also it is possible to set different flags by OR'ing
 199 * in one or more of the following additional @flags:
 200 *
 201 * %__GFP_COLD - Request cache-cold pages instead of
 202 *   trying to return cache-warm pages.
 203 *
 204 * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
 205 *
 206 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
 207 *   (think twice before using).
 208 *
 209 * %__GFP_NORETRY - If memory is not immediately available,
 210 *   then give up at once.
 211 *
 212 * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
 213 *
 214 * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
 215 *
 216 * There are other flags available as well, but these are not intended
 217 * for general use, and so are not documented here. For a full list of
 218 * potential flags, always refer to linux/gfp.h.
 219 */
 220static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
 221{
 222        if (size != 0 && n > ULONG_MAX / size)
 223                return NULL;
 224        return __kmalloc(n * size, flags | __GFP_ZERO);
 225}
 226
 227#if !defined(CONFIG_NUMA) && !defined(CONFIG_SLOB)
 228/**
 229 * kmalloc_node - allocate memory from a specific node
 230 * @size: how many bytes of memory are required.
 231 * @flags: the type of memory to allocate (see kcalloc).
 232 * @node: node to allocate from.
 233 *
 234 * kmalloc() for non-local nodes, used to allocate from a specific node
 235 * if available. Equivalent to kmalloc() in the non-NUMA single-node
 236 * case.
 237 */
 238static inline void *kmalloc_node(size_t size, gfp_t flags, int node)
 239{
 240        return kmalloc(size, flags);
 241}
 242
 243static inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
 244{
 245        return __kmalloc(size, flags);
 246}
 247
 248void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
 249
 250static inline void *kmem_cache_alloc_node(struct kmem_cache *cachep,
 251                                        gfp_t flags, int node)
 252{
 253        return kmem_cache_alloc(cachep, flags);
 254}
 255#endif /* !CONFIG_NUMA && !CONFIG_SLOB */
 256
 257/*
 258 * kmalloc_track_caller is a special version of kmalloc that records the
 259 * calling function of the routine calling it for slab leak tracking instead
 260 * of just the calling function (confusing, eh?).
 261 * It's useful when the call to kmalloc comes from a widely-used standard
 262 * allocator where we care about the real place the memory allocation
 263 * request comes from.
 264 */
 265#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB)
 266extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
 267#define kmalloc_track_caller(size, flags) \
 268        __kmalloc_track_caller(size, flags, _RET_IP_)
 269#else
 270#define kmalloc_track_caller(size, flags) \
 271        __kmalloc(size, flags)
 272#endif /* DEBUG_SLAB */
 273
 274#ifdef CONFIG_NUMA
 275/*
 276 * kmalloc_node_track_caller is a special version of kmalloc_node that
 277 * records the calling function of the routine calling it for slab leak
 278 * tracking instead of just the calling function (confusing, eh?).
 279 * It's useful when the call to kmalloc_node comes from a widely-used
 280 * standard allocator where we care about the real place the memory
 281 * allocation request comes from.
 282 */
 283#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB)
 284extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
 285#define kmalloc_node_track_caller(size, flags, node) \
 286        __kmalloc_node_track_caller(size, flags, node, \
 287                        _RET_IP_)
 288#else
 289#define kmalloc_node_track_caller(size, flags, node) \
 290        __kmalloc_node(size, flags, node)
 291#endif
 292
 293#else /* CONFIG_NUMA */
 294
 295#define kmalloc_node_track_caller(size, flags, node) \
 296        kmalloc_track_caller(size, flags)
 297
 298#endif /* CONFIG_NUMA */
 299
 300/*
 301 * Shortcuts
 302 */
 303static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
 304{
 305        return kmem_cache_alloc(k, flags | __GFP_ZERO);
 306}
 307
 308/**
 309 * kzalloc - allocate memory. The memory is set to zero.
 310 * @size: how many bytes of memory are required.
 311 * @flags: the type of memory to allocate (see kmalloc).
 312 */
 313static inline void *kzalloc(size_t size, gfp_t flags)
 314{
 315        return kmalloc(size, flags | __GFP_ZERO);
 316}
 317
 318/**
 319 * kzalloc_node - allocate zeroed memory from a particular memory node.
 320 * @size: how many bytes of memory are required.
 321 * @flags: the type of memory to allocate (see kmalloc).
 322 * @node: memory node from which to allocate
 323 */
 324static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
 325{
 326        return kmalloc_node(size, flags | __GFP_ZERO, node);
 327}
 328
 329void __init kmem_cache_init_late(void);
 330
 331#endif  /* _LINUX_SLAB_H */
 332